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The constraints under which a gas at a certain state will evolve can be given by 
three partial differential equations which express the conservation of momentum, 
mass, and energy. In these equations, a particular gas is defined by specifying the 
constitutive relation e = e(u, S), where e = specific internal energy, v = specific 
volume, and S = specific entropy. The energy function e = -In u + (S/R) describes 
a polytropic gas for the exponent y = 1, and for this choice of e(V, S), global weak 
solutions for bounded measurable data having finite total variation were given by 
Nishida in [lo]. Here the following general existence theorem is obtained: let 
e,(v, S) be any smooth one parameter family of energy functions such that at E = 0 
the energy is given by e&v, S) = -In v + (S/R). It is proven that there exists a 
constant C independent of E, such that, if E . (total variation of the initial data) < C, 
then there exists a global weak solution to the equations. Since any energy function 
can be connected to e&V, S) by a smooth parameterization, our results give an 
existence theorem for all the conservation laws of gas dynamics. As a corollary we 
obtain an existence theorem of Liu, Indiana Univ. Math. J. 26, No. 1 (1977) for 
polytropic gases. The main point in this argument is that the nonlinear functional 
used to make the Glimm Scheme converge, depends only on properties of the 
equations at E = 0. For general n x n systems of conservation laws, this technique 
provides an alternate proof for the interaction estimates in Glimm’s 1965 paper. 
The new result here is that certain interaction differences are bounded by E as well 
as by the approaching waves. 

Contents. Introduction. 1. Preliminaries. 2. Interaction Estimates. 3. Gas Dynamic 
Equations. 4. Existence Theorem Using Glimm Difference Scheme. 5. An Existence Theorem 
for Polytropic Gases. Appendix I. Proof of Lemma 1.2. Appendix II. Proof of Proposition 3.1. 
Diagrams. References. 

The existence of a solution to the initial value problem for a one- 
dimensional system of nonlinear hyperbolic conservation laws was solved by 
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Glimm [2] for small variational data. In the following paper, the “Glimm 
Scheme” is used to obtain existence in the case of large variational data for a 
class of nonisentropic gas equations. The main idea is to study large 
variational solutions to ideal gas equations which are near a class of soluble 
equations. The soluble equations can be viewed as the nonisentropic 
equations for polytropic gases having y = 1. I This generalizes the theorems 
of Nishida and Smoller [7] and Liu (51, who considered this problem for 
polytropic gases (a family of ideal gases parameterized by 1 < y < 5/3). New 
estimates, required for the proof of existence, are obtained for general n x n 
systems. 

We first consider the initial value problem for a system of nonlinear 
hyperbolic partial differential equations in conservation form 

We assume general conditions on f that guarantee unique solutions to 
Riemann problems (problems in which the initial data U,,(X) are constant to 
the left and right of x = 0); i.e., we assume that the system is strictly hyper- 
bolic, and that the ith characteristic family is either genuinely nonlinear or 
linearly degenerate; cf. [4]. The system is strictly hyperbolic if the eigen- 
values of q” the first Frechet derivative off; are real and distinct. Denoting 
the eigenvalues of df as A, < 1, < ..a < 1, and the respective right eigen- 
vectors of df as Ri, we say that the ith characteristic field is genuinely 
nonlinear [resp. linearly degenerate] if li increases [resp. is constant] along 
the integral curves of the eigenvectors R,. It is commonly known that discon- 
tinuities form in the solutions of (1) even in the presence of smooth initial 
data. For this reason we look for weak solutions in the sense of the theory of 
distributions; i.e., solutions which satisfy 

’ Jll 4, + f(u) 4, h dt + i 
O” u(x, 0) 4(x, 0) dx = 0 

--m<x<m -cc 
I>0 

for every smooth function 4(x, t) with compact support. Further “entropy 
conditions” are required of the solutions in order to select physically relevant 
weak solutions; cf. [4]. 

We let f,(u) = f(u, E), 0 < E & 1, be any smooth one parameter family of 
functions, such that f,(u) satisfies the above conditions at each fixed E. By 
“smooth” we mean that f(u, E) has sufficiently many derivatives with respect 

’ Here “ideal gas” and “polytropic gas” are used in the sense of Courant and 
Friedrichs [I]. 
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to II, E. Actually, four derivatives will sufftce. We write the parameterization 
of initial value problems 

Uf + L(u), = 0, 
O<&<l. 

u(x, 0) = q)(x), 
(2) 

In this paper, we first consider the general problem (2) in compact regions 
U of u-space where Riemann problems (u,, u,) have unique solutions at 
every E in [0, 11. We define the signed strengths of i-waves in a Riemann 
problem solution, and then consider the difference between the wave 
strengths in the Riemann problem (u,, uI1), and the strengths in the Riemann 
problems (u,, u+,), (u,,,, uR), where ut, u,, uR are states in U. Writing 

(q,, u,) = (c, ,-**, c,> = CT 

(UL, uicl) = (a, ,*-0, a,) = a, 

(u ,+,, uR) = (b, ,..., b,) = b, 

where the right-hand side denotes the signed strengths of the solution waves, 
we show that the following interaction estimates hold: 

I C,(E) - Ci(O)I < G&D, 

1 ci - ai - bij < GD. 

Here c is viewed as a function of a, b and E, D is the sum of the products of 
the approaching waves among a and b as defined by Glimm 121, and G is a 
constant depending only on the region U. 

In Section 4 we consider the nonisentropic gas dynamic equations 
(Lagrangian form) 

and 

u,+p,=o, where E = e(o, S) + fu’, 

lJt - u, = 0, p = p(v, S) = -e,(v, S) = -e,,. (3) 

E, + (UP), = 0, 

e = specific internal energy, E = total energy, 

u = specific volume, S = specific entropy, 

p = pressure, u = velocity. 

These equations represent the conservation of momentum, mass and energy, 
respectively, for one-dimensional gas flow. To guarantee that the system is 
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strictly hyperbolic and either genuinely nonlinear or linear degenerate in 
each characteristic field, we assume the usual (physically justifiable) 
conditions on e, S: 

-e, = P > 0, 

-em = PO < 0, 

-evuo = puu > 0, 

S = S(e, 0). 
(*) 

We consider smooth parameterizations e,(u, S) of energy functions which 
satisfy (*) at each E, and which, at E = 0, reduce to the energy function for 
the ideal gas given by 

e,(u, S) = -2 In(v) + $ + C, 

where a and C are arbitrary constants, and R is the specific gas constant. By 
smooth, we mean that e(v, S, E) has five derivatives with respect to u, S and 
E, so that the nonlinear function in (3) has four derivatives. These systems 
can be studied because, near E = 0, the shock-rarefaction curves have a nice 
structure when viewed in the transformed coordinates 

(r, s, S) = Y(u, p, S) = ( (P)y~-~ln($),S). 24 + a In I 

This nice structure coupled with the estimates of the preceding sections, 
implies that the Glimm Scheme converges and allows us to prove the 
following theorem: 

THEOREM 4.1. Let E be any compact set in r&space, and let N > 1 be 
any positive constant. Then there exists a C > 0, where C = C(E, N) such 
that, for every initial data wO(x) c E with total variation { wO(x)} = V < N, if 
E . V < C, then there exists a global weak solution to (3). 

The energy function e,(u, S) can be viewed as the limiting state of a 
polytropic gas as E -+ 0, where the energy function for a polytropic gas is 
given by (cf. [ 11) 

e= ]uexp (-y) I-‘+Constant. 

Thus, as a corollary of Theorem 4.1, we obtain an existence theorem of 
Liu [5], for polytropic gases. We note also that the method of proof here 
also handles smooth parameterizations of general 2 x 2 systems [3] which 
reduce, at E = 0, to the system studied by Nishida in [6]. 
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1. PRELIMINARIES 

We consider the shock-rarefaction and contact discontinuity curves for 
system (2) in regions of us-space where their existence is guaranteed. Note 
first that if w = y(u) is a regular smooth l-l onto transformation of R” to 
itself, then shock-rarefaction and contact curves are defined, and Riemann 
problems can be solved in Y(U) if and only if the corresponding things are 
true in U. For this reason we can, without loss of generality, discuss the 
shock-rarefaction and contact curves in regions of w-space where their 
existence is guaranteed. In such regions we adopt the following notation: 

where 

(i) if the ith characteristic family is genuinely nonlinear, ri regularly 
parameterizes the i-shock-rarefaction curve starting at wL for the system at 
E, with ti < 0 along the shock, ti > 0 along the rarefaction curve; 

(ii) if the ith characteristic family is linearly degenerate, ti regularly 
parameterizes the contact curve starting at w, for the system at E. For gas 
dynamics, t2 can be taken to be the change in entropy S. 

For n x n systems let ti denote parameterization with respect to arclength. 
For the gas dynamic equations, ti will denote a parameterization with respect 
to a smooth function of E as well as arclength. We let t = (fi,..., f,J, and 
define 

W=H(t,WL,E)=H,(t”,H,_,(t,-1,...,H,(fl, WL,E),...,E),E), 

w = G(a, b, w,, E) = H(b, H(u, WOE), E), 

where a = (a, ,..., a,), b = (b, )...) b,). 

Note that if wR = H(t, wL, E), then the intermediate states in the definition of 
H solve the Riemann problem (w, , wR) at fixed E. Thus we define ti to be the 
signed strength and 1 til to be the strength of the i-wave in (w,, w,) for the 
system at s. Moreover, letting w,,, = H(a, wL, E), we see that 
wR = G(a, b, w,, E) implies that the intermediate states in the definition of G 
solve the consecutive Riemann problems (w, , wIM), (We, wR). 

We study the interaction problems for system (2) in compact sets U of w- 
space in which H, G satisfy the following conditions for E in [O,E,], some 
E, > 0. These conditions guarantee the existence of solutions to Riemann 
problems in U, for E in [0, sr], and also ensure that H, G are well defined on 
“nicely shaped” domains in the variables t, a, b, wL, E. For convenience, we 
always assume that U, is a compact convex open set, so that it makes sense 
to talk of the derivatives of functions with domain Cl(U,) and so that locally 
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Lipschitz continuous functions on CI(U,) have uniform Lipschitz bounds. 
For n x n systems (2), Lemma 1.2 states that such a U, exists in a 
neighborhood of every u E R”, where E, = 1. For systems (3), we shall show 
in the next section that every compact set U, in (r, s, S) = w-space satisfies 
these conditions for some E, > 0. 

Conditions (H). There exists a compact convex open set U, I> Cl(U,), 
and positive constants r < r2 such that, for E in [0, E,], the following hold: 

(i) H is defined for every (t, IV,, E) in 

r, = {t E R”: Jr,1 <z,} x Cl U, x [0, E,]. 

00 u2 = Rwe,,,,+ (H) for each fixed w, in Cl U, , E in [0, E,]. 
U, c RangeItilGT (H) for each fixed w, in Cl U,, E in [0, E,]. 

(iii) G(I) c U,, where 

I-= {a E R”: Ja,J < z} x {b E R”: lbij <z} x Cl U, x [0, E,]. 

(iv) H, G are C* functions of their arguments, and second derivatives 
of H, G are locally Lipschitz in I’,, I’, respectively. 

(v) H is l-l and IaH/atI # 0 in r, for each fixed w,, E. 

Note that Condition (ii) implies that Riemann problems (We, w) are solvable 
when wL and w are in U,, and E < E, . Condition (v) then implies that we can 
solve for t in terms of (w, wL, E) in the relation w = H(t, w,, E) when w and 
wL are in U, , and E < E, . Denoting this function as t = B’(w, wL, E), we can 
write 

where 

t = B’(G(a, b, w,, E), w,, E) = B(u, b, w,, E) 

= (Bl(a, b, w,, EL.., B,(a, b, w,, ~1, 

(u, 2 u,) = (2 = (a, ,***> a,), 

(u,, u,) = b = (b, ,..., b,), 

(q, UR) = t = c = (c, )...) c,). 

For notational convenience, we let c denote the range variable of the function 
B, which is defined on r. At fixed a, b and w,, we write 

C(E) = B(a, b, w,, E), 

where C(E) is a function of a, b, w,. Conditions (iv) and (v) imply the 
following lemma: 

LEMMA 1.1. Let U, and E, satisfy the Conditions (H). Then the function 
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c = B(a, b, w,, E) is defined, is C2, and second derivatives of B are locally 
Lipschitz in lY 

Proof of Lemma 1.1. By the chain rule, the composition of C2 functions 
with locally Lipschitz second derivatives, is also a C* function with locally 
Lipschitz second derivatives. Thus we show that B’ satisfies Lemma 1.1. 
Consider the equation P(w, t, w, , E) = w - H(t, w, , E) = 0 defined on 
U, x r,. P is C2 with locally Lipschitz second derivatives in U, x r2. 
Moreover, 

by condition (v), and thus the implicit function theorem implies that 
t = B’(w, wt, E) is defined locally and has the same smoothness as P. Since P 
is also l-l at each w, wL, E in U, X U, x [0, ei] by (iv), we have that B’ is 
globally defined, is C2, and has second derivatives which are locally 
Lipschitz in U, x U, x [0, E,]. But B(a, b, w,, E) = B’(G(a, b, wL, E), wL, E), 
and hence B satisfies the conditions of Lemma 1.1. Q.E.D. 

We say that two waves a,, bj in a, b approach (cf. Glimm [2]) if i > j, or 
if i = j and not both a, and bj are positive (i.e., not both ai, bj measure the 
strengths of rarefaction waves). We define D = D(a, b) to be the sum of the 
products of the strengths of the approaching waves in a, b, and write this 

D = 2: lail 1bjl. 
APP 

(1.0) 

For rr x it systems of Eqs. (2), we are interested in estimating the 
difference between the strengths of the outgoing and incoming waves in the 
interaction function B; hence we study the functions 

ei = ci - a, - b, = Bi(a, b, w,, E) - ai - bi 

= Fi(U, b, W, 3 E), 
(1.01) 

where again the domain of Fi is r. It is easy to check (cf. Glimm [ 21) that 
ei = 0 when D = 0 (since the outgoing waves are then the same as the 
incoming waves in the corresponding interaction). Moreover 

c~(E) - c,(O) = ei(e) - e,(O) = Bi(a, b, W, , E) - Bi(a, b, w,, 0) 

is zero when D = 0 or when E = 0. We shall show that this, together with the 
smoothness properties of B given in Lemma 1.1, imply that 

ci=O(a,b,w,,e).D, 

where 0 is uniformly bounded, and locally Lipschitz in E uniformly in the 



NONLINEAR HYPERBOLIC CONSERVATION LAWS 103 

remaining variables. Since the domain of 0 is the compact set r, this will 
imply that on r, 

O(a, b, w, ) E) - O(a, b, w, ) 0) = O( 1)E 

and hence the following estimates hold in r for some constant G > 1: 

I Ci(e) - Ci(O)l < G&D, 
ICi-Ui-bil< GD. 

(l-1) 

One difficulty is the D changes form depending on whether ai and bi are 
positive an negative. Thus we break the domain r up into regions where D 
has a fixed form; i.e., regions where sign@,) and sign@,) are constant. Thus 
we let 

and define 

s = (SI ,a**> SZJ where si = + or - 

r, = {(a, b, wL, E) E R sign@,) = si, sign(b,) = Si+n}. 

(For convenience, we allow x = 0 to satisfy sign(x) = si for every si.) Then 
on r,, 

D, = 6, la,41 + Ia,4 + 4 Ia,& + lax&l + Ia,& 
t 6,lu,b,l t a-. + 6,lu,,b,l 

with 6, = (6, ,..., 8,) some sequence of O’s and 1’s. We show that 
ci = O(u, b, w,, E) D, on each r,, where 0 is bounded and locally Lipschitz 
in (w,, E) uniformly in a, b. This will imply that the estimates (1.1) hold in 
each r, and hence on all of r. The proof of the following theorem is the 
primary goal of the next section: - 

THEOREM 1.1. Let w E R” with the setting of system (2). If U, and E, 
satisfy Conditions (H), then the interaction estimates (1.1) hold for every w, , 
w,, wR in U,, and E in [0, cl]. 

The following lemma, whose proof is left to Apendix I, implies that for 
n x n systems (2), interaction estimates (1.1) holds for every E, in some 
neighborhood of every u E R”. 

LEMMA 1.2. For every u E R”, there exists a neighborhood U, of u such 
that Conditions (H) hold with E, = 1 and w = u. 

Theorem 1.1 and Lemma 1.2 together imply the following theorem, which 
yields among other things, the main interaction estimates of Glimm [2]. 
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THEOREM 1.2. For every u E R”, there is a neighborhood U, of u such 
that the interaction estimates (1.1) hold for every uL, u,, uR in U, , and every 
E in [0, 11. 

2. INTERACTION ESTIMATES 

Let c =f(a, b, z) be defined on the set 

W= {a E R”: ai > 0) x {b E R”: bi > 0) X Z with cER’, 

where Z c R’ is compact, convex, and is the closure of its interior. Assume 
that f E C* in Int( IV) with derivatives continuous up to the boundary, and 
that second derivatives off are locally Lipschitz in W. Further assume that 
c = 0 when D = 0, where 

D=6,a,b,+a2b,+6,a2b2+a,b,+a,b2+6,a,b,+~~~+6,a,b,, (2.1) 

where 6 = (6, ,..., S,) is a fixed sequence of O’s and 1’s. The main result of 
this section is the following theorem: 

THEOREM 2.1. If c = f (a, b, z), where f satisfies the conditions above on 
the domain W, then 

c = O(a, 6, z) . D, 

where 0 is locally bounded, and locally Lipschitz in z, uniformly in a, b. 

We prove this theorem with the aid of the following lemmas. We write 

D=(S,a,+a,+.~. +a,)b,+(6,a2+a,+~~~+a,)b2+~~~+6,a,b,. 

Letting the coefficients of b, be denoted by d,, we have 

6, 1 1 1 -.. 1 
0 6, 1 1 *** 1 

* 0 0 . a a . . 6, 

which we abbreviate as d = Ma, and thus D = Cy=, di bi. This is the setting 
for the following lemma. 

LEMMA 2.1. There exists nonsingular transformations A, B such that 
a’=Aa,b’=Bb and D = Cy=, a; bj for some m Q n, where A, B are 
matrices all of whose entries are either O’s or 1’s. Moreover, the image of a 



NONLINEAR HYPERBOLIC CONSERVATION LAWS 105 

(for a, > 0) under A is the region a’, > ai > --. a; >,O in the first m 
variables of a’, and for k > m, ai > 0 or 0 < ai < a; for some 1 Q j Q m 
determines the range of A in the remaining variables. The image of b Gfor 
bi > 0) under B is the region bi > 0 for 1 < i < m, and for k > m, 
0 < b; < b; , for some I,< j < m, determines the range of B in the remaining 
variables. 

Proof: We define A, B by defining each row of A, B. Thus, let Mk, A,, 
and B, denote the vectors which are respectively the kth rows of M, A, and 
B. We would like to define A, = Mk, B, = ek = the vector with 1 in the kth 
spot, zeros everywhere else, so that ai = d,, b: = bi with Ct=i d,b, = D; but 
whenever ai = 0, ai+ I = 1 we see that di = di+ i, and hence A would not be 
nonsingular. However, in this case we can write d,b, + di+ 1 bi+ 1 = 
d,(b, + b,, i). To exploit this idea, we partition the sequence {S, ,..., 6,) into 
consecutive subsequences of a nice form. Without changing the order of the 
fS;s, let 

16 1,***9 &I = {&,,..., &,I, {&*‘... SJ,..., {Bmp,..., B”J, 

s, S2 SP 

where, by choosing S, = 0 as needed, we make the following conditions hold 
on the parity of the indices of {S,}: 

For i even: 

Si = {0, 0 ,..., 0, 1 } or 0 if i # p. 

If 6, = 0, make p even with S, = {0, 0 ,,.., 0). 

For i odd: 
Si = { 1, l,..., 1 } or 0. 

It is clear that any sequence of O’s and l’s can be so partitioned. We say 
loosely that j E S, if mk < j & nk for S, # 0. With this set up, we define A, 
and B, as follows: 

(i) If k = n, or k = nj - 1 for j even with Sj # 0, define 

A nj-l =M,,-p A,j = em,, 

B nj- 1 = en,-, + e,, B,j = e,. 

(ii) Otherwise 

A, =Mk, 

Bk=ek. 

We show that A is nonsingular. 
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First, every A, for k E Sj is either Mk or em,. Thus all entries in A, for 
i < mj are zero, and not all entries from mj to nj are zero. But a quick check 
shows that every A, such that I& Sj has either ones in the mj - 1 through nj 
entries, or else zeros in the mj through nj entries (depending on whether A, is 
a row which is respectively above or below AJ. Thus linear combinations of 
(A,} have either a constant value in the mj - 1 through nj entries, or else all 
zeros in the mj through nj entries. Thus A, & Span{A,: I& Sj}. Therefore A is 
nonsingular if {Amj,..., Anj} are linearly independent for every j such that 
S, f 0. But this is clearly true forj odd, since then the vectors A,,..., A, are 
upper triangular with nonzero entries along the diagonal of A. For j even, 
A,,..., Anj} are linearly independent. Therefore A is a nonsingular matrix all 
of whose entries are O’s and 1’s. 

We show that B is nonsingular. 

B, = ek if k # nj - 1 or nj for some j even, 

while 

Bvj = e,,, Bnj-, = enj+, + %j otherwise. 

It is thus clear that {Bk} are linearly independent, and hence B is a 
nonsingular matrix of O’s and 1’s. 

Claim. 

D = x ai bi. 
isdhthat 

a;=di 

We have that D = Cy= r d, bi. Moreover, for i # nj or nj - 1 for j even, we 
have 

ai = d,, 

b; = b,. 

But in the other case, d,- , = d,,, which implies that 

d,-lb,-, +dn,bn,=d,j-,(bn,-l +b,)=aLj-,bkj-,, 

where 

aLj- 1 = dnj-, . 
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Hence 

D= i dibi= C dibi + C dnj-l(bnj-l + b,i) 
i=l i*nj,,nj-I ieven 

fOrJC%Jel? Sj+0 

= ii a:b; t x a;j-lb;j-, v 
i*nj,nj-1 jeven 

forjeven Aj+ 0 

= T‘ a;b;, 
isuchthat 

a;&; 

which proves the claim. Note also that if a: # di, then i = nj for somej even, 
and a:, = ami. Here the value of amj is independent of a; for k > mj, thus the 
values of aLj are simply constrained to be less than akJ-, in the primed 
variables. Also in the case, bAj = b, with b’,,- r = b,, r t 6, and the value of 
b,j is independent of any other b;. Hence b& is simply constrained to be less 
than bkj-, in the primed variables. 

Now, without loss of generality, reorder a; ,,.,, a; and b’, ,..., b; so that the 
a{ which are equal to di are listed first, and in order of increasing i. Then A, 
B remain nonsingular, and D is then given by 

D = f a; b; some m < n. 
i=l 

Moreover, letting j and k index the original sequences, and letting i index the 
reordered sequences, if i < m we have 

a; = sjuj t uj+ 1 t )...) + a,, 

ai+, = 6,a, t ak+, t ,..., a,, 

for some k > j, where, if k= j + 1, not both Sj= 0 and 6,= 1. Thus 
ai > a;,, . Hence the image of {a in R”: a, > 0) under A is given by 
a’ , , *, ,..., > a:, in the first m variables of a’. With the same reordering > a’ > 
given for the indices of the coordinates of a’ above, if i < m, either bi = bJ or 
bi=b,+bk+t, where such a j is not equal to such a k or k t 1 for i < m. 
Thus any positive values for b;,..., b& can be obtained in the image of 
{b E R”: bi > 0) under B. The note after the claim above now completes the 
proof of Lemma 2.1. 

LEMMA 2.2. Let f(x, y, z) be a real valued C2 function with locally 
Lipschitz second derivatives defined on R”+ x R”‘+ x Z, where Rni = 
(x E R”: xi > 0}, R”+= {y E Rm: yi > 0) and Z is a convex set in R’ which 
is the closure of its interior. Then we can write 

I-(-% YY z) = f(O, Y9 z> + 0,(-T Y, z> II XII 
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and 

0,(x, Y, z) = 0,(x, 0, z) + 0,(x, Yv z> II YII, 

where 0,(x, y, z) is locally bounded and locally Lipschitz in z, uniformly in x 
and y. 

Proof. First, let g(t) be a real valued CN function of the real variable t 
for t > 0. Then by Taylor’s theorem, 

g(t) = g(o) + g’(o)t + ,..., + gcN--l)(0)f + RN, 

where 

Letting s = ut, ds = t du, we can write 

RN = 
I J 
& -’ (1 - u)N- ‘fCN’(ut) du 1 p, 

- 0 

and so for N = 1, we have 

g(t) = g(0) + 
I 
I1 g'(d) du 1 t. CT,) 
0 

Now let X be a unit vector in the domain of the variable x. For fixed 2, 
define 

qt, Y, z> =.tw Y, z). 

Then by (T,), we can write 

qt, y, z) =f(O, Y, z) + O,(t, y, z) * t, 

where 

O,(t, Y, z) = j’ F&t, y, z> du, 
0 

where the subscript “(1)” denotes the partial derivative with respect to the 
first slot variable. Thus, for x = tf we have 

f(x, Y, z) =f@, Yv z) + 0,(x, Y9 z) IIXIL 
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where 

01(x, YY z) = j’ & - f(utf, y, z) du 

or 

0,(x, y, z) = j1 V,,,f(ux, Y, z) . f du, 
0 

CT,) 

where V,,,f denotes the gradient off with respect to the first slot variable. 
Since 0,(x, y, z) is uniformly bounded by 2 [IVC,,f(O, y, z)ll near x = 0, we 
can differentiate with respect to y through the integral sign in (T,). Fixing i 
again, choose a fixed unit vector 7 in the domain of the variable y, and define 

0,(x, .% 2) = 0,(x, v, z). 

Using Taylor’s theorem again, we obtain 

0,(x, s, z) = 0,(x, 0, z) + 0,(x, s, z) - 3, 

where, for y = ~7, we have 

0,(x, y, z) = j1 Vo,O,(x, uy, z) . Ydu> 
0 

where V(,,O, denotes the gradient of 0, with respect to the second slot 
variable. Substituting (T,) into the last equation yields 

0*(x, Y9 z) = j' j; V,,,{V,,,.f(ux, uy, z) .2} s jjdu du 

or 

0,(x, Y, z) = j1 j1 x - [acux;~~uy,, W, UY, 41 . y” du duv Cr,) 0 0 
where the expression in brackets denotes the n X m matrix with (i, j)th entry 
given. Thus, 0,(x, y, z) is uniformly bounded by 2 Il(a’fl8X,@j)(O, 0, z)ll near 
x = 0, y = 0. That 0,(x, y, z) is locally Lipschitz in z, uniformly in x and y, 
follows immediately from the hypothesis that 

[ a”(x, B.z)J. a4 aYj 
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a second derivative off, is locally Lipschitz; i.e., on compact sets, 

1 I 

< Jj IL zf 

0 0 a(uxi> a(uYj) 
(UT VYY 4 1 

- [ a(ux~(~yj) tux, uy, zl)] I/ d” dv 
<Kllz,-z,II 

since 

-& (4 Y.Z)] 
1 J 

is uniformly Lipschitz continuous on compact sets. This completes the proof 
of Lemma 2.2. 

Note that the proof of Lemma 2.2 also goes through if f satisfies the 
conditions of this lemma on the closure of a domain of the form 
~8’ x 9 x Z, where &’ [resp. 91 is a convex subset of R”’ [resp. R”‘], 
which is the closure of its interior and contains x = 0 [resp. y = 01. 

LEMMA 2.3. Let c = f (a, b, a, /?, y, z) be a real valued function which is 
C2 and has locally Lipschitz second derivatives on a domain Y of the 

following form: 

a,>a2>.-.>a,>0, 1 <i<n, 

bi > 0, I<i<n, 

0 < ai < ai or OTi = 0, I<i<n, 

O</3,<biorp,=0, I<i<n, 

Yi > ak(i) or Yi < Yj for Yj 2 ak(j) or Yi s 03 I<i<m, 

z E Z a convex open set in R’. 

Then if c = 0 when the inner product a - b = 0 in Y, then 

c = O(a, 6, a, p, y, z)a . b 

where in Y, O(a, b, y, z) is locally bounded and locally Lipschitz in z, 
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uniformly in the remaining variables. (The main point here is that Y is 
convex, and further, if (a, b, a,/?, y, z) is in Y, then the point obtained by 
letting bi = pi = 0 or a = a = 0 without changing the other entries, is also in 

y-1 

Proof. We prove this by induction on n. For case n = 1 we have that 
c = f(a, b, a, /?, y, z) satisfies 

f(O, b, 0, P, Y, z) = 0 = f(a, 0, a, 0, Y, z) 

in Y a convex set. Since Lemma 2.2 applies to f(a, b, a,/?, y, z) with 
x = (a, a) and y = (b, p), we can write 

f(a, b, a, P, Y, z) = f(O, b, 0,l-h Y, z) + O,(a, b, a, P, Y, z) lb, a)ll, 

where 

O,(a, b, a,p, y, z) = O,(a, 0, a, 0, Y, z> + O,(a, 6, a,B, Y, z) II(b9P)II 

and where O,(a, 6, a,/?, y, z) is locally bounded, and locally Lipschitz in z, 
uniformly in the remaining variables. Since 

0 = O,(a,O, b, 0, Y, z) II@, allI 

we have that 

f(a, 6, a, P, y, z) = O,(a, b, a, P, Y, z) II@, a>ll WY B)ll. 

But since b >/3 and a > a in Y, we have 

m= 
J 0 

2 

1+ f ’ Il(a,= 2 

b a 

where each of these is bounded by & in Y. Therefore 

f(a, b, a, B, Y, z) = 
I 
O,(a, b, a, A Y, 2) Jl+(f)‘JI+(~)‘I a.b 

=O,O,a.b=O(a,b,a,jI,y,z)a.b. 

Here 0, is bounded by 2 in Y and does not involves the z variables, and so 
O,O, as well as 0, is locally bounded and locally Lipschitz in z, uniformly 
in the remaining variables. This proves case n = 1. 

We now prove case p = n. Assume Lemma 2.3 is true for p < n - 1, and 
let 

c = f(a, b, a, P, Y, z) 

=f(a,,...,a,,b,,..., b,,a,,...,a,,p,,...,Pn,y,z) 

505/41/M 
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satisfy the hypotheses of the lemma. Then Lemma 2.2 applies to f with 
x = (b,, /3,) and y = (a, a), and so we can write 

where 

f(a, b, a, P, Y, z) = f(a, 0, b, v..., b,, > a, 0, Pz ,..., P,, Y, z) 

+ o,@, b, a, A Y, z> II@, 9 PA (A) 

O,(~,b,a,~,y,z)=0,(0,b,O,~,y,z)+O2(u,b,a,~,r,z)Il(u,a)l/ (B) 

and where 0, is locally bounded and locally Lipschitz in z, uniformly in the 
remaining variables. But 

f@ 1,...,u,,0,b2,...,b,,a,,...,a,,0,~2,...,~,,~,z) 

= g(a,,...,a,,b,,...,b,,a,,...,a,,p,,...,p,,a,,a,, r,z> 

= g(a’, b’, a’, P’, Y’, z), 

where 

u’ = (a,,..., a,) is defined on a, > u3 > ,..., > a,, 

b’ = (b, ,..., b,) is defined on b, > 0, 

a’ = (a,,..., a,) is defined on 0 < oi < Ui or oi E 0, 

p’ = v,,...,/?,,) is defined on 0 <pi < bi or pi E 0, 

y’=(a,,a,,y)isdefinedfora,<u,foru,>u,. 

Since g(u’, b’, a’, p’, y’, z) = 0 when a’ . b’ = 0, g satisfies the hypotheses of 
this lemma for p = II - 1. So by the induction hypothesis 

g(u’, b’, a’, p’, y’, z) = O;(u’, b’, a/,/3’, y’, z) a’ . b’ 

= O,(u, b, a, P, Y, Z) 2 aibi, 
cc> 

i=Z 

where 0; and hence 0, is locally bounded and locally Lipschitz in z, 
uniformly in the remaining variables on Y. Since a . b = 0 when a = 0, we 
have from (A) that 

O= O,(O, h&P, Y,Z) ll(b,~P,)II 

and so combining (A), (B), and (C) yields 

f(a, h a, P, Y, Z) = O,(G by a7 A Y, Z> t ui bi 
i=2 

+ o,@, by aTA Y, z) lb, a)li Il(b,~P,N 
PI 
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Butin Y,a,>qanda,>qfor l<i<ti,andso 

IJ(a,==u~+...+a:+a:+...+a: 
01 aI 

,<\/2n. 

Moreover, b, > /3,, and so 

WI VPJI 
b, =J1+ (gyc\/i (F) 

Therefore, putting (E) and (F) into (0) yields 

f (a, b, a, 0, y, Z) = 0, i sib, + 02 
I 

ll@iP,)ll II@, a>ll - 
i=2 I ail 

’ a,bi 
= OJ- 

I i=2 a * b 
+ o, II@, y PA Ilh alI 

a,b, 

b 

= O(a, b, a, @, y, z) a - b. 

But 0, and 0, are locally bounded and locally Lipschitz in z, uniformly in 
the remaining variables, while the other terms in O(a, b, a, /I, y, z) are locally 
bounded and do not involve the z variables. Thus O(a, b, a, /3, y, z) is locally 
bounded and locally Lipschitz in z, uniformly in the remaining variables. 
This completes the proof of Lemma 2.3. 

COROLLARY. Let c =f(a, b, a,P, y, z) satisfy the conditions of 
Lemma 2.3 except that c ,< 0 when a - b = 0. Then for every compact set V in 
Y, there exists a function O(a, b, a, /I, y, z) d@zed on Y, such that 
O(a, /I, a, p, y, z) is locally bounded, is locally Lipschitz in z uniformly in the 
remaining variables, and such that in V, 

c 4 O(a, h a, A Y, z) a + b. 

proof. We prove this by induction on n. For case n = 1, we have that 
c=f(a,b,a,/I,r,z),<O when u=a=O or b=p=O. Define 

h@, b, a, /A Y, z) = f(a, 0, a9 0, Y, z> 

t ~{f(O,b,O,~,y.z)-f(a,O,a,O,y,z)}. 

Since h takes the average off between (0, b, 0, P, y, z) and (a, 0, a, 03 Y7 z) at 
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fixed (y, z), and since f is negative when a = 0 or b = 0 in Y, we can 
conclude that 

h(a, b, a, /A Y, 2) < 0, 

and moreover, h agrees with f when a = a = 0 or b = j3 = 0. Since 

! 
f(O, b, 0, P, y, z) - f(a, 0, a, 0, Y, z) 

a+b I 

has the smoothness properties off away from a = b = 0, and loses at most 
one derivative at a = b = 0, it can easily be shown that 

--&- {f(O, b, O,P, Y, z) -f(a, 0, a, 0, Y, z)} 

and hence h, has the same smoothness as f in Y. Thus, 

g(u, b, a, /I?, y, z) = f (a, b, a, P, Y, z> - Nay by a3 03 YY Z> 

dominates f, has the smoothness of f, and vanishes when a = a = 0 or 
b = j? = 0. Therefore, by Lemma 2.3, 

g(a, b, a, P, Y, z) = %, b, a, P, y, z) ab 

and so 

f(a, b, a,P, Y, z> < Wa, b, a,P, Y, z> ah 

where o(a, b, a,p, 7, z) is locally bounded and locally Lipschitz in z, 
uniformly in the remaining variables on Y. This completes the proof of the 
corollary for case n = 1. 

We now prove the case p = n. Assume the corollary is true for p < n and 
let 

c = f (a, b, a, P, Y, z> 

= f(a ,,..., a,,, b, ,..., b,,a,,...,a,,p,,...,Pn, Y,Z) 

satisfy the hypotheses of the corollary, so that, in particular, c < 0 when the 
inner product a . b = 0. Let 

fi(a, b, a,@, y,z) = f(al ,..., a,,O, b, ,... , b,,al,...,a,,O,p,,...,P,, Y, z), 

f&, b, a, p, y, z) = f(a, ,..., a,- ,, 0, bl,..., b,, al,..., a,-Iv &PI v...9P,7 Y, ~1. 
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But f,(u, b, a, p, y, z) [respectively &,(a, b, a, P, y, z)] is negative when 

5 u,bi = 0 respectively “i’ uibi = 0 , 
i=2 i=l 1 

and SO with a renaming of the variables as in the proof of Lemma 2.3, fi 
satisfies the conditions of the corollary for p = n - 1; i.e., 

fi(~, by a, P, Y, Z) < O,(G 6, a, /A ~3 Z) i aibiy 
i=2 

n-1 

f2(a, 6, a, /?, y, Z) < O~(U, b, a, /A 7, Z) C uibi, 
i=l 

where in particular, Oi are locally bounded in Y. These local bounds yield a 
uniform bound G > 1 on the compact set V, and so we can conclude that 

Ata, b, a, P, Y, z) < Ga . b 

in V. Now consider the function 

(A) 

+ ~{h(u,b~a,aY,z)-fi(u,b,a,8.~,z)J 

-Gu.b. 

As in the case n = 1, h has the same smoothness properties as f, and by 
(A), h is negative in V. Moreover, h agrees with f in Y when a . b = 0. 
That is, assuming u - b = 0 in Y, we must have a, b, = 0. If (I, = 0, 
then since a, > a, > a,, a, = a, = 0, implying that f(a, b, a,/3, y, z) = 
f2(u, b, a, P, y, z) = h(u, b, a, A Y, z). If b, = 0, then f(u, b, a, P, Y, z) = 
f,(u, 6, a,@, y, z) = h(u, b, a,/?, y, z).) Therefore we can write 

g(a, b, a, P, y, z> = f(a, b, a, P, Y, z) - W b, a, /A Y, z), 

where g vanishes in Y when the inner product a . b = 0, and where g has the 
same smoothness as $ Therefore, by Lemma 2.3, 

da, b, a. P, y, z) = O(a, b, a, P, y, z) a - b, 

where O(a, b, a, /I, y, z) is defined on Y, is locally bounded, and locally 
Lipschitz in z uniformly in the remaining variables. Since h is negative in V, 
we conclude that 

f(u, b, a, P, Y, z) Q O@, b, a, P, Y, z) a . b 
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in V. This completes the proof of case p = n, and so completes the proof of 
the corollary. 

Proof of Theorem 2.1. We are given the real valued function 
c = f(a, b, r) which is C* in Int(w) with derivatives continuous up to 
boundary, and which has locally Lipschitz second order derivatives in W. 
Further, c = 0 when D = 0, where D is a quadratic term of form given in 
(2.1). By Lemma 2.1, we can write a’ =Aa and b’ = Bb, where A and B are 
nonsingular transformations satisfying D = a; b; + e.. + a; bh in W, and 
such that the image of {a E R”: a, > 0}, {b E R”: bi >, 0) under A, B in the 
first m variables of a’, b’, respectively, is the set given by 

al, 2 a; > * * * > a:, > 0, 

b; 2 0, l<k<m. 

Moreover, for k > m, we can assume without loss of generality that the 
image is given by 

O<u;<aj forsomel<j<m, 

0 Q b; < 6; forsome l<j<m 

(this follows since, when a; > 0 defines the image of a; under A for k > m, a 
case which happens only when 6, = 0 and 6, = 1, the value of a; is 
independent of the other a; and yet does not appear in the expression for D. 
In this case ai can be incorporated into the z-variables). Let C denote this 
image set in the variables a’ and b’. 

Let 

a” = (a; )...) al,), b” = (b; ,..., b’,), 

a = (a, )..., a,) where aj = a; ifu;,ajforj<m,k>m 

=o otherwise, 

P = (PI v..., P,) where /Ij = b: ifb;<b$forj<m,k>m 
(2.2) 

=o otherwise. 

Let Z’ be the domain of (a”, b”, a, /I). Note that .Z’ = C in the nonzero 
variables of (a”, b”, a, p). Let Y’ = Z’ x 2. Then Y’ satisfies the conditions 
for the domain Y of Lemma 2.3. Thus we have 

c =f(u, b, z) =@-‘a’, B-lb’, z) = g(u”, b”, a, /3, z), 

(a”, b”, a, j?, z) E Y’ and c = 0 when u” . b” = 0. 
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Thus by Lemma 2.3, c = O,(a”, b”, a, p, z) a” - b”, where 0, is locally 
bounded and locally Lipschitz in z uniformly in a”, b”, a, /3. Thus 

c = O,(a”, b”, a, p, z) u” . b” = Ol(u’, b’, z) u” . b” = O&a, Bb, z) . D 

= O(a, b, z) . D for (a, b, z) E W. 

Since 0, is obtained from 0, by deleting the zero variables among a and p, 
,it is clear that 0, is locally bounded and locally Lipschitz in z uniformly in 
a’, b’. Let Y = C x Z be the image of W under the bijective map CD, where 

@:W+ Y, 

@(a, b, z) = (AZ, Bb, z). 

Let U be a compact convex open subset of W. Then since nonsingular linear 
transformations preserve compactness and convexity, we have G(U) = V, a 
compact convex open set in Y. Thus, if (a, b, zI) E U for i = 1,2, and K, A4 
are respectively the uniform bound and uniform Lipschitz bound in z for V, 
we have 

lO(a, b, zi)l = IO(A-‘a’, B-lb’, zi)l <it4, 

1% b, ~2) - O(a, 6, zl)l = I &(a’, b’, ~2) - O,(a’, b’, ZJ (K I(z2 - z1 11. 

Thus O(a, b, z) is locally bounded and locally Lipschitz in z uniformly in Q, 
b inside W. This proves Theorem 2.1. 

COROLLARY 1. Let f (a, b, z) be C2 with locally Lipschitz second 
derivatives in the domain 

V= {a E R”: 0 < a, Q t} x {b E R”:O < b, < t} x Z, 

where r is a given positive constant, and Z c R’ is compact, convex and the 
closure of its interior. Then if c = 0 when D = 0 for some D as given in (2. l), 
then 

c = O(a, b, z) . D, 

where 0 is uniformly bounded and uniformly Lipschitz in z on V. 

ProoJ The proof of Theorem 2.1 carries through in this restricted 
domain to imply that c = O(a, b, z) . D, where 0 is locally bounded and 
locally Lipschitz in z uniformly in a, b. Since V is a compact set, these local 
bounds imply uniform bounds in V. 

COROLLARY 2. Let c = f(a, b, z) be C* with locally Lipschitz second 
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derivatives in the domain V above. If c Q 0 when D = 0 for some D as given 
in (2. l), then there exists a positive constant G > 1 such that 

in V. 

Proof. Applying the corollary to Lemma 2.3 in the proof of Theorem 2.1 
yields the result that c Q O(a, b, z) . D in V, where O(a, b, z) is locally 
bounded. This proof carries through under the conditions of Corollary 2; i.e., 
where we only assume that c < 0 when a . b = 0 in V above. The local 
bounds on O(a, b, z) then imply a uniform bound over the compact set V, 
which proves that c < GD in V, for some G > 1. 

Proof of Theorem 1.1. We have from (1.01) 

e, = ci - ai - b, = B,(a, b, wL,e)-ai-b~=Fi(a,b,w,,e). 

By Lemma 1.1, B, is C* with locally Lipschitz second order derivatives in r, 
and hence so is Fi. We apply Corollary 1 of Theorem 2.1 to each I+, c IY Let 

fZ= (Iall la,l,..., IanI), 
6= (lb,l, lbzl,..., lb,l>, 

(2.3) 

and let 

V={dER”:O<&i<r)X {6’ERn:O<6i<t)XCIU,X [0,&l], 

and write 

ei = ~~(a, b, w, , E) =f&i, S, w, , ~1 on r, - 

Since sign(a,) and sign(b,) are constant on r,,f;: E C* with locally Lipschitz 
second derivatives in V. Hence, Corollary 1 of Theorem 2.1 applies tofi with 
z = (wL, E), and so 

where 0 is uniformly bounded and uniformly Lipschitz with respect to E in 
V. Let G, be the maximum of these two uniform bounds and let 
G = sup,{G,}. Then if (a, b, w,, E) E I’, it is also in some r,, and hence we 
have 

1 eil= If& S, wL, &)I < G,D, Q GD, = GD 



NONLINEAR HYPERBOLIC CONSERVATION LAWS 119 

and also 
I Ci(E) - c[(o)l = Ih(& S, wL 9 &) -fr(K S, wL 9 O)l 

= 1 O(ci, s, w,, E) - O(& s, w,, O)( D, 

Q G,ED, Q GED, = G&D 

since D = D, if (a, 6, w,, E) E r,. This proves Theorem 1.1. 
In the next section, we need estimates on the difference between the 

strengths of incoming and outgoing shock and rarefaction waves in the 
interaction function B. Thus define 

z?(q) = 0 if a,< 0 

=Q f if a,>0 

Y(Ui)=lUil if U,<O 

=o if a,>O. 

We call R(Ui) the strength of the ith rarefaction wave in Q, and we call 
y(aJ the strength of the ith shock wave in a. The following two theorems are 
needed to obtain certain interaction estimates needed in the next section. 

THEOREM 2.2. For ci = Bi(a, b, wL, E) defined and C* with locally 
Lipschitz second derivatives in the compact set r, we have 

R (Ci(E)) - R (C,(O)) < G&D, 

Y(Ci(e)) - Y(Ci(O>) < G&D, 

where G&D is a uniform bound on r. 

Proof: We do the case for rarefaction waves. By Theorem 1.1 we have 

1 ci(c) - q(O)1 < G&D 

on r. Thus 
Ci(E) - R(ci(O)) ~ cI(E) - C,(O) ~ G&D. 

But if ci(s) > 0, then cl(s) = R(Ci(E)) and we have 

R(Ci(E)) - R(c,(O)) < G&D, 

while if ci(s) < 0, then R(ci(s)) = 0 and we have 

R (c~(E)) - R (~~(0)) < 0 < G&D. 

This completes the proof of Theorem 2.2. 
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THEOREM 2.3. Consider c,. = Bi(a, b, w,, s) defined and C2 with locally 
Lipschitz second derivatives in the compact set r. Assume that on each I’, we 
have 

R(ci) - R(ai) - R(bi) < 0 when 01 =O, 

where 0: is a sum of form (2.1) among a’ = (ai, ,..., a*,) and b’ = (bj, ,..., bj,,,), 
where {ik}, { jkjs m and 0: depend on s. 

Then for some G > 1 we have 

R(Ci) - R(ai) - R(bi) < GD’, 

Y(Ci) - AaJ - y(bi) < GD’, 

where D’ = 0: on r,. 

Proof. We do the case for rarefaction waves. Let 

ci - R(aJ - R(bJ = B,(a, b, W,, E) -II - R(b,) = hi(a, b, WL, E). 

We apply Corollary 2 of Theorem 2.1 to each r, c I’. For each s, we can 
write 

h,(a, b, wi, E) =fi(6’, 6, y, u,, E) =fr(a”, 8, z) 

where z = (y, I+, E), y is the vector of all components of a, b not appearing in 
a’, b’, and q = Ia{ I. Now set 

V, = (a” E Rm: 0 < 6; < t} x 16’ E R”‘: 0 <s; <r} x Z. 

Since sign(a,) and sign(b,) are constant on rS,fi E C2 with locally Lipschitz 
second derivatives in VS. Hence, Corollary 2 of Theorem 2.1 applies to J;:, 
and so 

ci - R(a,) - R(bi) Q G,D:, 

where G, D, is a bound which holds uniformly in each V,, and so 
hi(a, b, w,, E) is uniformly bounded by G, . D, on each I’,. Let G = sup,{ G, J. 
Then if (a, b, w,, E) E r, then (a, b, w,, E) E r, for some s, and so we have 

ci - R(a,) - R(bi) < G, 0: < GD’. (2.4) 

Now if ci 2 0, then R(ci) = c, and so by (2.4) 

R(c,) - R(a,) - R(bi) < GD’, 
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while if ci < 0, then R(ci) = 0 and so 

R(ci) -R(q) - R(bi) < 0 < GD’. 

This completes the proof of Theorem 2.3. 

3. GAS DYNAMIC EQUATIONS 

In this section we study the one-dimensional Lagrangian equations of 
motion (3) for gas dynamics. This system of equations is determined by 
specifying the constitutive relation e = e(v, S). We are primarily concerned 
with energy functions for ideal gases, and for this reason Sections 2-4 of 
Courant and Friedricks [ 1] are summarized in the following paragraph. 

An ideal gas is one that satisfies the equation of state 

pv=RT, (3.1) 

where p = -e, = pressure, v = specific volume, T = temperature and 
R = specific gas constant. Moreover, the internal energy gained by the gas 
during a change of state is equal to the heat contributed to the gas plus the 
work done on the gas by compressive action of the pressure forces. This fact 
is expressed by the fundamental relation 

de= Tds-pdv. (3.2) 

For any given ideal gas, the choice of units for p, v, e, and S together with 
the molecular weight of the gas determines the constant R. We can take the 
relation 

(3.3) 

as the definition of temperature. It is important to note that, since we can 
only measure changes in energy and entropy, values for e and S at a 
particular thermodynamic state of the gas are determined only after we 
choose arbitrary ground states for zero energy and entropy. With these 
choices, we obtain from (3.2) and (3.3) 

de=$dS- pdv, (3.4) 
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which yields the linear partial differential equation for e(u, S) 

Re, + ve, = 0, (3.5) 

the general solution of which is 

e = h(v exp(-S/R)), (3.6) 

where h is an arbitrary differentiable function. It is also generally true for 
actual media that 

P(V, S) = -e”(V, S) > 0, 

P&, S) = -euu(v, S) < 0, 

P~V, S) = --euvv(v, 9 > 0. 

(3.7) 

Hence, for ideal gases, (3.7) is expressed by 

h’(x) < 0, 

h”(X) > 0, (3.8) 

h”‘(X) < 0. 

Any gas whose energy function satisfies (3.1~(3.8) we call an ideal gas. A 
gas is polytropic if further 

e=c,T+ C, (3.9) 

for some constant c, > 0. The energy function for a polytropic gas is given 

e= lvexp (-y) /-‘+CO, (3.10) 

where h(x) = exp(-cS,/R)x-’ + C,. For any choice of S, and C, a gas with 
energy function (3.10) satisfies (3.9) with 

For a given polytropic gas, the value of S, is dependent upon our choice of 
the ground state for entropy, and the arbitrary constant C, in (3.10) is 
required to adjust for a preassigned choice of ground state for energy.’ 

For any ideal gas, system (3) can be written 

u, + j-(U), = 0, (3.12) 

’ The constant C, is usually taken to be zero [ 11, but below we make another choice. 



NONLINEAR HYPERBOLIC CONSERVATION LAWS 123 

where U = (u, U, E)’ and f(U) = (p, -u, up)‘. (p, -u, up)‘. (p, -u, up)’ is 
indeed a function of U since (3.6) and (3.8) imply that S = S(e, u) and hence 
p = p(u, S) = p(u, U, E). The eigenvalues, eigenvectors and Riemann 
invariants for df are given in (u, U, S) coordinates below. Note that eigen- 
values and Riemann invariants can be computed in any transformed coor- 
dinates, but eigenvectors and jump conditions are determined by the 
variables that yield the conservation form (3.12) of the equations. 

R,= (L+=p+~), 

R, = (0, e,,, eveus - e,e,,), 

R,= 1,~ &--& 3 
( ) 

1-Riemann invariants S, u - [” fidv, 

(3.13) 

2-Riemann invariant u, p, (3.13) 

3-Riemann invariants S, u + r fidv. 

A quick check shows that the equations are genuinely nonlinear in the 1, 3- 
characteristic fields, and linearly degenerate in the 2-field. 

The jump conditions which determine the shock curves for system (3) 
must be computed from the conservation form of the equations. Letting 
[u]=u-Mu,, etc., these are 

4ul= [PI, 
u[u] = -[u], (3.14) 

m= [PI. 
Eliminating the shock speed u in the first two equations and requiring the 
usual entropy conditions (cf. [4]) yields 

(3.15) 

and eliminating u and u from the third equation yields the Hugoniot relation, 

0 = e - eL + +(p + p,)(u - u,). (3.16) 

Define the transformation 

1 
r=U+aln--, s=u-alnl 

P P’ 
(3.17) 
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for a > 0 arbitrary. (u, p) + (r, s) defines a one to one and onto regular C” 
transformation from R x R+ + R x R. Since pv # 0, the transformation 

YF (u, p, S) + (r, s, S) (3.18) 

determines a one to one and onto regular C” mapping from the domain of 
the variables (u, u, E) to R3. Hence we can view the shock-rarefaction and 
contact discontinuity curves of system (3) for any ideal gas, in &-space. 
Note that since S is a l- and 3-Riemann invariant, and since U, p are 2- 
Riemann invariants, 1,3-rarefaction curves in &-space lie at constant S, 
and the 2-contact discontinuity curves are vertical lines parallel to the S axis. 
We let 

w = (r, s, S). (3.20) 

For arbitrary constant a and C, consider now the energy function 

e,,(u, S) = --a* ln(v exp(-S/R)) + C (3.21) 

2 

= -a* In ZI + y + C. 

e,(u, S) satisfies conditions -(3.1)-(3.5) for an ideal gas with h(x) = 
-a* In x + C. We now study properties of the shock-rarefaction curves in 
rsS-space for system (3) with energy function e,(u, S). Since we are soon to 
consider smooth parameterizations e,(y, s) = e(u, S, a) which reduce to 
(3.21) at E = 0, we call system (3) with e = e,(u, S) the system at E = 0. We 
use these special properties together with the estimates of section 2 to prove 
Theorem 4.1. A corollary of Theorem 4.1 is a Theorem by Liu [ 51 on the 
existence of solutions to Eqs. (3) for polytropic gases. 

Note first that p(u, S) = -e,(u, S) = a’/~ for e,(u, S). Hence Eqs. (3) 
decouple, and the first two equations here describe the 2 X 2 system studied 
by Nishida in [6]. Note also that T is a 3-Riemann invariant while s is a l- 
Riemann invariant for e,(u, S). Thus 1-rarefaction curves lie parallel to the r- 
axis and 3-rarefaction curves lie parallel to the s-axis. Moreover, the shock 
conditions (3.15) and (3.16) yield, respectively, 

U-uL=-a iup, 
UUL 

S-S,=R 

(3.22) 

l-shocks are parameterized for 0 < u/u, < 1 while 3-shocks are 
parameterized for 0 < uL/u < 1. By writing conditions (3.22) in terms of r, s 
we obtain 
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l-shock curves: 

Cl-l 
r-rL=a- 

\/;; 
+ a In a, 

a-l 
s-sL=a-- 

6 
a In a, O<$=a<l, 

S-S,=R 
I 

a*- 1 
Ina- ; 

I 

3-shock curves: 

a-l 
r-rL=a-- 

6 
a In a, 

a-l 
s-sSL=a - + a In a, 

\/;; 
O<:=a<l, 

S-S,=--R 
I 

a* - 1 
lna-- . 

2a I 

(3.23) 

Thus the shock-rarefaction curves are all the same except that entropy 
decreases along 3-shocks and increases along l-shocks, as needed to ensure 
that entropy increases in time. Differentiating (3.23) yields 

l-shock curves: 

d(s-sL) = ($J;)‘>“, 
4r - rL) 

O<a=t< 1, 

4s - s,> 
d(r-r,) 

=-; (;+ll)*+<o; 

3-shock curves: 

d(r-rL) = (g+:)*>o, 
4s - sd 

O<a=:< 1. 

4s - s,) 
4s - sd 

(3.24) 

Thus l-shock curves can be parameterized with respect to r - r,, and 3- 
shock curves with respect to s - s,. Note also that the change in entropy 
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along a l-shock [respectively 3-shock] is monotone increasing [respectively 
decreasing], and on compact sets the change in entropy is uniformly 
bounded by some constant times r - r, [respectively s - s,]. 

Since in the rs-plane,the shock curves reduce to those for the isothermal 
system [6], Riemann problems can be globally solved here by solving them 
in the rs-plane, and then connecting in the middle by a vertical contact 
discontinuity. Thus for the energy function e,(u, S), the functions 

are everywhere defined as in Section 1, with t, = r - r,, t, = S - S,, 
t,=s-ss,. Because H, and H, are C’ away from ti = 0, with C2 contact at 
ti = 0, each Hi is C” with locally Lipschitz second derivatives, and hence so 
are the functions 

w = H(t, wL, 01, 

w = G(a, b, wL, O), 

where a = (a,, a2, a&, b = (b, , b,, b3) as in Section 2. Moreover 

1 I g 20 (3.25) 

holds everywhere for e,(v, S), since by (3.24) the shock-rarefaction curves in 
r&space are nowhere parallel, and vertical vectors are never in the span of 
two tangent vectors from 1, 3-shock-rarefaction curves. Thus the columns 

of aH/at are everywhere independent, so that (3.25) holds. Since H is l-l at 
fixed w,, (3.25) and the Inverse Function Theorem imply that 

t=B’(w, w,,O) 

as well as the interaction function 

c=t=B(a,b,w,,O) (3.26) 

are everywhere defined, and everywhere C* with locally Lipschitz second 
derivatives. We wish to distinguish i-shocks from i-rarefaction waves among 
the waves in the interaction function (3.26), so let us adopt the following 
notation meaningful at any E where B is defined: 
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aI = the l-shock in a, = 0 if a,>0 

=la,l if a, GO, 
(3.27) 

,u, = the I-rarefaction wave in a, = a, if a,>0 

=o if a, GO. 
Similarly let 

a, = l-shock in b,, ,+ = I-rarefaction wave in b, , 

p, = 3-shock in u3, f7r = 3-rarefaction wave in u3, 

/I2 = 3-shock in b,, q2 = 3rarefaction wave in b,, 

164 = 149 I&l = lb& 
CI’ = l-shock in cr , p’ = 1-rarefaction wave in cr , 

p’ = 3-shock in c,, 77’ = 3-rarefaction wave in c3, 

16’) = I cz/ = contact wave in cl. 

(3.27) 

We let 
a, P denote arbitrary 1, 3-shocks, 

iu, rl arbitrary 1,3-rarefaction waves . 

Yi arbitrary shock waves, 

Ri arbitrary rarefaction waves, 

16il arbitrary contact waves, 

4i arbitrary shock or rarefaction waves, 

Pi arbitrary waves, 

(3.27) 

in some solution. The symbols in (3.27) are used to denote both the names 
as well as the strengths of the corresponding waves (Si denotes signed 
strength, so that 16,l denotes strength). Let D = the sum of the strengths of 
the approaching waves among a, b as defined in (l.O), and write 

where 
D=D,+D,+D,, 

APP (3.28) 

APP 

APP 
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Finally, letting 

w = Hi(tj ,wL 3 O> = (ri(tjT w,! > O), sj(fj, w, 3 O), Sj(tj, w, 3 O)), 

define 

6, = S,(t, 3 w, 9 0) - s, 2 0, 

6, = s, - S&j) WL ,O) > 0. 

PROPOSITION 3.1. For every compact set U,, in t-s-space, there exists a 
constant f < C, < 1 such that every interaction at E = 0 with w,, w,,,, wR in 
U,, (at any S) satisfies: 

6’-a,-6,=0 when D, + D, = 0, 

P’-P1-P2<0 when D,=O, 

rl’-rll-rtlGo when D, = 0, 

a’-a,-a,=A,p’-P,-Pz=B, 

where A, B satisfy (I) or (II): 

(I) A=-randO<B<C,lorB=-candO<A<C,,& 

(II) A < 0 and B Q 0. 

The constant C, is determined as follows: Since U,, is compact and shock 
curves look the same at every entropy level, every Riemann problem in U,, is 
solvable with shock wave strengths uniformly bounded by a constant P. Set 

c = max 

I 

L d(s-slJ 
0 2 ’ d(r - rJ 

along a l-shock ; 
r--lo=p I 

i.e., C, is a constant, i Q C, < 1, which dominates the slopes of l-shock 
curves and reciprocal slopes of 2-shock curves which occur in waves which 
solve interactions in U,,. 

Proof. The results above involving shocks and rarefaction waves are 
proven via a case by case study of interactions in the rs-plane where 
strengths are defined. This is given in Appendix II. That 6’ - 6, - 6, = 0 
when D, + D, = 0 is a consequence of the fact that when there are no 
approaching waves among the shocks and rarefaction waves in (wL, w,,,), 
(Yw wl), the Riemann problems for (wL, wI1) has the same solution waves 
in the rs-plane. Thus the only change across the interaction is in the contact 
waves, and hence 
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However, since the net change in entropy is conserved across interactions, 
we have 

and hence 

PROPOSITION 3.2. For every compact set U,, in the rs-plane there exists 
a constant M > 0 such that every interaction at e = 0 with W, , W,, W,, in 
U,, (at any S) satisfies: 

Proof: Choose C, so that Proposition 3.1 holds. Since across any 
interaction the net change in entropy is conserved, and since rarefaction 
waves lie at constant entropy, we have 

6,, + da2 - 6,, -a,, + 6, + 6, = d,, - a,, + 8’. (3.29) 

Assume, first, that case I of Proposition 3.1 occurs with A = -<. Then 

a’-a,-q=A=-t, O<pl-p,-/3,=B<C& 

Because U,, is a compact set, we can choose 

a, = min 
I 
i~,nfF, inf !L 

L fJrs v I 

for v and vL on the same shock curve in U,,. Also, let 

M = (1 - CO)&, 

where 

which is “twice the sup”, 1 d(S - S,)/dt,j among l- and 3-shocks that begin 
and end in U,: by (3.24). (3.24) also implies that along 1, 3-shocks, the 
derivative of entropy with respect to the strength of a shock along a shock 
curve, has magnitude 

O<a<l. (3.30) 
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Since a decreases along the shock curve as the strength increases, we see that 
(3.30) and hence the magnitude of this derivative is monotone increasing 
along shocks. Thus, p’ > 1, f & implies that 

60, > &I f s,,. (3.3 1) 

that if Moreover, for interactions in U,.,, our choice of M implies 
a’-a,--*=A=-tthen 

is,, + da* - 6, I < $@(. 

Hence, using (3.29) together with (3.32) we obtain 

(6’ - 6, - 6,) + (S,, + a4* - S,J = 6,, + d,, - 6,s < ;A?( 

and so 

(8’ - 6, - 6,) t (s,l t s,* - 6,s) + (S,, + is& - a,,) 

< $s7( + $I@< = A?(. 

Also using (3.29) together with (3.31) we obtain 

-(6’ - 6, - 8,) -t (S,, + aa2 - da>) + (d,, - 6,, - 8&) = 0 

and 

-(sl - 6, - 6,) + (S,, + sa2 - da<) + (6,, + do* - 6,t) < 0. 

Putting (3.33) and (3.34) together yields 

16’ - 6, - &I+ (S,, + be2 + S,,) + (B& + Jo2 - S,J 

< n;ir = M( I - C& < -M(A + 8) 

and hence 

(3.32) 

(3.33) 

(3.34) 

This proves case (I). 
For case (II) we have a’ -a,-a,=A<O and /?‘-~,-f?2=B<0. 

Thus the estimate (3.32) applies in both cases to yield 
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The argument in case (I) now goes through here, by replacing (3.33) and 
(3.34) with 

(6’ - 4 - 4) + (&l + a,, - 6,s) + (S,, + do2 - 6,t) <-MA, (3.33)’ 

-(s’ - 61 - a,> + &, + a,, - d,t) + (a,, + db2 - d,<) < -MB, (3.34)’ 

respectively. Together these yield 

16’1-1~,l-l6,l+(~,,+6,2-6,,)+(6,,+842-6,)~-M(A+B), 
which proves Proposition 3.2. 

PROPOSITION 3.3. For every compact convex open set U,, in the m-plane, 
there exists a constant G > 1 such that every interaction at E = 0 with W,, 
W,, W, in U,, (at any S) satisfies: 

(9 l~‘l-l~,l-l~,l~~~~,+~,~~ 
(ii> P’ -P, -P, < GD,, q’-711-v,<GD,. 

Proof. Choose r > 0 so that Riemann problems between states in U,, 
have solutions with shock-rarefaction wave strengths less than r. We have 
c = B(a, 6, w,, 0) is defined everywhere. 

Case (i). Across any interaction in rsS-space, the net change in entropy 
is conserved, and hence 

and so 

6’ - 6, - 6, = 6,* + Be* - 6,< + 6,, - 6,, - f&. 

The right-hand side of this equation is a function dependent only on the 
Riemann problem interaction in the rs-plane, and so we write 

6’ - 6, - 6, = c2 -a, - b, = B,(a, b, w,, 0) - a, - b, 

=f(a,,a,,b,,b,,r,,s,,O). 

By Proposition 3.1, 6’ - 6, - 6, = 0 when 0 = D, + D, = “the approaching 
waves among a, a,, b, b, .” Hence Theorem 1.1 applies with f defined on 
Iail < 5, lbil< ~7 (rL, sL) E u,, ad ~0 

I~‘l-I~,I-I~,l~I~-~,-~,l~~~~,+~,). 

This proves Case (i). 
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Case (ii). Again ,u’ -,u, -,uuz and ?,I’ - q1 - r12 are dependent only on the 
interaction in the rs-plane. Let 

~=((a~,a~,~~,~~,~~,~~,O):lail~~,I~il~~~ rL,sL in u,,l. 
A quick check of cases shows that in any given r,“, D, is a sum of form 
(2.1) among some subset of {a,a,b,b,}. Thus in the notation of 
Theorem 2.3, Proposition 3.1 yields 

and 
P’ -P, - ru2 = W,) - R(a,) - WI) < 0 when D,=O 

v’ - v1 - r2 = WJ -WJ -WA < 0 when D,=O. 

Hence the conditions of Theorem 2.3 are satisfied, implying 

throughout p. This completes the proof of Proposition 3.3. 
Collecting the results in Propositions 3.1 to 3.3, we have 

LEMMA 3.1. For every compact convex open set U,, in the rs-plane, there 
exist constants M > 0, i & C, < 1, and G > 1 such that, at E = 0, the 
following estimates hold across any interaction (wL, ww) + (w,, wR) + 
(wL, wR) of states whose projections onto the rs-plane lie in U,, : 

a’ - a, - a2 = A, P’-P,-/32=& 

where A + B Q (C, - l)r and where A = - < or B = - <. Moreover 

ld’l- l&l - 1621+ @a, + 6a2 - b> + (S,, + &- d,J < --M(A + B), 

16’1-1~,1-1~21~~~~2+~,~~ 

We now consider any smooth parameterization of energy functions 
e&v, S) = e(v, S, E), 0 <E < 1, such that e(v, S, 0) = e,(v, S) and such that 
conditions (3.7) are satisfied at each E. By smooth parameterization we mean 
that e has sufficiently many derivatives with respect to (v, S, E) (actually five 
derivatives is sufficient). We now study properties of the shock-rarefaction 
and contact curves for system (3) at E near zero. We use the same notation 
for shock, rarefaction, and contact waves. For example we write 
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PROPOSITION 3.4. Let U, be any compact convex open set in rsBspace. 
Let 

r=infr, F=supr, s=infs, F= sups. 
UI UI Ul UI 

Then there exists an E, > 0 such that, for 0 < E < E, , l- and 3-shock- 
rarefaction curves starting in U,, can be parameterized with respect to 
r - r,, s - s,, respectively, in a neighborhood of U, as folows: 

I-shock-rarefaction curves are defined for ] r - rL. I< F- r, w, E U, by 

s--L=fi(r-rL,wWL,E) 

S-S,= gl(r-rL,wLtE) 
(3.35A) 

3-shock-rarefaction curves are defined for 1 s - s, 1 < 5- s, wL E U, by 

r-rL=f3(s-sSL,wL,E) 

s-s,= g,(s-S,,W,,E) 
(3.35B) 

Moreover, (3.35A) and (3.36A) dej?ne the functions 

w = (r, s, S) = (r, s, +fi(r - rL, w, , E), S, + g,(r - r, v we v E)) 
E H;(r - r, , wL, e), (3.36A) 

w=(r,s,S)=(rL+f3(s-sSL,wL,e),s,SL+gJ(s-sSL,wL,e)) 

=H;(s-s,, w~,E), (3.36B) 

where H; [resp. Hi] is defined, is C*, and has locally Lipschitz second order 
derivatives in [-IF--11, IF-I]] x C]U, X [O,eI] [resp. [-IS--_s], ]s-:]I X 
CIU, x [O~~lll. 

Proof The shock conditions (3.15) and (3.16) for system (3) are 

u - u, = - \/<P, - P>(V - VL), (3.15) 

0 = e -e, + f(p + pL)(v - vL). (3.16) 

Since S, and vt are smooth functions of w, = (rL, sL, S,) it follows that 
(3.16) can be written as 

0 = e - e, + f(p +p,)(v - vL) = h(S - S,, a, w,, E), (3.37) 

where a = v/v,. At E = 0 we have by (3.22) that ah/a(S - S,) # 0 and h is 
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I-l at fixed a, w,, E. Let V be the compact set in (S - S,, a, wL) space 
defined by 

where 

where 

Then by the implicit function theorem, if (3.37) is satisfied at some value of 
the arguments of h at E = 0, then locally (3.37) defines 

S - S, = K,(a, wL, E). (3.38) 

Say S - S, is in X, a is in Y, wL is in 2, and E is in [0, a’]. A finite number 
of (X, X Y, X Z,}:!, cover the zero set of h at E = 0. By the continuity of h 
and compactness of V, there exists an Ed > 0 such that for E < E,, h is 1-I at 
fixed a, wL, E, and 

ix, x yn x Z,l,“= 1 

cover the zero set of h in V. Choose 

sj = min{e; ,..., EL, al}. 

Then for E < Ed, (3.37) holds in V and only if (3.38) holds in V. This means 
that, for points in V, (3.15) can be written 

u - u, = &(a, w,, ~1, (3.39) 

where K, is smooth away from a = 1, since we can solve for S in terms of 
(a, w, , E). Hence we obtain from (.3 17) 

r - rL = K,(a, w,, E), 

s - sL = &(a, w,, ~1, 0 =K#, wL, E), (3.40) 

S-SL=K,(a,w,,c) 

defined for wL E Cl U,, a E [l/a M, aM], E E [0, E,] (and so in particular, 
(3.40) defines a parameterization of the shock curves in Cl U,, which start in 
Cl U,) and smooth for a # 1. By the continuity of the eigenvectors of df, the 
l-shock must be defined for l/a, < a < 1, the 2-shocks for 1 < a < aM. To 
complete the proof of Proposition 3.4, we do the case for I-shock-rarefaction 
curves. 

For l-shocks, a(r - rJLJa > 0 and r - rL < 0 in (3.40) when E = 0, and 
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hence the inverse function theorem implies that globally, K, defines 

a=KS(r-rL, WL,O) in V. (3.41) 

Thus the continuity of K, together with the compactness of V implies that in 
some neighborhood [0,&i] of E=O, a=K, (r-rTL.,wL,a) with r--r,<0 
holds if and only of (3.40) holds in V with I - r, < 0. Hence we have 

s-sL=f,(r--L,wL,e), 
S - S, = g, (r - r,, WI., -51, 

r<r,, (3.42) 

where at each w,E Cl U,, and E in [0, si], (3.42) is defined on some interval 
r < r < r, which parameterizes the l-shock curve in U, starting from w, at 
this E. Therefore, without loss of generality, we can assume that (3.42) is 
defined for r - r, <r - r; wL in Cl U, and E in [0, si]. Note also thatf, and 
g, are as smooth as e,(v, S, E) and hence are C4 functions. 

The 1-rarefaction wave starting at w, for the system at E is the positive 
portion of the integral curve of the vector field of eigenvectors 

R, = (L&u+-+), (3.43) 

where R, has at least two less derivatives than e and so is C3. At E = 0 these 
curves lie along the lines parallel to the positive r-axis, since S and s are I- 
Riemann invariants at E = 0. Let y(& w,, E) be the 1-rarefaction wave 
starting at wL for the system at E: 

(3.44) 

By scaling R, if necessary, we can assume that r parameterizes y with 
respect to arclength. This defines 

r - rL = P,(tl w,, 61, 

s - SL = P&, w, ) E), 

S-S,=p,(r,w,,E). 

(3.45) 

Now at E = 0, < = r - r, > 0 and hence (i?r - r-,)/L?< = 1. Let U, be any 
compact set in rsS-space. Then by the Inverse Function Theorem, there 
exists an E, > 0 such that for E < E, , c = P,(r - r,, w,, E) throughout U, . 
Choosing U, large enough, we can write 

S--L=fi(r-rL,wL,e), 

S-S,= g,(r--L,wL,c), 
(3.46) 
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where f, and g, are defined for wL in Cl U,, E in [0, ei], and 
0 < r - r, < r--r. Hence (3.46) defines a parameterization of the l- 
rarefaction waves in U, that start in U,, wheref, and g, are again at least 
c3. 

Letting E, be the minimum of this cl and the one found above, we can put 
(3.42) and (3.46) together to write the 1-shock-rarefaction curves in U, for 
O<E<E, as 

~--~=f,(r-r~,w~,e), 

S-S,= gL(r-rL,wL,E), 
(3.47) 

defined for Ir - r,l< F--r, w, in Cl U, and E in [O,E,], where$, and g, are 
C3 functions for r - r, # 0. 

We show that fi and g, are C* at r = r,, and since one sided third 
derivatives exist at r = rL, this implies that f, and g, are C* with locally 
Lipschitz second derivatives. Shock curves in U, between 0 and E, are 
functions of r - r, at a fixed wL in U, , and by Lax [4], the curves defined by 
(3.47) have C* contact at w,. This implies that first and second derivatives 
off, and g, with respect to r - r, exist, and are continuous, at r = r,. Since 
derivatives off, and g, with respect to wL and E are zero from the left and 
right of r - r, = 0, and Ri(r - r,, wL, E) is differentiable in wL and E, f, and 
g, are C* at r - r, = 0. Hence f, and g, are C* with locally Lipschitz second 
derivatives in their domains. This completes the proof of Proposition 3.4. 

Let U, and si satisfy Proposition 3.4. We wish to parametrize the 1, 3- 
shock-rarefaction curves in U, with respect to r - r, + E . arclength [respec- 
tively s - s, + E . arclength]. Thus let 

t,=r-rL+c -H;(r-rL,wL,c) dr, 

t3=s-sL+& - H;(r - r,, wL, E) ds. 

It is immediate that 

at, at3 
a(r - rL) 

>o and 
a - SL) 

>o 

and t, [resp. t3] is a function of (r - r,, w,, E) [resp. (s - sL, w,, E)] which 
is as smooth as Hi. This implies that ti can be taken to parameterize the i- 
shock-rarefaction curve; i.e., the Inverse Function Theorem implies that 
(3.47) defines 

r--rL =A,(t,, wL,E), s -SL =A&33 WL, 61, 

where Ai are C* with locally Lipschitz second derivatives. Therefore, 
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substituting into Hi gives the shock-rarefaction curves in U, parametrized 
with respect to ti at each w, E U,, E E [0, E,]: 

(3.48) 

where Hi are C2 with locally Lipschitz second derivatives. Moreover, since u 
and p are 2-Riemann invariants at every E, r and s are constant along 2- 
contact discontinuity curves. Thus contact discontinuity curves can be 
smoothly parameterized with respect to t, = S - S,, and we can write 

This enables us to define 

and 

where H, G are C2 with locally Lipschitz second derivatives throughout their 
domains. Again, the domain and range variables of G determine an 
interaction with w = We, w, = H(a, w,, E). 

Consistent with the notation in (3.27), we let ] tiI be the strength of a wave, 
and hence in regions where shock-rarefaction curves are parameterized with 
respect to ti we have 

For l-waves a = Var;(a) + E Var(a), 

For 3-waves /3 = Vat-;@?) + E Var@), 

For 2-waves 6 = AS. 

,u = Var,‘@) + E Var@), 

q = Var:(q) + s Var(g),(3.49) 

(Here, e.g., Var;(a) = the variation of a in the minus r direction.) 

PROPOSITION 3.5. For every compact, convex open set U, in r&space, 
there exists U, 3 U, , 52 > 5 > 0, and E 1 > 0 such that 

(i) For each fixed w, in Cl U,, E in [0, el] 

Cl U, c Range H(t, w, , E). 
lfil <r 

(ii) For each (a,b,w,,&) in r= {tER3:~t,~<~}2xC1U, x [O,E~], 

G(a,hw,,~)~U2. 

(iii) For each fixed w, in Cl U, and E in [0, ~~1, H is defined for 
Itil < f2 and Cl U2 c Range,,il+ H(t, w,, E). 
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Proof. Choose U; 2 Cl U,, and r > 0 such that at E = 0, 

u; = pa;, m WLY 0) for each fixed wL in Cl U, . 

Choose U, such that at E = 0, 

Gh b, w,, 0) = u, foreach wLEU;,lail~2t,lbil~22r. 

Choose Vi 2 Cl U, and r2 > 0 such that at E = 0 

Vi c Range H(t, w,, 0) 
if/l <(1/2)r2 

for each fixed w, in Cl U,. 

We claim that there exists an E, > 0 such that (i), (ii), and (iii) hold with the 
above choices of U,, t, and t2. 

First we show that there exists an E, > 0 such that, if E is in [0, E,], then 
(i) holds. For every w, wL in Cl U,, by choice of r we have w = H(t, wL, 0) 
for some t with 1 til < r/2. Since 

I I g+O at & = 0, 

and since by Proposition 3.4 H is defined and continuous in a neighborhood 
of (t, w,, 0), the Inverse Function Theorem implies that t = B’(w, w,, E) is 
detined in some neighborhood W x V x [0, E] such that W c U; , Vc U’, 
and I til < r. Fixing wL , such a W, V, and E exist for every w in Cl U,. A 
finite number { W, ,..., W,} cover Cl U, since it is compact. Choose 
P= fi;=, V,, E= min{s , ,..., E,,}. Then for each fixed r? in P and E in [0, E], 
Cl u, = Rwq,,, Gz H(t, r?, E). Now such a P exists about each w, in Cl U,, 
so a finite number {P, ,..., FM} cover Cl U, . Choose E, = min{E’, ,..., E’,}. 
Then for E in [0, si] and fixed w, in Cl U, , we have 

Cl U, c Range H(t, wL, E), 
Ifil<T 

which proves (i). Condition (iii) now follows by the same argument. 
We now show that there exists an E, > 0 such that if E is in [0, ei], then 

(ii) holds. 
Let (a, b, w,, 0) be any point such that I ai] < t, ] bi] < z, and wL is in 

Cl U, . Then w = G(u, b, w,, 0) is in U,. Hence, by continuity of G, there 
exists a neighborhood V of (a, b, wL) and an E > 0 such that 

G(Vx [0,c])cU2. 

A finite number {Vi,..., V,} cover 

(a E R3: Iail <z} x {b E R3: lbil <t} x Cl U,. 
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Choose E, = min{e , ,..., E,,}. E, clearly satisfied condition (ii). Choosing E, to 
be the smallest E, from the three cases, Proposition 3.5 follows. 

PROPOSITION 3.6. For every compact convex open set U, in &-space, 
there exists an E, > 0 such that Conditions (H) of Section 1 hold. 

Proof: Choose E’,, U,, r, r2 so that Proposition 3.5 holds. At E = 0, 
IaH/& # 0 and H is globally l-l at each w,, and so by the continuity of H, 
these conditions also hold in a neighborhood of E = 0 on compact sets. Since 
r, is compact, Proposition 3.6 follows for some 0 < E, < E;. This proves 
Proposition 3.6. 

Hence, using Lemma 1.1 we can define the interaction function 
c = B(a, b, w,, E) so that B is C2 with locally Lipschitz second derivatives on 
r, and such that every interaction that occurs in U, , occurs in this domain of 
B. For convenience, we now assume that U,, and or, are arbitrary compact 
convex open sets in rs-space, and that U, and 0, are arbitrary sets of the 
form U,., x [ $,g] and ur, x [S, $1, respectively. We prove the main 
interaction lemma for energy functions near e,(v, S). 

LEMMA 3.2. For every set U, = U,, x [S, g] in rsS-space there exists 
E, > 0 and G > 1 such that interactions are defined for every wL, wy and wR 
in U,, and such that the following estimates hold for these interactions: 

(Change in strength at E) < (Change in strength at E = 0) + G&D; 

i.e. 
Aa=a’-a,-a,<AaQ+GeD, 

Ap=p’-&-&<A/3°+G~D, 

A~6~=~6’~-~61~-~62~~A~6~0+G~D, 

Ap=,u’-,u,-pu,<Apo+G~D, 

Ay=q’-q,-q,<Ar/“+GeD, 

AS, = 6,, + 6,, - 6,, < A6; + G&D, 

AS, = 6,, + 6,, - S,, <AS; + G&D. 

Proof. We do the proofs for A ] 61, A,u, and AS, ; the others are done 
similarly. First, let E, be chosen for Proposition 3.6 so that U, , E, satisfy 
Conditions (H). 

Case (i). A 161 <A 16/O + G&D. 

Since U,, cl satisfy Conditions (H), Theorem 1.1 applies, and thus across 
interactions in U, we have 
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and thus 

1 C*(E) - c,(O)1 = I&(E) - S’(O)1 < G&D 

and so 
1 d’(e)1 - 1 S’(O)1 < G&D 

or 
IS’@)1 - 141 -lb/ < IS’(O)l- l&l - 14 + G&D 

A 161 <A (61°+ G&D. 

This proves case (i). 

Case (ii). Ap <A,u” + G&D. 

Since U,, E, satisfy Condition (H), interactions in U, occur between the 
states of the interactions function c = I?@, b, w,, E) in the domain r. With 
the notation of Theorem 2.2, we have 

P(E) -P(O) = W,(E)) -W,(O)) G 0 

and so Theorem 2.2 applies to yield 

which implies 

P(E) -P, -P, <P(O) -PU, -~2 + G~J 

or 

4 Q Ape + GED. 

This proves case (ii). 

Case (iii). AS, <AS: + G&D. 
At each E, 6, is the change in entropy along a l-shock curve. Since 

w, = (r, s, S) = H,(t, , w, , E) defines the 1-shock-rarefaction curve, we can 
define s,(t, , wL, E) = S - S, . Of course s&r, w,, E) = 0 when I, = 0 since 
S = S,. Moreover, 6&r, w,, E) is a C2 function of (tr , w,, E) with locally 
Lipschitz second derivatives. With this notation we can write 

B,,(E) = d,(Cl, w,, E) = J,(B,(a, 6, wt, E), WL, &), 

defined on I-. Thus 

A~,=~,(~,,~,,~)+~,(~,,w~,~)--~,(c~,w~,~) 

= g&, b, w, 3 E) 
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and 

Aa, - AS: = g&, b, w, , E) - g,(a, b, w,, 0) 

= f,(a, b, w,, E). 

But when D = 0, AS, = 0 and 46: = 0, and hence 

f,(a, b, WL, E) = 0. 

Also when E = 0, AS: = 0, and again 

Since f, is C* with locally Lipschitz second derivatives, Corollary 1 of 
Theorem 2.1 applies to each I’, to yield 

and hence AS, & ASi + G&D. This completes the proof of Lemma 3.2. 
Without loss of generality, we let G be the same as the one in Lemma 3.1. 

LEMMA 3.3. For every set U, = Ur, x [s,S], there exists an M > 0 
depending only on Ur,, and an E, > 0 such that, tf wL, w,, E U, , the 
associated Riemann problem is solvable for each E E [0, E,], and the waves 
in these Riemann problems satisfy the following estimates: 

M Var;(a) > Var(a), 

M Var;@) > VartJ), 

2 VarJ@) > Var(u), 

2 Var:(rt) > Var(r), 

Var,cU) < Q, 

Var;(a) < a, 

Var;GB) < P, 

Var; 01) = 0, 

Var; (rj) = 0, 

V=,(tl) < av. 

Proof. These estimates are immediate consequences of the fact that the 
estimates hold at E = 0, together with the fact that, in some neighborhood of 
E = 0, Riemann problems in U, are uniquely solvable, and the shock- 
rarefaction curves that give these solutions depend differentiably on E. 

LEMMA 3.4. For every compact set E in rsS-space, there exists a 
constant 0 < C, < 1 such that, for every B,,(w) with w in E (B,,(w) = ball of 
radius C,, center w), interaction problems in B,,(w) are solvable for each 
E E (0, l] with solution waves that satisfy the estimates of Lemma 3.2. 
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ProoJ By Theorem 1.1, there is a neighborhood B,(w) about every w in 
E such that Conditions (H) are satisfied in B,(w). This is all that is needed 
to obtain Lemma 3.2 for interactions that occurs in B,(w). E being compact 
implies that a finite number 

cover E. Let 

n 

C,=min + . 
I I k=l 

Then for every w E E, B,,(W) c II,-, for some k, and so Lemma 3.4 
follows. 

Let E be an arbitrary compact set in rsS-space. Let 0, = or, X [S, $1 be 
a compact set in r&-space that contains the points within a distance C, of 
E, C, from Lemma 3.4. Choose tI > 0 so that Lemmas 3.1 to 3.3 apply to 
0,. Then Riemann problems ( wL, wR) in 0, are uniquely solvable if E < El,, 
or if w,, w, E Bcl(w) for w in E and 0 ,< E < 1. Let V, denote the variation 
in the solution of one of these Riemann problems at any time t > 0. 

LEMMA 3.5, With V, defined as above, there exists a constant K, > 1 
such that 

Proof Since the waves in the solutions of Riemann problems above have 
uniformly bounded total variation, the lemma is only interesting when 
(( wL - wRJ( is small. But the existence of a K, in a neighborhood of every 
(w, E) E 8, x [0, 1 J follows from the strict hyperbolicity of the equations, 
together with the continuity of the eigenvectors with respect to E. The 
compactness of 0, x [O, 1) then implies the existence of a uniform constant 
K,, as desired. 

4. EXISTENCE THEOREM USING GLIMM DIFFERENCE SCHEME 

We first describe the Glimm difference approximation U,(x, t), h > 0 as 
described by Liu in [5]. Fix mesh lengths h > 0, 1 > 0 in the x, t directions, 
respectively. U,, E (r,,, s,, S,) is defined inductively by the following process: 

Choose an equidistributed random number ak in (-1, 1) and consider 
mesh points am,n = ((m + a,) h, nZ), m an integer, m + n even. Now if 
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U,,(x, t) is defined for 0 < t < nl, we get a piecewise constant function on 
t = nl, ---co < x < 00, by setting 

U,(x, nf) = U,((m + aJh, nl- 0), (m-l)h<x<(m+l)h, 

where m + n is even, and then by solving the corresponding Riemann 
problems we can construct the approximate solution U,(x, t) in the strip 
nz < t < (n + l)Z, -co < x < co. 

In the above process, in order that in each strip nl < t < (n + 1)Z the 
solutions of the Riemann problems do not interact, we impose the following 
(Courant-Friedricks-Lewy) condition: 

(4.1) 

We shall show later such an Z/h > 0 can be chosen for the initial data we 
consider. 

In order to obtain a subsequence of approximate solutions U,, which 
converges to a solution of system (3), we need to obtain a uniform bound on 
the total variation of U,,(., t) on each line t = constant > 0. To this end, we 
need a functional F which measures the total variation of U, along any “Z- 
curve.” A curve is an Z-curve if it consists of line segments of the form 
L m,n,mt I,n+ 1) L m,n.m+l.n-l joining a,,,,,, to am+l.n+LT and joining a,,,,,, to 
a ,,,+ ,,n--l, respectively, and if the mesh index m increases monotonically 
from -co to +co along such a curve. We can partially order the Z-curves by 
saying that larger curves lie toward larger time. Let 0 denote the Z-curve 
passing through the mesh points on t = 0 and t = h. In what follows, J, J, 
and J, are Z-curves, and J, is the immediate successor of J, if Ji pass through 
the same mesh points except one with J, < J,. We write J c U, c rsS-space 
if the states that cross J lie in U,, and we let Var(J) denote the total 
variation in r, s and S of all the waves that cross J. 

Let E be an arbitrarily large compact set in r&-space. We consider now 
regions U, = U,, x [S, S] that satisfy the conditions in Lemmas 3.1 to 3.4 
for some cl > 0, G > 1, M > 1, K, > 1, 0 ( C, < 1. Let 

ap(v, s, > “2 
O<$(“yf;,, 1 - au 

I /( 
. I 9 ) I 

Since U, x [0, 1 ] is compact and ~?p/lav is continuous, such a positive 
minimum exists. We now consider Z-curves that evolve in U, from initial 
data in E of total variation V. We wish to choose U, and E, so that, if E . V 
is sufficiently small, then Z-curves either remain in U, or in B,,(w) some 
w E E, and Var(J) remains uniformly bounded for all Z-curves J. We obtain 

505/41/l IO 
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this by showing that a certain functional F which dominates the total 
variation of the solution on J, decreases. Hence let 

L(J)=C~a~-M06~,+Pi-MO~~,}+M~~~6~~+~~{~*+~,}+V, 
.I J J 

L(J)=X iai=M06ai+Pi-Mo84,} tMOJJ6il t EC {/ii+ ?ji} + V, 
J J .I 

Q(J) = M, \' 
A= 

Pil6il t”2 1 4iRi f”3 1 alPi 
APP APP 

J J J 

F(J) = LO + &Q(J), 

where M,, , M, , M,, and M, are to be chosen later. 
Since near E = 0, the derivative of the change in entropy with respect to 

shock strength goes to infinity along shock curves, we need a bound on the 
variation of Z-curves in the rs-plane which is independent of M,. To this end 
we define 

LO(J)=x {ai tpi) t vy 
J (4.3) 

Foe(J) = Lo(J) + &Q(J). 

LEMMA 4.1. Let U, , E I, and M satisfy the conditions of Lemmas 3.1 to 
3.3 as above. Let J, be an Z-curve which evolves at E < E, from initial data 
wO(x) of variation V, through Z-curves that lie in U,; i.e., assume that for 
J < J,, J is in U,. Then the following estimates hold for any M,, < 1/2M, 
and any J, an immediate successor of J, : 

6) var,,(J2) < 2OL,(J,); 

(ii) VNJ,> < WJ,), where X=$,M,,<& 
0 

Proof: Since all Z-curves go from w- to w+ (w* = lim,,, m we(x)) we 
have 

so 

(Varf (J,) - Var;(J,)I = 1 r+ - r- 1 Q V. 

Var: (Jz) Q V + Var;(J,). 

Moreover, by Lemma 3.3 

(*I 

Var,? (J2) > Var,! (1-rarefaction waves) > + 2 ,Ui 3 

Var;(Jz) = Var;(2-rarefaction waves) t Var:(shock waves) 
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where the notation is clear. Hence (*) yields 

Similarly 

and adding we obtain 

(**I 

But again by Lemma 3.3 we have 

V~r,(JJ G 2 c (a* + Pi) + 2 c Ol, + tl,) 
J2 Jl 

and hence 

Var,,(J,) Q 2 c (a, + PJ + 16 (v + c ai + Pi) 
Jl J2 

4 2OJqJ2). 

This proves case (i). Next, by Lemma 3.3 we have 

Therefore, 

Var(J,) < Var(shocks) -I- Var(rarefaction waves) + Var(contact waves) 

~MC(aitB,)+2C~i+?i)tClsil 

J2 J2 J2 
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and by (**) 

< 80M*L(J,) = 

This completes the proof of Lemma 4.1. 
Again consider any compact set E in r&space from which our initial 

data are chosen. To show that F decreases we need to choose a set U,, 
containing E, which is independent of the constant K, in Lemma 3.5. We 
also need ai and pi to dominate Modei and Modoi far away from E = 0. To 
this end we distinguish between 17, and 8, = or’,, x [& $1, and will choose 
U, 3 8, depending on estimates we obtain in 8,. Thus let I?,, ti, E;, C, 
satisfy the conditions of Lemmas 3.1 to 3.5. K, then depends on 0,. 
Moreover, we have the following lemma. 

LEMMA 4.2. Let 8,1 E, cl, A? and C, satisfy the conditions of 
Lemmas 3.1 to 3.5 as above. Let J, be an I-curve which evolves at E in [0, l] 
from initial data of variation V, through I-curves that lie in B,,(w) for some 
w E E; i.e., assume that for J< J,, J is in B,,(w). Then the following 
estimate holds for any J, an immediate successor of J,, so long as MO 
sa tisfles : -2 

M,<min ?,A =&IO: 
I I 

Var(J,) < WJ,), f&E 
iv; ’ 

Proof: Since strengths of waves are defined as in (3.49), we have, for 
I: > t, ) 

ai - MO 6,i > Var,(ai) + 6, Var(a,) - G Var(a,) 

> $ Var(a,) 
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and likewise 

Therefore, 

L(J,) > 2 C { Var(ai) + VW@J} + MO 2 Var(di) 
J2 J2 

+ E”: x {var@i) + var(qi)} > $ Var(J,). 
J2 

If E & E”, , then Lemma 4.1 applies and we have 

L(J,) > $ Var(J,). 

This proves Lemma 4.2. 
We now come to the main theorem of Section 4. 

THEOREM 4.1. Let E be any compact set in r&space, and let N > 1 be 
any positive constant. Then there exists a constant C = C(E, N) such that, 
for every initial data wO(x) c E with TV(w,(x)) = V < N, if EV < C, then 
there exists a global weak solution to problem (3). 

Proof. We show that there exists constants M,, C depending only on E 
and N, such that, if EV < C, then F bounds the variation of all Z-curves J, F 
decreases, and Z-curves remain within a region where our estimates hold, and 
where Condition (4.1) is maintained. In order to be sure that Z14,dai and 
M,6,, are dominated by the respective shock strengths, we need to do an 
induction on F0 as well as F. This yields a uniform bound on the variation of 
all Z-curves that arise from wO(x), and hence by [2,8], implies that there 
exists a global weak solution to problem (3). First, note that by the definition 
of wave strength, pi Q 2 Var(pi) for any wave pi, and hence, for any Z-curve 
J, 

x pi 6-x 2 Var(p,) = 2 Var(J), 
.I J 

L(0) < 2 Var(0) + V 
(‘4) 

We now define the constants M,,, M,, M,, M, and C. Let 8, 2 E, t?,, ii?,, 
K,, and C, be chosen so that Lemmas 3.4, 3.5, and 4.2 hold. Let U,, be the 
set of points in the rs-plane within a distance of 20(6K,N) of or;,. This 
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choice of U,, determines the M and C, of Lemmas 3.1 to 3.3 and 
Lemma 4.1. Define 

M,=min &,a0 , 
I I 

K=max -$,l . 
I I 0 

Let U, = U,, x [S, $1, where 

min{dist(0,, S), dist(o,, s)} > 6K,KN. 

Choose 0 < E, Q d, and G > 1 so that Lemmas 3.1 to 3.4 and Lemma 4.1 
hold with this choice of U,. Let 

Let .Z and 0 denote Z-curves that satisfy the conditions of either Lemma 4.1 
or 4.2. We have 

Var(J) < KL(J) for O<e&l, 

V~,,V) < 2oJ5om for E<E,. 
(B) 

Now define 

M, = 8G, 

M, = 8G + 2M,K(6KoN)G, 63 

M, = 8G + 2M,K(6KoN)G + 4M2K(6KoN)G, 

and let 

K, = 7K;M, N. CD) 

Note that Lemma 3.5 implies Var(0) <K, V if E 6 E, or if V < C, . In this 
case we have by (A) 

L(O) < 2 Var(0) + V < 3K, V, 

L,(O) Q 2 Var(0) + V< 3K, V. 

Moreover, Q(0) < M,(2 Var(0))’ Q 4M, Ki V*, hence 

Q(0) < 4M,K;NV< K, V, 

and so for O<E< 1, 

(E) 

(F) 

F(0) Q 3K, V + 4M, K;NV < 7K;M, NV = K, V. (G) 
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Let E,, = min{s, , l/K,}. Then if E < E,, we have E . Q(0) < V and hence 

F(0) < 2L(O) < 6K, v, 

F,(O) < &(O) < 6K, K 
&<&,. W 

Note here that E,,, M, depend only on E, N. Let C, = e,, C,/K, K. Then if 
E > s0 and EV < C,, we have KK, V < C,, which by (G) implies 

KF(0) < c, for E > sO, (1) 

so that C,/K < 1, together with (H), implies that if EV < Cr, then 

F(O) < 6&N, for O<e<l. 

Finally, let 

(J> 

C, = min 
I 

(i2M,GK)-’ 1 - C, 

K, I ’ 4M,KK, ’ 

in which case, if EV < C,, then &F(O) < EK, V < K, C, and so 

1 -c, 
&F(O) < (12&f, GK)-’ and &F(O) < 4~~ for 0 < E < 1. (K) 

3 

Let C = min{C,, C,}. 
We now prove by induction that with these choices of M,, M, , M2 , M, 

and C, if EV < C, then F decreases across successive Z-curves and Z-curves 
remain within regions where our estimates for Lemmas 3.1 to 3.5, 4.1 and 
4.2 hold (i.e., J remains within U, if E < E,,, and within B,,(w) some w E E if 
s > co). Specifically, we prove by induction that the following inequalities 
hold at every I-curveJ: 

Var(J) < KL(J) < KF(J) < KF(O), for 0 < E < 1, 

Var,,(J) < 20&(J) < 2OF,(J) < 2OF,(O) < 20(6K,N), for 0 < E < sO. 

Hence, by (I) and (J), all approximate solutions from w,,(x) have uniformly 
bounded total variation at each E in [0, 11, which by Glimm [2] and Liu [8], 
implies that there exists a global weak solution to our problem (3). Now if 
J = 0, then since wO(x) c 0,) and since EV < C, we have from (B) and (H) 
that for E < E,,, 

Var,,(O) < 2OL,(O) < 2OF,,(O) < 20(6K,N), 
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implying 0 c U,,. Moreover 

Var(0) < KF(0) < 6KK,N, 

implying 0 c U,. 
For E > E,, we have from (B) and (I) 

Var(0) <J@(O) < C, 

and hence 0 c B,,(w) some w E E. Thus if J = 0, then the desired bounds 
on Var(J) obtain, and so 0 lies within the regions where our estimates hold. 
Now let J, be an immediate successor of J,, and let A be the diamond 
shaped region between J, and J2 in the xt-plane. The states on J2\J, are 
obtained from the Riemann problem of states (w,, wA) which lie at the 
lateral vertices of A; and states on J,\J, are obtained from the Riemann 
problems (wL, w,+,M), (w,,,, wd, where Y,, is the state at the lower vertice of A. 
Assume by induction that F(J) Q F(0) and F,(J) < I;,(O) for all J < J, (and 
hence that J c U, for E < e0 or J c B,,(w) for E > E,, o E E). Then across A 
the interaction ( wL, We) + (w,, We) --t ( wL, wR) occurs, and the estimates of 
Lemmas 3.1 to 3.3 apply to this interaction. The following estimates are now 
easily obtained by applying the interaction estimates of Lemma 3.1 to 
corresponding wave strength differences across A, and including an error of 
G&D in each case as required by Lemmas 3.2 and 3.4. 

<+(A +B)+7GcD<- (1 - Co) 
2 

< + 7G&D since M, < -&. 

MJ2) - ~dJ,) < a’ - aI - a2 +P’ -PI -P2 
< (A + B) + 2GeD < -(I - C& + 2GcD. 

Q(J,)-Q(J,)<M, C Pi(16’I-I’,j-I’,I)-M*D, 
Jl\A 

+“2 C 4io1’-Pl -P2) 
JI\p 

+M2 C qiol’-Vl-V2)-M2D2 
JIV 

+ M, C yi(a’ - a, - a2) 
JI\p 
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+“3 J% YiV-PI-P2)-“3D3 
I 

< M, 2 Var(J,){G(D, + D,) + G&D} - 44, D, 

+ M,2 Var(J,){GD, + G&D} - M,D, 

+ 2M, 2 Var(J,){ G&D} - M,D, + M, 2 Var(J,)r. 

By the induction hypothesis, Var(J,) <K&r,) < KF(O), hence 

Q<J,> - Q(J,> < 2M,KJ’(O){G(D, + 03) + G&D} --MID, 
+ 4M,KF(O)( GD, + G&D} - M, D, 

+ 4M, KF(0) (G&D} - M, D, + M, 2KF(O)<. 

The following estimate on F(J,) - F(J,) is obtained by collecting terms 
with ED, or <, and then factoring them out. Since our estimate for 
L,(J,) - &,(.I,) is stronger than the one for L(J,) - L(J,), the following 
estimates will also hold for F&I,) -F&I,). 

F(J2)-F(J1)<(7G+4{M1+M2+M3}KG~F(0)-M1}cD1 

+ { 7G + 2A4, KF(O)G 

+4{M,+M,+M,}KGeF(O)-M,}cD, 

+ (7G + 2M,KF(O)G + 4M,KF(O)G 

+4(M,+M,+M,JKG&F(O)-M,)&D, 

1 - c, 
2M,KcF(O) - 2 <. 

I 

By (K), &F(O) < K, C, which implies that 

4(M, + M, + M,} KG&F(O) < 1 and 
i 
2M, K&F(O) - 

Moreover, by (J), F(0) < 6K, N and so 

F(J2)-F(J,)<{7G+l-M,}ED, 

+{7G+2M,K(6KoN)G+1-M,}&D, 

+ (7G + 2M,K(6K,N)G + 4M,K(6K,N)G + 1 - M,}ED, 

< 0 by our choice of M,, M, and M, in (C). 

505/41/1~1 I 
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By the note above we also have 

F,(J*) - FLdJ,) & 0. 

We now can conclude that, if E < cO, 

V=,,(J,) Q 2OUJ,) < 2OR,(J,) < 2OR,(J,) < 2OF,(O) Q 20(6K,N) 

and hence J2 c U,,. Moreover 

Var(J,> < KL(J,) < KF(J,) < KF(J,) < U(O) < 6KK,N 

and hence J, c U,. If E,, < E < 1, then 

Var(J,) < KL(J,) < KF(J,) < KF(J,) Q KF(0) < C, 

and hence J, c B,,(w) some w E E. This concludes the proof of Theorem 
4.1. 

5, AN EXISTENCE THEOREM FOR POLYTROPIC GASES 

In this section we use Theorem 4.1 to prove an existence theorem for 
polytropic gases, which is essentially the result obtained by Liu in [5]. The 
main difference here is that Liu does not view the polytropic gas equations 
as being near the energy function e,(u, S), and moreover, Liu measures the 
variation of solutions in coordinates that depends on the parameter E which 
appears in the polytropic gas equations. 

The equation for a polytropic gas is given in (3.10). It is important to note 
that for a given polytropic gas which satisfies (3.9) for some c, = R/E with R 
and E fixed, the equation for the energy function in (3.10) depends on our 
choice of ground states for specific entropy S and specific internal energy e. 
For example, if we fix ground states for S and e, and choose units for v, S, p, 
and e, then the equation for the energy of our polytropic gas will be 

e(u, S) = h(u exp(--S/R)), 

where 

h(x)= exp -% x-’ + C, 
( ) 

for some (now determined) constant S, and C,. If we were now to change 
the ground states from which entropy and energy are measured, then the 
equation for the energy function of this polytropic gas would change, and 
this change would occur in the constants S, and C,. Moreover, since any 
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values for the ground states of entropy and energy can be chosen, we can, by 
an appropriate choice, obtain an equation for the energy function of this gas 
with preassigned values of S, and C,. Let us choose these ground states so 
that 

and 

We now can take 

e,(u, S) = 
]uexp (-g) I-‘-- 1 

E (5-l) 

as the energy function of a polytropic gas. But 

Fz e,(v, S) = -ln(u exp(-S/R)) = e,(v, S) 

and the convergence is smooth in (0, S, E). Thus Lemma 4.1 applies, and we 
have the following theorem: for any compact set E in M-space and any 
N > 0, there exists a constant C > 0 such that, if our initial data w,,(x) are in 
E with total variation { wO(x)} = V Q N, then if SV < C, there exists a global 
weak solution to problem (3) with energy function (5.1). 

APPENDIX I 

In this article we prove Lemma 1.2 of section 1, which addresses the local 
solvability of Riemann problems, as well as the local smoothness of the 
functions H and B for the general system (2). 

LEMMA 1.2. For any ii in the domain of f,(u), there exists a 
neighborhood U, of ii such that conditions (H) of Section 1 hold with E, = 1. 

We prove this with the aid of the following propositions, and refer to the 
notation of system (2). 

PROPOSITION 1. For every ti in the domain of f,(u), there exists a 
neighborhood U of ii, and a r2 > 0, so that u = H(t, ut, E) is defined, is C2 
with locally Lipschitz second derivatives, and satisfies (aHI& ( # 0 in 

T, x Ux [0, 11, where T2={tER”:Itil<~,}. 

Proof. The eigenvalues of dfE are real and distinct, and letting Ri denote 
the zth eigenvector of gE, we have that R,(u, E) is a C3 function of its 
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arguments. Assume 1 Ri( = 1, and assume that Ri points in the direction of 
increasing Izi if the ith characteristic field is genuinely nonlinear. Define 

U = Hi(ti, UL, E) so that $ = Ri(U, E), 
I (A) 

u = u, if ti = 0, 

where ti > 0 if the ith characteristic field is genuinely nonlinear. Then Hi is 
in C3, and at fixed E, Hi is the arclength parameterization of either the i- 
rarefaction curve or else the i-contact discontinuity curve starting at u,, for 
the system at E. 

We now show that if the ith characteristic field is genuinely nonlinear, 
then for any E, there is a neighborhood U x A of (ti, E) such that in U x li, 
the ith shock curve exists and is defined by 

u = Hi(ti9 uL 3 &) for ti < 0, 

where Hi is in C3, and at fixed uL and E, Hi is the arclength parameterization 
of the ith shock curve from uL for the system at E. The jump conditions for 
system (2) at fixed E are 

(u - uL>a = f,(u> -.f&L)~ 

where u is the shock speed. This can be written as 

[G,(u, uL) - u](u - uL) = 0, 03) 
where 

G,(u, u,) = G(u, u,, &I= I 
l %-A+ + z(u - UL)) dz 

0 au 

G(u, uL, E) is a C3 function of its arguments, and G(u, uL, E) approaches 
m>/au LUL as u approaches u,. Moreover, c must be an eigenvalue 
&(u, uL, E) of G, with u - u, a right eigenvector. Since 
G(u; ~7, E) = (L?flau)(zi, E), G has real and distinct eigenvalues in a 
neighborhood W of (ii, ~7, E), and so cr exists in this neighborhood. Note also 
that r~ = xi(u, u,, E) approaches &(u,, E) as u approaches uL. In W, let 
&(u, u,,, E) be the left eigenvector for G; i.e., let 

&(u, UL 3 6) * G(u> UL 3 &) = Xi(u, UL 3 E) ((UT UL 7 E) 

in W.Then,when(B)holdswitha=~i,wehave~~[G-a]~(u-u,)=O, 
which implies that 

(/lj - Ai) 6 * (u - UL) = 0. 
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Since 5 # xi in W for i #j, (B) holds for u = xi if and only if the following 
system of n - 1 equations are satisfied: 

4 * (u - UL) = 0, i # j. ((3 

Since 4 are independent at (17, E, E), the implicit function theorem implies that 
there exists a neighborhood I/ of (0, ii, E) in which (C) defines a smooth one 
parameter family of states at each (u,, E), which is as smooth as the 4. By 
invoking the usual entropy condition of Lax [4] (that 
A,(u) < xi(u, uL) < Ai on a shock curve), we can now write 

U = Hi(ti, UL, E) for -ti < 0, P) 

where H is C3 in V and where, at fixed uL and E, (D) defines the arclength 
parameterization of the i-shock curve from u, for the system at E. 

Putting (A) and (D) together, we have the i-shock-rarefaction or contact 
discontinuity curves defined in a neighborhood of (U; E) by 

U=Hi(ti,UL,&) for U,E U, lCi(~72, EEA. 09 

Bp,LaxJt], at fixed u, and E, Hi has second derivatives with respect to ti at 
ti = 0, and by the smoothness of Hi, one-sided third derivatives exist at 
ci = 0. Since u, = H,(O, U,, E), we also have that at ti = 0, one sided limits of 
any three derivatives with respect to u, and E exist and are the same. Finally, 

uLY E)=Ri(ULY E) and ~(O,u,,E)=~~i.Ri(~LrE) 
I 

have at least three and two derivatives, respectively, with respect to (u,, E), 
and so H,(t,, uL , E) is a C2 function with locally Lipschitz second derivatives 
in V. By choosing f2 and U containing Q sufficiently small, we can define 

H(t, uL, E) = H,(t,,, H,- ,(t,- , ,..., H&, , u,, E), . . . . E), E) 

in T, x U x A, where H is C2 with locally Lipschitz second derivatives. 
Moreover, since the eigenvectors of u” are linearly independent, ] aH/iYt I# 0 
at c = 0, and so we can assume that 1 aH/atI # 0 in T, x U x A and that H is 
one to one for each fixed u,, E in U x A. Now since [0, l] is compact, a 
finite number of A’s, say {Ak}trl, cover [0, 11. Therefore, by renaming 7* 

and U as 

72 = min{zJ~=, and u= fi u,, 
k=l 

we can conclude that H is defined on T, x U x [0, 11, where C is in U and H 
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is C2 with locally Lipschitz second derivatives. This completes the proof of 
Proposition 1. 

PROPOSITION 2. For every 0 ( z < r2, there exists a neighborhood U 
containing zi, such that, for everyjixed (ZQ, E) in U x [0, 11, we have 

U c Rany H(t, uL, E). 
I T 

Proof. Since U = H(0, P, E) and IaH/& 1 # 0 at (0, ~7, E), the inverse 
function theorem implies that there exists neighborhoods V, W, 
T, = {t E R,: ] til < r, < r2}, and A, such that 

if and only if 

u=H(t,uL,e) (F) 

t = B’(U, UL) E) (G) 

for u in V, u, in W, t in T, and E in A. By the continuity of (G) together 
with the compactness of A, we can choose U containing C so that 

B’(u, uL) E) c {t E R”: 1 tiI ~ 5) 

for each fixed uL and E in U x A. Now, again, a finite number of A’s, say 
lAklL19 cover [0, 11. Therefore, by renaming 

u= fi u,, 
k=l 

we have that 

U c Rpge H(t, u, , e) 
i r 

for any fixed (uL, E) in U X [0, 11. This completes the proof of Proposition 2. 

Proof of Lemma 2.1. By Proposition 2, we can choose U, containing U 
so that, for each fixed (uL, E) in U, x [0, 11, we have 

(I, c Range H(t, u, , E). 
Itil=GTz 

Now choose r < r2 and U’, so that, for (u,, E) in U’ x [0, l] we have 
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The existence of such a r and U’, is an immediate consequence of the 
continuity of G together with the compactness of [0, 11. Finally, by 
Proposition 2 again, we can choose Cl U, c U: so that, for each fixed 
(u,, E) E U, x [0, 11, we have 

Conditions (i) through (v) of Conditions (H) are now satisfied with r, rz , U,, 
U, defined above. This completes the proof of Lemma 2.1. 

APPENDIX II 

This is a case by case study of four wave interactions in the rs-plane for 
the system at E = 0, needed for the proof of Proposition 3.1. Each ingoing 
wave can be a shock or rarefaction wave and this yields the sixteen cases 
listed in Table I which are treated separately. Each case here has between 
one and four sub-cases depending on the possible choices of shocks and 
rarefaction waves among the outgoing waves. All shock curves have the 
same shape, are convex and are assumed to occur in a compact set where l- 
shock curves [resp. 3-shock curves] have slopes < C, [resp. > C,] for some 
0 < C, ( 1. 1, 3-rarefaction curves lie along the r-axis,-s-axis, respectively. In 
the table, a, [resp. a,] is the first incoming l-wave [resp. 3-wave] and b, 
[resp. b3] is the second incoming l-wave [resp. 3-wave]. Since the 
interactions which occur here in the r-s-plane are the same as those which 
occur in the 2 x 2 isothermal system [6], we let S,,,R,*, denote 1,3-shocks 
and 1,3-rarefaction waves, respectively. In each case we show that (I) or (II) 
of Proposition 3.1 obtains, and that the change in rarefaction wave strengths 
is negative in each family when D, = 0. Here a’ - a1 - 01~ =A and 
p’ -/I, -& = B and conditions (I) and (II) are 

(I) A = -6 O<B<C,t 
or 

B=-t;, O<A<C,t, 

(II) A<0 and B < 0. 

We use the geometric arguments which are diagrammed in Fig. 1. That is, 
in (i) of Fig. 1 the ratio JJ/Z < C, by the mean value theorem. Part (ii) of 
Fig. 1 for l-shocks simply states the the rigid motion of a curve with positive 
slopes smaller than Co, determines a position which intersects the original 
position only if the translation is in a direction of slope smaller than C,. To 
illustrate we include the most difftcult cases, (1) and (9), listed in Table (I). 
A complete list of cases is provided in [9]. 
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(1) (A) (a, + pi) + (a2 + &) + (a’ + p’). Two possible interactions are 
diagrammed in Fig. 2. In either case we have 

P’-Pu,-,&GO, 

r’ - ?I - yI2 < 0. 

For (i) of Fig. 2, we have that 

a’-aI--a,=y,-z,=A, 

P-P~-P~=Y~-z,=A, 

where yi-< C,z, and y, < C,z, . Now if A < 0 and B & 0 condition (I 
applies. If not, assume B > 0. Then 

Yl < Zl < Y2 < z2 

and so 

and so 

A + B = (Y, - ~2) + (~2 - zd < -W, + 22) 

G -C&2 - YJ 

B = ~2 - zl< (1 - G,)(z, - Y,) < C&2 - Y,) = GA. 

.I) 

By symmetry A < C, c when B = -< < 0, and so condition (I) is satisfied. 
For (ii) of Fig. 2, we have that 

a’-a,-a,=y,+y,=A, 

pl-/3,-P2=-zl-z2=B, 

where y, < C,z, and y, < C0z2, and so condition (I) applies with B = -<, 
A<C,C 

(1) (B) (a, + pl) + (a2 + &) --t (a’ + v’). This interaction is dia- 
grammed in Fig. 3. Here we have 

a’-aa,-a,=y=A, 

pl-P,-Pz=-z=B, 

and since y < C,,z, condition (I) is satisfied. Moreover, P’ --,LL~ -,u2 = 0 
always, and when the approaching shocks vanish (i.e., when D, = 0), all 
waves are shock waves and q’ - q, - q2 = 0. 

(9) (A) (u, + p,) + (a2 +&)+ (a’ + p’). This interaction is dia- 
grammed in Fig. 4. Here we have 
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and moreover 

a’-a,-a,=A =-z, 

P’-PI-Pz=B=y, 

where y < C,z. Thus condition (I) is satisfied with A = -r. 

(9) 03) Cul +PJ + (a2 +&I -+ 01’ +p’)+ This interaction is 
diagrammed in Fig. 5. Here we have 

a’-a,-aa,=A=-z, 

P-B,-&=B=Y, 

where y < COz; and so condition (I) is satisfied with A = -<. Moreover, 
9’ - q1 - v2 < 0 always holds. When D, = 0, we have that either (a2 = 0) 
and (/I, = 0 or /I2 = 0), or a2 # 0 and /3, = 0. In the first case it is clear that 
flu’ =Pl. In the second case, p2 does not intersect p’ since the slope of 
a2 < C,. Hence, p’ < ,u, again, and thus ,u’ - ,U I --cl2 < 0 when D, = 0. 

DIAGRAMS 

TABLE II 

Cases 

Case 
Number (I, a3 b, b, 

(1) s, s* s, s2 
(2) s, s* 
(3) s, s, Rs: 

R 
s: 

(4) s, 
(5) s, Rs: 

R 
s: 

R 
s: 

(6) S, R, 
(7) S, R, ,“; 

R 
S; 

(8) 
(9) R”: 

R 
s: 

R 
s: 

R 
s: 

(10) R, S, 
(11) R, S, ,“: 

R 
S: 

(12) R, 
(13) R, i; 

R 
S; 

R 
S: 

(14) R, R, 
(15) R, R, ,“; 

R2 

(16) R, R, R, :I 
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