
rspa.royalsocietypublishing.org

Research
Cite this article: Freistühler H, Temple B. 2017
Causal dissipation for the relativistic dynamics
of ideal gases. Proc. R. Soc. A 473: 20160729.
http://dx.doi.org/10.1098/rspa.2016.0729

Received: 24 September 2016
Accepted: 19 April 2017

Subject Areas:
differential equations, fluid mechanics,
relativity

Keywords:
causality, dissipation, relativistic,
Navier–Stokes, ideal gas

Authors for correspondence:
Heinrich Freistühler
e-mail: heinrich.freistuehler@uni-konstanz.de
Blake Temple
e-mail: temple@math.ucdavis.edu

Causal dissipation for the
relativistic dynamics of ideal
gases
Heinrich Freistühler1 and Blake Temple2

1Department of Mathematics, University of Konstanz, 78457
Konstanz, Germany
2Department of Mathematics, University of California, Davis,
CA 95616, USA

HF, 0000-0002-0741-886X; BT, 0000-0002-6907-1101

We derive a general class of relativistic dissipation
tensors by requiring that, combined with the
relativistic Euler equations, they form a second-
order system of partial differential equations which
is symmetric hyperbolic in a second-order sense
when written in the natural Godunov variables that
make the Euler equations symmetric hyperbolic in
the first-order sense. We show that this class contains
a unique element representing a causal formulation
of relativistic dissipative fluid dynamics which (i) is
equivalent to the classical descriptions by Eckart and
Landau to first order in the coefficients of viscosity
and heat conduction and (ii) has its signal speeds
bounded sharply by the speed of light. Based on
these properties, we propose this system as a natural
candidate for the relativistic counterpart of the
classical Navier–Stokes equations.

1. Introduction
In the absence of dissipation, relativistic fluid dynamics
is governed by the Euler equations

∂

∂xβ
Tαβ = 0,

∂

∂xβ
Nβ = 0, (1.1)

which are a five-field theory: its constituents, the energy-
momentum tensor and the particle number density
current,

Tαβ = (ρ + p)UαUβ + pgαβ , Nβ = nUβ ,

are given in terms of the fluid’s velocity Uα , energy
density ρ, pressure p and particle number density n.1 As
the velocity satisfies UαUα = −1 and of the three scalars
1We work with the Minkowski metric gαβ of signature (−, +, +, +).

2017 The Author(s) Published by the Royal Society. All rights reserved.
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n, ρ, p two suffice to determine the thermodynamic state, the state description (Uα , ρ, p, n) has
five degrees of freedom, while the Euler equations (1.1) are five partial differential equations that
properly determine the spatio-temporal evolution of these five fields from general initial data.

Despite various theories that were suggested over the last almost eight decades, the proper
modelling of dissipation, i.e. viscosity and heat conduction, is debated until today, both from the
point of view of theoretical justification and that of usability in numerical computations; cf. e.g.
[1–7] and references therein. Some otherwise ingenious proposals lack causality and/or well-
posedness proofs, different ones depend on a number of parameters not all values of which
appear to be clear, and still others seem difficult to apply with precision as they resort to very large
numbers of state variables. While we cannot do justice to the rich and interesting history here, we
point out that after the theory that Israel and Stewart gave in the Seventies [8–10], the clearest and
cleanest consistent theory currently available is relativistic Extended Thermodynamics, which has
been developed by Müller, Ruggeri and co-workers [1,11–15]. This theory, which is based on an
infinite hierarchy of first-order hyperbolic systems of partial differential equations, is beautifully
exposited in Choquet–Bruhat’s book [16] as Section 11 of Chapter X, by Tommaso Ruggeri.

The present paper deals with the question of whether dissipative relativistic fluid dynamics
can be properly modelled by a causal theory of the form

∂

∂xβ
(Tαβ +%Tαβ ) = 0,

∂

∂xβ
(Nβ +%Nβ ) = 0, (1.2)

with dissipation tensors %Tαβ ,%Nβ that are linear in the space–time gradients of the above-
mentioned five fields (‘relativistic Navier–Stokes’). As the coefficients associated with the highest,
namely second, order derivatives depend on the fields, such systems are quasi-linear. The classical
descriptions given by Eckart [17] and by Landau [18] are quasi-linear five-field theories.2 They
have strong physical justifications, in particular from extended thermodynamics [11] and kinetic
theory [19]. However, they are not causal, in the sense that signals can travel at arbitrarily high
speeds [2,3,10], and their mathematical type as systems of partial differential equations (PDEs) is
unclear. Regarding the latter, many authors speak of parabolic behaviour, but neither the Eckart
system nor the Landau system seems to be parabolic in a clear mathematical sense, and no
theorems seem available on the existence of solutions for the associated initial-value problems.
This makes it also uncertain to which extent the two descriptions can be relied on in numerical
computations. The purpose of this paper is to propose a new quasi-linear second-order five-field
theory which is intimately related to the Eckart description and the Landau description but, in
contrast with both, has the advantages of being causal and permitting a consistent mathematical
solution theory.

Beginning with Friedrichs’ 1954 paper [20], applied mathematics has identified symmetric
hyperbolicity as a basic requirement of fundamental equations in finite-speed-of-propagation
continuum mechanics. First-order equations like those governing the flow of inviscid
compressible fluids or magnetohydrodynamics, both classical and relativistic, were shown early
on to be symmetric hyperbolic [21–23].3 While the characteristic symmetry of coefficient matrices
had often been achieved through ad hoc transformations, Godunov showed that it automatically
occurs for first-order systems when one uses a particular choice of variables that is deeply
motivated from physical considerations [25]. In 1976, Hughes, Kato and Marsden introduced a
notion of symmetric hyperbolicity for second-order equations and showed that both classical
nonlinear elasticity and the vacuum Einstein equations were symmetric hyperbolic in this second-
order sense. This general situation motivated us to think that a five-field theory (1.2) of dissipative
relativistic fluid dynamics should be a second-order symmetric hyperbolic system in the same
Godunov variables that symmetrize the first-order Euler equations (1.1). In this paper, we first
establish a wide mathematical class of quasi-linear second-order five-field theories which have
this property, and then show that this class contains a unique element which (i) is equivalent

2%Nβ is indeed zero for the Eckart description, while Uα%Tαβ vanishes in the Landau description.
3Also the above-mentioned systems of extended thermodynamics are of this type, cf. [12,13,24].
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to the Eckart and Landau equations to leading order in the small dissipation coefficients η, ζ , κ
that quantify shear viscosity, bulk viscosity and heat conduction, and (ii) has its signal speeds
bounded sharply by the speed of light. Based on these properties, we propose this system as the
causal relativistic version of the classical Navier–Stokes–Fourier equations.4

In §2, we state the complete ingredients of this system concisely. Section 3 steps back to
establish the mentioned mathematical class of symmetric hyperbolic systems from equivariant
‘dissipation pairs’ (−%Tαβ , −%Nβ ), and then shows that our proposed system is a limiting case of
the original Hughes–Kato–Marsden class. In §4, we first develop some ‘algebra’ that characterizes
a group of general first-order equivalence transformations between five-field theories, and then
use it to show that our theory is first-order equivalent with the Eckart formulation and the Landau
formulation. In §5, we show that our dissipation operator is causal in the sense that its Fourier–
Laplace modes travel at the speed of light or slower speeds. Section 6 discusses the compatibility
of our theory with the second law of thermodynamics. Finally, we show in §7 that our theory has
the classical Navier–Stokes–Fourier (NSF) equations as its limit for c → ∞.

For concreteness, we assume throughout the paper that the fluid consists of particles of mass
m > 0 and its internal energy e = e(n, s), with which

ρ = n(m + e(n, s)) and p = n2en(n, s),

is given by

e = knγ−1 exp
(

s
cv

)
= cvθ , where 1 < γ ≤ 2, (1.3)

i.e. the case of the ideal gas. Extensions of the results to other massive non-barotropic fluids should
be obvious with small adaptations.

This paper is a follow-up to the authors’ earlier study of the same questions in the context
of the (massless) pure radiation fluid [26]; cf. also [27]. In the case of barotropic fluids, i.e.
fluids whose thermodynamic state can be characterized by one scalar, it suffices to consider only
the energy–momentum equations (1.1)1 resp. (1.2)1, and one speaks of four-field theories. For
four-field theories to which the one presented in this paper is analogous, we refer the reader
to [28]. Interesting quasi-linear second-order four-field theories were previously suggested by
Lichnerowicz [29] and Choquet-Bruhat [16].

2. The new theory
Besides using Uα , n, p, ρ, we describe, as in [26], the local state of the fluid also by variables that
symmetrize the Euler equations (1.1), i.e. the Godunov variables [25]

ψα = Uα

θ
, ψ = h

θ
− s,

where θ and s denote the local temperature and specific entropy and

h = ρ + p
n

the specific enthalpy of the fluid.
We assume fixed choices of coefficients of viscosity and heat conduction,5

η> 0, ζ ≥ 0 and κ = χθ2

h
> 0, (2.1)

4Other theories are conceivable which share all these properties except for having their signal speeds bounded by smaller
values than the speed of light. This option will not be pursued in this paper.
5For heat conduction, we use either one of the two symbols κ and χ .
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which can be taken to be general functions of the thermodynamic variables. Our proposal is to
use6

−%Tαβ ≡ ηΠαγΠβδ

(
∂Uα

∂xβ
+
∂Uβ

∂xα
− 2

3
ηαβ

∂Uγ

∂xγ

)
+ ζ̃Παβ ∂Uγ

∂xγ

+ σ

(
UαUβ ∂Uγ

∂xγ
− UαUδ ∂Uβ

∂xδ
− UβUδ ∂Uα

∂xδ

)
(2.2)

and

−%Nβ ≡ κ̃gβγ
∂ψ

∂xγ
+ σ̃ (UβΠγδ − UδΠβγ )

∂Uγ

∂xδ
, (2.3)

or, written as matrices with respect to the fluid’s rest frame,7

−%T|0 =
(
σ∇ · u −σ u̇⊤

−σ u̇ ηSu + ζ̃∇ · uI

)

(2.4)

and
−%N|0 = (−κ̃ψ̇ + σ̃∇ · u, κ̃∇ψ − σ̃ u̇). (2.5)

The coefficients are given by
σ = 4

3η + ζ̃ , ζ̃ = ζ + ζ̃1 + ζ̃2 (2.6)

with8

ζ̃1 = (γ − 1)2

(
m2

hθ

)

κ , ζ̃2 = (γ − 1)
(

1 − m
h

)
σ (2.7)

and
κ̃ = κ

h
, σ̃ = σ

h
. (2.8)

3. Symmetric hyperbolicity
In the pioneering paper [30], Hughes et al. have identified a class of second-order symmetric
hyperbolic systems and used Kato’s abstract theory of ‘evolution equations of hyperbolic type’
[31] to establish well-posedness for the initial-value problem of its members in appropriate
Sobolev spaces. Our proposed theory (1.2), (2.2) and (2.3) itself is not literally a second-order
symmetric hyperbolic system in the sense of [30], but it is a uniform limit of such systems (see
corollary 3.2 below); this connection is so close that we find it proper to still call it a (mixed-order)
symmetric hyperbolic system.

To explain all this and show from which perspective we found the theory, we now start, in
analogy to our approach in [26], from the general equivariant forms of tensors −%Tαβ and (now
also:) −%Nβ that are linear in the gradients of the state variables. These forms are

−%Tαβ ≡ UαUβP + (ΠαγUβ +ΠβγUα)Qγ +ΠαβR +ΠαγΠβδWγ δ (3.1)

with

P = τUγ ∂θ

∂xγ
+ σ

∂Uγ

∂xγ
+ ιUγ ∂ψ

∂xγ
, Qγ ≡ ν

∂θ

∂xγ
+ µUδ ∂Uγ

∂xδ
+ υ

∂ψ

∂xγ
,

R =ωUγ ∂θ

∂xγ
+ ζ̂

∂Uγ

∂xγ
+ ςUγ ∂ψ

∂xγ
, Wαβ ≡ η

(
∂Uα

∂xβ
+
∂Uβ

∂xα
− 2

3
gαβ

∂Uγ

∂xγ

)

and −%Nβ ≡ Uβ P̂ +ΠβδQ̂δ (3.2)

6We use Παβ = gαβ + UαUβ .
7We write u for the three-velocity with respect to the fluid’s rest frame at a given point. (While u = 0 at that point, its gradient
is free.) ˙ means derivative with respect to x0, ∇ derivatives with respect to (x1, x2, x3), all in the rest frame.
8This implies that σ = ((4/3)η + ζ + ζ̃1)/(1 − (γ − 1)(1 − m/h)).
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with

P̂ = τ̂Uδ ∂θ

∂xδ
+ σ̂

∂Uδ

∂xδ
+ ι̂Uδ ∂ψ

∂xδ
, Q̂δ ≡ ν̂

∂θ

∂xδ
+ µ̂Uϵ ∂Uδ

∂xϵ
+ υ̂

∂ψ

∂xδ
. (3.3)

The Hughes–Kato–Marsden class is characterized by properties that the fields of coefficients of
the second-order derivatives must satisfy. Certain matrices composed from these fields must be
symmetric and positive (respectively negative) definite [30] (cf. Section 4 of [26] for the covariant
formulation we use).

Correspondingly, we write the second-order parts of

− ∂

∂xβ
(%Tαβ ) and − ∂

∂xβ
(%Nβ )

as

Bαβgδ ∂
2ψg

∂xβ∂xδ
and B4βgδ ∂

2ψg

∂xβ∂xδ
,

respectively, where the index g runs from 0 through 4 and ψ4 stands for ψ , and must study
properties of the βδ-symmetrized coefficients

B̃aβgδ ≡ 1
2 (Baβgδ + Baδgβ ), β, δ = 0, 1, 2, 3 a, g = 0, 1, 2, 3, 4.

The goal of this section is to prove the following theorem and corollary.

Theorem 3.1.

(i) Under the assumptions

(σ + µ) = (ω + ν)θ , τ̂ θ2 = ι, ν̂θ2 = υ, (σ̂ + µ̂)θ = υ + ς , (3.4)

the coefficients B̃aβgδ are symmetric in a, g ∈ {0, 1, 2, 3, 4} and

BaβgδUβUδ , BaβgδNβNδ

correspond to the 5 × 5 matrices
⎛

⎜⎝
τθ2 0 ι

0 µθδij 0
ι 0 ι̂

⎞

⎟⎠ ,

⎛

⎜⎝
νθ2 0 υ

0 ηθδij + ( 1
3η + ζ̂ )θNiNj 0

υ 0 υ̂

⎞

⎟⎠ . (3.5)

(ii) If moreover

µ, ι̂, τ < 0, ι2 < ι̂τ θ2 (3.6)

and

η, υ̂, ν > 0, ζ̂ ≥ 0, υ2 < υ̂νθ2, (3.7)

then system (1.2) with (3.1), (3.2) is symmetric hyperbolic in the sense of Hughes et al. [30],
pointwise with respect to the fluid’s rest frame.

Corollary 3.2.

(i) Our proposed system (1.2) with (2.2), (2.3) results by choosing

τ = ν =ω= τ̂ = ν̂ = ς = ι= υ = 0

and

µ = −σ , σ̂ = −µ̂ = σ̃ , ζ̂ = ζ̃ , υ̂ = −ι̂= κ̃ .

(ii) It is a uniform limit of a family of systems that are symmetric hyperbolic in the sense of Hughes
et al. [30].
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We collect the information leading to these assertions step by step.
1. Coefficients with a = α, g = γ ∈ {0, 1, 2, 3}. Expressing derivatives as

∂θ

∂xδ
= θ2Uγ ∂ψγ

∂xδ
,

∂Uσ

∂xδ
= θΠσγ ∂ψγ

∂xδ
, (3.8)

we see that

Bαβγ δ = +UαUβ (τθ2UγUδ + σθΠγδ)

+Παβ (ωθ2UγUδ + ζ̂ θΠγ δ)

+ νθ2(ΠαδUβ +ΠβδUα)Uγ

+ µθ (ΠαγUβ +ΠβγUα)Uδ

+ ηθ (ΠαγΠβδ +ΠαδΠβγ − (2/3)ΠαβΠγδ).

Lemma 3.3. B̃αβγ δ is symmetric in α, γ if and only if

(σ + µ) = (ω + ν)θ . (3.9)

Proof. To see this, note that

2B̃αβγ δ = +UαUβ (τθ2UγUδ + σθΠγδ)

+Παβ (ωθ2UγUδ + ζ̂ θΠγ δ)

+ νθ2(ΠαδUβ +ΠβδUα)Uγ

+ µθ (ΠαγUβ +ΠβγUα)Uδ

+ ηθ (ΠαγΠβδ +ΠαδΠβγ − (2/3)ΠαβΠγδ)

+ UαUδ(τθ2UγUβ + σθΠγβ )

+Παδ(ωθ2UγUβ + ζ̂ θΠγβ )

+ νθ2(ΠαβUδ +ΠβδUα)Uγ

+ µθ (ΠαγUδ +ΠδγUα)Uβ

+ ηθ (ΠαγΠβδ +ΠαβΠδγ − (2/3)ΠαδΠγβ ),

the antisymmetric part of which,

2(B̃αβγ δ − B̃γβαδ)

= (σ + µ)θ [(UαUβgγ δ + UαUδgγβ ) − (gαβUγUδ + gαδUβUγ )]

+ (ω + ν)θ2[(gαβUγUδ + gαδUβUγ ) − (UαUβgγ δ + UαUδgγβ )]

= [(σ + µ)θ − (ω + ν)θ2)][(UαUβgγ δ + UαUδgγβ ) − (gαβUγUδ + gαδUβUγ )]

= [(σ + µ)θ − (ω + ν)θ2)][(UαUβgγ δ − UγUβgαδ) + (UαUδgγβ − UγUδgαβ ],

vanishes if and only if (3.9) holds. !

Independently of (3.9), direct computation shows the following, which holds for any Nβ

satisfying
NβUβ = 0, NβNβ = 1. (3.10)

Lemma 3.4. One has
B̃αβγ δUβUδ = τθ2UαUγ + µθΠαγ ,

which corresponds to the 4 × 4 matrix (
τθ2 0

0 µθδij

)

,
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and
B̃αβγ δNβNδ = νθ2UαUγ + ηθ (Παγ + (1/3)NαNγ ) + ζ̂ θNαNγ ,

which corresponds to (
νθ2 0

0 ηθδij + ((1/3)η + ζ̂ )θNiNj

)

.

2. Coefficients with a = 4 or g = 4.

Lemma 3.5. One has

B̃αβ4δ = (ιUαUβUδ + υΠβδUα) + (1/2)(υ + ς )(ΠαδUβ +ΠαβUδ) (3.11)

and
Bαβ4δUβUδ = ιUα and Bαβ4δNβNδ = υUα (3.12)

Proof. One readily finds

Bαβ4δ = ιUαUβUδ + υ(ΠαδUβ +ΠβδUα) + ςΠαβUδ ,

from which (3.11) and (3.12) follow directly. !

Lemma 3.6. We have

B̃4βγ δ = (τ̂ θ2UβUδUγ + ν̂θ2ΠβδUγ ) + (1/2)(σ̂ + µ̂)θ (UβΠδγ + UδΠβγ ) (3.13)

as well as
B4βγ δUβUδ = τ̂ θ2Uγ , B4βγ δNβNδ = ν̂θ2Uγ . (3.14)

Proof. Using (3.8) in (3.2), we find

−%Nβ = ((τ̂ θ2UβUδUγ + ν̂θ2ΠβδUγ ) + (σ̂ θUβΠδγ + µ̂θUδΠβγ ))
∂ψγ

∂xδ

+ (ι̂UβUδ + υ̂Πβδ)
∂ψ

∂xδ

and thus
B4βγ δ = (τ̂ θ2UβUδUγ + ν̂θ2ΠβδUγ ) + (σ̂ θUβΠδγ + µ̂θUδΠβγ ),

from which (3.13) and (3.14) readily follow. !

Lemma 3.7. One has
B̃4βγ δ = B̃γβ4δ

if and only if
τ̂ θ2 = ι, ν̂θ2 = υ (3.15)

and
(σ̂ + µ̂)θ = υ + ς .

Proof. A short computation shows that

B̃4βγ δ − B̃γβ4δ = 2(τ̂ θ2UβUδUγ + ν̂θ2ΠβδUγ ) + (σ̂ + µ̂)θ (UβΠδγ + UδΠβγ )

− 2(ιUβUδUγ + υΠβδUγ ) + (υ + ς )(ΠγδUβ +ΠγβUδ).

!

Lemma 3.8. One has
B4β4δ = ι̂UβUδ + υ̂Πβδ , (3.16)

and
B4β4δUβUδ = ι̂, B4β4δNβNδ = υ̂.
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Proof of theorem 3.1.

(i) The first assertion is clear from lemmas 3.3 to 3.8, the second one follows as BaβgδUβUδ

and BaβgδNβNδ are in any case represented by the matrices
⎛

⎜⎝
τθ2 0 ι

0 µθδij 0
τ̂ θ2 0 ι̂

⎞

⎟⎠ ,

⎛

⎜⎝
νθ2 0 υ

0 ηθδij + ( 1
3η + ζ̂ )θNiNj 0

ν̂θ2 0 υ̂

⎞

⎟⎠ .

(ii) cf. [26] for this notion. The assertion follows as these conditions make the first matrix in
(3.5) negative definite and the second one positive definite.

!

Proof of corollary 3.2.

(i) Choosing τ = ν =ω= τ̂ = ν̂ = ς = ι= υ = 0 and µ = −σ , µ̂ = −σ̂ yields

P = σ
∂Uγ

∂xγ
, Qγ ≡ −σUδ ∂Uγ

∂xδ
, R = ζ̂

∂Uγ

∂xγ

and

P̂ = σ̂
∂Uδ

∂xδ
+ ι̂Uδ ∂ψ

∂xδ
, Q̂δ ≡ −σ̂Uϵ ∂Uδ

∂xϵ
+ υ̂

∂ψ

∂xδ
.

Choosing ζ̂ = ζ̃ and easily confirming that

UαUβP + (ΠαγUβ +ΠβγUα)Qγ = σ

(
UαUβ ∂Uγ

∂xγ
− UαUδ ∂Uβ

∂xδ
− UβUδ ∂Uα

∂xδ

)
,

we arrive at

−%Tαβ ≡ ηΠαγΠβδ

(
∂Uα

∂xβ
+
∂Uβ

∂xα
− 2

3
ηαβ

∂Uγ

∂xγ

)
+ ζ̃Παβ ∂Uγ

∂xγ

+ σ

(
UαUβ ∂Uγ

∂xγ
− UαUδ ∂Uβ

∂xδ
− UβUδ ∂Uα

∂xδ

)
,

which is (2.2).
Choosing υ̂ = −ι̂= κ̃ and σ̂ = σ̃ , we reach

−%Nβ = κ̃

(
−UβUδ ∂ψ

∂xδ
+Πβδ ∂ψ

∂xδ

)
+ σ̃

(
Uβ ∂Uδ

∂xδ
−ΠβδUϵ ∂Uδ

∂xϵ

)

which is (2.3).
(ii) Resetting, relative to the choices made just above,

ν = −τ = −ω= εθ−2,

we recover it as the limit, as ε→ 0, of systems for which BaβgδUβUδ and BaβgδNβNδ are
given by ⎛

⎜⎝
−ε 0 0
0 −σθδij 0
0 0 −κ̃

⎞

⎟⎠ ,

⎛

⎜⎝
ε 0 0
0 ηθδij + ( 1

3η + ζ̃ )θNiNj 0
0 0 κ̃

⎞

⎟⎠ . (3.17)

!

4. Connection with the theories of Eckart and Landau
Theorem 3.1 and Corollary 3.2 position our theory with respect to symmetric hyperbolicity, but
they do not explain the specific choices (2.2), (2.3) of −%Tαβ and −%Nβ and, in particular, our
selection (2.6), (2.7), (2.8) of the coefficients ζ̃ , κ̃ , σ̃ . We deduce them now.
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For this purpose, we consider the space F5 of all pairs of linear gradient forms

%Tαβ = Tαβγ δU
∂Uγ

∂xδ
+ Tαδn

∂n
∂xδ

+ Tαδρ
∂ρ

∂xδ
+ Tαδp

∂p
∂xδ

and %Nβ = Nγ δ
U
∂Uγ

∂xδ
+ Nδ

n
∂n
∂xδ

+ Nδ
ρ

∂ρ

∂xδ
+ Nδ

p
∂p
∂xδ

,

⎫
⎪⎪⎬

⎪⎪⎭
(4.1)

and express the smallness of dissipation by giving them a common small factor ϵ > 0, i.e. we
consider (%Tαβ ,%Nβ ) ∈F5 as representing the five-field theory

∂

∂xβ
(Tαβ + ϵ%Tαβ ) = 0

and
∂

∂xβ
(Nβ + ϵ%Nβ ) = 0.

⎫
⎪⎪⎬

⎪⎪⎭
(4.2)

We characterize a group of transformations that establishes formal equivalences between different
elements of F5 up to O(ϵ2), and then show that our theory lies in the same equivalence class as
Eckart’s and Landau’s.

Physically speaking, the idea is that instead of working with the quantities Uα , n, ρ, p which
appear in the evolution equations (4.2) one might alternatively base one’s considerations on
certain local spatio-temporally anisotropic averages Ũα , ñ, ρ̃, p̃. This is expressed through an
ansatz9

Uα = Ũα + ε%Ũα + O(ε2),

n = ñ + ε%ñ + O(ε2),

ρ = ρ̃ + ε%ρ̃ + O(ε2)

and p = p̃ + ε%p̃ + O(ε2),

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(4.3)

in which

%Ũα = Ũαγ δ
U

∂Ũγ

∂xδ
+ Ũαδ

n
∂ñ
∂xδ

+ Ũαδ
ρ

∂ρ̃

∂xδ
+ Ũαδ

p
∂ p̃
∂xδ

,

%ñ = ñγ δU
∂Ũγ

∂xδ
+ ñδn

∂ñ
∂xδ

+ ñδρ
∂ρ̃

∂xδ
+ ñδp

∂ p̃
∂xδ

,

%ρ̃ = ρ̃
γ δ
U
∂Ũγ

∂xδ
+ ρ̃δn

∂ñ
∂xδ

+ ρ̃δρ
∂ρ̃

∂xδ
+ ρ̃δp

∂ p̃
∂xδ

and %p̃ = p̃γ δU
∂Ũγ

∂xδ
+ p̃δn

∂ñ
∂xδ

+ p̃δρ
∂ρ̃

∂xδ
+ p̃δp

∂ p̃
∂xδ

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.4)

are further linear gradient forms whose coefficients Ũαγ δ
U , . . . , p̃δp depend on Ũα , ñ, ρ̃, p̃.

For any fixed element (4.1) of F5, substituting (4.3), (4.4) in (4.2), and writing

T̃αβ = (ρ̃ + p̃)ŨαŨβ + p̃gαβ , Ñβ = ñŨβ ,

and analogously %T̃αβ ,%Ñβ , will result in modifications δ%T̃αβ and δ%Ñβ in the equations of
motion

∂

∂xβ
(T̃αβ + ϵ(%T̃αβ + δ%T̃αβ )) = 0

and
∂

∂xβ
(Ñβ + ϵ(%Ñβ + δ%Ñβ )) = 0

⎫
⎪⎪⎬

⎪⎪⎭
(4.5)

for Ũα , ñ, ρ̃, p̃. The new ingredients will be of the form

δ%T̃αβ = %̃T̃αβ + O(ϵ), δ%Ñβ = %̃Ñβ + O(ϵ)

with a unique element (%̃T̃αβ , %̃Ñβ ) of F5.

9Note the symmetry of this class with respect to quantities with versus quantities without ˜ . ‘Gradient theories’ are a standard
concept of continuum mechanics. For their use in relativistic fluid dynamics, cf. [4,6].
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Definition 4.1. We call the assignment

F5 →F5, (%Tαβ ,%Nβ ) +→ (%T̃αβ + %̃T̃αβ ,%Ñβ + %̃Ñβ )

the first-order equivalence generated by the gradient transformation (4.3), (4.4).

We consider first-order equivalences of three kinds, the first of which corresponds to changes
of what is often referred to as ‘flow frames’.

1. Velocity shifts. Only the velocity transforms, while %ñ =%ρ̃ =%p̃ = 0. One finds that

δ%T̃αβ = (ρ̃ + p̃)(Ũα(%Ũβ ) + (%Ũα)Ũβ )) + O(ε) and δ%Nβ = ñ%Ũβ + O(ε). (4.6)

To respect unitarity of the velocity, such transformations are constrained by the condition

Ũα(%Ũα) = 0. (4.7)

2. Thermodynamic shifts. Only n, ρ, p transform while %Uα = 0. One finds that

δ%T̃αβ = (%ρ̃)ŨαŨβ + (%p̃)Π̃αβ + O(ε) and δ%Ñβ = (%ñ)Ũβ + O(ε). (4.8)

Such transformations are constrained by the condition
(

1
γ − 1

)
%p =%ρ − m%n, (4.9)

which expresses the necessity that both (n, ρ, p) and (ñ, ρ̃, p̃) satisfy the equation of state
(

1
γ − 1

)
p = ρ − mn.

3. Eulerian gradient re-expressions. These are modifications of %Tαβ ,%Nβ which do not
change the fields. We call any pair of covariant linear gradient expressions

Sαβ = Sαβγ δ
∂ψγ

∂xδ
+ Sαβγ

∂ψ

∂xδ
, Mβ = Mβγ δ ∂ψ

γ

∂xδ
+ Mβγ ∂ψ

∂xδ

for which
∂

∂xβ
Tαβ = ∂

∂xβ
Nβ = 0 ,⇒ Sαβ = Mβ ≡ 0

holds as an implication for arbitrary (ψα ,ψ) an Eulerian constraint. For any Eulerian
constraint (Sαβ , Mβ ), arbitrary solutions of (4.2) satisfy (4.5) with T̃αβ = Tαβ , %T̃αβ =
%Tαβ , Ñβ = Nβ , %Ñβ =%Nβ and

δ%T̃αβ = Sαβ + O(ε), δ%Ñβ = Mβ + O(ε).

The following is obvious.

Lemma 4.2. Velocity shifts, thermodynamic shifts and Eulerian gradient re-expressions form a group
of first-order equivalences on F5.

While we have intentionally carried out the above considerations in covariant form, the
practical use of such transformations is more nicely handled in a rest frame notation. For this
purpose, we represent ‘dissipation pairs’ (−%Tαβ , −%Nβ ) in the form

⎛

⎜⎝
−%T00|0, −%T0j|0
−%Ti0|0, −%Tij|0
−%N0|0, −%Nj|0

⎞

⎟⎠ ∈

⎛

⎜⎝
Λ Λ1×3

Λ3×1 Λ3×3

Λ Λ1×3

⎞

⎟⎠ ,

where Λ denotes any real-valued linear form in the gradients of the state variables u, θ ,ψ and
Λn×m an n × m-matrix of such objects.
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In this notation, a velocity shift is any assignment

⎛

⎜⎝
∗ ∗
∗ ∗
∗ ∗

⎞

⎟⎠→

⎛

⎜⎜⎝

∗ ∗ +%u⊤

∗ +%u, ∗

∗, ∗ +
(

1
h

)
%u⊤

⎞

⎟⎟⎠

with some %u ∈Λ3×1; note that the factor 1/h = n/(ρ + p) in the last line corresponds to (4.6).
A thermodynamic shift is any assignment

⎛

⎜⎝
∗ ∗
∗ ∗
∗ ∗

⎞

⎟⎠→

⎛

⎜⎝
∗ +%ρ ∗

∗ ∗ +%p I
∗ +%n ∗

⎞

⎟⎠

with some triple (%n,%ρ,%p) ∈Λ3 that satisfies (4.9), and an Eulerian gradient re-expression is
any transition ⎛

⎜⎝
∗ ∗
∗ ∗
∗ ∗

⎞

⎟⎠→

⎛

⎜⎝
∗̃ ∗̃
∗̃ ∗̃
∗̃ ∗̃

⎞

⎟⎠

for which each respective entrywise transition

˜: ∗ +→ ∗̃

replaces, if anything, one gradient form Λ by another gradient form Λ̃ with the property that the
values ofΛ and Λ̃ agree on arbitrary Eulerian gradients, i.e. gradients that can be realized as those
of solutions to the Euler equations (1.1).

For example, due to the Eulerian constraint

χ (∇θ + θ u̇⊤) = −κ∇ψ , (4.10)

the re-expression
⎛

⎜⎝
0 χ

(
∇θ + θ u̇⊤)

χ
(
∇⊤θ + θ u̇

)
ηSu + ζ∇ · u I

0 0

⎞

⎟⎠→

⎛

⎜⎝
0 −κ∇ψ

−κ∇ψ⊤ ηSu + ζ∇ · u I
0 0

⎞

⎟⎠

is an equivalent recasting of the Eckart description (for the Eckart description, cf. e.g. [32], p. 55).
The velocity shift

⎛

⎜⎝
0 −κ∇ψ

−κ(∇ψ)⊤ ηSu + ζ∇ · u I
0 0

⎞

⎟⎠→

⎛

⎜⎝
0 0
0 ηSu + ζ∇ · u I
0

(κ
h

)
∇ψ

⎞

⎟⎠ (4.11)

completes the equivalence bridge towards the Landau description. The latter is also known (cf.
[18, p. 514] as what one can get via the further transformation

⎛

⎜⎝
0 0
0 ηSu + ζ∇ · u I
0

(κ
h

)
∇ψ

⎞

⎟⎠→

⎛

⎜⎜⎝

0 0
0 ηSu + ζ∇ · u I

0 −
(χ

h

)(
∇θ −

(
θ

nh

)
∇p
)

⎞

⎟⎟⎠ ;

this is a re-expression by virtue of (4.10) and the further Eulerian constraint

u̇⊤ = − 1
nh

∇p.

The purpose of this section is to show the following.

Theorem 4.3. Our formulation (2.2)–(2.8) is first-order equivalent to the Eckart and Landau
descriptions.
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Proof. Starting from the Landau description, in its form on the r.h.s. of (4.11), we first perform a
velocity shift

⎛

⎜⎝
0 0
0 ηSu + ζ∇ · u I
0

(κ
h

)
∇ψ

⎞

⎟⎠→

⎛

⎜⎝
0 −σ u̇⊤

−σ u̇ ηSu + ζ∇ · u I
0

(κ
h

)
∇ψ −

(σ
h

)
u̇

⎞

⎟⎠

corresponding to a shift vector

%u = −σ u̇,

tentative inasmuch as σ is to be determined later. The purpose of this velocity shift consists in
creating a system of wave equations ‘in the velocity part’. However, regarding (−%Tαβ ),β , this
has induced a disturbing isolated mixed derivative −∇(σ u̇) in the ‘θ equation’. We compensate
for this by a thermodynamic shift

⎛

⎜⎝
0 −σ u̇⊤

−σ u̇ ηSu + ζ∇ · u I
0

(κ
h

)
∇ψ −

(σ
h

)
u̇

⎞

⎟⎠→

⎛

⎜⎝
σ∇ · u −σ u̇⊤

−σ u̇ ηSu + (ζ + ζ̃2)∇ · u I(σ
h

)
∇ · u

(κ
h

)
∇ψ −

(σ
h

)
u̇

⎞

⎟⎠

with

%ρ = σ∇ · u, %n = σ

h
∇ · u, %p = (γ − 1)

(
1 − m

h

)
σ∇ · u = ζ̃2∇ · u

that leads to cancelling mixed derivatives of u both in the ‘θ equation’ and the ‘ψ equation’. Note
that this explains the choice of ζ̃2 in (2.7).

Next, we use another thermodynamic shift, with

%ρ = 0, %n = −κ
h
ψ̇ , %p = (γ − 1)m

κ

h
ψ̇ ,

i.e.

→

⎛

⎜⎜⎝

σ∇ · u −σ u̇⊤

−σ u̇ ηSu + ((ζ + ζ̃2)∇ · u + (γ − 1)m
(κ

h

)
ψ̇) I

−
(κ

h

)
ψ̇ +

(σ
h

)
∇ · u

(κ
h

)
∇ψ −

(σ
h

)
u̇

⎞

⎟⎟⎠

to generate a wave equation in the ‘ψ part’.
Finally, as Eulerian gradients satisfy

ψ̇ = (γ − 1)mθ−1∇ · u,

the further transition

→

⎛

⎜⎜⎝

σ∇ · u −σ u̇⊤

−σ u̇ ηSu + (ζ + ζ̃1 + ζ̃2)∇ · u I

−
(κ

h

)
ψ̇ +

(σ
h

)
∇ · u

(κ
h

)
∇ψ −

(σ
h

)
u̇

⎞

⎟⎟⎠

is a re-expression, if ζ̃1 is chosen as in (2.7).
We have arrived at (2.2), (2.3). !

The only thing left to decide from this point of view is which value to give to the free parameter
σ , which is still up to us. Our choice (2.6)1 is explained in the next section.

5. Causality of the dissipation operator
Whether our theory is causal can be understood by looking at the linearization of (1.2) at an
arbitrarily fixed homogeneous reference state ψ̄e = (ψ̄ϵ , ψ̄) in the fluid’s rest frame and studying
the associated Fourier–Laplace modes. Our arguments parallelize the development in [26].
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Written in the Godunov variables (ψα ,ψ), the linearized equations will be of the form

Aaβg ∂ψg

∂xβ
= Baβgδ ∂

2ψg

∂xβ∂xδ
(5.1)

with Baβgδ as in §3 and

Aaβg = ∂Taβ

∂ψg
(ψ̄e), a, g = 0, 1, 2, 3, 4,

where we use T4β to denote Nβ .
System (5.1) permits a Fourier–Laplace mode

ψ̂e exp(λx0 + iξjxj) with λ ∈ C, ξ = (ξ1, ξ2, ξ3) ∈ R3 (5.2)

if and only if the dispersion relation

0 = π (λ, ξ ) ≡ det((λAa0g + iξjAajg + λ2Ba0g0 − ξjξkBajgk)a,g=0,1,2,3,4) (5.3)

holds. As Im(λ)/|ξ | is the speed at which a mode travels, we call our theory causal if

Im(λ) ≤ |ξ | for any solution (λ, ξ ) of (5.3).

Numerical studies of π show that the system is causal, for arbitrary reference states, arbitrary
values of the dissipation coefficients η> 0, ζ ≥ 0, κ > 0, and arbitrary values of the parameters
γ ∈ (1, 2], cv > 0 and m > 0. We leave a rigorous analysis of this question to a later publication.

Here we focus on the high-frequency limit

Baβgδ ∂
2ψg

∂xβ∂xδ
= 0 (5.4)

of (5.1) to check the causality of our dissipation tensor as such. Because of the degeneracy, the
associated dispersion relation is

0 = π∞(λ, ξ ) ≡ det(λ2Bǎ0ǧ0 − ξjξkBǎjǧk), (5.5)

where Bǎ0ǧ0 and Bǎ0ǧk are the lower right 4 × 4 blocks of the 5 × 5 matrices Ba0g0 and Bajgk, with
indices ǎ, ǧ running only from 1 to 4.

Continuing from the end of the previous section, we assume that ζ̃ has been fixed according
to (2.6)2, but σ remains free to be chosen. The following is the main point of this section.

Lemma 5.1. The theory is causal in the high-frequency limit,

Im(λ) ≤ |ξ | for any solution (λ, ξ ) of (5.5),

if and only if
σ ≥ 4

3η + ζ̃ .

Proof. From §3 we know that λ2Ba0g0 and ξjξkBajgk are given by
⎛

⎜⎝
0 0 0
0 −σθλ2δjk 0
0 0 −κ̃λ2

⎞

⎟⎠ ,

⎛

⎜⎝
0 0 0
0 ηθ |ξ |2δjk + ((1/3)η + ζ̃ )θξ jξ k 0
0 0 κ̃|ξ |2

⎞

⎟⎠ , (5.6)

whence λ2Bǎ0ǧ0 and ξjξkBǎjǧk are
(

−σθλ2δjk 0
0 −κ̃λ2

)

,

(
ηθ |ξ |2δjk + ((1/3)η + ζ̃ )θξ jξ k 0

0 κ̃|ξ |2

)

. (5.7)

The dispersion relation splits as

π∞(λ, ξ ) = πL
∞(λ, ξ )πT

∞(λ, ξ )

with
πL

∞(λ, ξ ) = κ̃θ (λ2 + |ξ |2)(σλ2 + ((4/3)η + ζ̃ )|ξ |2)
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and

πT
∞(λ, ξ ) = (σλ2 + η|ξ |2).

While the roots of πL
∞ correspond to longitudinal modes, i.e. the amplitude vector (ψ̂ ě)e=1,2,3,4

of the mode belongs to the invariant subspace Cξ × C of the matrix λ2Bǎ0ǧ0 − ξjξkBǎjǧk, the roots
of πT

∞ are associated with transverse modes, for which (ψ̂ ě)e=1,2,3,4 lies in the complementing
invariant subspace {ξ}⊥ × {0}.

The longitudinal part πL
∞ has the roots

λ±
heat = ±i|ξ |

and

λ
L,±
visc = ±i

√
(4/3)η + ζ̃

σ
|ξ |,

the transverse part πT
∞ the double roots

λ
T,±
visc = ±i

√
η

σ
|ξ |. !

The lemma says that our choice (2.6)1 is the limiting causal case.

Corollary 5.2. For σ = ( 4
3 )η + ζ̃ , all longitudinal modes travel at the speed of light.

In other words, the choice (2.6)1 is the unique one for which the dissipation operator is causal,
while the propagation speeds of all dissipation-attenuated longitudinal modes of the full system
(5.1) tend, in the limit of large wavenumbers, to exactly the speed of light.

6. Entropy production and vanishing viscosity limit
In this section we study the compatibility of our relativistic NSF equations with the second law of
thermodynamics. We start by computing the divergence of the original entropy current.

Lemma 6.1. For any solution of (1.2), the entropy density s satisfies

(nsUβ ),β = Uα

θ
(%Tαβ ),β + ψ(%Nβ ),β .

Proof. From Tαβ = (ρ + p)UαUβ + pgαβ we find

Uα(Tαβ ),β = Uβp,β − (nhUβ ),β

= Uβ (p,β − nh,β ) − h(nUβ ),β

= Uβ (p,β − nh,β ) + h(%Nβ ),β .

As the first law,

θ ds = pd
(

1
n

)
+ d

(ρ
n

)
,

gives

Uβ (p,β − nh,β ) = −nUβ

(

p
(

1
n

)

,β
+
(ρ

n

)

,β

)

= −nUβθs,β

= −θ [(nsUβ ),β − s(nUβ ),β

= −θ [(nsUβ ),β + s(%Nβ ),β ],
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combining indeed yields

−Uα(%Tαβ ),β = Uα(Tαβ ),β = θ (−(nsUβ ),β + ψ(%Nβ ),β ).

!

Similarly to [32, p. 54], we redefine the entropy current as

Sβ ≡ nsUβ − Uα

θ
%Tαβ − ψ%Nβ , (6.1)

and consistently use

Q≡ Sβ,β =
(

Uα

θ

)

,β
(−%Tαβ ) + ψ,β (−%Nβ ) (6.2)

as net local entropy production. Q is a quadratic form in the gradients of Uα , θ and ψ . As
in [26], we use non-negativity of Q on Eulerian gradients as our criterion for thermodynamic
admissibility of our proposed equations of motion (1.2).

Technically, the following is the main result of this section.

Theorem 6.2. Entropy production is non-negative on Eulerian gradients.

The following properties are useful.

Lemma 6.3. Expressed in the rest frame of the reference state, Eulerian gradients satisfy

u̇ = −(nh)−1∇p, θ̇ = −(γ − 1)θ∇ · u, ψ̇ = (γ − 1)mθ−1∇ · u. (6.3)

Proof. In the rest frame, the linearized equations read

ρ̇ + (ρ + p)∇ · u = 0,

(ρ + p)u̇ + ∇p = 0

and ṅ + n∇ · u = 0.

⎫
⎪⎪⎬

⎪⎪⎭
(6.4)

(6.4)2 is (6.3)1. In view of ṡ = 0 and as the representations

θ = θ̂ (n, s) = k
cv

nγ−1 exp
(

s
cv

)
, ψ = ψ̂(n, s) = m

θ̂ (n, s)
+ γ cv − s

satisfy
nθ̂n = (γ − 1)θ , nψ̂n = −(γ − 1)mθ−1,

(6.3)2 and (6.3)3, follow from
θ̇ = θ̂nṅ + θ̂ ṡ, ψ̇ = ψ̂nṅ + ψ̂ ṡ.

and (6.4)3. !

From (2.4) and (2.5), we determine the entropy production as

Q≡ − 1
θ2

∂θ

∂x0%T00|0 − 1
θ2

(
∂θ

∂xi + θ
∂ui

∂x0

)
%Ti0|0 − 1

θ

∂ui

∂xj%Tij|0 − ∂ψ

∂x0%N0|0 − ∂ψ

∂xj%Nj|0

= σ

θ2 θ̇∇ · u − σ

θ2 (∇θ + θ u̇) · u̇ + Q3 + ψ̇(−κ̃ψ̇ + σ̃∇ · u) + ∇ψ · (κ̃∇ψ − σ̃ u̇)

≡Q1 + Q2 + Q3 + Q4 + Q5,

where

Q3 = 1
θ

∂ui

∂xj

(

η

(
∂ui

∂xj
+ ∂uj

∂xi
− 2

3
∂ul

∂xl δ
ij

)

+ ζ̃
∂ul

∂xl δ
ij

)

= η

2θ
∥Su∥2 + ζ̃

θ
(∇ · u)2.

As

∇θ + θ u̇ = − θ
2

h
∇ψ ,

we find
Q2 + Q5 = κ̃|∇ψ |2.



16
rspa.royalsocietypublishing.org

Proc.R.Soc.A473:20160729
...................................................

Using (6.3) and, notably, (2.6), (2.7), we get

Q1 + Q4 =
(
σ

θ
(γ − 1)

(m
h

− 1
)

− κ

h
(γ − 1)2

(m
θ

)2
)

(∇ · u)2 = − ζ̃1 + ζ̃2

θ
(∇ · u)2

and finally

Q= η

2θ
∥Su∥2 + ζ

θ
(∇ · u)2 + κ

h
|∇ψ |2. (6.5)

Theorem 6.2 means that entropy production is non-negative to leading order in the small
dissipation coefficients. As in §4 we express the situation through a small extra factor ϵ that
multiplies η, ζ , κ and state this point as follows.

Corollary 6.4. For solutions to (4.2), the entropy production is

Q= ϵ

(
η

2θ
∥Su∥2 + ζ

θ
(∇ · u)2 + κ

h
|∇ψ |2

)
+ O(ϵ2).

Remark. In the non-causal descriptions of Eckart and Landau, entropy production is
automatically non-negative on arbitrary gradients [17,18,26]. Owing to the hyperbolic character of
our theory, it is not difficult to fabricate initial data (including temporal derivatives), far from the
near-Eulerian regime, that make the above form Q negative. Note that this does not necessarily
imply that solutions corresponding to these data would violate the second law. Recall that there
is room to (re)define the entropy current, and it could also be that in such cases the second law
is perfectly valid, while this simply is not obvious from the perspective of the particular entropy
current (6.1) on which the definition of this specific version Q of net entropy production is based.
In any case, our system is made for the near-Eulerian regime, in accordance with the fundamental
vanishing-viscosity concept that underlies the mathematical theory of systems of conservation
laws [33,34].

7. Classical limit
We show that our theory has the classical NSF equations as its limit, as the speed of light tends to
infinity.

To understand the limit c → ∞, we put dimensions back in, writing

x0 = ct, uα = vα

c
and m as mc2

as well as

η= cη̄, ζ = cζ̄ , and κ = κ̄

c3

and let

χ̄ =
(

m
θ2

)
κ̄ .

The following is the goal of this section.

Theorem 7.1. Equations (1.2) with (2.2) and (2.3) can be written as

∂

∂t
(nm) + ∂

∂xj (nmvj) = O
(

1
c2

)
,

∂

∂t
(nmvi) + ∂

∂xj (nmvivj + pδij)

= ∂

∂xj

(

η̄

(
∂vi

∂xj
+ ∂vj

∂xi
− 2

3
gij ∂v

k

∂xk

)

+ ζ̄

(
∂vl

∂xl

))

+ O
(

1
c2

)
,
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∂

∂t

(
n
(

e + 1
2

mv2
))

+ ∂

∂xj

((
n
(

e + 1
2

mv2
)

+ p
)

vj
)

= ∂

∂xj

(
χ̄
∂θ

∂xj + η̄vi(Sv)ij + ζ̄vj∇ · v

)
+ O

(
1
c2

)
.

I.e. taking c → ∞ yields the classical Navier–Stokes–Fourier equations.
We first quickly recapitulate what the inviscid terms look like in terms of powers of 1/c.

Substitution yields

cmNβ
,β =

(

nm

√
1 +

(v

c

)2
)

t

+ (nmvj)xj

= {(nm)t + (nmvj)xj } + 1
c2

(
1
2

nmv2
)

t
+ O

(
1
c4

)
(7.1)

and

Tαβ,β = 1
c

{

(nmc2 + ne + p)
vαv0

c2 + pgα0

}

t

+
{

(nmc2 + ne + p)
vαvj

c2 + pgαj

}

xj

.

In the cases α ≡ i = 1, 2, 3,

Tiβ
,β = 1

c

(

(nmc2 + ne + p)

√
1 +

(v

c

)2 vi

c

)

t

+
(

(nmc2 + ne + p)
vivj

c2 + pδij

)

xj

+ O
(

1
c2

)

= {(nmvi)t + (nmvivj + pδij)xj} + O
(

1
c2

)
, (7.2)

so Tiβ
,β clearly converges to the momentum part of the classical Euler equations as c → ∞, i = 1, 2, 3.

Note that only the leading-order part of (7.1) is used to obtain (7.2).
For α = 0, one finds

T0β
,β =

[{
(nmc2 + ne + p)

(
1 +

(v

c

)2
)

− p
}

t
+
{

(nmc2 + ne + p)

√
1 +

(v

c

)2
vj

}

xj

]

+ O
(

1
c2

)

= c2{(nm)t + (nmvj)xj} +
{

(nmv2 + ne)t +
((

1
2

mv2 + ne + p
)

vj
)

xj

}
+ O

(
1
c2

)
, (7.3)

which together with (7.1) yields

c(T0β
,β − mc2Nβ

,β ) =
(

ne + 1
2

nmv2
)

t
+
((

ne + p + 1
2

nmv2
)

vj
)

xj
+ O

(
1
c2

)
. (7.4)

Note that it is not cT0β
,β but c(T0β

,β − mc2Nβ
,β ) that converges to the energy part of the classical

Euler equations as c → ∞. The next-to-leading order part in (7.1) ‘corrects’ the term (nmv2)t in the
next-to-leading order part in (7.3), to give the term 1

2 (nmv2)t in the classical equation. Something
analogous happens in the dissipative part; we identify it in the term E in lemmas 7.2 and 7.3
just below.

Theorem 7.1 is a direct consequence of equations (7.1), (7.2), (7.4) and the following three
lemmas.

Lemma 7.2.
∂

∂xβ
(−%Nβ ) = 1

c3
∂

∂xj

(

κ̄
∂(1/θ )
∂xj

)

+ 1
mc3 E + O

(
1
c4

)
(7.5)

with

E = ∂

∂t
(σ̄∇ · v) + ∂

∂xj

(

σ̄vj∇ · v − σ̄

(
∂vj

∂t
+ vi

∂vj

∂xi

))

.
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Lemma 7.3.
∂

∂xβ
(−c%T0β ) = D + E + O

(
1
c2

)

with

D = ∂

∂xj

(

vi

(

η̄

(
∂vi

∂xj
+ ∂vj

∂xi
− 2

3
gij ∂v

k

∂xk

)

+ ζ̄
∂vl

∂xl

)

δij

)

. (7.6)

Lemma 7.4. One obtains for i = 1, 2, 3:

∂

∂xβ
(−%Tiβ ) = ∂

∂xj

(

η̄

(
∂vi

∂xj
+ ∂vj

∂xi
− 2

3
gij ∂v

k

∂xk

)

+ ζ̄
∂vl

∂xl δ
ij

)

+ O
(

1
c2

)
.

Similarly to how we got to (7.4), it is the next-to-leading order parts of (7.5) and (7.6) that play
together to yield

c
∂

∂xβ
(−%T0β

,β + mc2%Nβ ) = D − ∂

∂xj

(

mκ̄
∂(1/θ )
∂xj

)

= D + ∂

∂xj

(

χ̄
∂θ

∂xj

)

.

Proof of lemma 7.2. Using

h
c2 = m + O

(
1
c2

)
and

ψ

c2 = m
θ

+ O
(

1
c2

)
,

we find
∂

∂xj

(

κ̃
∂ψ

∂xj

)

= ∂

∂xj

(
κ

h
∂ψ

∂xj

)

= 1
c3

∂

∂xj

(

κ̄
∂(1/θ )
∂xj

)

+ O
(

1
c5

)

On the other hand,

∂

∂xβ

(
σ̃ (uβΠγδ − uδΠβγ )

∂uγ
∂xδ

)
= 1

mc3 E + O
(

1
c5

)
.

The assertion follows as

∂

∂xβ
(−%Nβ ) = ∂

∂xβ

(
κ̃gβγ

∂ψ

∂xγ
+ σ̃ (uβΠγδ − uδΠβγ )

∂uγ
∂xδ

)
.

!

We suppress the lengthy, but trivial proofs of lemmas 7.3 and 7.4.
A point worth emphasizing regarding the assertion of lemma 7.4 is the fact that the coefficients

ζ̃1 and ζ̃2 leave no traces in the limit. This is due to the fact that they both scale with higher powers
of 1/c than η and ζ : ζ1 scales like κ , and, compared with η, ζ , the coefficient ζ̃2 also has an extra
factor of 1/c2 coming from the 1 − m/h term in (2.7)2.
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