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Abstract: We identify the condition for smoothness at the center of spherically
symmetric solutions of Einstein’s original equations (without the cosmological con-
stant or Dark Energy), and use this to derive a universal phase portrait which
describes general, smooth, spherically symmetric solutions near the center of sym-
metry when the pressure p = 0. In this phase portrait, the critical k = 0, p = 0
Friedmann spacetime appears as an unstable saddle rest point. This phase por-
trait tells us that the Friedmann spacetime is unstable to spherical perturbations
no matter what point in physical spacetime is taken as the center. This raises the
question as to whether the Friedmann spacetime is observable by redshift vs lumi-
nosity measurements looking outward from any point. The unstable manifold of
the saddle rest point corresponding to Friedmann describes the evolution of local
uniformly expanding spacetimes whose accelerations closely mimic the e↵ects of
Dark Energy. Namely, a unique simple wave perturbation from the radiation epoch
is shown to trigger the instability, match the accelerations of Dark Energy up to
second order, and distinguish the theory from Dark Energy at third order. Thus
anomalous accelerations are not only consistent with Einstein’s original theory of
GR, but are a prediction of it.

1. Introduction

We identify the condition for smoothness at the center of spherically symmetric
solutions of Einstein’s original equations of General Relativity, (without the cosmo-
logical constant), and use this to derive a universal phase portrait which describes
the evolution of smooth solutions near the center of symmetry when the pressure
p = 0.1 In this phase portrait, the k = 0, p = 0 Friedmann spacetime appears as an
unstable saddle rest point. Earlier attempts to identify an instability in the Stan-
dard Model of Cosmology2 (SM) were inconclusive,3 c.f. [30, 39]. The condition for

1Department of Mathematics, University of Michigan, Ann Arbor, MI 48109
2Department of Mathematics, University of California, Davis, Davis CA 95616
1By smooth we mean arbitrary orders of derivatives exist on the scale for which the Friedmann

approximation is valid. Making sure appropriate smoothness conditions are imposed on solutions
is of fundamental importance to mathematics and physics.

2Assuming the so-called Cosmological Principle, that the universe is uniform on the largest
scale, the evolution of the universe on that scale is described by a Friedman spacetime, which
is determined by the equation of state in each epoch, [28]. In this paper we let SM denote the
approximation to the Standard Model of cosmology without Dark Energy given by the critical

k = 0 Friedman universe with equation of state p = c2

3 ⇢ during the radiation epoch, and p = 0

thereafter, (c.f. the ⇤CDM model with ⇤ = 0, [13]).
3C.f. [30] for inconclusive attempts to identify the instability in SM by taking a long wavelength

limit in LTB coordinates.
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smoothness is that all odd order derivatives with respect to r of metric components
and scalar functions, and all even derivatives of the velocity, should vanish at the
center r = 0 when the spacetime metric is expressed in Standard Schwarzschild
Coordinates (SSC), (c.f. (1.1) below). We prove that this condition is preserved by
the evolution of the Einstein equations, and remark that this smoothness condition
appears not to have been identified in previous studies based on Lemaitre-Tolman-
Bondi (LTB) coordinates. Here we propose that the correct invariant condition
for smoothness of a spherically symmetric spacetime metric given in radial coordi-
nates (r, �, ✓) is the condition that all odd order r-derivatives of metric components
vanish at r = 0 in SSC coordinates.

The constraint of smoothness at the center provides a new ansatz for Taylor ex-
panding smooth spherically symmetric solutions about the center of symmetry in
SSC, and we show the anstatz closes in SSC at even orders when p = 0. The e↵ect
of imposing smoothness reduces the solution space, and implies that the local phase
portrait is valid with errors one order of magnitude larger than one would obtain if,
(as in prior LTB studies), nonzero SSC derivatives of odd order were allowed at the
center. From this we prove that smooth perturbations of the Friedmann spacetime
trigger an instability when the pressure drops to zero, and the e↵ect of spherical
perturbations, as described by the unstable manifold, is to create local uniformly
expanding spacetimes with accelerated expansion rates. These spacetimes intro-
duce a new global spacetime geometry given in closed form when the higher order
corrections a↵ecting the spacetime far from the center are neglected. We show that
in the under-dense case, these local spacetimes mimic almost exactly the e↵ects of
Dark Energy, producing precisely the same range of quadratic corrections to red-
shift vs luminosity during the evolution from the end of radiation to present time,
as are produced by the cosmological constant in the theory of Dark Energy. Based
on this we conclude: (1) The Friedmann spacetime is unstable in Einstein’s origi-
nal theory of GR without the cosmological constant, and given this, we should not
expect to observe it by redshift vs luminosity measurements looking outward from
any point taken as the center, when p = 0. (2) Because under-dense perturbations
create spacetimes that locally mimic the e↵ects of Dark Energy, the anomalous
acceleration4 observed in the supernova data is not only consistent with Einstein’s
original theory, but one could interpret this as a prediction of it. Statements (1)
and (2) remain valid independently of whether or not the instability of Friedmann
actually is the source of the anomalous acceleration observed in the supernova data.

It is natural, then, to test the consistency of the accelerations which are created
by the instability with the accelerations observed in the supernova data. In fact,
all these ideas arose out of the authors’ earlier attempts to explain the anomalous
acceleration of the galaxies within Einstein’s original theory without Dark Energy.
These ideas followed from a self-contained line of reasoning stemming from questions
that naturally arose from earlier investigations on incorporating a shock wave into
SM, [19, 20, 21]. There have been a number of other attempts to model cosmic
acceleration by assuming that we live in an under-dense region of the universe,
(c.f. [4, 5], and references [37]-[65] of [27], including [29]-[38] listed below). Such

4In this paper we use the term anomalous acceleration to refer to the corrections to redshift
vs luminosity from the predictions of the k = 0, p = 0 Friedmann spacetime, as observed in
the supernova data. We take these to be given exactly by the corrections obtained by assuming
⌦⇤ = .7
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class of models is called the void model. Prior void models have been based on
spherically symmetric p = 0 solutions represented in LTB coordinates, (coordinates
which typically take the radial coordinate to be co-moving with the fluid, c.f. [28]),
and until now, a smoothness condition at the center was never identified for the
purpose of characterizing smooth solutions in LTB. Although the void models are
still discussed and taken seriously, it is generally believed that unless we live in
an extreme vicinity of the center of a spherically symmetric space it would be
in contradiction with the observation of cosmic microwave background radiation.
Moreover, central weak singularities have been shown to exist in LTB at the center
in models that appear to account for the anomalous acceleration, [30, 39, 38].
Both the fine-tuning problem of being near the center, and the existence of mild
singularities at the center, have both been put forth as possible reasons to rule out
the void model explanation for the cosmic acceleration. While we do not address
these problems here, we point out there are in fact large scale angular anomalies
in the microwave background radiation, [3], and the fine tuning problem persists
whether we fine tune the model to be near a center, or fine tune it to make the
cosmological constant on the order of the energy density of the universe, (required
to correct the redshift vs luminosity relations by the cosmological constant, [21]).
The void models in LTB are essentially based on choosing initial data to match
the observations at present time, and then proposing the LTB time reversal of such
solutions as the cosmological model. Here we take a di↵erent approach by exploring
the consequences of assuming that the instability in SSC created the under-density.
This is fundamentally di↵erent because we identify a mechanism, the instability,
by which the redshift vs luminosity data is altered in a specific way from the SM
values as a direct consequence of the Einstein equations.

Based on this, we explore the connection between the local accelerations created
by the instability and the anomalous acceleration observed in the supernova data,
making no assumptions about the spacetime far from the center5. The universal
phase portrait applies up to fourth order errors (in distance from the center) in
the density variable and third order errors in the velocity, implying that neglecting
these errors, the phase portrait only a↵ects the linear and quadratic terms in the
observed redshift vs luminosity relations. We prove that the accelerations created
by the instability are consistent with the supernova observations out to second
order in the redshift factor z. However, to obtain a third order correction which
provides a prediction di↵erent from Dark Energy, some assumption must be made
about the third order velocity term. For this prediction, we propose that the under-
density is created (at that order) by a distinguished 1-parameter family of smooth
perturbations of the Friedmann spacetime that exist during the radiation epoch,
when p = c

2

3 ⇢, [18]. In [21], the authors identified these self-similar perturbations,
and proposed them as a possible source of the anomalous acceleration observed
in the supernova data without Dark Energy. Now it is commonly stated that
the radiation epoch ends, and the pressure drops approximately to zero, about
one order of magnitude (one power of ten) before the uncoupling of radiation and
matter, the latter occurring some three to four hundred thousand years after the
Big Bang. To make precise the connection between these self-similar solutions from
the radiation epoch and the instability they trigger when the pressure drops to

5Author’s work in [8] shows how solutions with positive velocity can be extended beyond a
given radius with arbitrary initial density and velocity profiles.
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p = 0, we make the simplifying assumption that the pressure drops discontinuously
to zero at some temperature between 3000oK and 9000oK. That is, we model
the continuous drop in pressure from the radiation epoch to the matter dominated
epoch as a discontinuous process, but allow the temperature at which the drop takes
place to be essentially arbitrary. The approximation of a discontinuous drop in the
pressure is commonly made in Cosmology. Indeed, to quote Longair [13], page
276, “...the transition to the radiation-dominated era would take place at redshift
z ⇡ 6000. At redshifts less than this value, the Universe was matter-dominated and
the dynamics were described by the standard Friedman models [with scale factor]
t
2
3 [the case p = 0]...”. Thus our assumption that the pressure drops precipitously

to zero at a temperature 3000oK  T⇤  9000oK, is reasonable. Since our numerics
show that the results are independent of that temperature, we are confident that
the conclusion would not change significantly if a continuous process were modeled.
Thus the conclusions derived from the assumption of a precipitous drop in pressure
to p = 0 are justified. By numerical simulation we identify a unique wave in
the family that accounts for the same values of the Hubble constant and quadratic
correction to redshift vs luminosity as are implied by the theory of Dark Energy with
⌦⇤ ⇡ .7, and the numerical simulation of the third order correction associated with
that unique wave establishes the testable prediction that distinguishes this theory
from the theory of Dark Energy. Here we characterize the sought after instability,
show it is triggered by a family of simple wave perturbations from the radiation
epoch, and as a bonus obtain a testable alternative mathematical explanation for
the anomalous acceleration of the galaxies that does not invoke Dark Energy.

We now discuss the perturbations from the radiation epoch in more detail. Most
of the expansion of the universe before the pressure drops to p ⇡ 0, is governed by
the radiation epoch, a period in which the large scale evolution is approximated by
the equations of pure radiation. These equations take the form of the relativistic
p-system, [24], of shock wave theory, and for such highly nonlinear equations, one
expects complicated solutions to become simpler. Solutions of the p-system typi-
cally decay to a concatenation of self-similar simple waves, solutions along which the
equations reduce to ODE’s, [12, 6, 21]. Based on this, together with the fact that
large fluctuations from the radiation epoch (like the baryonic acoustic oscillations)
are typically spherical, [13], the authors began the program in [26] by looking for a
family of spherically symmetric solutions that perturb the SM during the radiation
epoch when the equation of state p = c

2

3 ⇢ holds, and on which the Einstein equa-
tions reduce to ODE’s. In [20, 21], we identified a unique family of such solutions
which we refer to as a-waves, parameterized by the so called acceleration parameter
a > 0, normalized so that a = 1 is the SM6. The a-waves are the only known family
of solutions of the Einstein equations which both perturb Friedman spacetimes, and
reduce the Einstein equations to ODEs, [1, 21, 2]. Since when p = 0, under-densities
relative to the SM are a natural mechanism for creating anomalous accelerations,
(less matter present to slow the expansion implies a larger expansion rate, [13]),
we restrict to the perturbations a < 1 which induce under-densities relative to the
SM, [20, 21]. Thus our starting hypothesis in [20, 21] was that the anomalous ac-
celeration of the galaxies is due to a local under-density relative to the SM, on the

6This family of waves was first discovered from a di↵erent point of view in the fundamental
paper [1]. C.f. also the self-similarity hypothesis in [2]. As far as we know, our’s is the first
attempt to connect this family of waves with the anomalous acceleration.
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scale of the supernova data [4], created by a perturbation that has decayed (locally
near the center) to an a-wave, a < 1, by the end of the radiation epoch.7 Here we
use the a-waves to obtain a third order correction to redshift vs luminosity to be
compared with Dark Energy. We can now state the results precisely.

In this paper we prove the following: (i) The k = 0, p = 0 Friedman spacetime is
unstable, and smooth spherical perturbations evolve, locally to leading order near
the center, according to a universal phase portrait in which the SM appears as an
unstable saddle rest point SM , (c.f. Figure 1); (ii) Under-dense perturbations of
SM at the end of radiation trigger evolution along the unstable manifold from SM
to M , and this describes the formation of a local region of accelerated expansion,
(one order of magnitude larger in extent than would be expected if the smooth-
ness condition were not imposed), which extends further and further outward from
the center, becoming more flat and more uniform, as time evolves. Comparing
these local uniformly expanding solutions generated by the phase portrait, to the
critical uniformly expanding Friedmann spacetime accelerated by the cosmological
constant, we find that evolution along the unstable manifold produces precisely the
same range of quadratic corrections Q to redshift vs luminosity as Dark Energy–for
apparently a completely di↵erent reason; (iii) A unique a-wave perturbation at the
end of radiation which creates the same H0 and Q at present time as Dark En-
ergy, provides a predictive third order correction C that has the same order, but a
di↵erent sign, from Dark Energy.

Spherically symmetric spacetimes can generically be transformed near the center
to Standard Schwarzschild Coordinates (SSC) where the metric takes the canonical
form

ds2 = �B(t, r) dt2 +
1

A(t, r)
dr2 + r2 d⌦2, d⌦2 = d✓2 + sin2 ✓ d�2, (1.1)

d⌦ giving the standard line element on the unit 2-sphere, [18]. Letting

H d
`

= z + Qz2 + Cz3 + O(z4) (1.2)

denote the relation between redshift factor z and luminosity distance d
`

at a given
value of the Hubble constant H as measured at the center8, the value of the qua-
dratic correction Q increases from the value Q = .25 at rest point SM at the end
of radiation, to the value Q = .5 for orbits evolving along the unstable manifold
to M as t ! 1. This is precisely the same range of values Q takes on in Dark
Energy theory as the fraction ⌦⇤ of Dark Energy to classical energy increases from
its value of ⌦⇤ ⇡ 0 at the end of radiation, to ⌦⇤ = 1 as t ! 1. In particular,
this holds for any a < 1 near a = 1, and for any value of the cosmological constant
⇤ > 0, assuming only that a and ⇤ both induce a negligibly small under-dense
correction to the SM value Q = .25 at the end of radiation.9 Indeed, this holds

7Since time asymptotic wave patterns typically involve multiple simple waves, we make no
hypothesis regarding the space-time far from the center of the a-wave.

8For FRW, Q is determined by the value of the so-called deceleration parameter q0, and C
is determined by the jerk j, c.f., [13]. The deceleration parameter gives Q through H0d` =
z� 3+q0

2 z2 +O(z3), with q0 = �10/3 < 0 in SM.
9We qualify with this latter assumption only because, in Dark Energy theory, the value of ⌦⇤

is small but not exactly equal to zero at the end of radiation; and in the wave model, the value of
Q jumps down slightly below Q = .25 at the end of radiation before it increases to Q = .5 from
that value as t ! 1.
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for any under-dense perturbation that follows the unstable trajectory of rest point
SM into the rest point M , (c.f. Figure 1).

These results are recorded in the following theorem. Here we let present time in
a given model denote the time at which the Hubble constant H (as defined in (1.2))
reaches its present measured value H = H0, this time being di↵erent in di↵erent
models. We refer to the model in which the anomalous acceleration is created by
an a-wave from radiation, the wave model, [23].

Theorem 1. Let t = t0 denote present time in the wave model and t = t
DE

present time in the Dark Energy 10 model. Then there exists a unique value of the
acceleration parameter a = 0.999999426 ⇡ 1 � 5.74 ⇥ 10�7 corresponding to an
under-density relative to the SM at the end of radiation, such that the subsequent
p = 0 evolution starting from this initial data evolves to time t = t0 with H = H0

and Q = .425, in agreement with the values of H and Q at t = t
DE

in the Dark
Energy model. The cubic correction at t = t0 in the wave model is then C = 0.359,
while Dark Energy theory gives C = �0.180 at t = t

DE

. The times are related by
t0 ⇡ .95 t

DE

.

In principle, adding acceleration to a model increases the expansion rate H and
consequently the age of the universe because it then takes longer for the Hubble
constant H to decrease to its present small value H0. The numerics confirm that the
age of the universe well approximates the age obtained by adding in Dark Energy.

We emphasize that t0, Q and C in the wave model, are determined by a alone.
Indeed, the initial data at the end of radiation, which determines the p = 0 evo-
lution, depends, at the start, on two parameters: the acceleration parameter a of
the self-similar waves, and the initial temperature T⇤ at which the pressure is as-
sumed to drop to zero. But our numerics show that the dependence on the starting
temperature is negligible for T⇤ in the range 3000oK  T⇤  9000oK, (covering
the range assumed in cosmology, [13]). Thus for the temperatures appropriate for
cosmology, t0, Q and C are determined by a alone.

A measure of the severity of the instability created by the a = a perturbation
of the SM , is quantified by the numerical simulation. For example, comparing the
initial density ⇢

wave

for a = a at the center of the wave, to the corresponding initial
density ⇢

sm

in the SM at the end of radiation t = t⇤, gives ⇢wave

⇢sm
⇡ 1 � (1.88) ⇥

10�6 ⇡ 1. During the p = 0 evolution, this ratio evolves to a seven-fold under-
density in the wave model relative to the SM by present time, i.e., ⇢wave

⇢sm
= 0.144

at t = t0.
Our wave model is based on the self-similarity variable ⇠ = r/ct < 1, which we

introduce as a natural measure of the outward distance from the center of symmetry
r = 0 in the inhomogeneous spacetimes we describe in SSC. We call ⇠ the fractional
distance to the Hubble radius because 1/ct is the Hubble radius in the Friedman
spacetime, and t is chosen to be proper time at r = 0 in our SSC gauge. Thus it
is convenient to define 1/ct to be the Hubble radius in our inhomogeneous space-
times as well. Moreover, the SSC radial variable approximately measures arclength
distance at fixed time in our SSC spacetimes when ⇠ << 1, and exactly measures
arclength at fixed time in the Friedman spacetime in co-moving coordinates. Thus

10By the Dark Energy model we refer to the critical k = 0 Friedman universe with cosmological
constant, taking the present value ⌦⇤ = .7 as the best fit to the supernova data among the two
parameters (k,⇤),[15, 16].
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when ⇠ << 1, ⇠ tells approximately how far out relative to the Hubble radius an
observer at the center of our inhomogeneous spacetimes would conclude an object
observed at ⇠ were positioned, if he mistakenly thought he were in a Friedman
spacetime.11 We show below (c.f. Section 3.4), that if we neglect errors O(⇠4),
and then further neglect small errors between the wave metric and the Minkowski
metric which tend to zero, at that order, with approach to the stable rest point M ,
and also neglect errors due to relativistic corrections in the velocities of the fluid
relative to the center (where the velocity is zero), the resulting spacetime is, like a
Friedman spacetime, independent of the choice of center. Thus the central region
of approximate uniform density at present time t = t0 in the wave model extends
out from the center r = 0 at t = 0 in SSC, to radial values r small enough so that
the fractional distance to the Hubble radius ⇠ = r/ct0 satisfies ⇠4 << 1.

The cubic correction C to redshift vs luminosity is a verifiable prediction of the
wave model which distinguishes it from Dark Energy theory. In particular, C > 0
in the wave model and C < 0 in the Dark Energy model implies that the cubic
correction increases the right hand side of (1.2), (i.e., increases the discrepancy
between the observed redshifts and the predictions of the SM) far from the center
in the wave model, while it decreases the right hand side of (1.2) far from the
center in the Dark Energy theory. Now the anomalous acceleration was originally
derived from a collection of data points, and the ⌦⇤ ⇡ .7 critical FRW spacetime is
obtained as the best fit to Friedman spacetimes among the parameters (k, ⇤). We
understand that the current data is su�cient to provide a value for Q, but not C,
[10]. Presently it is not clear to the authors whether or not there are indications in
the data that could distinguish C < 0 from C > 0.

In Section 2 we give a physical motivation for our smoothness condition imposed
at the center r = 0 of a spherically symmetric spacetime in SSC. Our results are
presented in Section 3. In Section 3.1 we derive an alternative formulation of the
p = 0 Einstein equations in spherical symmetry, and in Section 3.2 we prove that the
evolution preserves smoothness. In Section 3.3 we introduce our new asymptotic
ansatz for corrections to the SM which are consistent with the condition at r = 0
for smooth solutions derived in Section 2. In Section 3.4 we use the exact equations
together with our ansatz to derive asymptotic equations in (t, ⇠) for the corrections,
and use these to derive the universal phase portrait. In Section 3.5 we derive the
correct redshift vs luminosity relation for the SM including the corrections. In
Section 3.6 we introduce a gauge transformation that converts the a-waves at the
end of radiation into initial data that is consistent with our ansatz. In Section 3.7
we present our numerics that identifies the unique a-wave a = a in the family that
meets the conditions H = H0 and Q = .425 at t = t0, and explain our predicted
cubic correction C = 0.359. In Section 3.8 we discuss the uniform space-time
created at the center of the perturbation. Concluding remarks are given in Section
4. Details are omitted in this announcement. We use the convention c = 1 when
convenient.

2. Smoothness at the center of spherically symmetric spacetimes

The results of this paper rely on the validity of approximating solutions by
finite Taylor expansions about the center of symmetry, so the main issue is to

11Here ⇠ is just a measure of distance in SSC, and need not have a precise physical interpretation
for ⇠ >> 1, [28, 18, 21].
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guarantee that solutions are indeed smooth in a neighborhood of the center. Of
course the universe is not smooth on small scales, so our assumption is simply
that the center is not special regarding the level of smoothness assumed in the
large scale approximation of the universe. Smoothness at a point P in a spacetime
manifold is determined by the atlas of coordinate charts defined in a neighborhood
of P , the smoothness of tensors being identified with the smoothness of the tensor
components as expressed in the coordinate systems of the atlas. Now spherically
symmetric solutions given in LTB and SSC in GR employ spherical coordinates
(r, �, ✓) for the spacelike surfaces at constant time, and the subtly here is that
r = 0 is a coordinate singularity in spherical coordinates, and functions are defined
only for radial coordinate r � 0, but a coordinate system must be specified in a
neighborhood of r = 0 to impose the conditions for smoothness at the center. Of
course, once we have the metric represented as smooth in coordinate system x on
an initial data surface in a neighborhood of r = 0, the local existence theorem
giving the smooth evolution of solutions from smooth initial data for the Einstein
equations would not alone su�ce to obtain our smoothness condition, as one would
still have to prove that this evolution preserved the metric ansatz.

We begin by showing that this issue can be resolved relatively easily in SSC
because the SSC coordinates are precisely the spherical coordinates associated with
Euclidean coordinate charts defined in a neighborhood of r = 0. Based on this, we
show below that the condition for smoothness of metric components and functions
in SSC is simply that all odd order derivatives should vanish at r = 0.

Consider now in more detail the problem of representing a smooth, spherically
symmetric perturbation of the Friedman spacetime in GR. To start, assume the
existence of a solution of Einstein’s equations representing a large, smooth under-
dense region of spacetime that expands from the end of radiation out to present
time. For smooth perturbations, there should exist a coordinate system in a neigh-
borhood of the center of symmetry, in which the solution is represented as smooth.
Assume we have such a coordinate system (t,x) 2 R⇥R3 with x = 0 at the center,
and use the notation x = (x0, x1, x2, x3) ⌘ (t,x), x ⌘ (x, y, z), (there should be
no confusion with the ambiguity in x). Spherical symmetry makes it convenient
to represent the spatial Euclidean coordinates x 2 R3 in spherical coordinates
(r, ✓, �), with r = |x|. Since generically, any spherically symmetric metric can be
transformed locally to SSC form, [18], we assume the spacetime represented in the
coordinate system (t, r, ✓, �) takes the SSC form (1.1). This is equivalent to the
metric in Euclidean coordinates x taking the form

ds2 = �B(|x|, t)dt2 +
dr2

A(|x|, t) + |x|2d⌦2, (2.3)

with

r2 = x2 + y2 + z2, dr =
xdx + ydy + zdz

r
,

dr2 =
x2dx2 + y2dy2 + z2dz2 + 2xydxdy + 2xzdxdz + 2yzdydz

r2
, (2.4)

and

dx2 + dy2 + dz2 = dr2 + r2d⌦2. (2.5)
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To guarantee the smoothness of our perturbations of Friedman at the center, we
assume a gauge in which

B(t, r) = 1 + O(r2), (2.6)

A(t, r) = 1 + O(r2), (2.7)

so also
1

A(t, r)
= 1 + O(r2) ⌘ 1 + Â(t, r)r2, (2.8)

where the smoothness of A is equivalent to the smoothness of Â for r > 0. This
sets the SSC time gauge to proper geodesic time at r = 0, and makes the SSC
coordinates locally inertial at r = 0 at each time t > 0, a first step in guaranteeing
that the spherical perturbations of Friedman which we study, are smooth at the
center. Keep in mind that the SSC form is invariant under arbitrary transformation
of time, so we are free to choose geodesic time at r = 0; and the locally inertial
condition at r = 0 simply imposes that the corrections to Minkowski at r = 0 are
second order in r. (These assumptions make physical sense, and their consistency
is guaranteed by reversing the steps in the argument to follow.) In particular, the
SSC metric (1.1) tends to Minkowski at r = 0. We now ask what conditions on the
metric functions A, B are imposed by assuming the SSC metric be smooth when
expressed in our original Euclidean coordinate chart (t,x) defined in a neighborhood
of a point at r = 0, t > 0.

To transform the SSC metric (1.1) to (t,x) coordinates, use (2.5) to eliminate
the r2d⌦2 term and (2.4) to eliminate the dr2 term to obtain

ds2 = �B(|x|, t)dt2 + dx2 + dy2 + dz2 (2.9)

+Â(|x|, t))
�

x2dx2 + y2dy2 + z2dz2

+2xydxdy + 2xzdxdz + 2yzdydz} .

The smoothness of Â is equivalent to the smoothness of A, and the smoothness of
A and B for r > 0 guarantees the smoothness of the Euclidean spacetime metric
(2.9) in (t,x) coordinates everywhere except at x = 0. For smoothness at x = 0,
we impose the condition that the metric components in (2.9) should be smooth
functions of (t,x) at x = 0 as well. (Again, imposing smoothness in (t,x) = 0
coordinates at x = 0 is correct in the sense that it is preserved by the Einstein
evolution equations, c.f. Section 3.2 below.) We now show that smoothness at
x = 0 in this sense is equivalent to requiring that the metric functions A and B
satisfy the condition that all odd r-derivatives vanish at r = 0. To see this, observe
that a function f(r) represents a smooth spherically symmetric function of the
Euclidean coordinates x at r = |x| = 0 if and only if the function

g(x) = f(|x|)

is smooth at x = 0. Assuming f is smooth for r � 0, (by which we mean f is
smooth for r > 0, and one sided derivatives exist at r = 0), and taking the n’th
derivative of g from the left and right and setting them equal gives the smoothness
condition fn(0) = (�1)nfn(0). We state this formally as:

Lemma 1. A function f(r) of the radial coordinate r = |x| represents a smooth
function of the underlying Euclidean coordinates x if and only if f is smooth for
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r � 0, and all odd derivatives vanish at r = 0. Moreover, if any odd derivative
f (n+1)(0) 6= 0, then f(|x|) has a jump discontinuity in its n + 1 derivative, and
hence a kink singularity in its n’th derivative at r = 0.

As an immediate consequence we obtain the condition for smoothness of SSC met-
rics at r = 0:

Corollary 1. The SSC metric (1.1) is smooth at r = 0 in the sense that the metric
components in (2.9) are smooth functions of the Euclidean coordinates (t,x) if and
only if the component functions A(r, t), B(r, t) are smooth in time and smooth for
r > 0, all odd one-sided r-derivatives vanish at r = 0, and all even r-derivatives
are bounded at r = 0.

To conclude, solutions of the Einstein equations in SSC have four unknowns,
the metric components A, B, the density ⇢ and the scalar velocity v. It is easy to
show that if the SSC metric components satisfy the condition that all odd order
r-derivatives vanish at r = 0, then the components of the unit 4-velocity vector u
associated with smooth curves that pass through r = 0 will have the same prop-
erty12, and the scalar velocity v = 1p

AB

dr

dt

will have the property that all even

derivatives vanish at r = 0 (because v is an outward velocity which picks up a
change of sign when represented in x). Thus smoothness of SSC solutions at r = 0
at fixed time is equivalent to requiring that the metric components satisfy the
condition that all odd r-derivatives vanish at r = 0. These then give conditions
on SSC solutions equivalent to the condition that the solutions are smooth in the
ambient Euclidean coordinate systems x. Theorem 2 of Section 3.1 below proves
that smoothness in the coordinate system x at r = 0 at each time in this sense
is preserved by the Einstein evolution equations for SSC metrics when p = 0. In
particular, this demonstrates that our condition for smoothness of SSC metrics at
r = 0 is equivalent to the well-posedness of solutions in the ambient Euclidean
coordinates defined in a neighborhood of r = 0. Thus we obtain the condition for
smoothness of SSC metrics at r = 0 based on the Euclidean coordinate systems
associated with SSC, and show this is preserved by the evolution of the Einstein
equations. Since smoothness of the SSC metric components in this sense is equiv-
alent to smoothness of the x-coordinates with respect to arclength along curves
passing through r = 0, in this sense, our condition for smoothness is geometric.

3. Presentation of Results

In Sections 3.1-3.5 we derive equations and formulas for smooth spherically sym-
metric solutions in SSC in the case p = 0 su�cient to determine the quadratic
correction Q in (1.2) and the phase portrait in Figure 1. Our analysis employs the
SSC forms of the SM in which metric components as well as density and velocity
variables depend only on the SSC self-similar variable ⇠ = r/t. In Sections 3.6 and

3.7 we incorporate the inhomogeneous self-similar a-waves that exist for p = c

2

3 ⇢
and reduce to the critical Friedman spacetime for pure radiation when a = 1, to
obtain the third order prediction C in (1.2). Recall that when p = 0, no such
self-similar perturbations of Friedmann exist, [2, 20, 21, 22, 23] . The asymptotics
employed is based on Taylor expanding the solutions in even powers of ⇠ about the
center in SSC.

12This implies that the coordinates are smooth functions of arclength along curves passing
through r = 0.
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Figure 1. Phase Portrait for Central Region
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3.1. The p = 0 Einstein Equations in Coordinates Aligned with the Physics.

In this section we introduce a new formulation of the p = 0 Einstein equations that
describe outwardly expanding spherically symmetric solutions employing the SSC
metric form (1.1). We start with the SSC equations in [8], introduce new dimen-
sionless density and velocity variables (z, w), and transform equations over to (t, ⇠)
coordinates, where ⇠ = r/t. Recall that the SSC metric form is invariant under
transformations of t, and there exists a time coordinate in which SM is self-similar
in the sense that the metric components A, B, the velocity v and ⇢r2 are functions
of ⇠ alone. This self-similar form exists, but is di↵erent for p = c

2

3 ⇢ and p = 0,
[2, 21, 22]. Taking p = 0, letting v denote the SSC velocity and ⇢ the co-moving
energy density, and eliminating all unknowns in terms of v and the Minkowski en-
ergy density T 00

M

= ⇢

1�( v
c )

2 , (c.f. [8]), the locally inertial formulation of the Einstein

equations G = T introduced in [8] reduce to

�
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�
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�
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�
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�
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where prime denotes d/dr. Note that the 1/r singularity is present in the equations
because incoming waves can amplify without bound. We resolve this for outgoing
expansions by assuming that w = v/⇠ is positive and finite at r = ⇠ = 0. Making
the substitution D =

p
AB, taking z = T 00

M

r2 as the dimensionless density, w = v

⇠

as the dimensionless velocity with ⇠ = r/t and rewriting the equations in terms of
(t, ⇠), we obtain

tz
t

+ ⇠ {(�1 + Dw)z}
⇠

= �Dwz, (3.10)

tw
t

+ ⇠ (�1 + Dw) w
⇠

= w � D
n

w2 + 1�⇠

2
w

2

2A

h

1�A

⇠

2

io

(3.11)

⇠A
⇠

= (1 � A) � z (3.12)

⇠D⇠

D

= 1
A

⇢

(1 � A) � (1�⇠

2
w

2)
2 z

�

. (3.13)

That is, since the sound speed is zero when p = 0, w(t, 0) > 0 restricts us to
expanding solutions in which all information from the fluid propagates outward
from the center.

3.2. Smoothness of solutions in the ambient Euclidean coordinate system

in a neighborhood of r = 0. In this section we prove that smoothness in the am-
bient Euclidean coordinate system x = (x0, x1, x2, x3) = (t, x, y, z) associated with
spherical SSC coordinates is preserved by the evolution of the Einstein equations.
By Lemma 1, smoothness of SSC solutions at r = 0 is imposed by the condition that
odd order r-derivatives of the metric components and the density vanish at r = 0,
and even derivatives of the velocity v vanish at r = 0. Since ⇠ = r/t, imposing this
condition on r-derivatives at t > 0 is equivalent to imposing it on ⇠-derivatives,
and since w = ⇠v, D =

p
AB, z = ⇢r2, smoothness at r = 0 is equivalent to

the condition that all odd derivatives of (z, w, A, D) vanish at ⇠ = 0, t > 0. The
following theorem establishes that smoothness in the ambient coordinate system x
is preserved by the evolution of the Einstein equations in SSC.

Theorem 2. Assume z(t, ⇠), w(t, ⇠), A(t, ⇠), D(t, ⇠) are a given smooth solution of
our p = 0 equations (3.10)-(3.13) satisfying

z = O(⇠2), w = w0(t) + O(⇠2), (3.14)

A = 1 + O(⇠2), D = 1 + O(⇠2), (3.15)

for 0 < t0  t < t1, and assume that at t = t0 the solution agrees with initial data

z(t0, ⇠) = z̄(⇠), w(t0, ⇠) = w̄(⇠), (3.16)

A(t0, ⇠) = Ā(⇠), D(t0, ⇠) = D̄(⇠) (3.17)

such that each initial data function z̄(⇠), w̄(⇠), Ā(⇠), D̄(⇠) satisfies the condition
that all odd ⇠-derivates vanish at ⇠ = 0. Then all odd ⇠-derivatives of the solultion
z(t, ⇠), w(t, ⇠), A(t, ⇠), D(t, ⇠) vanish at ⇠ = 0 for all t0 < t < t1.
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Proof: Start with equations (3.10)-(3.13) in the form

tz
t

= �⇠ {(�1 + Dw)z}
⇠

� Dwz, (3.18)

tw
t

= �⇠ (�1 + Dw) w
⇠

+ w (3.19)

�D

⇢

w2 +
1 � A

2A⇠2
(1 � ⇠2w2)

�

,

⇠A
⇠

= (1 � A) � z, (3.20)

⇠D
⇠

=
D

2A

�

2(1 � A) � z + ⇠2w2z
 

. (3.21)

First note that products and quotients of smooth functions that satisfy the condition
that all odd derivatives vanish at ⇠ = 0, also have this property. Now for a function

F (t, ⇠), let F (n)
⇠

(t) denote the n’th partial derivative of F with respect to ⇠ at ⇠ = 0.
We prove the theorem by induction on n. For this, assume n � 1 is odd, and make

the induction hypothesis that for all odd k < n, F (k)
⇠

(t) = 0 for all t � t0 and

all functions F = z, w, A, D, (functions of (t, ⇠)). We prove that F (n)
⇠

(t) = 0 for
t > t0. For this we employ the following simple observation: If n is odd, and the
n’th derivative of the product of m functions

@n

@⇠n
(F1 · · ·Fm

)

is expanded into a sum by the product rule, the only terms that will not have a
factor containing an odd derivative of order less than n are the terms in which all
the derivatives fall on the same factor. This follows from the simple fact that if the
sum of k integers is odd, then at least one of them must be odd. Taking the n’th
derivative of (3.18) and setting ⇠ = 0 gives the ODE at ⇠ = 0:

t
d

dt
z(n)
⇠

= �n
@n

@⇠n
((�1 + Dw)z) � @n

@⇠n
(DWz) . (3.22)

Since all odd derivatives of order less than n are assumed to vanish at ⇠ = 0, we can
apply the observation and the assumptions (3.14), (3.15) that D = 1, w = w0(t)

and z = 0 at ⇠ = 0, to see that only the n’th order derivative z(n)
⇠

survives on the
RHS of (3.22). That is, by the induction hypothesis, (3.22) reduces to

t
d

dt
z(n)
⇠

= [n � (n + 1)w0(t))] z
(n)
⇠

. (3.23)

Since under the change of variable t ! ln(t), (3.23) is a linear first order homoge-

neous ODE in z(n)
⇠

(t) with z(n)
⇠

(t0) = 0, it follows by uniqueness of solutions that

z(n)
⇠

(t) = 0 for all t � t0. This proves the theorem for the solution component
z(t, ⇠).

Consider next equation (3.20). Di↵erentiating both sides n times with respect
to ⇠ and setting ⇠ = 0 gives

(n + 1)A(n)
⇠

(t) = �z(n)
⇠

(t) = 0, (3.24)

thus

A(n)
⇠

(t) = 0 (3.25)

for t � t0, which verifyies the theorem for component A.
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Consider equation (3.21). Di↵erentiating both sides n times with respect to ⇠,
setting ⇠ = 0 and applying the observation and the induction hypothesis gives

nD(n)
⇠

=
@n

@⇠n

✓

D
1 � A

A

◆

(3.26)

= D(n)
⇠

✓

1 � A

A

◆

+
X

k<n odd

c
k

D(k)
⇠

+ D

✓

1 � A

A

◆(n)

⇠

= 0

for t � t0 because A = 1 at ⇠ = 0, all lower order odd derivatives are assumed to
vanish at ⇠ = 0, and we have already verified the theorem for the component A.
This proves

D(n)
⇠

(t) = 0 (3.27)

for t � t0, verifying the theorem for component D.
Consider lastly the equation (3.20). Di↵erentiating both sides n times with

respect to ⇠, setting ⇠ = 0 and applying our observation gives

t
d

dt
w(n)

⇠

= �n(�1 + w0(t))w
(n)
⇠

+ w(n)
⇠

� @n

@⇠n
�

w2
�

(3.28)

= �n(�1 + w0(t))w
(n)
⇠

+ w(n)
⇠

� 2ww(n)
⇠

= [�n(�1 + w0(t)) + 1 � 2w] w(n)
⇠

for t � t0 because A = 1 and ⇠ = 0, all lower order odd derivatives are assume to
vanish at ⇠ = 0, and we have established the theorem for the component A. Thus

w(n)
⇠

(t) solves the first order homogeneous ODE

t
d

dt
w(n)

⇠

= [�n(�1 + w0(t)) + 1 � 2w] w(n)
⇠

, (3.29)

starting from zero initial data at t = t0, so again we conclude

w(n)
⇠

(t) = 0 (3.30)

for t � t0. This verifies the theorem for the final component w, thereby completing
the proof of Theorem 2.⇤
3.3. A New Ansatz for Corrections to SM. In this section we derive the phase
portrait which describes any spherical perturbation of the k = 0, p = 0 Friedman
spacetime which is smooth in SSC coordinates. Our condition for smooth solutions
is that (z, w, A, B) are smooth functions away from ⇠ = 0, all time derivatives are
smooth, and all odd ⇠-derivatives vanish at ⇠ = 0. Since solutions are assumed
smooth at ⇠ = 0, t > 0, Taylor’s theorem is valid at ⇠ = 0, so the following ansatz
for corrections to SM near ⇠ = 0 is valid in a neighborhood of ⇠ = 0, t > 0, with
errors bounded by derivatives of the corresponding functions at the corresponding
orders.

z(t, ⇠) = z
sm

(⇠) + �z(t, ⇠) �z = z2(t)⇠2 + z4(t)⇠4 (3.31)

w(t, ⇠) = w
sm

(⇠) + �w(t, ⇠) �w = w0(t) + w2(t)⇠2 (3.32)

A(t, ⇠) = A
sm

(⇠) + �A(t, ⇠) �A = A2(t)⇠2 + A4(t)⇠4 (3.33)

D(t, ⇠) = D
sm

(⇠) + �D(t, ⇠) �D = D2(t)⇠2 (3.34)
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where z
sm

, w
sm

, A
sm

, D
sm

are the expressions for the unique self-similar represen-
tation of the SM when p = 0, given by, [22],

z
sm

(⇠) = 4
3⇠2 + 40

27⇠4 + O(⇠6), w
sm

(⇠) = 2
3 + 2

9⇠2 + O(⇠4), (3.35)

A
sm

(⇠) = 1 � 4
9⇠2 � 8

27⇠4 + O(⇠6), D
sm

(⇠) = 1 � 1
9⇠2 + O(⇠4). (3.36)

This gives

z(t, ⇠) =

✓

4

3
+ z2(t)

◆

⇠2 +

⇢

40

27
+ z4(t)

�

⇠4 + O(⇠6),

w(t, ⇠) =

✓

2

3
+ w0(t)

◆

+

⇢

2

9
+ w2(t)

�

⇠2 + O(⇠4).

Consistent with Theorem 2, we verify the equations close within this ansatz, at
order ⇠4 in z and order ⇠2 in ws with errors O(⇠6) in z and O(⇠4) in w. Corrections
expressed in this ansatz create a uniform spacetime of density ⇢(t), constant at each
fixed t, out to errors of order O(⇠4). That is, since the ansatz,

z(⇠, t) = ⇢(t, ⇠)r2 + O(⇠4) =

✓

4

3
+ z2(t)

◆

⇠2 + O(⇠4), (3.37)

neglecting the O(⇠4) error gives ⇢ = (4/3+z2(t))/t2, a function of time alone. For
the SM , z2 ⌘ 0 and this gives ⇢(t) = (4/3) t�2, which is the exact evolution of
the density for the SM Friedman spacetime with p = 0 in co-moving coordinates,
[18]. For the evolution of our specific under-densities in the wave model, we show
z2(t) ! �4/3 as the solution tends to the stable rest point, implying that the
instability creates an accelerated drop in the density in a large uniform spacetime
expanding outward from the center. (C.f. Section 3.8 below.)

3.4. Asymptotic equations for Corrections to SM. Substituting the ansatz
(3.31)-(3.34) for the corrections into the Einstein equations G = T , and neglecting
terms O(⇠4) in w and O(⇠6) in z, we obtain the following closed system of ODE’s
for the corrections z2(⌧)), z4(⌧), w0(⌧), w2(⌧), where ⌧ = ln t, 0 < ⌧  11. (Intro-
ducing ⌧ renders the equations autonomous, and solves the long time simulation
problem.) Letting prime denote d/d⌧ , the equations for the corrections reduce to
the autonomous system

z02 = �3w0

✓

4

3
+ z2

◆

, (3.38)

w0
0 = �1

6
z2 �

1

3
w0 � w2

0, (3.39)

z04 = 5

⇢

2

27
z2 +

4

3
w2 �

1

18
z2
2 + z2w2

�

(3.40)

+5w0

⇢

4

3
� 2

9
z2 + z4 �

1

12
z2
2

�

,

w0
2 = � 1

10
z4 �

4

9
w0 +

1

3
w2 �

1

24
z2
2 +

1

3
z2w0 (3.41)

+
1

3
w2

0 � 4w0w2 +
1

4
w2

0z2.
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We prove that for the equations to close within the ansatz (3.31)-(3.34), it is nec-
essary and su�cient to assume the initial data satisfies the gauge conditions

A2 = �1

3
z2, A4 = �1

5
z4, D2 = � 1

12
z2. (3.42)

We prove that if these constraints hold initially, then they are maintained by the
equations for all time. Conditions (3.42) are not invariant under time transforma-
tions, even though the SSC metric form is invariant under arbitrary time transfor-
mations, so we can interpret (3.42), and hence the ansatz (3.31)-(3.34), as fixing the
time coordinate gauge of our SSC metric. This gauge agrees with FRW co-moving
time up to errors of order O(⇠2).

The autonomous 4 ⇥ 4 system (3.38)-(3.41) contains within it the closed, au-
tonomous, 2⇥ 2 sub-system (3.38), (3.39). This sub-system describes the evolution
of the corrections (z2, w0), which we show in Section 3.5 determines the quadratic
correction Qz2 in (1.2). Thus the sub-system (3.38), (3.39) gives the corrections to
SM at the order of the observed anomalous acceleration, accurate within the cen-
tral region where errors O(⇠4) in z and orders O(⇠3) in v = w/⇠ can be neglected.
The phase portrait for sub-system (3.38), (3.39) exhibits an unstable saddle rest
point at SM = (z2, w0) = (0, 0) corresponding to the SM, and a stable rest point
at (z2, w0) = (�4/3, 1/3). These are the rest points referred to in the introduc-
tion. From the phase portrait, (see Figure 1), we see that perturbations of SM
corresponding to small under-densities will evolve away from the SM near the un-
stable manifold of (0, 0), and toward the stable rest point M . By (3.35) and (3.36),
A2 = 4/9, D2 = 1/9 at (z2, w0) = (�4/3, 1/3), so by (3.36) the metric compo-
nents A and B are equal to 1 + O(⇠4), implying the metric at the stable rest point
(�4/3, 1/3) is Minkowski up to O(⇠4). Thus during evolution toward the stable
rest point, the metric tends to flat Minkowski spacetime with O(⇠4) errors.

Note that we have only assumed a smooth SSC solution and expanded in finite
Taylor series about the center, so our only asymptotic assumption has been that
⇠ is small, not that the perturbation from the k = 0, p = 0 Friedman spacetime
is small. Thus the phase portrait in Figure 1 is universal in that it describes the
evolution of every SSC smooth solution in a neighborhood of ⇠ = 0, t > 0. We
state this as a theorem:

Theorem 3. Let (z, w, A, B) be an SSC solution which is smooth in the ambient
Euclidean coordinate system x associated with the spherical SSC coordinates, and
meeting condition (2.8). Then there exists an SSC time gauge in which the solution
satisfies equations (3.38)-(3.41) and (3.42) up to the appropriate orders. Thus the
phase portrait of Figure 1 is valid in a neighborhood of ⇠ = 0 with errors O(1)⇠6 in
z and O(1)⇠4 in w, where by Taylor’s theorem, the O(1) errors are bounded by the
maximum of the sixth and fourth derivatives of the solution components z and w,
respectively.

3.5. Redshift vs Luminosity Relations for the Ansatz. In this section we
obtain formulas for Q and C in (1.2) as a function of the corrections z2, w0, z4, w2

to the SM , we compare this to the values of Q and C as a function of ⌦⇤ in DE
theory, and we show that remarkably, Q passes through the same range of values
in both theories.

Recall that Q and C are the quadratic and cubic corrections to redshift vs
luminosity as measured by an observer at the center of the spherically symmetric
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perturbation of the SM determined by these corrections.13 The calculation requires
taking account of all of the terms that a↵ect the redshift vs luminosity relation
when the spacetime is not uniform, and the coordinates are not co-moving.

The redshift vs luminosity relation for the k = 0, p = �⇢, FRW spacetime, at
any time during the evolution, is given by,

Hd
`

=
2

1 + 3�

n

(1 + z) � (1 + z)
1�3�

2

o

, (3.43)

where only H evolves in time, [9]. For pure radiation � = 1/3, which gives Hd
`

= z,
and when p = � = 0, we get, (c.f. [21]),

Hd
`

= z +
1

4
z2 � 1

8
z3 + O(z4). (3.44)

The redshift vs luminosity relation in the case of Dark Energy theory, assuming a
critical Friedman space-time with the fraction of Dark Energy ⌦⇤, is

Hd
`

= (1 + z)

Z

z

0

dy
p

E(y)
, (3.45)

where

E(z) = ⌦⇤(1 + z)2 + ⌦
M

(1 + z)3, (3.46)

and ⌦
M

= 1� ⌦⇤, the fraction of the energy density due to matter, (c.f. (11.129),
(11.124) of [9]). Taylor expanding gives

Hd` = z +
1
2

✓
�⌦M

2
+ 1

◆
z2 +

1
6

✓
�1� ⌦M

2
+

3⌦2
M

4

◆
z3 +O(z4), (3.47)

where ⌦
M

evolves in time, ranging from ⌦
M

= 1 (valid with small errors at the
end of radiation) to ⌦

M

= 0 (the limit as t ! 1). From (3.47) we see that in Dark
Energy theory, the quadratic term Q increases exactly through the range

.25  Q  .5, (3.48)

and the cubic term decreases from �1/8 to �1/6, during the evolution from the
end of radiation to t ! 1, thereby verifying the claim in Theorem 1. In the case
⌦

M

= .3, ⌦⇤ = .7, representing present time t = t
DE

in Dark Energy theory, this
gives the exact expression,

H0d` = z +
17

40
z2 � 433

2400
z3 + O(z4), (3.49)

verifying that Q = .425 and C = �.1804, as recorded in Theorem 1.
In the case of a general non-uniform spacetime in SSC, the formula for redshift

vs luminosity as measured by an observer at the center is given by, (see [9]),

d
`

= (1 + z)2r
e

= t0(1 + z)2⇠
e

✓

t
e

t0

◆

, (3.50)

where (t
e

, r
e

) are the SSC coordinates of the emitter, and (0, t0) are the coor-
dinates of the observer. A calculation based on using the metric corrections to
obtain ⇠

e

and t
e

/t0 as functions of z, and substituting this into (3.50), gives the
following formula for the quadratic correction Q = Q(z2, w0) and cubic correction

13The uniformity of the center out to errors O(⇠4) implies that these should be good ap-
proximations for observers somewhat o↵-center with the coordinate system of symmetry for the
waves.
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C = C(z2, w0, z4, w2) to redshift vs luminosity in terms of arbitrary corrections
w0, w2, z2, z4 to SM . We record the formulas in the following theorem:

Theorem 4. Assume a GR spacetime in the form of our ansatz (3.31)-(3.34), with
arbitrary given corrections w0(t), w2(t), z2(t), z4(t) to SM . Then the quadratic and
cubic corrections Q and C to redshift vs luminosity in (1.2), as measured by an
observer at the center ⇠ = r = 0 at time t, is given explicitly by

Hd
`

= z

⇢

1 +



1

4
+ E2

�

z +



�1

8
+ E3

�

z2

�

+ O(z4), (3.51)

where

H =

✓

2

3
+ w0(t)

◆

1

t
,

so that

Q(z2, w0) =
1

4
+ E2, C(w0, w2, z2, z4) = �1

8
+ E3, (3.52)

where E2 = E2(z2, w0), E3 = E3(z2, w0, z4, w2) are the corrections to the p = 0
standard model values in (3.44). The function E2 is given explicitly by

E2 =
24w0 + 45w2

0 + 3z2

4(2 + 3w0)2
. (3.53)

The function E3 is defined by the following chain of variables:

E3 = 2I2 + I3, (3.54)
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18
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From (3.53) one sees that Q depends only on (z2, w0), Q(0, 0) = .25, (the exact
value for the SM ), Q(�4/3, 1/3) = .5, (the exact value for the stable rest point),
and from this it follows that Q increases through precisely the same range (3.48) of
DE, from Q ⇡ .25 to Q = .5, along the orbit of (3.38), (3.39) that takes the unstable
rest point SM = (z2, w0) = (0, 0) to the stable rest point (z2, w0) = (�4/3, 1/3),
(c.f. Figure 1).

3.6. Initial Data from the Radiation Epoch. In this section we compute the
initial data for the p = 0 evolution from the restriction of the one parameter family
of self-similar a-waves to a constant temperature surface T = T⇤ at the end of
radiation, and convert this to initial data on a constant time surface t = t⇤, these
two surfaces being di↵erent when a 6= 1. We then define a gauge transformation that
converts the resulting initial data to equivalent initial data that meets the gauge
conditions (3.42). (Recall that condition (3.42) fixes a time coordinate, or gauge,
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for the underlying SSC metric associated with our ansatz, and the initial data for
the a-waves is given in a di↵erent gauge because time since the big bang depends
on the parameter a, as well as on the pressure, so it changes when p drops to zero.)
The equation of state of pure radiation is derived from the Stefan-Boltzmann Law,
which relates the initial density ⇢⇤ to the initial temperature T⇤ in degrees Kelvin
by

⇢⇤ =
a
s

c

4
T 4
⇤ , (3.55)

where a
s

is the Stefan-Boltzmann constant, [14]). According to current theories in
cosmology, (see e.g. [14]), the pressure drops precipitously to zero at a temperature
T = T⇤ somewhere between 3000oK  T⇤  9000oK, corresponding to starting
times t⇤ roughly in the range 10, 000yr  t⇤  30, 000yr after the Big Bang.
We make the assumption that the pressure drops discontinuously to zero at some
temperature T⇤ within this range. That our resulting simulations are numerically
independent of starting temperature, (c.f. Section 3.7), justifies the validity of this
assumption. Using this assumption, we can take the values of the a-waves on the
surface T = T⇤ as the initial data for the subsequent p = 0 evolution. Using the
equations we convert this to initial data on a constant time surface t̄ = t̄⇤, where
t̄ is the time coordinate used in the self-similar expression of the a-waves which
assumes p = c

2

3 ⇢. Our first theorem proves that there is a gauge transformation
t̄ ! t which converts the initial data for a-waves at the end of radiation at t̄ = t̄⇤,
to initial data that both meets the assumptions of our ansatz (3.31)-(3.34), as well
as the gauge conditions (3.42).

Theorem 5. Let t̄ be the time coordinate for the self-similar waves during the
radiation epoch, and define the transformation t̄ ! t by

t = t̄ +
1

2
µ(t̄ � t̄⇤)

2 � t
B

, (3.56)

where µ and t
B

are given by

µ =
a2

2(2 � a2)
, (3.57)

t
B

= t̄⇤(1 � ↵), (3.58)

where

↵ = 4
2 � a2

7 � 4a2
. (3.59)

Then upon performing the gauge transformation (3.56), the initial data from the
a-waves at the end of radiation t̄ = t̄⇤, meets the conditions for the ansatz (3.31)-
(3.34), as well as the gauge conditions (3.42).

Our conclusions are summarized in the following theorem:

Theorem 6. The initial data for the p = 0 evolution determined by the self-similar
a-wave on a constant time surface t = t⇤ with temperature T = T⇤ at r = 0, is given
as a function of the acceleration parameter a and the temperature T⇤, by

z2(t⇤) = ẑ2, z4(t⇤) = ẑ4 + 3ŵ0

�

4
3 + ẑ2

�

�,

w0(t⇤) = ŵ0, w2(t⇤) = ŵ2 +
�

1
6 ẑ2 + 1

3 ŵ0 + ŵ2
0

�

�,
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where ẑ2, ẑ4, ŵ0, ŵ2 and � are functions of acceleration parameter a given by
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3 , ẑ4 = 2↵3(1 � ↵)�̄Z2 + ↵4Z4 � 40

27 ,

Z2 = 3a2

4 , Z4 =
h

9a2

16 + 15a2(1�a

2)
40

i

,
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where

� = ↵�̄ = ↵

✓
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4

◆

, (3.60)

and ↵ is given in (3.59).
The time t⇤ is then given in terms of the initial temperature T⇤ by

t⇤ =
a↵

2

r

3

⇢⇤
, ⇢⇤ =

a
s

4c
T 4
⇤ . (3.61)

Taking the leading order part of the initial data gives a curve parameterized by
a in the (z2, w0)-plane that cuts through the saddle point SM in system (3.38),
(3.39), between the stable and unstable manifold, (the lighter dotted line in Figure
1). This implies that a small under-density corresponding to a < 1 will evolve to
the stable rest point M , (z2, w0) = (�4/3, 1/3), (c.f. Figure 1).

3.7. The Numerics. In this section we present the results of our numerical sim-
ulations. We simulate solutions of (3.38)-(3.41) for each value of the accelera-
tion parameter a < 1 in a small neighborhood of a = 1, (corresponding to small
under-densities relative to the SM), and for each temperature T⇤ in the range
3000oK  T⇤  9000oK. We simulate up to the time t

a

, the time depending on
the acceleration parameter a at which the Hubble constant is equal to its present
measured value H = H0 = 100h0

km

smpc

, with h0 = .68. From this we conclude that
the dependence on T⇤ is negligible. We then asked for the value of a that gives
Q(z2(ta), w0(ta)) = .425, the value of Q in Dark Energy theory with ⌦⇤ = .7. This
determines the unique value a = a = 0.999999426, and the unique time t0 = ta .
These results are recorded in the following theorem:

Theorem 7. At present time t0 along the solution trajectory of (3.38)-(3.41) cor-
responding to a = a, our numerical simulations give H = H0, Q = .425, together
with the following:

z(t0, ⇠) = (�1.142)⇠2 + (1.385)⇠4 + O(⇠6),

w(t0, ⇠) = 0.247 � (0.348)⇠2 + O(⇠4),

and

A(t0, ⇠) = 1 + (0.381)⇠2 � (0.277)⇠4, (3.62)

D(t0, ⇠) = 1 + (0.095)⇠2 + O(⇠4). (3.63)

The cubic correction to redshift vs luminosity as predicted by the wave model at
a = a is

C = 0.359. (3.64)
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Note that (3.62) and (3.63) imply that the spacetime is very close to Minkowski
at present time up to errors O(⇠4), so the trajectory in the (z2, w0)-plane is much
closer to the stable rest point M than to the SM at present time, c.f. Figure 1.
The cubic correction associated with Dark Energy theory with k = 0 and ⌦⇤ = .7
is C = �0.180, so (3.64) is a theoretically verifiable prediction which distinguishes
the wave model from Dark Energy theory. A precise value for the actual cubic
correction corresponding to C in the relation between redshift vs luminosity for the
galaxies appears to be beyond current observational data.

3.8. The Uniform Spacetime at the Center. In this section we describe more
precisely the central region of accelerated uniform expansion triggered by the insta-
bility due to perturbations that meet the ansatz (3.31)-(3.34). By (3.37) we have
seen that neglecting terms of order ⇠4 in z, the density ⇢(t) depends only on the
time. Further neglecting the small errors between (z2, w0) and the stable rest point
�

� 4
3 , 1

3

�

at present time t0 when a = a, we prove that the spacetime is Minkowski
with a density ⇢(t) that drops like O(t�3), so the instability creates a central re-
gion that appears to be a flat version of a uniform Friedman universe with a larger
Hubble constant, in which the density drops at a faster rate than the O(t�2) rate
of the SM.

Specifically, as t ! 1, our orbit converges to
�

� 4
3 , 1

3

�

, the stable rest point for
the (z2, w0) system

✓

z2

w0

◆0
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� 1
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◆

. (3.65)

Setting z2 = �4/3 + z̄(t), w0 = 1/3 + w̄(t) and discarding higher order terms, we
obtain the linearized system at rest point (� 4

3 , 1
3 ),

✓

z̄
w̄

◆0
=

✓

�1 0
� 1

6 �1

◆✓

z̄
w̄

◆

. (3.66)

The matrix in (3.66) has the single eigenvalue � = �1 with single eigenvector R =
(0, 1). From this we conclude that all orbits come into the rest point (� 4

3 , 1
3 ) from

below along the vertical line z2 = �4/3. This means that z2(t) and ⇢(t) = z2(t)/t2

can tend to zero at algebraic rates as the orbit enters the rest point, but w0(t) must
come into the rest point exponentially slowly, at rate O(e�t). Thus our argument
that w̄ = w0 � 1/3 is constant on the scale where ⇢(t) = k0/t↵ gives the precise
decay rate,

⇢(t) =
k0

t3(1+w̄)
. (3.67)

That is, w̄ ⌘ w̄(t) ! 0 and k0 ⌘ k0(t) are changing exponentially slowly, but the
density is dropping at an inverse cube rate, O(1/t3(1+w̄)), which is faster than the
O(1/t2) rate of the standard model.

Therefore, neglecting terms of order ⇠4 together with the small errors between
the metric at present time t0 and the stable rest point, the spacetime is Minkowski
with a density ⇢(t) that drops like O(t�3), a faster rate than the O(t�2) of the SM.
Furthermore, we show that neglecting relativistic corrections to the velocity of the
fluid near the center where the velocity is zero, evolution toward the stable rest
point creates a flat, center independent spacetime which evolves outward from the
origin, and whose size is proportional to the Hubble radius.
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We conclude that the e↵ect of the instability triggered by a perturbation of the
SM consistent with ansatz (3.31)-(3.34) near the stable rest point

�

� 4
3 , 1

3

�

, is to
create an anomalous acceleration consistent with the anomalous acceleration of the
galaxies in a large, flat, uniform, center-independent spacetime, expanding outward
from the center of the perturbation.

4. Conclusion

This is a culmination in authors’ ongoing research program to identify a possi-
ble mechanism that might account for the anomalous acceleration of the galaxies
within Einstein’s original theory, without the cosmological constant or Dark En-
ergy. We have found such a mechanism, namely, our discovery of an instability
in the Friedmann spacetime characterized by a universal phase portrait (Figure 1)
which describes smooth spherical perturbations about any point. It is universal in
the sense that it describes the evolution near the center of any p = 0 spherically
symmetric spacetime that solves the Einstein equations in SSC and is smooth at
r = 0 in the ambient Euclidean coordinate system that corresponds to SSC. The
phase portrait places SM at an unstable saddle rest point SM , and the unstable
manifold of SM provides a specific mechanism which induces anomalous acceler-
ations into the SM without the cosmological constant. This mechanism induces
precisely the same range of quadratic corrections to redshift vs luminosity as does
the cosmological constant, without assuming it. The phase portrait of the instabil-
ity shows that only under-dense and over dense perturbations of SM are observable,
(not SM itself), and the under-dense case would imply that we live within a large
(order |⇠|4 << 1) region of approximate uniform density that is expanding outward
from us at an accelerated rate relative to the SM. The central region created by the
instability is di↵erent from, but looks a lot like, a speeded up Friedman universe
tending more rapidly to flat Minkowski space than the SM. Finally, we prove that
a one parameter family of exact perturbations from the radiation epoch trigger the
instability, and provide a third order correction to redshift vs luminosity that makes
a prediction which can be compared to the predictions of Dark Energy.

Given that SM is unstable, the paper raises the fundamental question as to
whether it is reasonable to expect to observe an unperturbed Friedman space-time,
with or without Dark Energy, on the scale of the supernova data. But the paper
does not purport to solve all the problems of Cosmology. We have made no assump-
tions regarding the space-time far from the center of the perturbations that trigger
the instabilities in the SM. The consistency of this model with other observations in
astrophysics would require additional assumptions that apply far from the center.
Naively, one might wonder whether a local perturbation, neglecting higher order
terms, perhaps only lies at a scale below the large scale on which the Friedmann
metric is assumed to apply, (like voids or galaxies). But of course, our theory then
implies the Friedmann spacetime is also unstable on that larger scale where it is
assumed to apply as well. The instability raises the question as to the observability
of the Friedmann spacetime, with or without Dark Energy, on any scale. Regarding
the higher order terms, we note that when p = 0 the fluid velocity is the only sound
speed, so solutions far from the center should not constrain solutions near the cen-
ter so long as the velocity remains positive. In light of [8], solutions near the center
should be extendable on an initial data surface by arbitrary density and velocity
profiles, and this reflects the freedom to impose coe�cients of higher order powers
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of ⇠ on an initial data surface. So there is a great deal of freedom to extend beyond
these local spacetimes, and the extensions would ultimately determine the size of
the central region. But to explore further assumptions concerning the spacetime
far from the center in this paper, would obscure the clarity of the theory presented.
Applications of this theory are topics of authors’ future research.
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