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Abstract. We prove a necessary and su�cient condition for determin-
ing the essential smoothness of weak solutions of the Einstein equations
at apparent singularities where the gravitational metric tensor is only
Lipschitz continuous, but the curvature tensor is in L1, a regularity
so low that locally inertial frames might not exist. Namely, we prove
that the question whether there exists a coordinate transformation which
smooths a metric from C0,1 to C1,1 in a neighborhood of a point is equiv-
alent to the condition that the singular part of the metric connection can
be extended to a Riemann flat connection in that neighborhood. This
applies to shock-wave solutions in General Relativity, and the frame-
work leads to a definition of the “curvature” of the singular part of a
connection, (i.e., the curvature of the shock-set), and we prove that this
vanishes if and only if the spacetime metric can be smoothed within
the C1,1 atlas. As an application of our method we prove that locally
inertial frames always exist in a natural sense for shock wave metrics in
spherically symmetric spacetimes, a new regularity result for the Glimm
scheme, independent of whether the metric itself can be smoothed in a
neighborhood.

1. Introduction

We prove a necessary and su�cient condition for determining the essential
smoothness of gravitational metric tensors at apparent singularities where
the the components are only Lipschitz continuous, but the curvature ten-
sor is in L1. In particular, this applies at points of arbitrarily complex
shock wave interaction in General Relativity (GR). The theory applies in n-
dimensions, without assuming any spacetime symmetries. This establishes
the space of L1 connections with (weak) Riemann curvature tensor also in
L1, a space closed under C1,1 coordinate transformations, as the natural
framework for shock wave theory in GR. An application provides an ex-
plicit construction procedure and proof that locally inertial frames exist in
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a natural sense at points of arbitrary shock wave interaction in spherically
symmetric spacetimes when the gravitational metric is only Lipschitz con-
tinuous. This establishes that the C0,1 shock wave metrics generated by the
Glimm scheme in [8], are locally inertial at every point, independent of the
inherent regularity of the metric.1

It is well known that shock waves form in solutions of the Einstein-Euler
equations, the equations that couple the spacetime geometry to perfect fluid
sources, whenever the flow is su�ciently compressive [12, 17, 5]. But it is
an open question as to the essential level of smoothness of the gravitational
metric for general shock wave solutions admitting points of shock wave inter-
action. The existence theory [8] for shock waves in GR based on the Glimm
scheme, (see also [2]), only yields Lipschitz continuity of the spacetime met-
ric, a metric regularity too low to guarantee the existence of locally inertial
coordinates within the atlas of smooth (C2) coordinate transformations [16].
That spacetime is locally inertial at each point p, (i.e., there exist coordinate
systems in which the metric is Minkowski at p, and all coordinate derivatives
of the metric vanish at p), was Einstein’s starting assumption for General
Relativity, [6]. The requisite smoothness of the metric su�cient to guarantee
the existence of locally inertial frames within the smooth atlas, is the metric
regularity C1,1, one degree smoother than the C0,1 metrics constructed in
[8]. In this case the Riemann normal coordinate construction generates a
smooth transformation to locally inertial coordinates. In [15], the authors
proposed the possibility that shock wave interaction might create a new kind
of spacetime singularity which we named regularity singularities, a point in
spacetime where the Lorentzian metric cannot be smoothed to C1,1, and
hence fails to admit locally inertial coordinates within the smooth atlas.

However, like other singularities in GR, such as the event horizon of the
Schwarzschild spacetime, a singularity requires a singular coordinate trans-
formation to regularize it. Thus the possibility remains that the spacetime
metric at shock waves might be smoothed from C0,1 to C1,1 within the
larger atlas of less regular C1,1 coordinate transformations, because these
transformations introduce jumps in the derivatives of the Jacobian which
hold the potential to eliminate the jumps in metric derivatives. It remains
an outstanding open problem as to whether such transformations exist to
smooth the metric to C1,1 at points of shock wave interaction in GR. If such
smoothing transformations do not exist, then regularity singularities can be
created by shock wave interaction alone. In particular, this would imply
new scattering e↵ects in gravitational radiation, [16].

The starting point for addressing this basic regularity question for GR
shock waves is Israel’s celebrated 1966 paper [10], which proves that, for

1The space C0,1 denotes the space of Lipschitz continuous functions, and C1,1 the space
of functions with Lipschitz continuous derivatives. A function is bounded in C0,1 if and
only if the function and its weak derivatives are bounded in L1, c.f. [7], Chapter 5.8.
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any smooth co-dimension one shock surface in n-dimensions, the gravita-
tional metric can always be smoothed from C0,1 to C1,1 by transformation
to Gaussian normal coordinates adjusted to the shock surface. This trans-
formation was identified as an element of the C1,1 atlas in [18]. However,
these coordinates are only defined for single, non-interacting shock surfaces
and do not exist for the more complicated C0,1 metrics constructed in the
Groah-Temple framework [8]. The only result going beyond Israel’s result
was accomplished in [16, 14], where authors proved that the gravitational
metric can always be smoothed from C0,1 to C1,1 at a point of regular shock
wave interaction between shocks from di↵erent characteristic families, in
spherically symmetric spacetimes. The proof is based on a surprisingly com-
plicated new constructive method based on analyzing non-local PDE’s tai-
lored to the structure of the shock-wave interaction. It is not clear whether
or how this proof could be extended to more complicated interactions. For
more complicated shock wave interactions in spherically symmetric space-
times, and general asymmetric shock interactions in (3+ 1)-dimensions, the
question as to the locally flat nature of space-time, or whether regularity
singularities can be created by shock wave interactions, remains an open
problem.

The atlas of C1,1 coordinate transformations was introduced in [18] as the
natural atlas for shock wave metrics with C0,1 regularity in GR, because C1,1

coordinate transformations preserve the Lipschitz continuity of the metric,
and map bounded discontinuous curvature tensors to bounded discontinuous
curvature tensors. For perfect fluids, shock waves are weak solutions of the
Einstein-Euler equations, G = T coupled with Div T = 0, where G is the
Einstein tensor, T is the energy-momentum tensor for a perfect fluid, and
 is the coupling constant, c.f. [3, 20]. At shock waves, T is discontinuous
and contains no delta function sources, the latter distinguishing shock waves
from surface layers. The Einstein equations then imply that the curvature
tensor G must also be free of delta function sources at shock waves, [10].
Since G contains second derivatives of the gravitational metric g, it follows
that all delta function sources in the second derivatives of g must cancel out
to make G bounded and discontinuous at the shocks. The results in [18]
prove that this cancellation of delta function sources is a covariant property
within the C1,1 atlas, and is imposed by requiring that the gravitational
metric satisfy G = T , in the weak sense, as L1 functions, c.f. Theorem
3.1. To rule out delta function sources in G, it is su�cient to assume the
Riemann curvature tensor is bounded in L1.

In this paper we address the question of regularity singularities at the
more general level of L1 symmetric connections with L1 bounded Rie-
mann curvature tensors on n-dimensional manifolds. We consider the gen-
eral problem of when the components of such connections can be raised
from L1 to C0, 1 within the C1,1 atlas. This is a general covariant frame-
work in which to address regularity singularities in GR, including the case
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of connections of bounded variation and metric connections, and by Corol-
lary 2.2 below, there is no loss of generality in assuming the entire Riemann
curvature tensor, not just the Einstein tensor G, is bounded in L1. For
metric connections the problem is equivalent to raising the metric regularity
from C0,1 to C1,1 within the C1,1 atlas, because for metrics, �k

ij

are given
by the Christo↵el symbols which are homogeneous in first order derivatives
of the metric. The authors’ work in [16] indicated that the problem of the
existence of locally inertial frames might be independent from the problem
of the essential C0,1 regularity of the connection. To make this distinction
precise, we defined in [16] a regularity singularity to be a point p where
the connection is essentially less smooth than C0,1 in the sense that there
does not exist a C1,1 coordinate transformation in a neighborhood of p that
smooths the connection to C0,1 in that neighborhood. Independently, we
say the L1 connection is locally inertial at p, if there exists a coordinate
system within the C1,1 atlas in which the connection vanishes at p, and is
Lipschitz continuous just at p. Thus, locally inertial coordinates could exist
at p even though the essential smoothness of the metric is less than C0,1.
Based on this, we say a regularity singularity at a point p is weak if there
exists a locally inertial coordinate system at p, and strong if the connection
does not admit locally inertial coordinates at p. For example, at a weak
regularity singularity in GR, locally inertial coordinates would exist at p,
but the metric smoothness remains below C1,1, too low for many desirable
properties to hold, (e.g. the Penrose-Hawking-Ellis Singularity theorems
[9]).2

Our first main result, Theorem 2.1, provides a necessary and su�cient
condition for a point p to be a regularity singularity of an L1 connection.
It states that an L1 connection � can be transformed to a C0,1 connection
within the C1,1 atlas in a neighborhood of p if and only if there exists a flat
connection in a neighborhood of p with the same singular (discontinuous)
part as �. This reduces the problem of smoothing a connection to the
problem of extending the singular part of the connection to a flat connection
in the spirit of the Nash embedding theorem, c.f. [13].

As an application of our method of proof, we show that strong regularity
singularities do not exist in spherically symmetric spacetimes, recorded be-
low in Theorem 2.6. This establishes a sense in which the GR shock wave
solutions constructed by Glimm’s method in [8] are always regular enough
to admit locally inertial frames, but at points of shock wave interaction more
complicated than those in [16, 14], we still do not know whether solutions
constructed by the Glimm scheme have the requisite C1,1 regularity that
Israel established in general for smooth shock surfaces. In summary, it re-
mains an open question as to whether weak regularity singularities exist in

2See [1, 4, 11] for results on lower regularity solutions of the vacuum Einstein equations,
a setting that rules out shock-waves.
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spherically symmetric spacetimes, and whether strong regularity singulari-
ties exist in general spacetimes.

Theorem 2.1 leads us to a natural definition of the curvature of the singu-

lar part of an L1 connection. Essentially, we define this to be the minimum
of the L1-norm of the Riemann curvature of all connections �̂ that di↵er
from � by a Lipschitz tensor, so that the jumps of �̂ agree with the jumps
of � on the singular set. Theorem 2.5 below then states that the singular
set of an L1 connection has zero curvature in a neighborhood of a point if
and only if the connection can be smoothed to C0,1 in a neighborhood of
the point.

The main step in proving Theorem 2.1 is to extend the classical result,
that Riemann flat connections are Euclidean, to connections having only
L1 regularity, c.f. Theorem 2.3 below. To prove the theorem we need to
define n-independent 1-forms starting with their restrictions to the coordi-
nate axes, sets too small in measure for L1 functions to have a meaningful
restriction. To handle these restrictions under the zero mollification limit,
we introduce the “peeling property”in Lemma 4.6. We conclude that space
of L1 connections with L1 Riemann curvature tensor provides a natural
general setting in which to investigate the existence of regularity singulari-
ties.

2. Statement of Results

We now introduce the framework and state our main results. LetM be an
n-dimensional manifold endowed with a symmetric connection � bounded
in L1, so that in each coordinate system of the C1,1 atlas, the components
of � are L1 functions. Since we are interested in a local theory, assume � is
given in a fixed coordinate system xi defined in a neighborhood U of a point
p, and assume that in x-coordinates the connection components �k

ij

satisfy

k�k1 ⌘ max
k,i,j

k�k

ij

k
L

1(U)  M0 (2.1)

for some constant M0 > 0. Our main theorem gives necessary and su�-
cient conditions for when there exists a C1,1 coordinate transformation that
lifts the regularity of � from L1 to C0,1, where C0,1 is a regularity not
preserved in general by the C1,1 atlas. (We use the standard convention
that components in x-coordinates use indices i, j, k, ... while components in
y-coordinates use ↵,�, �, ...)

Theorem 2.1. Assume �k

ij

is a symmetric L1
connection satisfying (2.1)

in x-coordinates defined in neighborhood U of a point p 2 M. Then there

exists a C1,1
transformation y � x�1

such that in y-coordinates

�↵

��

2 C0,1
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if and only if there exists a symmetric Lipschitz continuous (1, 2)-tensor �̃k

ij

such that �̂k

ij

⌘ �k

ij

� �̃k

ij

is an L1
connection which satisfies

Riem(�̂) = 0

in the L1
weak sense, in a neighborhood of p, (c.f. (3.3) below). Moreover, if

such a tensor �̃k

ij

exists, then Riem(�) is bounded in L1
, and the smoothing

transformation y � x�1
satisfies

@2y↵

@xi@xj
=
@y↵

@xk
�̂k

ij

.

Because the addition of a Lipschitz tensor cannot cancel a delta function
in the curvature, Theorem 2.1 immediately gives a su�cient condition for
a shock wave solution of the Einstein equations to have a strong regularity
singularity at p.

Corollary 2.2. Assume g is a Lipschitz continuous metric which solves the

Einstein equations G = T with T 2 L1
. If the Riemann curvature of g

contains delta function sources at point p, then g cannot be smoothed to C1,1

within the C1,1
atlas in a neighborhood of p.

The main step in proving Theorem 2.1 is to establish the following theo-
rem which asserts that Riemann flat L1 connections are Euclidean.

Theorem 2.3. Assume �̂k

ij

are the components of an L1
symmetric con-

nection �̂ in x-coordinates defined in a neighborhood of p 2 M. Then

Riem(�̂) = 0

in the L1
weak sense in a neighborhood of p if and only if there exists a

C1,1
transformation y � x�1

such that, in y-coordinates,

�̂↵

��

= 0 a.e.

in a neighborhood of p. Moreover, if such a transformation exists, then there

exists a constant C > 0, independent of �̂, such that, in a su�ciently small

neighborhood of p, we have

ky � x�1k
C

1,1  C max
k,j,i

k�̂k

ij

k1. (2.2)

We interpret Theorem 2.1 in the spirit of the Nash embedding theorems
[13]. Namely, since the addition of a Lipschitz tensor would not alter the
discontinuous jumps across shocks which form the singular set of �, Theorem
2.1 states that one can smooth the connection if and only if there exists a
Riemann flat L1 connection �̂ which has the same jump discontinuities as
the original connection � on the same singular set, (because �� �̂ = �̃ is a
continuous function). Since �̂ is flat, it can be interpreted as an extension
of the singular part of � into flat space, so the open question of regularity
singularities can be thought of as whether one can embed the singular part
of � into ambient flat space without changing the jumps.
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Based on Theorem 2.1, we propose a natural definition for a curvature
scalar of the singular part of an L1 connection �, so that the existence
of regularity singularities is equivalent to this curvature scalar being non-
zero. To define a positive curvature scalar associated with the singular set
of an L1 connection �, we first introduce an auxilliary positive definite
Riemannian metric h on M, (which for definiteness can be taken to be the
identity in the original x-coordinates), and define the invariant scalar

↵
⇥

�
⇤

⌘ (h�1)⌫⌫̄(h�1)��̄(h�1)��̄h
µµ̄

(R�)
µ

⌫��

(R�)
µ̄

⌫̄�̄�̄

, (2.3)

where R� denotes the Riemann curvature tensor of �. If R� is in L1, the
positivity of h implies ↵

⇥

�̂
⇤

is a non-negative L1 function which vanishes

if and only if the Riemann curvature of �̂ vanishes. Thus ↵ is a natural
covariant measure of the L1 norm of the curvature tensor and motivates
the following definition.

Definition 2.4. Let �k

ij

be a symmetric L1
connection defined in a co-

ordinate system x in a neighborhood U of p 2 M such that the Riemann

curvature tensor of � is also in L1
. For each M > 0, we define the curva-

ture of the singular part of � in U to be

↵
M

(�) ⌘ inf
n

k↵
⇥

���̃
⇤

k
L

1(U)

�

�

�

�̃k

ij

2 C0,1(U) with max
i,j,k

k�̃k

ij

k
C

0,1(U)  M
o

,

(2.4)
where k�̃k

ij

k
C

0,1(U) denotes the C0,1
-norm of the components of �̃ in x- co-

ordinates. The curvature of the singular part of � is then defined to be zero

in U if there exists M > 0 such that ↵
M

= 0 in U .

Note that ↵[·] is invariant but ↵
M

depends on the C0,1 norm of �̃ in U , and
this in turn depends on the C0,1 norm of �̃ in the original coordinate system
x in which the connection � is given. The point is that, if ↵

M

(�) = 0, then
the compactness of the ball of radius M > 0 in C0,1 implies the existence
of a �̃ 2 C0,1 such that �̂ = � � �̃ is Riemann flat, Riem(�̂) = 0, and
Theorem (2.1) now implies that there exists y-coordinates which smooth
the connection. Thus, according to Theorem 2.1, if the curvature scalar
↵
M

(�) > 0, then it measures the obstacle to smoothing an L1 connection
� by addition of a tensor �̃ with Lipschitz norm bounded by M . In the
case ↵

M

(�) = 0, (2.2) implies that the Lipschitz norm of �̃, the C1,1 norm
of the coordinate transformation y � x�1 that smooths the connection, as
well as the L1 norm of �̂ are all bounded by a constant times M + k�k1.
In other words, the non-vanishing of the curvature of the singular part of
an L1 connection � is necessary and su�cient for � to contain a regularity
singularity. This is recorded in the following theorem (see section 6 for
details):

Theorem 2.5. Let �k

ij

be an L1
connection, with L1

curvature tensor,

defined in x-coordinate in a neighborhood of a point p 2 M. Then there
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exists a C1,1
transformation y � x�1

which smooths � to C0,1
in a neighbor-

hood of p if and only if the curvature of the singular part of � is zero in a

neighborhood of p.

Our second main result gives a constructive proof that locally inertial
frames always exist in a natural sense for the C0,1 shock wave metrics gen-
erated by the Glimm scheme in spherically symmetric spacetimes in [8],
independent of whether the metric itself can be smoothed to C1,1.

Theorem 2.6. Let M be a spherically symmetric Lorentz manifold with

an L1
metric connection � and Riemann curvature tensor bounded in L1

.

Then, for any point p 2 M, there exists locally inertial coordinates y at p,
that can be reached within the atlas of C1,1

coordinate transformations, in

the sense that a representation of the L1
equivalence class of the connection

�↵

��

in y-coordinates vanishes at p and is Lipschitz continuous at p.

In particular, the Lipschitz continuity of �↵

��

at p is necessary and suf-
ficient to remove the Coriolis terms introduced in [16]. Theorem 2.6 thus
proves that Coriolis terms are removable and that no strong regularity singu-
larities exist in spherically symmetric spacetimes, but it remains open as to
whether the metric can always be smoothed to C1,1 at points of shock wave
interaction. Thus, the problem of whether (weak) regularity singularities
can be created by the Glimm scheme is still an open question.

3. Preliminaries

We establish that the class of L1 connections with L1 curvature tensors is
preserved by the atlas of C1,1 coordinate transformations y � x�1. To start,
assume the components �k

ij

are given L1 functions in x-coordinates, and

introduce the components Rk

lij

of the Riemann curvature tensor Riem(�)
as distributions on the space C1

0 of smooth test functions with compact
support. For a smooth connection �, the coe�cients of Riem(�) are

Rk

lij

⌘ Curl(�)k
lij

+ [�
i

,�
j

]k
l

, (3.1)

where �
i

denotes the matrix �
i

⌘
�

�k

ij

�

k,j=1,...,n
and

Curl(�)k
lij

⌘ �k

l[j,i] ⌘ �k

lj,i

��k

li,j

and [�
i

,�
j

]k
l

⌘ �k

i�

��

jl

��k

j�

��

il

(3.2)

give the “curl” and “commutator” terms, respectively, where a comma de-
notes di↵erentiation with respect to x. For an L1 connection �k

ij

, the com-
ponents of Riem(�) are linear functionals defined as

Rk

lij

[ ] ⌘ �Curl(�)k
lij

[ ] +

Z

[�
i

,�
j

]k
l

 dx

⌘ �
Z

⇣

�k

lj

 
,i

� �k

li

 
,j

⌘

dx+

Z

[�
i

,�
j

]k
l

 dx, (3.3)

where  2 C1
0 (U) are test functions on some open set U ⇢ Rn and dx is

standard Lebesgue measure. Riem(�) is bounded in L1 if there exists L1
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functions Rk

lij

such that

Rk

lij

[ ] =

Z

Rk

lij

 dx,

and in this case Rk

lij

denotes the L1 function as well as the distribution.

Thus Riem(�) = 0 if Rk

lij

= 0 as an L1 function.
Recall that the Riemann curvature tensor gives the commutator for the

covariant derivative r
j

by

r
i

!
j

�r
j

!
j

= R�

lij

!
�

,

where the covariant derivative is given by

r
j

!
k

⌘ !
k;j =

@!
k

@xj
� ��

kj

!
�

.

The transformation law for connections

�k

ij

= Jk

↵

�↵

��

J�

i

J�

j

+ Jk

↵

@2y↵

@xi@xj
, (3.4)

shows that L1 connections are preserved by C1,1 coordinate transformations
y�x�1, because the Jacobian J↵

i

⌘ @y

↵

@x

i and its inverse J i

↵

are then Lipschitz
continuous. The next theorem, (first proven in [18]), states that the atlas
of C1,1 coordinate transformations also preserves the L1 property of the
Riemann curvature tensor, and therefore maintains the condition that the
curvature tensor be free of delta function sources:

Theorem 3.1. Let �k

ij

be an L1
connection in x-coordinates with Riemann

curvature tensor in L1
with its components represented by L1

functions

Ri

jkl

. Let ��

↵�

be the L1
connection resulting from (3.4) under a C1,1

coor-

dinate transformation y�x�1
. Then, the the weak Riemann curvature tensor

(3.3) of ��

↵�

in y-coordinates is in L1
and its components are represented

by the L1
functions

R↵

���

= Ri

jkl

@xj

@y�
@xk

@y�
@xl

@y�
@y↵

@xi
. (3.5)

To prove Theorem 3.1, observe that the Riemann curvature tensor in
x-coordinates is in L1 if and only if its curl part is represented by L1

functions, which we denote by Curl
x

(�). Taking the weak curl of the trans-

formed connection (3.4), we find that weak derivatives of @

2
y

↵

@x

i
@x

j all cancel
out. As a consequence Curl

x

(�) equals Curl
y

(�) contracted with the Jaco-
bian, plus terms in L1 resulting from derivatives of the Lipschitz Jacobian.
A straightforward computation then verifies (3.5).

4. A Geometric Equivalence for Smoothing L1
Connections

We first give the proof of Theorem 2.1 assuming Theorem 2.3, and then
give a careful proof of Theorem 2.3.
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4.1. Proof of Theorem 2.1: Note first that the splitting of �k

ij

into a
connection and a (1, 2)-tensor is consistent with the covariant transformation
law (3.4), because the di↵erence between two connections is always a tensor,
c.f. [9]. That is, assuming �̂ transforms under a coordinate transformation
y↵ � x�1 by the transformation rule of a connection,

�̂↵

��

=

⇢

�̂i

jk

J j

�

Jk

�

J↵

i

+ J↵

i

@2xi

@y�y�

�

, (4.1)

and �̃ transforms by the transformation law of a tensor,

�̃↵

��

= �̃i

jk

J j

�

Jk

�

J↵

i

,

where J↵

k

⌘ @y

↵

@x

k is the Jacobian and Jk

↵

⌘ @x

k

@y

↵ its inverse. It follows that

� ⌘ �̃+ �̂ transforms as a connection,

�↵

��

⌘ �̃↵

��

+ �̂↵

��

= �̃i

jk

J j

�

Jk

�

J↵

i

+

⇢

�̂i

jk

J j

�

Jk

�

J↵

i

+ J↵

i

@2xi

@y�y�

�

. (4.2)

To prove the backward implication, assume there exists a splitting �k

ij

=

�̃k

ij

+ �̂k

ij

in a neighborhood of p with �̃k

ij

2 C0,1 a (1, 2)-tensor and with

�̂k

ij

2 L1 a connection such that Riem(�̂) = 0. Thus assuming Theorem 2.3,

Riem(�̂) = 0 implies that there exists a coordinate transformation y � x�1

within the atlas of C1,1 transformations such that in y-coordinates

�̂↵

��

= 0

in an L1 almost everywhere sense in a neighborhood of p, and hence can
be assumed to vanish everywhere. Thus, by (4.1) and (4.2), we have in
y-coordinates that

�↵

��

= �̃i

jk

J j

�

Jk

�

J↵

i

2 C0,1

which proves the reverse implication.
For the forward implication, assume there exists a transformation y�x�1 2

C1,1 such that �↵

��

2 C0,1 in y-coordinates in some neighborhood of p. In
this case, considering

�k

ij

= �↵

��

J�

i

J�

j

Jk

↵

+ Jk

↵

@2y↵

@xi@xj
, (4.3)

we define
�̃k

ij

⌘ �↵

��

J�

j

J�

i

Jk

↵

2 C0,1

as the Lipschitz continuous tensor part of �k

ij

and

�̂k

ij

⌘ Jk

↵

@2y↵

@xi@xj
(4.4)

as the L1 connection part. We now claim the right hand side of (4.4)
is flat, satisfying Riem(�̂) = 0 in a neighborhood of p, because it is the
y-coordinate representation of the zero connection in x-coordinates. This
follows from Theorem 3.1 because weak L1 curvature tensors transform as
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tensors. To see this explicitly, take the curl of (4.4) in the weak sense (3.3)
and observe that the third order (weak) derivatives cancel because

Curl(�̂)k
lij

[ ] = �
Z

Jk

↵

�

y↵
,lj

 
,i

� y↵
,li

 
,j

�

dx

=

Z

⇣

Jk

↵,i

y↵
,lj

� Jk

↵,j

y↵
,li

⌘

 dx,

due to the symmetry in i and j. Thus, the components of the Riemann
curvature tensor of (4.4) are in fact given by the L1 functions

Rk

lij

= Jk

↵,i

y↵
,lj

� Jk

↵,j

y↵
,li

+ �k

im

�m

jl

� �k

jm

�m

il

.

Using now that J�

k

Jk

↵,i

= �J�

k,i

Jk

↵

= �y�
,ki

Jk

↵

, it follows that

J�

k

Rk

lij

= �y�
,ki

Jk

↵

y↵
,lj

+ y�
,kj

Jk

↵

y↵
,li

+ J�

k

�k

i�

��

jl

� J�

k

�k

j�

��

il

,

and substituting (4.4) for the remaining �’s, the above terms mutually cancel
to give J�

k

Rk

lij

= 0. This completes the proof of Theorem 2.1. ⇤

4.2. Proof of Theorem 2.3: Assume �̂k

ij

are the components of an L1

connection defined in a neighborhood of p 2 M in x-coordinates and assume
�̂k

ij

satisfies the L1 bound

k�̂k1 ⌘ max
k,i,j

k�̂k

ij

(x)k
L

1(U) < 1. (4.5)

The backward implication of Theorem 2.3 follows immediately from Theo-
rem 3.1. That is, assuming there exists a C1,1 transformation y � x�1 such
that

�̂↵

��

= 0 a.e.

in y-coordinates, we have Riem(�̂) = 0 in y-coordinates in the weak sense
of (3.3). Since weak L1 curvature tensors transform as tensors by Theorem
3.1, we must have Riem(�̂) = 0 in the weak sense in all coordinates.

The remainder of this section is devoted to the proof of the forward impli-
cation of Theorem 2.3. For this, assume �̂k

ij

(x) is an L1 connection given on

some neighborhood U in x-coordinates, such that Riem(�̂) = 0 in the weak
L1 sense. For the proof we establish a framework in which the argument
in [19] can be extended to the weaker setting of connections in L1. The ar-
gument in [19] can be summarized as follows: The zero curvature condition
is used to construct four independent 1-forms !↵ = !↵

j

dxj , (↵ = 1, ..., n),
which are parallel in every direction in x(U), i.e., r

j

!↵ = 0, j = 1, ..., n,

where now r
j

denotes the covariant derivative for �̂. The parallel condition
is then used to construct coordinates y↵ � x�1 with the property that

@y↵

@xj
= !↵

j
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The 1-forms being parallel in every direction then further implies

@2y↵

@xi@xj
=
@!↵

j

@xi
= �̂k

ij

@y↵

@xk
.

Substituting the previous equation into the transformation law (3.4) yields

�̂k

ij

= �̂k

ij

+ �̂↵

��

@y�

@xi
@y�

@xj
@xk

@y↵
, (4.6)

which implies that �̂↵

��

= 0. The problem in applying this argument to low
regularity L1 connections is that such connections do not have meaningful
restrictions to low dimensional curves and surfaces along which the parallel
1-forms can be solved for. Thus the main point is that derivatives of mollified
L1 connections do not have a meaningful zero mollification limit in general,
but can be controlled in the presence of an L1 bound on the Riemann
curvature tensor.

The main step in the proof of the forward implication of 2.3 concerns the
existence of parallel 1-forms. We state this in Proposition 4.1 below, and
then show how to construct the sought after coordinates y. For this, without
loss of generality, we assume from here on that the coordinate neighborhood
x(U) is an n-cube given by the direct product of n intervals,

x(U) = I1 ⇥ · · ·⇥ I
n

, I
k

= (a
k

, b
k

), a
k

< 0 < b
k

.

Proposition 4.1. Assume �̂ is a symmetric connection with Riem(�̂) = 0
with x-components �̂k

ij

(x), x 2 x(U), satisfying (4.5). Then there exists

n linearly independent 1-forms !↵ = !↵

i

dxi, ↵ = 1, ..., n, with components

!↵

i

(x) Lipschitz continuous in x, such that the 1-forms are parallel in the L1

sense

kr
j

!↵k
L

1(x(U)) = 0, 8j = 1, ..., n, (4.7)

for r
j

the covariant derivative of �̂. Moreover, there exists a constant C >

0, independent of �̂, such that, in a su�ciently small neighborhood of p, we
have

k!↵k
C

0,1  C k�̂k1. (4.8)

We first assume Proposition 4.1 and prove that Proposition 4.1 implies
Theorem 2.3. We then give the proof of Proposition 4.1 in Section 4.3.
Assuming Proposition 4.1 holds, a simple computation shows that the 1-
forms !↵ being L1-parallel in the sense of (4.7) implies they are exact almost
everywhere. Namely, (4.7) implies

@

@xi
!↵

j

=
@

@xj
!↵

i

, a.e. in x(U), (4.9)

so that

d!↵ = !↵

i,j

dxi ^ dxj = 0,

point-wise almost everywhere in x(U). To prove the 1-forms !↵ are closed,
we need to establish Poincare’s Lemma for Lipschitz continuous 1-forms.
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For this, we first prove the following corollary of Proposition 4.1 stating
that (4.9) make sense on lower dimensional subspaces, which is required to
integrate the 1-forms up to a full coordinate system y↵. We introduce for
each l = 1, ..., n the subsets

⌦
l

⌘ I1 ⇥ · · ·⇥ I
l

.

Lemma 4.2. For each of the 1-forms w↵

of Proposition 4.1 there exists

numbers xj0 2 I
j

such that

Z

⌦l

�

�@
i

!↵

j

�@
j

!↵

i

�

�(x1, ..., xl, xl+1
0 , ..., xn0 )dx

1 · · · dxl = 0, 8i, j  l, (4.10)

for each l = 1, ..., n, where dµ
l

= dx1 · · · dxl denotes Lebesgue measure on

⌦
l

and where !↵

are the restrictions of the original !↵

to the l-dimensional

cube ⌦
l

.

Note that the derivatives of the Lipschitz continuous 1-forms !↵ in (4.10)
are only taken in directions parallel to the restrictions ⌦

l

and are thus well-
defined in L1(⌦

l

), since restrictions of C0,1 functions are still Lipschitz
continuous.

Proof. Consider a fixed ↵ 2 {1, ..., n}. Equation (4.7) tells us that @
j

!↵

i

�
�̂k

ij

w↵

k

vanishes in L1(x(U)), so that the symmetry of the connection �̂k

ij

=

�̂k

ji

implies
�

�@
j

!↵

i

� @
i

!↵

j

�

�

L

1(x(U))
= 0. (4.11)

It follows from Fubini’s Theorem that there exists some xn0 2 I
n

such that
Z

⌦n�1

�

�@
j

!↵

i

� @
i

!↵

j

�

� (x1, ..., xn�1, xn0 )dx
1 · · · dxn�1 = 0, 8i, j  n� 1,

because, if the previous integral were non-zero for all xn0 2 I
n

, then (4.11)
would be non-zero. Since the restrictions of the !↵’s are again Lipschitz
continuous, we can apply this argument iteratively to obtain xl0 2 I

l

such
that (4.10) holds for each l = 1, ..., n. ⇤

From here on we assume, without loss of generality (by shifting the origin
of the x-coordinates suitably), that

xj0 = 0, j = 1, ..., n.

We now prove Poincare’s Lemma for Lipschitz continuous 1-forms.

Lemma 4.3. Let !↵

, ↵ = 1, ..., n, be n independent 1-forms with Lips-

chitz continuous components in x-coordinates which are exact in the sense

that (4.10) holds. Then there exist functions y↵ � x�1
in the atlas of C1,1

coordinate transformations which satisfy

@y↵

@xj
= !↵

j

, (4.12)

for each j = 1, ..., n, ↵ = 1, ..., n.
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Proof. To prove Lemma 4.3, define the coordinates

y↵(x1, ..., xn) ⌘
n

X

i=1

Z

x

i

0
!↵

i

(x1, ..., xi�1, t, 0, ..., 0)dt (4.13)

=

Z

x

n

0
!↵

n

(x1, ..., xn�1, t)dt + ...+

Z

x

1

0
!↵

1 (t, 0, ..., 0)dt.

It follows immediately that y↵ 2 C0,1(x(U)), and thus the sought after
identity (4.12) holds for di↵erentiation in j = n direction.

We first give the argument for verifying (4.12) in cases j 6= n, when the
!↵ are assumed smooth. In this case, di↵erentiating (4.13) gives

@y↵

@xj

(x1, ..., xn) =
n

X

i=j+1

Z

x

i

0

@!↵

i

@xj

(x1, ..., xi�1, t, 0, ..., 0)dt+ !↵

j

(x1, ..., xj , 0, ..., 0)

(4.14)
and using that for smooth !↵ (4.10) implies @

j

!↵

i

= @
i

!↵

j

point-wise, we
obtain

@y↵

@xj

(x1, ..., xn) =
n

X

i=j+1

Z

x

i

0

@!↵

j

@xi

(x1, ..., xi�1, t, 0, ..., 0)dt+ !↵

j

(x1, ..., xj , 0, ..., 0).

(4.15)
Then from the Fundamental Theorem of Calculus, observing that boundary
terms of the integrals mutually cancel, we find the sought after identity

@y↵

@xj

(x1, ..., xn) = !↵

j

(x1, ..., xn). (4.16)

To adapt the argument (4.14) - (4.16) to the Lipschitz continuity of !↵,
we have to overcome the obstacle that @

j

!↵

i

= @
i

!↵

j

only holds on the special
surfaces identified in Lemma 4.2. For this, we first integrate equation (4.14)
and then use that (4.10) of Lemma 4.2 implies

@
j

!↵

i

(x1, ..., xl, 0, ..., 0) = @
i

!↵

j

(x1, ..., xl, 0, ..., 0) 8i, j  l, (4.17)

almost everywhere in the l-dimensional spaces ⌦
l

, for each l = 1, ..., n. We
introduce for notational convenience

[f ]
L

1(⌦l)
⌘

Z

I1
...

Z

Il
f(x1, ..., xl)dx1 · · · dxl

for f 2 L1(⌦
l

). Di↵erentiating (4.13), we obtain again (4.14) because the
Lebesgue dominated convergence Theorem applies to our Lipschitz contin-
uous 1-forms. Integrating (4.14) now yields



@y↵

@xj

�

L

1(⌦n)

=

Z

I1
...

Z

In

n

X

i=j+1

Z

x

i

0

@!↵

i

@xj
(x1, ..., xi�1, t, 0, ..., 0)dt dx1 · · · dxn

+
⇥

!↵

j

(·, 0, ..., 0)
⇤

L

1(⌦j)
· vol(I

j+1 ⇥ ...⇥ I
n

).
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Defining for each i = j + 1, ..., n

I
i

⌘
Z

I1
...

Z

Ii�1

Z

x

i

0

@!↵

i

@xj
(x1, ..., xi�1, t, 0, ..., 0)dtdx1...dxi�1

and applying Fubini’s Theorem, we get


@y↵

@xj

�

L

1(⌦n)

=
n

X

i=j+1

· vol(I
i+1 ⇥ ...⇥ I

n

)

Z

Ii
I
i

dxi

+
⇥

!↵

j

(·, 0, ..., 0)
⇤

L

1(⌦j)
· vol(I

j+1 ⇥ ...⇥ I
n

). (4.18)

We use now (4.17) to commute derivatives with indices of !↵ on each of the
subspaces ⌦

i

, and this yields for each i = j + 1, ..., n

I
i

=

Z

I1
...

Z

Ii�1

Z

x

i

0

@!↵

j

@xi
(x1, ..., xi�1, t, 0, ..., 0)dtdx1...dxi�1.

Apply the Fundamental Theorem of Calculus, we get

I
i

=

Z

I1
...

Z

Ii�1

⇥

!↵

j

(x1, ..., xi�1, · , 0, ..., 0)
⇤

x

i

0
dx1...dxi�1.

Substituting this expression for I
i

back into (4.18), we obtain for each i =
j + 1, ..., n


@y↵

@xj

�

L

1(⌦n)

=
n

X

i=j+1

Z

I1
...

Z

In

⇥

!↵

j

(x1, ..., xi�1, · , 0, ..., 0)
⇤

x

i

0
dx1...dxn

+

Z

I1
...

Z

In
!↵

j

(x1, ..., xj , 0, ..., 0)dx1...dxn.

As in the step from (4.15) - (4.16), the boundary terms cancel in the above
summation, leading to

Z

I1
...

Z

In

@y↵

@xj
dx1 · · · dxn =

Z

I1
...

Z

In
!↵

j

(x1, ..., xn)dx1...dxn.(4.19)

Now, the argument (4.18) - (4.19) also holds for integration over subsets of
the form Ĩ1 ⇥ ... ⇥ Ĩ

n

where Ĩ
j

⇢ I
j

, for each j = 1, ..., n, so that (4.19)
implies

�

�

�

�

@y↵

@xj
� !↵

j

�

�

�

�

L

1(I1⇥...⇥In)
= 0.

It follows that (4.12) holds almost everywhere in x(U), that is,
@y↵

@xj
= !↵

j

a.e. in x(U).

Since the j-th weak derivative of y↵ is given by the C0,1 function !↵

j

for

each j = 1, ..., n, we conclude that y↵ 2 C1,1
�

x(U)
�

and @y

↵

@x

j = !↵

j

point-
wise everywhere in U , which proves (4.12). The independence of the 1-forms
!↵, for ↵ = 1, ..., n, implies x 7! y to be an invertible map on x(U), with non-
singular Jacobian @y

↵

@x

i 2 C0,1(U). Thus the coordinate transformation y�x�1
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lies within the atlas of C1,1 coordinate transformations. This completes the
proof of Lemma 4.3. ⇤

Proof of Theorem 2.3: We now complete the forward implication in the
proof of Theorem 2.3 assuming Proposition 4.1 is true. Observe that the
C1,1 estimate (2.2) of Theorem 2.3 is an immediate consequence of definition
(4.13) together with the Lipschitz estimate (4.8).

In the y-coordinates defined by (4.13), the components of �̂ are given by

�̂k

ij

=
@2y�

@xi@xj
@xk

@y�
+ �̂�

↵�

@y↵

@xi
@y�

@xj
@xk

@y�
(4.20)

almost everywhere in x(U). But by (4.12) we have @y

↵

@x

j = !↵

j

almost ev-
erywhere in x(U), so that the !↵ being parallel in the sense of (4.7) now
implies that

@2y�

@xi@xj
=

@

@xi
!�

j

= �̂l

ij

!�

l

= �̂l

ij

@y�

@xl
(4.21)

almost everywhere in x(U). Substituting (4.21) into (4.20) gives

�̂k

ij

= �̂k

ij

+ �̂�

↵�

@y↵

@xi
@y�

@xj
@xk

@y�
, (4.22)

which together with the Jacobian @y

↵

@x

i being non-singular implies

�̂�

↵�

= 0, a.e. in x(U).

This completes the proof of Theorem 2.3 once we prove Proposition 4.1. ⇤

4.3. Proof of Proposition 4.1: Assume �̂k

ij

(x) is an L1 connection given

on some neighborhood U in x-coordinates, such that Riem(�̂) = 0 in the
weak L1 sense. We construct n linearly independent 1-forms !↵ = !↵

i

dxi

which are Lipschitz continuous and parallel in the sense of (4.7). Our strat-
egy is to mollify the connection, and modify the standard argument for
constructing parallel 1-forms when the curvature is zero and the connection
is smooth. The mollified connection, however, has nonzero curvature, so we
must keep track of errors in ✏ su�ciently to prove the curvatures tend to
zero in L1 when taking the zero mollification limit at the end. The basic L1

estimates for this are established in Lemmas 4.4 and 4.5 below. The main
technicality is that, as in the proof of Lemma 4.3, the construction requires
integrating on lower dimensional surfaces, and the boundary terms arising
on these surfaces must also cancel due to zero curvature in the zero mollifi-
cation limit. In order to achieve this, we need a peeling property analogous
to Lemma 4.2 to ensure that the curvature actually vanishes in the zero
mollification limit on these lower dimensional sets. This is accomplished in
Lemma 4.6 below. Unlike the case of Poincare Lemma, we need to mollify
in order to apply uniqueness theorems for the ODE’s arising from parallel
transport.
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To start, consider a standard mollification of �̂k

ij

(x),

(�̂
✏

)k
ij

(x) =

Z

x(U)
�̂k

ij

(x̃)�
✏

(x� x̃)dx̃, (4.23)

with a mollifier � 2 C1
0

�

x(U)
�

, again assuming fixed coordinates xi on x(U).
Then �̂

✏

2 C1 and k�̂
✏

� �̂k
L

1(x(U)) converges to zero as ✏! 0. Moreover,

|�̂
✏

(x)|  k�̂k
L

1

Z

|�
✏

(x� x̃)| dx̃ = k�̂k
L

1 ,

so that the L1 bound on �̂, (4.5), implies

k(�̂
✏

)k
ij

k
L

1  k�̂k

ij

k
L

1  k�̂k1, (4.24)

for k�̂k1 the ✏ independent constant in (4.5). To construct the 1-forms !↵ =
!↵

i

dxi, we establish the following three lemmas regarding the curvature
Riem(�̂

✏

), assuming �̂ 2 L1.

Lemma 4.4. Assume Riem(�̂) is bounded in L1
. Then the mollified cur-

vature satisfies the ✏-independent bound
�

�Riem(�̂
✏

)
�

�

L

1(x(U))
 c

�

��̂
�

�

2
L

1(x(U))
+
�

�Riem(�̂)
�

�

L

1(x(U))
, (4.25)

where c is a combinatorial constant depending only on n.

Proof. Recall that the Riemann curvature tensor can be written as a curl
plus a commutator,

Riem(�̂) ⌘ Curl(�̂) + [�̂, �̂], (4.26)

c.f. (3.1) - (3.2). For the mollified “curl-part” of the curvature, observe that

Curl
x

(�̂
✏

)k
lij

=
@

@xj
(�̂

✏

)k
li

(x)� @

@xi
(�̂

✏

)k
lj

(x)

=

Z

⇣

�̂k

li

(x̃)
@

@xj
�
✏

(x� x̃)� �̂k

lj

(x̃)
@

@xi
�
✏

(x� x̃)
⌘

dx̃

= �
Z

⇣

�̂k

li

(x̃)
@

@x̃j
�
✏

(x� x̃)� �̂k

lj

(x̃)
@

@x̃i
�
✏

(x� x̃)
⌘

dx̃

which is the weak curl of �̂. Because Riem(�̂) is assumed to be in L1, we
conclude that there exists L1 functions that represent the curl of �̂, since
the commutator part in (3.1) contains no derivatives of �̂. Denoting this
L1 function by Curl(�̂) 2 L1, the previous equations imply

Curl
x

(�̂
✏

) =

Z

Curl
x̃

(�̂)�
✏

(x� x̃) dx̃. (4.27)

Using now the splitting (4.26) we write (4.27) as

Curl
x

(�̂
✏

)(x) = �
Z

�

[�̂, �̂]� Riem(�̂)
�

(x̃) �
✏

(x� x̃)dx̃
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from which we conclude that
�

�Curl(�̂
✏

)
�

�

L

1 
�

�[�̂, �̂]
�

�

L

1 +
�

�Riem(�̂)
�

�

L

1

 c
�

��̂
�

�

2
L

1 +
�

�Riem(�̂)
�

�

L

1 , (4.28)

for some combinatorial constant c. Using the splitting (4.26) for �̂
✏

, (4.28)
implies that

�

�Riem(�̂
✏

)
�

�

L

1 
�

�Curl(�̂
✏

)
�

�

L

1 +
�

�[�̂, �̂]
�

�

L

1

 c
�

��̂
�

�

2
L

1 +
�

�Riem(�̂)
�

�

L

1 ,

which gives the sought after ✏ independent bound (4.25) and proves Lemma
4.4. ⇤

Lemma 4.5. Assume Riem(�̂) is bounded in L1
. Then Riem(�̂

✏

) converges
to Riem(�̂) in L1(x(U)) as ✏! 0.

Proof. Multiplying each component of Riem(�̂
✏

), (R
✏

)k
lij

, by a test-function

 2 C1
0

�

x(U)
�

and integrating over x(U), we find
Z

x(U)
(R

✏

)k
lij

 dx =

Z

(�̂
✏

)k
l[j,i] dx+

Z

x(U)
[(�̂

✏

)
i

, (�̂
✏

)
j

]k
l

 dx

= �
Z

x(U)

⇣

(�̂
✏

)k
lj

 
,i

� (�̂
✏

)k
li

 
,j

⌘

dx+

Z

x(U)
[(�̂

✏

)
i

, (�̂
✏

)
j

]k
l

 dx.

Now, as ✏ approaches zero, (�̂
✏

)k
ij

! �̂k

ij

in L1, so taking this limit in the
last line of the previous equation and using that the test functions and their
derivatives are bounded, we conclude

lim
✏!0

Z

(R
✏

)k
lij

 dx = �
Z

⇣

�̂k

lj

 
,i

� �̂k

li

 
,j

⌘

dx+

Z

[�̂
i

, �̂
j

]k
l

 dx = Rk

lij

[ ],

where we used the weak form of the Riemann curvature (3.3) in the last
line. This proves Lemma 4.5. ⇤

The following lemma establishes the L1-peeling property which is crucial
for the construction of parallel one-forms (4.7), because it allows us to assign
initial conditions consistently, analogous to the initial conditions in Lemma
4.2.

Lemma 4.6. Assume Riem(�̂) = 0. For every sequence ✏ ! 0 there exists

a subsequence ✏
k

(with ✏
k

! 0 as k ! 1) and some point (x̄1, ..., x̄n) 2
I1⇥...⇥I

n

such that the mollified curvature satisfies the L1 peeling property
at x̄ ⌘ (x̄1, ..., x̄n), by which we mean that for each m = 1, ..., n,

lim
✏k!0

Z

I1
...

Z

Im
(R

✏k)
k

lij

(x1, ..., xm, x̄m+1, ..., x̄n)dx1 · · · dxm = 0, (4.29)

that is,

�

�(R
✏k)

k

lij

(·, ..., ·, x̄m+1, ..., x̄n)
�

�

L

1(I1⇥...⇥Im)
�! 0 as ✏

k

! 0.
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Proof. Define x̃ ⌘ (x1, ..., xm) 2 I1 ⇥ ... ⇥ I
m

and x̄ ⌘ (xm+1, ..., xn) 2
I
m+1 ⇥ ...⇥ I

n

. Fubini’s Theorem implies that

(R̄
✏

)k
lij

(x̄) ⌘
Z

I1⇥...⇥Im
(R

✏

)k
lij

(x̃, x̄)dx̃

is an integrable function over I
m+1 ⇥ ...⇥ I

n

. Since, Riem(�̂
✏

) converges to
zero in L1(x(U)) by Lemma 4.5, it follows that (R̄

✏

)k
lij

converges to zero in

L1(I
m+1 ⇥ ...⇥ I

n

), namely
Z

Im+1⇥...⇥In
(R̄

✏

)k
lij

(x̄)dx̄ =

Z

U
(R

✏

)k
lij

dx �! 0, as ✏! 0.

Therefore, there exists a subsequence ✏m
k

(with ✏m
k

! 0 as k ! 1) and
some point x̄ 2 I

m+1 ⇥ ... ⇥ I
n

at which (R̄
✏

m
k
)k
lij

(·) converges to zero as

k ! 1. For this point x̄, it follows that (R
✏

m
k
)k
lij

(·, x̄) converges to 0 in

L1(I1 ⇥ ...⇥ I
m

⇥ {x̄}) as k ! 1.
Now, applying this construction with respect to I1⇥ ...⇥I

n

, we first find
a point x̄n 2 I

n

together with a subsequence ✏n�1
k

of ✏ such that

(R
✏

n�1
k

)k
lij

( · , x̄n) �! 0, in L1(I1 ⇥ ...⇥ I
n�1), as k ! 1.

Given this convergence on the n � 1 sub-cube I1 ⇥ ... ⇥ I
n�1 ⇥ {x̄n}, we

again apply the above construction (but now with respect to the sub-cube)
to obtain a point x̄n�1 2 I

n�1 and a subsequence ✏n�2
k

of ✏n�1
k

such that

(R
✏

n�2
k

)k
lij

( · , x̄n�1, x̄n) �! 0, in L1(I1 ⇥ ...⇥ I
n�2), as k ! 1.

Continuing, we successively find a subsequence ✏
k

of ✏ and a point (x̄1, ..., x̄n) 2
x(U) at which the peeling property (4.29) holds. This proves Lemma 4.6. ⇤

Our goal now is to construct n linearly independent 1-forms !↵

✏

= (!↵

✏

)
i

dxi,

↵ = 1, ..., n, of the mollified connections �̂
✏

by parallel translating in x-
coordinate directions e1, ..., en, one direction at a time, starting with ini-
tial data given at a point x̄ where the peeling property holds to control
the L1-norms of the curvature on the initial data. The resulting 1-forms
!↵

✏

= (!↵

✏

)
i

dxi, will not be parallel in every direction because the curvature
of the mollified connections is in general nonzero. However, since the Rie-
mann curvature converges to zero in L1 as ✏! 0, one can prove that the !↵

✏

tend to parallel 1-forms in the limit ✏ ! 0, once their convergence in C0,1

has been established. Concerning this convergence, the uniform L1 bound
on the curvature alone will imply that the resulting 1-forms are Lipschitz
continuous uniformly in ✏, so that the Arzela-Ascoli Theorem yields a con-
vergent subsequence of the 1-forms !↵

✏

that converge to Lipschitz continuous
1-forms !1

i

dxi, ...,!n

i

dxi as ✏! 0.
To begin the construction of the parallel 1-forms, assume a sequence ✏! 0

such that the curvature satisfies the peeling property (4.29) at the point
x̄ = (x̄1, ..., x̄n). Assume without loss of generality that x̄ = (0, ..., 0), and
I
k

= (�1, 1) ⌘ I for each k = 1, ..., n. We begin with the construction of
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1-forms on the two-surface I1 ⇥ I2 ⇥ {x̄3}⇥ ...⇥ {x̄n} which are parallel in
the x2-direction, and then extend to (x1, ..., xn) 2 x(U) by induction, in the
following four steps:

Step (i): First solve for 1-forms !↵

✏

= (!↵

✏

)
j

dxj , for ↵ = 1, ..., n, parallel
along the x1-axis. I.e., solve the ODE initial value problem

r✏

1 (!
↵

✏

)
j

(x1, 0) ⌘
@ (!↵

✏

)
j

@x1
(x1, 0)�

⇣

�̂
✏

⌘

k

1j
(!↵

✏

)
k

(x1, 0) = 0, (4.30)

(!↵

✏

) (0, 0) = e↵, (4.31)

where we suppress the dependence on (x̄3, ..., x̄n) = (0, ..., 0), which are fixed.
Since we seek independent 1-forms, we choose the initial data for the 1-forms
at the point (0, 0) to be the n-independent coordinate co-vectors e↵ ⌘ dx↵.
For the construction it su�ces to keep ↵ fixed and, for ease of notation in
Steps (i)-(iv), we write !✏ ⌘ !✏

i

dxi instead of !↵

✏

⌘ (!↵

✏

)
i

dxi.
Taking t = x1, (4.30)-(4.31) is an initial value problem for an ODE of the

form
u̇+A

✏

u = 0,

where u(t) = (!✏

1(t, 0), ...,!
✏

n

(t, 0)) 2 Rn, and (A
✏

)k
j

(t) =
⇣

�̂
✏

⌘

k

1j
(t, 0) is an

n ⇥ n matrix which is smooth and bounded in the L1 norm, uniformly
in ✏, by (4.24). Thus the Picard-Lindelö↵ existence theorem for ODE’s
implies there exists a unique smooth solution u(t) = !✏(t, 0). Moreover, the
Grönwall inequality together with the L1 bound on A

✏

imply the resulting 1-
forms !✏(x1, 0) ⌘ !✏(x1, x̄2, ..., x̄n) = !✏(x1, 0, ..., 0) are bounded, uniformly
in ✏, which then yields Lipschitz continuity in the x1-direction, uniformly in
✏.

Step (ii): Given the !✏(x1, 0) from Step (i), assume for simplicity !✏(x1, 0)
exists for all x1 2 (�1, 1), use !✏(x1, 0) as initial data to solve for the parallel
transport in the x2-direction starting from x2 = 0, by solving the ODE initial
value problem

r✏

2!
✏

j

(x1, x2) ⌘
@!✏

j

@x2
(x1, x2)�

⇣

�̂
✏

⌘

k

2j
!✏

k

(x1, x2) = 0, (4.32)

!✏(x1, x2) = !✏(x1, 0) at x2 = 0. (4.33)

For fixed x1 2 (�1, 1), taking t = x2, (4.32)-(4.33) is an initial value problem
for an ODE of the form

u̇+A
✏

u = 0, (4.34)

with u(t) = !✏(x1, t) 2 Rn and (A
✏

)k
j

(t) =
⇣

�̂
✏

⌘

k

2j
(x1, t) an n ⇥ n matrix

which is smooth and bounded in the supnorm uniformly in ✏, according
to (4.24). The Picard-Lindelö↵ theorem implies that there exists a unique
smooth solution !✏(x1, t), and for ease we again assume !✏(x1, t) to be de-
fined throughout the interval �1 < t < 1 for each x1 2 (�1, 1). The
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✏-independent supnorm bound kA
✏

k
L

1  k�̂k1 on I1 ⇥ I2, together with
the Grönwall inequality for (4.34), imply the supnorm bound

k!✏k
L

1(I1⇥I2)  K0, (4.35)

where we use K0 to denote a universal constant depending only on �̂, in-
dependent of ✏, with K0 = o(k�̂k1 as k�̂ ! 0. Moreover, kA

✏

k
L

1  k�̂k1
implies the !✏(x1, x2) ⌘ !✏(x1, x2, 0, ..., 0) satisfies a Lipschitz bound in the
x2-direction,

�

�

�

�

@!✏

@x2

�

�

�

�

L

1(I1⇥I2)
 K0, (4.36)

the right hand side of (4.36) again a constant depending on �̂, independent
of ✏. However, we still need to control the Lipschitz bound (4.36) in the
x1-direction. This is accomplished in Step (iii).

Step (iii): In (ii) we constructed !✏(x1, x2) parallel in x2 for each fixed
x1 2 I1, (i.e., r✏

2!
✏ ⌘ !✏

;2 = 0), which gives Lipschitz continuity in x2-

direction uniform in ✏ and x1. To get Lipschitz continuity in x1-direction
uniform in ✏ and x2, we estimate the change of u ⌘ r✏

1!
✏ in x2-direction,

starting from x2 = 0 where u ⌘ r✏

1!
✏(x1, 0) = 0 by construction.

To obtain the equation for the change in x2-direction, use the definition
of curvature to write

r✏

2

⇥

!✏

k;1

⇤

= r✏

1r✏

2!
✏

k

+ (R
✏

)�
k21 !

✏

�

, (4.37)

so the definition of covariant derivative gives

r✏

1r✏

2!
✏

k

=
@

@x1
⇥

!✏

k;2

⇤

� (�̂
✏

)�1k!�;2 � (�̂
✏

)�12!
✏

k;� .

Substituting this into (4.37) using !
�;2 = 0, we conclude that (4.37) is

equivalent to

r✏

2

⇥

!✏

k;1

⇤

+ (�̂
✏

)�12!
✏

k;� � (R
✏

)�
k21 !

✏

�

= 0. (4.38)

On the other hand, the definition of r✏

2 gives

r✏

2

⇥

!✏

k;1

⇤

=
@

@x2
⇥

!✏

k;1

⇤

� (�̂
✏

)�2k!
✏

�;1 � (�̂
✏

)�21!
✏

k;� . (4.39)

Putting (4.39) into (4.38) and canceling the common term gives the ODE
for u ⌘ !✏

k;1,

@

@x2
⇥

!✏

k;1

⇤

� (�̂
✏

)�2k!
✏

�;1 � (R
✏

)�
k21 !

✏

�

= 0. (4.40)

Thus, for fixed x1, letting t = x2 and

u
k

(t) ⌘ !✏

k;1(x
1, t), k = 1, ..., n,

the x2-directional change of u is determined by the system of ODE’s

u̇+A
✏

u+B
✏

= 0, (4.41)
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where u = (u1, ..., un), and the n ⇥ n-matrix A
✏

as well as the n-vector B
✏

are given by

(A
✏

)�
k

= �
⇣

�̂
✏

⌘

�

2k
and (B

✏

)
k

= � (R
✏

)�
k21 !

✏

�

.

In addition to the ✏-independent bound on A
✏

, we have by Lemma 4.4
and (4.35) that

kB
✏

k
L

1  kR
✏

k
L

1 k!✏

�

k
L

1  K0, (4.42)

where again K0 denotes a constant independent of ✏, and the L1-norm is
taken on I1⇥I2. To apply the Grönwall inequality, write (4.41) equivalently
as the integral equation

u(t) = �
Z

t

0
B

✏

(s)ds�
Z

t

0
A

✏

(s)u(s)ds,

where we use that the initial condition is zero at x2 = 0, because parallel
translation at x2 = 0 holds for all ✏ > 0. Taking the point-wise Euclidean
norm | · | gives

|u|(t)  '(t) +

Z

t

0
|A

✏

|(s)|u|(s)ds, for '(t) ⌘
Z

t

0
|B

✏

|(s)ds,

where |A
✏

| denotes the corresponding operator norm. Thus, the Grönwall
inequality gives the estimate

|!✏

k;1|(t) ⌘ |u|(t)  '(t) +

Z

t

0
'(s) |A

✏

|(s) exp
⇣

Z

t

s

|A
✏

|(s̃)ds̃
⌘

ds,

which together with the bound on A
✏

yields

|!✏

k;1|(t)  K0

Z

t

0
|B

✏

|dt, (4.43)

for K0 > 0 independent of ✏. Estimate (4.43) and (4.42) together with the

definition of the covariant derivative, !✏

i;1 = !✏

i,1 �
⇣

�̂
✏

⌘

�

i1
!✏

�

, implies the

supnorm of the derivative @

@x

1!
✏ is bounded uniformly in ✏ by

�

�

�

@!✏

k

@x1

�

�

�

(t)  K

Z

t

0
|B

✏

|dt+
�

�(�̂
✏

)�
k1w

✏

�

�

�  K0. (4.44)

We conclude that the components !✏

i

(x1, x2, 0, ..., 0) are Lipschitz continuous
in (x1, x2), uniformly in ✏.

Step (iv): We now implement the induction step from m � 1 to m with
m  n, which now requires controlling m � 1 commutators of covariant
derivative. The step m = 3 is essentially di↵erent from m = 2 because it
is at this step that, for example, r1! does not vanish on the initial data
surface I1 ⇥ I2. This is the obstacle to constructing locally inertial frames
for n � 3 in the next section.
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For the induction assumption, let !✏(x1, ..., xm�1, 0, ..., 0) be the 1-form
in C1(I1 ⇥ ...⇥ I

m�1) which generalizes the construction in Steps (i) - (ii)
as follows: We assume the parallel transport condition,

r✏

k

!✏(x1, ..., xk, 0, ..., 0) = 0, 8k  m� 1, (4.45)

and we assume the Lipschitz norm of !✏ to be bounded uniformly in ✏
analogously to (4.43). That is, for each l  m� 1 we assume

�

�!✏

�

�

L

1(⌦l)
 K0,

where again K0 denotes a constant K0 = o(k�̂k1), independent of ✏, and
we assume that

|!✏

k;j |(x1, ..., xm�1, 0, ..., 0)

 K0

m�1
X

l=1

�

�

�

�

�

Z

x

l

0

�

� (R
✏

)�
klj

!✏

�

�

�(x1, ..., xl�1, t, 0, ..., 0) dt

�

�

�

�

�

. (4.46)

Note that (4.46) together with the curvature bound from Lemma 4.4 imply
the ✏-independent bound

k!✏k
C

0,1(⌦m�1)  K0,

where ⌦
l

⌘ I1 ⇥ ...⇥ I
l

⇥ {0}⇥ ...⇥ {0} for l = 1, ..., n and

k!✏k
C

0,1(⌦l) ⌘
�

�!✏

�

�

L

1(⌦l)
+

m�1
X

l=1

�

�@
l

!✏

�

�

L

1(⌦l)
.

The induction step now is to prove that there exists a 1-form !✏ 2
C1(⌦

m

) which agrees with !✏ when xm = 0 and satisfies the Lipschitz
bound (4.46) on ⌦

m

for some constant K0 > 0 independent of ✏, such that
for each k  m the parallel transport condition (4.45) holds. (For ease, we
assume that I

l

= (�1, 1) for each l = 1, ..., n.) As in Step (ii), we extend !✏

from ⌦
m�1 to ⌦

m

by solving the ODE for parallel transport in xm-direction,

r✏

m

!̂✏(x1..., xm, 0, ..., 0) = 0 (4.47)

for fixed x1, ..., xm�1 and with initial data

!̂✏(x1, ..., xm�1, 0, ..., 0) = !✏(x1, ..., xm�1, 0, ..., 0).

We denote the solution of (4.47) again by !✏ ⌘ !̂✏. Analogous to Step (ii),
!✏ 2 C1(⌦

m

) and the parallel condition (4.45) is satisfied by construction
for each k  m. Moreover, the Grönwall inequality implies that !✏ is sup-
norm bounded over ⌦

m

and by (4.24) this bound is independent of ✏. The
✏-independent bound on k@

m

!✏k
L

1(⌦m) now follows from (4.47).
It remains to prove ✏-independent bounds on k@

j

!✏k
L

1(⌦m) for each j < m
to prove the Lipschitz bound analogous to (4.46) on ⌦

m

. For this we prove
the following Lemma.
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Lemma 4.7. The 1-forms solving (4.47) satisfy

|!✏

k;j |(x1, ..., xm, 0, ..., 0)  K0

m

X

l=1

�

�

�

�

�

Z

x

l

0

�

�(R
✏

)�
klj

!✏

�

�

�(x1, ..., xl�1, t, 0, ..., 0) dt

�

�

�

�

�

,

(4.48)
for some constant K0 > 0 depending only on �̂, independent of ✏.

Proof. We proceed similarly to Step (iii) and use the definition of the cur-
vature tensor to write for each j < m

r✏

m

r✏

j

!✏

k

= r✏

j

r✏

m

!✏

k

+ (R
✏

)�
kmj

!✏

�

. (4.49)

Computing the components of the covariant derivatives in (4.49) in terms of
their connection coe�cients, using that !✏

j;m = 0 for all j = 1, .., n, we find
that

r✏

j

r✏

m

!✏

k

= @
j

[!✏

k;m]� (�̂
✏

)�
jk

[!✏

�;m]� (�̂
✏

)�
jm

[!✏

k;�]

= �(�̂
✏

)�
jm

[!✏

k;�]

and

r✏

m

r✏

j

!✏

k

= @
m

[!✏

k;j ]� (�̂
✏

)�
mk

[!✏

�;j ]� (�̂
✏

)�
mj

[!✏

k;�].

Substituting the previous two identities into (4.49), we find that (4.49) is
equivalent to the system of ODE’s

@
m

[!✏

k;j ]� (�̂
✏

)�
mk

[!✏

�;j ]� (R
✏

)�
kmj

!✏

�

= 0. (4.50)

Applying the Grönwall inequality to the ODE (4.50) leads to the estimate

|!✏

k;j |(x1, ..., xm, 0, ..., 0)  K0

Z

x

m

0
|(R

✏

)�
kmj

!✏

�

|(x1, ..., xm�1, t, 0, ..., 0)dt

+|!✏

k;j |(x1, ..., xm�1, 0, ..., 0), (4.51)

where K0 > 0 is independent of ✏ because of (4.24).3 Using the induction
assumption (4.46) to replace the initial data term |!✏

k;j |(x1, ..., xm�1, 0, ..., 0)
on the right hand side of (4.51) gives us the sought after estimate (4.48). ⇤

The ✏-independent Lipschitz bound for !✏ on x(U) = I1 ⇥ ... ⇥ I
n

now
follows directly from (4.48). Namely, k(R

✏

)�
kmj

!✏

�

k
L

1  K0k�̂k2
L

1 according
to Lemma 4.4 and the boundedness of k!✏

�

k
L

1 derived above. We conclude
with the ✏ independent Lipschitz bound

�

�w✏

�

�

C

0,1(x(U))
⌘

�

�w✏

�

�

L

1(x(U))
+

n

X

j=1

�

�

�

�

@w✏

@xj

�

�

�

�

L

1(x(U))

 K0, (4.52)

for some constant K0 > 0 depending on k�̂k

ij

k1, independent of ✏. This

completes the induction step and proves that the 1-forms !✏(x1, ..., xn) are
Lipschitz continuous, uniformly in ✏. This completes Step (iv).

3The di↵erence between the Grönwall estimate in (4.51) and the one in Step (iii) is
the presence of the second term on the right hand side which is due to the initial data !✏

being not parallel for ✏ > 0 and j � 2.
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To summarize, in Steps (i) - (iv) we constructed n families of smooth
1-forms (w

✏

)↵
i

dxi, (with ↵ = 1, ..., n), such that each component satisfies
the uniform Lipschitz bound (4.52). Thus, for each ↵ = 1, ..., n, the Arzela-
Ascoli Theorem yields a subsequence of the 1-forms (w

✏

)↵
i

dxi that converges
uniformly to a Lipschitz continuous 1-form

(w
✏

)↵
i

�! !↵

i

as ✏! 0.

Moreover, the Lipschitz estimate (4.8) follows from (4.52) by Taylor ex-
panding K0 in k�̂k

ij

k1 and restricting the neighborhood su�ciently. Since
for each ↵ = 1, ..., n the initial data in Step (i) was chosen such that each
1-form (w

✏

)↵
i

dxi agrees with the unit co-vector e↵
k

dxk = dx↵ at the point
(x̄1, ..., x̄n) = (0, ..., 0) for any ✏ > 0, the limit 1-form !↵

i

dxi is identical
to dx↵ at (x̄1, ..., x̄n) as well. Thus, the 1-forms (w

✏

)↵
i

dxi are linearly in-
dependent and linear independence throughout x(U) now follows from the
uniqueness of solutions of ODE’s, c.f. (4.31).

To complete the proof of Proposition 4.1, it remains to prove that the
limit 1-forms are parallel in every direction with respect to �̂ in the L1

sense of (4.7). For this, integrate the ODE estimate (4.48) for m = n over
x(U) = I1 ⇥ ...⇥ I

n

⌘ ⌦
n

, to get

k!✏

k;jkL1(x(U))  K0

n

X

l=1

�

�(R
✏

)�
klj

!✏

�

�

�

L

1(⌦l)

 K0

n

X

l=1

�

�(R
✏

)�
klj

k
L

1(⌦l)k!
✏

�

�

�

L

1(⌦n)
(4.53)

where ⌦
l

⌘ I1 ⇥ ... ⇥ I
l

⇥ {0} ⇥ ... ⇥ {0} ⇢ x(U) for l = 1, ..., n and
K0 > 0 a universal constant independent of ✏. Since !✏ is bounded in
L1(⌦

n

) independent of ✏, the L1-peeling property of the curvature (4.29)
now implies that the right hand side of (4.53) converges to zero for some
subsequence ✏

k

! 0. Thus each of the 1-forms !↵ is parallel in L1(x(U)) in
every direction, as claimed in (4.7). This completes the proof of Proposition
4.1. ⇤

5. A Construction of Locally Inertial Frames

We begin by giving the definition of locally inertial coordinates for L1

connections in n-dimensions:

Definition 5.1. Let � be an L1
connection. We say a coordinate system

y is locally inertial for � at p if the components satisfy

�

�

�

�↵

��

(y)
�

�

�

 K|y � y(p)| a.e., (5.1)

for some constant K independent of y. We say � is locally inertial at p if

there exists a locally inertial coordinate system at p.
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Condition (5.1) is equivalent to the existence of an L1 representation of
the components �↵

��

(y) such that (5.1) holds in the pointwise everywhere
sense, and �↵

��

(y(p)) = 0. In this section we use the coordinate construc-
tion of Section 4.3 to prove that locally inertial coordinates exist for L1

connections in 2-dimensional manifolds when the Riemann curvature tensor
of the connection is assumed bounded in L1. Building on this construc-
tion in 2-dimensions, we prove that locally inertial frames always exist in
4-dimensional spherically symmetric spacetimes with Lipschitz continuous
metric. Thus in particular, it is su�cient to apply to the GR shock wave
solutions generated by the Glimm method, [8]. Interestingly, this argument
does not extend to three or more dimensions essentially because the induc-
tion step in (iv) of the proof of Proposition 4.1 at n > 2 di↵ers from the
n = 2 step by boundary terms arising from the Gronwall estimate (4.51),
and these terms would not vanish in the zero mollification limit when the
analogue of the peeling property was used for nonzero curvature. To con-
struct locally inertial coordinates in 2-dimensional spacetimes, we construct
1-forms as in Steps (i) and (ii) of Proposition 4.1, (the case Riem(�) = 0),
and define coordinates y↵ by integrating over these 1-forms. These 1-forms
are not in general parallel, but as a consequence of the L1 curvature bound,
we prove the 1-forms are parallel within error of order O(|x|) when curva-
ture is non-zero. This then implies that the connection is order O(|y|) in
coordinates y↵, the condition that y↵ be locally inertial. Theorem 2.6 of the
introduction follows from Theorem 5.2 and 5.5 of this section.

5.1. Locally Inertial Frames in 2-Dimensions. The goal of this section
is to prove the following theorem:

Theorem 5.2. Assume M is a two dimensional manifold endowed with a

symmetric L1
-connection with Riemann curvature tensor bounded in L1

,

and let p 2 M. Then there exists locally inertial coordinates at p within the

C1,1
atlas.

To prove Theorem 5.2, we first recall the construction of the 1-forms !↵

in Steps (i) and (ii) of Proposition 4.1. This is su�cient to establishe 1-
forms !↵ = !↵

k

dxk parallel in the x2-direction, ↵ = 1, 2, but not also in
the x1-direction when the curvature of � is non-zero. To sketch this, let �

✏

denote the mollified connection (4.23), and solve the ODE for the mollified
1-forms (!

✏

)↵

r1(!✏

)↵
j

(x1, 0) ⌘
@(!

✏

)↵
j

@x1
(x1, 0)� (�

✏

)k1j(!✏

)↵
k

(x1, 0) = 0,

(!
✏

)↵(0, 0) = e↵, (5.2)

taking as initial data e↵ = dx↵ at the point (x1, x2) = (0, 0), ↵ = 1, 2. Next
take the resulting 1-forms !↵(x1, 0) as initial data and solve the ODE initial
value problem

r2(!✏

)↵
j

(x1, x2) ⌘
@(!

✏

)↵
j

@x2
(x1, x2)� (�

✏

)k2j(!✏

)↵
k

(x1, x2) = 0,
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(!
✏

)↵(x1, x2) = (!
✏

)↵(x1, 0) at x2 = 0, (5.3)

for each x1 2 (�1, 1). Without loss of generality, we can assume the re-
sulting 1-forms are defined for all (x1, x2) 2 x(U) = (�1, 1) ⇥ (�1, 1). It
is straightforward then to adapt the analysis in Steps (i) - (iii) of Section
4.3 to our setting here and obtain for each ↵ = 1, 2 a subsequence of the
family of 1-forms (!

✏

)↵ which converges to a Lipschitz continuous 1-form !↵

as ✏! 0. By (5.3), each !↵ is parallel in x2-direction in the L1 sense

kr2w
↵k

L

1 = 0. (5.4)

However, in contrast to Section 4.3, we cannot expect !↵ to be parallel in
x1-direction when Riem(�) 6= 0. However, as a result of the L1 curvature
bound, the !↵ are approximately parallel in the sense of the following lemma.

Lemma 5.3. The 1-forms !↵

, obtained from the zero-mollification limit of

(5.3), satisfy
�

�

�

@!↵

j

@xi
� �k

ij

!↵

k

�

�

�

(x1, x2)  K0
�

|x1|+ |x2|
�

⌘ O(x) (5.5)

almost everywhere, where K0 > 0 is some constant depending only on k�k
L

1

and kRiem(�)k
L

1
.

Proof. Equation (5.4) immediately implies (5.5) for i = 2 because the right
hand side of(5.4) vanishes when i = 2. It remains only to verify (5.5)
for i = 1. For the case i = 1, observe that the computation (4.37) - (4.40)
of Step (iii) in Section 4.3, again gives that the ODE (5.3) implies

@u
k

@x2
= (�

✏

)�2ku� + (R
✏

)�
k12(!✏

)↵
�

(5.6)

for u
k

⌘ r1(!✏

)↵
k

and where (R
✏

)�
kij

denotes the components of Riem(�
✏

).

Applying the Grönwall inequality to (5.6) and the fact that r1!
↵

k

(x1, 0) = 0
by (5.2), we obtain

|r1(!✏

)↵
k

|(x1, x2)  K0

Z

x

2

0
|(R

✏

)�
k12(!✏

)↵
�

|(x1, t)dt, (5.7)

where here K0 > 0 always denotes a generic constant depending on k�k
L

1

and kRiem(�)k
L

1 , but independent of ✏. Using that (5.3) implies k!↵

�

k
L

1 <
K0k�kL1 together with the curvature bound (4.25), we obtain from (5.7)
the further estimate

|r1(!✏

)↵
k

|(x1, x2)  K0k�kL1 max
�=1,2

�

�R�

k12

�

�

L

1

�

�x2
�

� ⌘ K0

�

�x2
�

�. (5.8)

Now �
✏

converges in L1(x(U)) as ✏ ! 0, so there exists a subsequence
converging pointwise almost everywhere. From this pointwise convergence
and the fact that @

@x

1 (!✏

)↵ converges in L1(x(U)), we conclude that

|r1!
↵

k

|(x1, x2)  K0

�

�x2
�

� a.e., (5.9)

which is the sought after error estimate (5.5) for i = 1. ⇤
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To prove Theorem 5.2, we define for each ↵ = 1, 2 the coordinates y↵ on
x(U) by

y↵(x1, x2) ⌘
Z

x

1

0
!↵

1 (s, x
2)ds+

Z

x

2

0
!↵

2 (0, s)ds. (5.10)

and complete the proof by showing y↵ are locally inertial at p. By the
definition of y↵ we have

@y↵

@x1
= !↵

1 and
@

@xj
@y↵

@x1
=
@!↵

1

@xj
, (5.11)

which, for i = 1, is the identity that leads to the cancellation in (4.6).
However, we cannot obtain these identities for the x2-derivative because the
1-forms !↵ are no longer parallel in the x1-direction. The following approx-
imate identities are su�cient for the existence of locally inertial frames.

Lemma 5.4. The coordinates y↵ defined in (5.10) satisfy for i, j = 1, 2
�

�

�

�

@y↵

@xi
� w↵

i

�

�

�

�

(x1, x2)  K0
�

|x1|+ |x2|
�

, (5.12)

�

�

�

�

@2y↵

@xj@xi
� @!↵

i

@xj

�

�

�

�

(x1, x2)  K0
�

|x1|+ |x2|
�

a.e., (5.13)

where K0 > 0 is some constant depending only on k�k
L

1
and kRiem(�)k

L

1
.

Proof. The case i = 1 follows directly from (5.11). For the case i = 2,
di↵erentiate (5.10) in the x2 direction to get

@y↵

@x2
(x1, x2) =

Z

x

1

0

@!↵

1

@x2
(s, x2)ds+ !↵

2 (0, x
2).

Using that
@(!✏)↵1
@x

2 converges to
@!

↵
1

@x

2 in L1(x(U)) as ✏ ! 0, the dominated
convergence theorem implies that

@y↵

@x2
(x1, x2) = lim

✏!0

Z

x

1

0

@(!
✏

)↵1
@x2

(s, x2)ds + !↵

2 (0, x
2), (5.14)

with ✏ convergence in L1(x(U)). Substituting
@(!

✏

)↵1
@x2

=
@(!

✏

)↵2
@x1

+

✓

@(!
✏

)↵1
@x2

� @(!
✏

)↵2
@x1

◆

into (5.14) gives
✓

@y↵

@x2
� !↵

2

◆

(x1, x2) = lim
✏!0

Z

x

1

0

✓

@(!
✏

)↵1
@x2

� @(!
✏

)↵2
@x1

◆

(s, x2)ds

with convergence pointwise almost everywhere. Now, using that (!
✏

)↵ is

parallel in the x2-direction,
@(!✏)↵1
@x

2 = ��

12(!✏

)↵
�

, we have
✓

@(!
✏

)↵1
@x2

� @(!
✏

)↵2
@x1

◆

= �r1(!✏

)↵2 ,
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which leads to
✓

@y↵

@x2
� !↵

2

◆

(x1, x2) = � lim
✏!0

Z

x

1

0
r1(!✏

)↵2 (s, x
2) ds. (5.15)

The Grönwall estimate (5.8) now implies
�

�

�

�

@y↵

@x2
� !↵

2

�

�

�

�

(x1, x2)  K0

Z

x

1

0
|x2|ds a.e.

which implies the sought after Lipschitz estimate (5.12).
We now prove (5.13). By the dominated convergence theorem, we con-

clude that (5.15) implies
✓

@y↵

@x2
� !↵

2

◆

(x1, x2) = �
Z

x

1

0
r1!

↵

2 (s, x
2) ds. (5.16)

Di↵erentiating (5.16) in x1-direction gives us
✓

@2y↵

@x1@x2
� @!↵

2

@x1

◆

(x1, x2) = �r1!
↵

2 (x
1, x2), (5.17)

and taking the absolute value, the Grönwall estimate (5.9) gives
�

�

�

�

@2y↵

@x1@x2
� @!↵

2

@x1

�

�

�

�

(x1, x2)  K0

�

�x2
�

� = O(|x|),

which is the sought after almost everywhere estimate (5.13) for j = 1 and
i = 2.

It remains to prove (5.13) for i = j = 2. For this, di↵erentiate (5.15) in
the x2 direction to obtain

✓

@2y↵

@x2@x2
� @!↵

2

@x2

◆

(x1, x2) = � @

@x2
lim
✏!0

Z

x

1

0
r1(!✏

)↵2 (s, x
2) ds.

Note that taking @

@x

2 as a derivative in the weak sense, we can exchange

lim
✏!0 and @

@x

2 by the L1 convergence of the integrand. Thus by (5.6),

Z

x

1

0

@

@x2
r1(!✏

)↵2 (s, x
2) ds =

Z

x

1

0

⇣

(�
✏

)�2kr1(!✏

)↵
�

+(R
✏

)�
k12(!✏

)↵
�

⌘

(s, x2) ds,

(5.18)
which converges uniformly in x2 as ✏ ! 0, because the right hand side is
continuous in x2 and bounded in light of the Grönwall estimate (5.8). In
light of the Groenwall estimate (5.8), the integrand on the right hand side
of (5.18) is in L1, we conclude that

�

�

�

�

@2y↵

@x2@x2
� @!↵

2

@x2

�

�

�

�

(x1, x2)  K0 |x1|, (5.19)

which implies the sought after bound (5.13) for i = j = 2. ⇤
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Proof of Theorem 5.2: We show that y↵ defined in (5.10) are locally inertial
at p. For this, consider the transformation law for connections

�k

ij

@y↵

@xk
=

@2y↵

@xi@xj
+ �↵

��

@y�

@xi
@y�

@xj
. (5.20)

Combining (5.5) and (5.13), we obtain

@2y↵

@xi@xj
= �k

ij

!↵

k

+O(|x|).

Substituting the previous equation into (5.20) and using that w↵

k

= @y

↵

@x

k +

O(|x|) by (5.12), the Christo↵el symbols �k

ij

cancel on both sides and we get

�↵

��

@y�

@xi
@y�

@xj
= O(|x|).

We then conclude with the sought after estimate (5.2), using that O(|x|) =
O(|y|) and that the Jacobians @y

�

@x

i are invertible. This completes the proof
of Theorem 5.2. ⇤

Finally, it is interesting to point out what goes wrong in the pursuit of
the above construction for locally inertial frames in 3-dimensions. Essen-
tially, the analog of (5.13) does not hold in 3-dimensions. That is, defining
coordinates in analogy to (5.10) leads to

y↵(x1, x2, x3) ⌘
Z

x

1

0
!↵

1 (s, x
2, x3)ds+

Z

x

2

0
!↵

2 (0, s, x
3)ds+

Z

x

3

0
!↵

3 (0, 0, s)ds,

(5.21)
and the analog of (5.11) again holds. However, since r2(!✏

)↵1 (x
1, x2, x3) is

not zero when x3 6= 0, we get in (5.15) an additional error function bounded
in L1 which is O(x3), but whose derivative is not O(x). That is, we obtain

✓

@y↵

@x2
� !↵

2

◆

(x1, x2) = � lim
✏!0

Z

x

1

0
r1(!✏

)↵2 (s, x
2) ds +

Z

x

1

0
O(x3) ds.

(5.22)
Thus, di↵erentiating (5.22) in x2 direction in order to mimic the step leading

to equation (5.18) above, the derivative falls on the term
R

x

1

0 O(x3)ds, the
derivative of an L1 function, which does not in general produce an error
O(x).

5.2. Locally Inertial Frames in Spherical Symmetry. We now ex-
tend the above constructive method to spherically symmetric spacetimes
and thereby complete the proof of Theorem 2.6. That is, we assume a Lips-
chitz continuous metric tensor in x-coordinates taking the general spherically
symmetric form

ds2 = �A(x1, x2)
�

dx1
�2
+2E(x1, x2)dx1dx2+B(x1, x2)

�

dx2
�2
+C(x1, x2)d⌦2,

(5.23)
with components A,B,C and E assumed to be Lipschitz continuous func-
tions, �(AB + E2) < 0 and C > 0. Here d⌦2 ⌘ d�2 + sin(�)2d✓2 is the
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line element on the unit sphere, x3 = � 2 (0,⇡), x4 = ✓ 2 (�⇡,⇡), we
assume without loss of generality that (x1, x2) are centered at (0, 0), with
(x1, x2) 2 (�1, 1) ⇥ (�1, 1) ⌘ ⌦2. (General spherically symmetric Lorentz
metrics can be transformed to coordinates where the metric takes the form
(5.23), [20]. Note coordinates xi are labeled i = 1, ..., 4, to be consistent
with earlier notation.) We prove the following theorem:

Theorem 5.5. Assume M is a spherically symmetric Lorentz manifold with

Lipschitz continuous metric (5.23) such that its metric connection �k

ij

and

Riemann curvature tensor Rk

lij

are bounded in L1
in coordinates (x1, x2,�, ✓).

Then the metric (5.23) admits locally inertial coordinates at each point

p 2 ⌦2 within the atlas of C1,1
coordinate transformations, in the sense

of Definition 5.1.

We start with the following lemma.

Lemma 5.6. Assume the metric (5.23) is Lipschitz continuous. If the

Einstein tensor of the metric (5.23) is bounded in L1
, then C(x1, x2) 2

C1,1(⌦2).

Proof. An explicit computation of the first three contravariant components
of the Einstein tensor G11, G12 and G22, yields

@2C

@x2@x2
= C|g|G11 + l.o.t.,

@2C

@x1@x2
= �C|g|G12 + l.o.t.,

@2C

@x1@x1
= C|g|G22 + l.o.t., (5.24)

where |g| ⌘ �AB � E2 and l.o.t. denotes terms containing only zero and
first order metric derivatives, (c.f. MAPLE). From this we can read o↵
the regularity of C. Namely, when Gµ⌫ 2 L1 and the metric is Lipschitz
continuous metric, the right hand side of (5.24) is in L1. Thus we conclude
that second order weak derivatives of C are in L1, which is equivalent
to C 2 C1,1, (c.f. [7]). ⇤

In the proof of the theorem to follow, it is interesting to observe that our
assumption that the curvature tensor is bounded in L1 comes in at two dif-
ferent points in the argument to imply the existence of locally inertial frames
for (5.23) when the connection is only in L1. First, we apply Theorem 5.2
to the 2-dimensional metric

ds2 = �A(x1, x2)
�

dx1
�2

+ 2E(x1, x2)dx1dx2 +B(x1, x2)
�

dx2
�2

to obtain coordinates y↵ in which the connection is Lipschitz continuous at
the center point p = (0, 0), but only for indices running from 1 to 2. An ex-
plicit computation then shows that the remaining components involving the
angular indices are in fact Lipschitz continuous, one degree smoother than
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L1, because C is the only di↵erentiated metric component in these connec-
tion components, and C is one degree more regular than A,B and E, by
Lemma 5.6. This extra degree of regularity in C is crucial because it ensures
that the connection coe�cients not addressed by our 2-dimensional method,
must be Lipschitz continuous, as a second consequence of our assumption
that the curvature tensor is bounded in L1. The resulting Lipschitz con-
tinuity of � at p in y-coordinates allows us to introduce a further smooth
coordinate transformation, quadratic in y, which breaks the spherical sym-
metry, and sets the value of the connection to zero at the center point p,
while preserving the established Lipschitz continuity at p in y-coordinates.

Proof of Theorem 5.5: For ↵ = 1, 2, we introduce the two 1-forms

!↵ = !↵

1 dx
1 + !↵

2 dx
2

as solutions of r2!
↵ = 0 with variables (x1, x2) assuming (x3, x4) = (�0, ✓0)

fixed in (0,⇡)⇥ (�⇡,⇡). That is, !1 and !2 are solutions of

@!↵

j

@x2
(x1, x2)� �k

2j!
↵

k

(x1, x2) = 0, (5.25)

for initial data !↵

j

(x1, 0,�0, ✓0) at x2 = 0 with r1!
↵

j

(x1, 0,�0, ✓0) = 0 for
j = 1, 2, c.f. (5.3). Since the angular dependence is kept fixed in (5.25),
estimate (5.5) of Lemma 5.3 holds again for both !↵, that is,

@!↵

j

@xi
= �k

ij

�

�

(�0,✓0)
!↵

k

+O(|x1|+ |x2|), (5.26)

for ↵ = 1, 2, where �k

ij

�

�

(�0,✓0)
denotes �k

ij

evaluated at fixed (�, ✓) = (�0, ✓0).

Similar to (5.10), we define the function y↵ for ↵ = 1, 2 as

y↵(x1, x2,�, ✓) ⌘
Z

x

1

0
!↵

1 (s, x
2,�0, ✓0)ds+

Z

x

2

0
!↵

2 (0, s,�0, ✓0)ds, (5.27)

(the right hand side evaluated at fixed values of the angular variables), and
set y3 = �, y4 = ✓. Thus estimates (5.12) and (5.13) hold,

@y↵

@xk
= w↵

k

+O(|x1|+ |x2|),
@2y↵

@xi@xj
=

@!↵

j

@xi
+O(|x1|+ |x2|), (5.28)

for i, j, k = 1, 2 and ↵ = 1, 2, and where the right hand side is evaluated at
the fixed angular values (�0, ✓0). Combining estimates (5.26) and (5.28), we
obtain for ↵ = 1, 2

@2y↵

@xi@xj
= �k

ij

�

�

(�0,✓0)

@y↵

@xk
+O(|x1|+ |x2|), i, j = 1, 2. (5.29)

To complete the proof, consider again the transformation

@y↵

@xk
�k

ij

=
@2y↵

@xi@xj
+ �↵

��

@y�

@xi
@y�

@xj
. (5.30)
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Substituting (5.29) we obtain

�↵

��

@y�

@xi
@y�

@xj
=

⇣

�k

ij

� �k

ij

�

�

(�0,✓0)

⌘@y↵

@xk
+O(|x1|+ |x2|). (5.31)

Using now that the metric and its inverse are smooth in � and ✓, we can
Taylor expand �k

ij

around (�0, ✓0) to obtain

�k

ij

� �k

ij

�

�

(�0,✓0)
= O(|�� �0|+ |✓ � ✓0|)

for i, j = 1, 2. Thus, since the Jacobian @y

↵

@x

k is invertible and since @y

↵

@x

k = 0
for ↵ = 1, 2 and k = 3, 4, we can write (5.31) as

�↵

��

= O(|x1|+ |x2|+ |�� �0|+ |✓ � ✓0|)
= O(|y1|+ |y2|+ |�� �0|+ |✓ � ✓0|), ↵,�, � = 1, 2. (5.32)

Keeping in mind that y1(0, 0) = 0 = y2(0, 0) and that y3 = � and y4 = ✓,
this is the desired Lipschitz estimate for ↵,�, � = 1, 2.

We now derive a Lipschitz estimate of the form (5.32) for the cases when
↵,� or � 6= 1, 2. The transformation to the coordinates y↵ defined in (5.27),
preserves the spherically symmetric form of the metric representation (5.23).
We denote the metric in coordinates y↵ by

ds2 = �A(y1, y2)(dy1)2+2E(y1, y2)dy1dy2+B(y1, y2)(dy2)2+C(y1, y2)d⌦2 (5.33)

for Lipschitz continuous metric components A,B,C,E, generally di↵erent
from the components in (5.23). Computing the Christo↵el symbols of (5.33),
we find that the non-zero connection coe�cient not subject to the Lipschitz
estimate (5.32) are given by

�1
33 =

BĊ � EC 0

2(AB + E2)
, �1

44 = (sin�)2�1
33,

�2
33 =

�EĊ �AC 0

2(AB + E2)
, �2

44 = (sin�)2�2
33,

�3
13 =

Ċ

2C
, �3

23 =
C 0

2C
, �3

44 = � sin� cos�,

�4
14 =

Ċ

2C
, �4

24 =
C 0

2C
, �3

44 =
cos�

sin�
, (5.34)

where Ċ ⌘ @C

@y

1 and C 0 ⌘ @C

@y

2 . Observe that we only di↵erentiate C in the
above coe�cient components but we never di↵erentiate A, B or E. Since
C is C1,1 regular by Lemma 5.6, it follows that the components in (5.34)
are Lipschitz continuous (as long that � 6= 0). Combining this with the
Lipschitz estimate (5.32), we conclude that �↵

��

is Lipschitz continuous at p
in coordinate y↵.

The Christo↵el symbols in (5.34) are generally non-zero since Ċ and C 0

are non-zero. Since a non-singular coordinate transformation preserving the
metric form (5.23) cannot map Ċ and C 0 to zero, we need a transforma-
tion that breaks the form (5.23). To complete the proof, we now introduce
a coordinate transformation which preserves the Lipschitz continuity at p
and maps the Christo↵el symbols to zero at the point p. Without loss of
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generality, we assume that y(p) = (0, 0,�0, 0) for some �0 2 (0,⇡). Since
the Christo↵el symbols in coordinates y↵ are Lipschitz continuous at p (and
hence defined at p), we can introduce (for µ = 1, ..., 4) the smooth coordinate
transformation

zµ(y) ⌘ 1

2
�µ
↵

�↵

��

�

�

p

y�y� + �µ
↵

y↵ + c
�

y� + c (5.35)

where �µ
↵

denotes the Kronecker symbol and the constants cµ and the con-
stant coe�cients cµ

�

are defined by

cµ ⌘ �1

2
�µ
↵

�↵

33

�

�

p

� 2
0 � �µ3�0,

cµ
�

⌘ �1

2
�µ
↵

�↵

�3

�

�

p

�0.

By our definition of cµ and cµ
�

, it follows from (5.35) that

z(p) = 0 and
@zµ

@y↵

�

�

�

p

= �µ
↵

. (5.36)

Moreover, (5.35) implies that

@2zµ

@y�@y�

�

�

�

p

= �µ
↵

�↵

��

�

�

p

. (5.37)

From the transformation law of connections together with (5.36) and (5.37),
we find that the Christo↵el symbols in coordinates zµ vanish at p. Namely,
(5.36) and (5.37) imply that the transformation law (5.30) evaluated at p is
given by

@z�

@y↵
�↵

��

=
@2z�

@y�@y�
+ �k

µ⌫

@zµ

@y�
@z⌫

@y�

= ��
↵

�↵

��

+ ��

µ⌫

�µ
�

�⌫
�

,

which implies that the Christo↵el symbol in coordinates zµ satisfies

��

µ⌫

�

�

�

p

= 0,

for all �, µ, ⌫ 2 {1, ..., 4}. Clearly, since the transformation is smooth, it
preserves the Lipschitz continuity of � at p. Denoting the coordinates zj by
y↵, we proved the sought after Lipschitz estimate (5.1). This completes the
proof of Theorem 5.5. ⇤

6. The Curvature of the singular part of �

In this section we give the proof of Theorem 2.5. We use the following
lemma, which also motivates Definition 2.4.

Lemma 6.1. Assume � is an L1
connection with Riem(�) 2 L1

defined on

a neighborhood of some p 2 M. Then ↵
⇥

�� �̃
⇤

, defined in (2.3), is a non-

negative L1
scalar function on that neighborhood for any Lipschitz tensor

�̃. Moreover, there exists a coordinate system y↵ on some neighborhood of

p in which

��

↵�

2 C0,1
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if and only if there exists a Lipschitz continuous (1, 2)-tensor �̃�

µ⌫

such that

↵[�� �̃] = 0

in an L1
sense in that neighborhood.

Proof. Expression ↵
⇥

�� �̃
⇤

defines an invariant scalar because it is the con-

traction of Riem(�� �̃) with the auxiliary Riemannian metric h, c.f. (2.3).
The assumption Riem(�) 2 L1 implies that Curl(�) is an L1 function.
Thus, Curl(�� �̃) is also an L1 function, and since the commutator part of
the Riemann curvature (3.1) is undi↵erentiated, Riem(�� �̃) is also in L1

for every Lipschitz tensor �̃. We conclude that ↵
⇥

�� �̃
⇤

is an L1 function

for any Lipschitz tensor �̃.
To show that ↵[·] is a non-negative L1 function, choose a point p and

coordinates in a neighborhood of p such that h agrees with the Euclidean
metric at p. In these coordinates each of the components of Riem(�), enters
↵
⇥

�
⇤

only squared, so that ↵
⇥

�
⇤

is a sum of positive numbers at p. Since ↵
⇥

�
⇤

transforms as a scalar, it follows that it is non-negative in any coordinate
system.

Moreover, by the same argument as above it follows that ↵[���̃] vanishes
if and only if all components of the Riemann tensor are zero, i.e.,

Riem
�

�� �̃
�

= 0. (6.1)

Theorem 2.1 now implies the existence of coordinates y↵ in which ��

↵�

is
Lipschitz continuous. This proves the backward implication.

To prove the forward implication, assume there exists coordinates y↵ in
which ��

↵�

is Lipschitz continuous in some neighborhood. Theorem 2.1 im-

plies that there exists a C0,1 tensor �̃ such that Riem(� � �̃) = 0. It now
follows from Definition 2.4 that ↵[�� �̃] = 0. This completes the proof. ⇤
Proof of Theorem 2.5: For the forward implication, assume there exists
coordinates y↵ in which ��

↵�

is Lipschitz continuous in some neighborhood of

p. Lemma 6.1 implies that there exists a C0,1 tensor �̃ such that ↵[���̃] = 0.
Moreover, by Lemma 6.1, ↵[� � �̃] is a non-negative L1 function. Thus
�̃ minimizes (2.4) and ↵

M

(�) = 0 for any M > k�̃k
C

0,1 , and hence the
curvature of the singular part of � equals zero.

For the backward implication, assume the curvature of the singular part
of � equals zero. Then ↵

M

(�) = 0 for some constant M > 0. Then there
exists a sequence of �̃

k

2 C0,1 with k�̃
k

k
C

0,1  M such that ↵[�� �̃
k

] ! 0
as k ! 1. By Arzela-Ascoli, the space

S ⌘
n

�̃ 2 C0,1
�

�

�

k�̃k
C

0,1  M
o

is compact, implying there exists a convergent subsequence �̃
kj ! �̃0 2 S

with ↵[�� �̃0] = 0. Lemma 6.1 now implies the existence of coordinates y↵

in which ��

↵�

is Lipschitz continuous. This completes the proof. ⇤
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7. Conclusion

We prove that the question whether there exists a C1,1 coordinate trans-
formation which smooths an L1 symmetric connection � to C0,1 in some
neighborhood is equivalent to the existence of a Lipschitz continuous (1, 2)-
tensor �̃ such that � � �̃ is Riemann-flat in that neighborhood. Since the
addition of a Lipschitz tensor does not change the jumps in the singular
part of the connection, this says, essentially, that a regularity singularity is
present at a point p if and only if the singular part of the spacetime con-
nection (the shock set) cannot be extended to a Riemann-flat connection in
a neighborhood of p. In light of this result, we defined the “curvature of
the singular part” of an L1 connection with L1 Riemann curvature tensor,
and proved that it is zero if and only if the connection can be smoothed to
C0,1 within the atlas of C1,1 coordinate transformations.

Somewhat surprisingly, one can modify the method of proof of Theorem
2.3 in the special case of a spherically symmetric C0,1 metric with an L1

curvature tensor, can always be mapped in a neighborhood of any point p,
to a locally inertial frame at p, within the C1,1 atlas, even though the reg-
ularity issue of whether the metric can be smoothed to C1,1, remains open.
This applies to solutions of the Einstein-Euler equations generated by the
Glimm scheme, [8]. The existence of locally inertial frames implies that the
Coriolis terms discussed in [16] are removable and, using our terminology, no
strong regularity singularities exist in spherically symmetric spacetimes. In
summary, the space of L1 connections with L1 curvature tensors provides
a consistent general framework for shock wave theory in General Relativity,
and the problem whether weak regularity singularities exist in spherically
symmetric spacetimes, or whether weak or strong regularity singularities ex-
ist at more complicated (asymmetric) shock wave interactions, remains an
open problem for which the results here provide a new geometric perspective.
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