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DEGENERATE SYSTEMS OF CONSERVATION LAWS

Blake Temple

ABSTRACT. We describe systems of conservation laws
with the propexrty that the shock and rarefaction
curves coincide. We give new examples of such
systems. These systems isolate and separate many
nonlinear aspects of shock waves.

The author believes that analytical techniques
which handle problems of uniqueness, continuous
dependence or convergence of finite difference
schemes in these systems, would isolate components
in a corresponding analysis required for general
systems of conservation laws.

We summarize and simplify some of the results in [17,18)]
which give a theory for the systems of conservation laws which
have the property that the shock and rarefaction curves
coincide. These systems have milder nonlinearities than systems
of conservation laws in general, and represent the simplest
setting in which hyperbolic singularities can appear. Moreover,
examples of such systems arise in many applications
{1,4,5,6,8,12,14,16]). For these systems, as is the case for a
Sscalar conservation law, the nonlinearities affect the wave
speeds, but no reflected wave appears after interactions [cE.
157. The wave speeds are, however, coupled in these systems, a
phenomenon not present in scalar conservation laws. Thus
systems with coinciding shock and rarefaction curves are a
reasonable place for studying some of the problems that appear

difficult in the general setting of conservation laws.
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The shock and rarefaction curves coincide in a
characteristic family if the rarefaction curves are straight
lines (line field) or level curves of the eigenvalue (contact
field). Thus for 2 x 2 systems of conservation laws, there
are generically three classes of systems with coinciding shock
and rarefaction curves: those with two contact fields (class
I), those with one line and one contact field (class II) and
those with two line fields (class III). Moreover, under
suitable assumptions, these systems cannot be transformed into

equations which are elther linear or uncoupled.

Below we give conditions on the flux functions which are
necessary and sufficlent for determining the systems in the
above classes (we record here the fact, omitted in [17,18], that
there exist nonlinear coupled systems with two contact fields

which are in conservative form).

In [19] it is proved that for systems lying outside the
class of systems with coinciding shock and rarefaction curves,
the solutions are not L’—contractive in any metric. It would be
interesting to locate the systems within the above classes which

are L1-contractive.

Continuous dependence of solutions on the initial data is
not known for general systems of conservation laws. It would be
interesting to obtain continuous dependence or uniqueness

results for systems in class I, II or TIII.

In [11,15] it is shown that certain finite difference
schemes are total variation diminishing for systems in class:
III; in classes 1 and II more serious numerical diffusion
occurs, and this result 1s not true. It would be interesting if
one could estimate the diffusion in approximate solutions
generated by finite difference schemes for equations in classes
I or 1II.

We now summarize and simplify the results in [17,18)

regarding systems of conservation laws with coinciding shock and

rarefaction curves.

Let
(1 Uy + F(U), =0

denote an n X n system of conservation laws. Let (A,R)

denote a real eigenfield for dF, wmeaning that
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dF * R = AR ,
A ¢ R. Let M denote any 1-dimensional C3-manifold in U~-
space. We say that the shock and rarefaction curves coincide
on M if M 1is an integral curve of an eigenvector R, and
for every U1,02 e M, U1 is in the Hugoniot locus of U2 i.e.,
s[Uy - U] = [F(Uy) = F(U,y)]

for some scalar s. The following theorem characterizes the

coincidence of shock and rarefaction curves: ?

THEOREM 1. The following are equivalent regarding a 1=
Aimensional €3 manifold M:
{1) The shock and rarefaction curves coincide on M.
(i1i) M 18 either a straight line in U-space or else
simultaneously an integral of R and a level curve of
X for (A,R) a real eigenfield for dF.
(iii) System (1) reduces to a scalar conservation law on M .

Here condition (iii) is explained by the following definition:

DEFINITION. System (1) reduces to a scalar conservation law on ;
a 1-manifold M in U-space 1f in a neighborhood of each point '
on M there exists a coordinate system ¢ and a scalar

conservation law

{(2) u, + f(u)x = 0

such that, if U = p(u), u(x,t) is a weak solution of (2) if
and only if ¢ * u(x,t) is a weak solution of (1).

For condition (iii), £'(u) = A ¢ p(u) in the case that

the coordinate system u 13 taken to be a component of U
(18] .

The main step in the proof of Theorem 1 is the following
simple lemma. Let U(E), 51 < & < 52, be a regular c3-
parameterization of a C3 1-manifold M such that ﬁ(E) =
a(E)R, & € R, where (A ,R) is a real eigenfield for A4F. Let
R(E) = R(U(E)), A(E) = A(U(E)).

LEMMA. If U(§) lies in the Hugoniot locus of a point UL for
all £ e (& ,52), then

1
(3) A(EY[U(E) - ULl e N(E) = 0

for all £ ¢ (51,52), and all vectors N(£&) such that
N(E) = R(E) = 0.
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Thus condition (iili) says that either 1 =0 anda A is
constant on M, or [U(§) = u,l * N(§) =0 for all § and
N(£), which implies that M is a straight line in U-space
[18].

Proof. Let [U] u(g) - U,» [F] = F(U(E)) =~ F(U;). Then by
assumption

(4) s{u] = ([F] ,

where s = s (&) is a C2 function of £ since [U] and
[F1 are. Differentiating (4) gives

(5) 5(U] + sU = AU ,

and differentiating again gives
(6) B(U] + 280 + sU = XU + AU .

Taking the inner product of both sides of (5) with N(f) gives

(7) 8[U(E) - Ul o N(E) =0 .

Now by (7)), if [U] » N(EY # 0 (i.e., [U] is not parallel to
U), then s = 0, and (5) gives 8 = A. Putting these two
conditions into (6) ylelds

0 = 8(u) .
Thus whenever ful] « N(E) # 0, we must have x = 0, and so we
can conclude that

Atugy - u )« w(E) =0
for all ¢§.

We now restrict our attention to 2 x 2 systems (1). In
this case, let U = (u,v), F = (f,g9), and let p, q denote
Riemann invariants for (1), by which we mean any 02 function
on U-space whose level curves are integral curves of a real

elgenvector field of dF.

DEFINITION. System (1) has a contact fleld in a

neighborhood U of U-space if there exists a Riemann
invariant q defined in U, Yq # 0, such that the level
curve g = X is an integral curve of R for some eigenfield
(A,R) of ar.

Note that Vg # 0 implies that any system having a contact
field is not linear, and is not a nonlinear transformation of a

linear system.

DEFINITION. System (1) has a line field if there exists a
Riemann invariant gq, Vg # 0, such that q = const. is a line of
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dv
slope q = oI i.e.,

(8) qy + 99, = 0 .

Note that Vq # 0 implies that any system having a iine field
does not uncouple in this field. {In an uncoupled field, the

integral curves are straight lines of constant slope.)

We prove the following simple theorems which give necessary
and sufficient conditions for a 2 x 2 system to have a line or

a contact field.

THEOREM 2. A 2 x 2 gystem of conservation laws has a contact
field if and only if

(9) f = ug + F(q)

(10) g = vq + G(q)

for some smooth functions F and G.

PROOF. The function g is a Riemann invariant of a contact
field if and only if
(1) qlu)l = [£f] ,
(12) qlv] = (g1 ,
for all jumps at q = const. But (11) and (12) hold if and only
b 4
(13) (f = qu] =0 ,
(14) (g = qv] =0 ,
for all jumps at q = const.; and this is egquivalent to
£ = ug + F(q) ,
g = vqg + G(q) .

THEOREM 3. A 2 x 2 sgystem of conservation laws has a line
field 1f and only if

g = fq + H(q)
for some smooth function H, and some smooth solution q of
Burgers equation

(15) wu+wwv=0.

PROOF. A smooth solution q of (15) is a Riemann invariant i€
and only i1f the value of q at (u,v) is the slope of the
integral curve of a line field through (u,v). Thus by Theorem

1, a smooth solution q of (15) i3 a Riemann invariant for
system (1) if and oniy if
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sfu] = [£] ,
sl{vl = [g] ,
for some scalar s, whenever

[v]

—— = g .

{u)
But this condition 1is equivalent to

_ lal
%78

for all jumps at g = const., which holds if and only if ;
{qf - g] =0 |
for all jumps at g = const. This final condition is equivalent

to

g = qf + H(q)
for some smooth function H and some smooth solution q of %
(15).

The following corollaries characterize the systems in

classes I, I and IXII:

COROLLARY 1. A 2 x 2 system of conservation laws has two

independent contact fields with Riemann invariants p and gq
if and only if

(16) £ = ug + Fq(q) = up + Fy(p) ,
(17 g = vq + Gq(q) = vp + Gu(p) ,

for some smooth functions Fis Gy, Vp # Vq. Conditions (16) and

(17) hold if and only if p and q as functions of u and

v are given by the inverse of the map {

(189 (u) } F1(Q) - FZ(P) 1 g
v Gy(a) =GP/ P - q° '

PROOF. Statement (16) and (17) follow directly from Theorem 2,
and (18) is obtained by solving for u and v 1in (16) and
(17).

We can use (18) to construct a 2 X 2 nonlinear coupled
system of conservatlion laws having two contact fields as
follows: choose Fi(w) = w2, Gi(w) - w3 for i = 1,2. In this

casge

u -{(q + p)
an -

2
-{gq” + pq + p7)

We can invert (19) by obtaining p = =(g + u) from the Efirst
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equation in (19) and substituting this into the second
equation. By solving the resulting quadratic equation in g,

1 -u ¢t Y-4v =~ 3u2
(20) (2) =5 e B K
4 -u ¥ Y=4v -~ 3u

Choosing =~ for p and + for q in (20), we obtain f = -y?2

we obtain

- v and g = ul o+ uv by substituting (20) into (16), (17).
Thus the 2 x 2 gystem

u, - (u2 + v)x = 0 ,

(21)

vy * (u3 + uv)x =0 ,
has two contact fields with wave speeds p and q given by
(20).

COROLLARY 2. A 2 x 2 system of congservation laws has one
contact field and one line field if and only if

(22) f = (u+ a)g,
(23) g = (v + b)gq ,

for some constants a, b, and some smooth function q of u
and v. In this case q 1is the wave speed and Riemann ‘
invariant for the contact field, and :

v + b

(24) P =

is the Riemann invariant of the line field which satisfies (15).

PROOF. (See (2.10)=(2.18) of [17].)

Systems of type (22), (23) with a = b = ¢ have arisen in
applications, and were studied in [5,8,16]).

COROLLARY 3, A 2 x 2 system of conservation laws has two
independent line fields if and only if

H (p) = H, (q)
qQ - p

{25) f =

qH1(p) - PH,(q)

26 =
(26) g -

for some smooth functions Hy and Hz, and two smooth

independent solutions p and g of (15).
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PROOF. By Theorem 3, system (1) has two independent line fields
if and only if ‘

(27) g = fp + H4y(p)
and
(28) g = fq + Hy(q)

for smooth independent solutions p and g of (15). Thus
solving for f and g in (27), (28) gives (25), (26).

The system

u
o + L y5555 !t =0
X
kv
vt Lypasst =00

for 0 ¢ k ¢ 1, u > 0, v >0, is an example of a system in
class IIT arising in the study of multicomponent chromatography
[1,14].

Acknowledgement: Thanks to Rich Sanders for working out example
(21) with me.
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