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ON WEAK CONTINUITY AND THE HODGE DECOMPOSITION

JOEL W. ROBBIN, ROBERT C. ROGERS! AND BLAKE TEMPLE?

ABSTRACT. We address the problem of determining the weakly continuous
polynomials for sequences of functions that satisfy general linear first-order
differential constraints. We prove that wedge products are weakly continu-
ous when the differential constraints are given by exterior derivatives. This is
sufficient for reproducing the Div-Curl Lemma of Murat and Tartar, the null
Lagrangians in the calculus of variations and the weakly continuous polynomi-
als for Maxwell’s equations. This result was derived independently by Tartar
who stated it in a recent survey article [7]. Our proof is explicit and uses the
Hodge decomposition.

1. Introduction. The characterization of weakly continuous functionals has
been an important tool in some recent developments in partial differential equa-
tions. In particular, the Div-Curl Lemma was instrumental in the work of Tartar
[6] and DiPerna [3] on conservation laws, and the characterization of the null La-
grangians in the setting of the calculus of variations Edelen [4] was central to the
work of Ball [1] on polyconvex functions. The most general theorem character-
izing weakly continuous functionals is due to Tartar [5]: He gives necessary and
sufficient conditions for quadratic functionals to be weakly continuous® under the
general first-order differential constraints’

£

.. 0u
(1.1) A}c’—a?j € a compact set in Hk’)cl(ﬂ), k=1,...,1L

Here (}isanopensetinR*, z € Q C R"; u* € R™; Afc": 1=1,...,n7=1,...,m;
k=1,...,l, are constants. We assume summation over repeated indicies. Tartar’s
result is often refered to as the Quadratic Theorem. While the hypotheses of this
theorem are easy to check for any particular function, it is not so clear how one can
construct satisfactory functions given only the differential constraints.

In this paper we discuss a method sufficient for constructing weakly continuous
polynomials of degree as high as the domain space, the maximum degree possi-
ble. With this method one can reproduce all of the weakly continuous functions
in the div-curl case, the case of Maxwell’s equations of electrodynamics, and the
variational case. Our results are contained in the following theorem.
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THEOREM 1.1. Assume that of, - ,af are differential forms on (} € R™ of
degree sy, . ..,s respectively, sy + -+ s < n. Assume that
(1.2) af —a in LP(Q),

with 1/p1 + -+ 1/p =1, and that

(1.3) do; € a compact set in ngcl’p'(ﬂ), 1=1,....1L
Then we have

(1.4) A ANaf —ar Ao NGy

in the sense of distributions.

As Tartar indicates 7], the Quadratic Theorem can be used to prove Theorem
1.1 when L? techniques apply. Our proof is based on the idea of decomposing
weakly convergent sequences into weakly convergent and strongly convergent parts
using a version of the Hodge decompostion. We obtain a slightly more general
result than that obtained directly from the L? theory. We feel that this proof
gives additional physical insight into the phenomenon of weak continuity and the
interaction of oscillations.

The rest of this paper is laid out as follows: In §2 we show how Theorem 1.1 can
be used to construct the most common examples of weakly continuous functions. In
§3 we prove a specialized version of the Div-Curl Lemma in order to illustrate the
ideas of the Hodge decompostion without introducing the language of differential

geometry. In §4 we prove Theorem 1.1. Finally, in §5 we make some concluding
remarks.

2. Applications of Theorem 1.1. We now present three well-known examples
of first order differential constraints in which the weakly continuous functions are
obtained directly from Theorem 1.1.

2.1. The Div-Curl Lemma.

LEMMA 2.1 (D1v-CURL) [MURAT AND TARTAR]. Suppose that u =

(uf,...,uf) and v = (v§,...v5) are sequences of functions on 1 C R™ such that
u® — 1
n L*(0
UE N ,l—)- } n ( )’
and
div u®

loc

curl ve } in a compact set in H1(Q).

Then
u® -v® — u-v in the sense of distributions.

PROOF. Note that

3

of(z) = v§(z)dz! + - + vE(x)dz"
satisfy the conditions of Theorem 1.1 in the case [ =2, s; =n —1, sg = 1, where

dzl! = (=1)"'dz' A A dzt A dztt A A d2™
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(The differential form dz? is the Hodge-* dual of dz*.) Taking the wedge product
of of and of and applying Theorem 1.1 we get

(u - vS)de' A---Adz" =ofAas —=ayAag = (G-0)dz' A A X",

which verifies the lemma.
2.2. Mazwell’s equations. We now consider the weakly continuous functions for
sequences under the constraints of Maxwell’s equations.

LEMMA 2.2. Suppose the functions (E¢, D¢, B¢, H®): R3 — [R3]* satisfy the
equations
&

+curl Ef =0, divB¢ =0,

ot
(2.5) e

ot

for any sequence of data (p¢, J§, J5,J§) € a compact set in Hl‘ocl. Then the combina-
tions B-BH—D-E,B-E, and H-D are weakly continuous; i.e., if (£, D¢, B¢, H®) —
(E,D,B,V) in L?, then

B¢ -H® — D*f - E* —~_§-___H_—E--E,

B*-E*—B-E, in the sense of distributions.
HE¢ -D* — H-D

PROOF. We treat space-time as a four-dimensional Euclidean space, letting
20 = t. We define the two-forms of Faraday

F¢ = ESdz! Adz® + E5 dz® A dz® + ES dz® A di®
+ B$ dz? A d23 + B§dz® A dz' + B dz! A dz?,

—curl H® = —J¢, divD® = p°,

and Mazwell

M = — Hfdz' A dz° ~ HE dz? A d2® ~ H dz® A dz®

+ D§ dz? A dz® + D5 da® A de! + Didzt A de?,
and the dual of the charge-current one-form J
*J¢ = p°dz! A dz® A dz® - J, dz® A dz? A d2B
— Jodz® A dz® A dz! - J3d2® A d2t A dz?.
Maxwell’s equations can then be expressed as
dF° =0, dM*®="J¢.

We now observe that
FEAF =B - E*, M AMf=H® D° and F* AM®=B° H - E°.D°
The lemma follows directly.

2.3. The calculus of variations. Our third example comes from the calculus of
variations where we are often concerned with minimizing functionals of the form
Jo W(Vp(z))dz. Here p: R® — R™ represents the deformation of the region (1,
and W is the stored energy function. If we write u = Vp, the problem is then to
minimize

/ W(u(z))dz, u: R* - R™*"™,
0
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subject to the differential constraints
8u1'j auik
0z Oz,

(2.6) =0, ,7,k=1,...,n.

Ball constructed the polyconvex functions, a very large class of physically reasonable
functions W for which this problem can be shown to have a solution. In doing so
he used the following well-known lemma on weakly continuous functions.

LEMMA 2.3. Let f(u) be any subdeterminant of the n X n matriz u. Then f
18 weakly continuous on sequences satisfying the differential constraints (2.6); i.e.
if u® — 4 satisfies (2.6), then

f(u®) — f(@) in the sense of distributions.

PROOF. If we define of = uf dz!' A--- AuS, dz", then we can represent the
differential constraints (2.6) by daf = 0; ¢ = 1,..., n; and any { x / subdeterminant
f can be written

fydz' A A dz™ =af Ao Aaf A dglie]

for some appropriate choice of indices {7,..., i1} for the rows and {ji,...,75)} for
the columns. The lemma follows immediately.

3. The Div-Curl Lemma in R3. Here we present a proof of a special case of
the Div-Curl Lemma that illustrates the idea of the Hodge decomposition without
introducing the language of differential geometry.

LEMMA 3.1 (D1v-CURL IN R?). Suppose Q is an open set in R3 and the
sequence of functions (u®,v): 1 — R3 x R3 satisfies

’U.E — U . 2
(3.7) o — 5 } in L°(Q),
and
div u®
(3.8) 011:11:)5 } in a compact set in Hl';cl(ﬂ).
Then

u® - v* - 4-U in the sense of distributions.

PROOF. To show that
(3.9) / u® v dr — /11 - Do dz
0

for all ¢ € C§°(Q) it suffices to assume that u€ and v¢ have compact support. To
see this, note that it is sufficient to verify (3.9) with u€ and v¢ replaced by ¢u® and

¢v¢ where ¢ € C5°(Q) is a cutoff functions that equals one on the support of ¢.
Our hypotheses (3.7) and (3.8) imply

éué‘ - Czﬂw . 2/m3
(3.10) e Jn?.} in L?(R3),
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and
div(¢us) = ddivus + grad ¢ - u¢ — div(ga),

(3.11) curl(¢v¢) = pcurl v + grad ¢ x ve — curl(¢a),

} in H~!(R®).

To see that (3.11) holds note that the first term on the right-hand side of each

equality converges (at least for a subsequence) directly from the definition of Hl_ocl.

(fE€HL ()& foe H Q) Vo € C§°(Q).) The convergence of the second term

follows from (3.7) and the compactness of the imbedding of L2({1) into H~1(Q).
We now show that there exist scalar fields ¢, ¥, n¢, 7 and vector fields ¢, 7, x%, X

such that

uf = grad ¥ + curl A%, v® = grad n® + curl x5,

(3:.12) % =grady +curld, o =grads+curl X:
and
rad ¢¢ — grad ¥, .
(3.13) gcurl ;ﬁe . cgurl T } (strongly) in L2(Q);
curl~* — curl 4, . 9
(3.14) eradn® — grad 7 (weakly) in L*(Q);
€ _, <
(3.15) 775 _J’} (strongly) in L2(Q0).

To see this we extend u® by 0 to all of R3 and let w® be the unique solution in
L?(R?) of

(3.16) Aw® = uf.
We write
(3.17) w® = A"t
and note that the operator A=! : H7 — H™*?2 r = _10,1,..., is continuous.
loc loc
We then set
Y* =divws®, +°f = -curlw®
so that

grad ¥ + curl4® = grad div w® — curlcurl w® = Aw® = uf
and (3.12a) holds.

Since we are solving (3.16) on all of space and have no boundary conditions
to consider, the solution operator A~! commutes with A and therefore with the
differential operators div and curl. Indeed,

A7ldivf = Al divaATlf
= A~ !div(grad div — curlcurl) A7 f
= A" ldivgraddivA~lf
=A"lAdivATlf
=divA~lf,

bl
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and
A lcurl f = A teurlAATY S
= A~ ! curl(grad div — curl curl) A~ f
= A™!(—curlcurl curl) A1 f
= A~ }(grad div — curlcurl) curl A™1 f
=A"'AcurlAT!f
=curl A7 f.
Thus,

YEdiv A~ u® = A~ divu®.

Now by the convergence of divu® in H!(Q) (at least for a subsequence) and the
continuity of A~! from H~(Q) to H!(Q) we get

grad ¥° = grad(A~'divu®) — grad(A~!divu®) = grad¢ (strongly) in L2(Q),

so (3.13a) holds. Since curly® = u® — grad ¢, (3.14a) follows directly from (3.7)
and (3.13a). To see that (3.15a) holds note that (3.7) and the continuity of A~!
from L?(2) to H(Q) imply that 4* = ~ curl A_;u® is bounded in H!(f2). Strong
convergence in L?((2) follows by compact imbedding.

The corresponding results for v¢ follow in similar fashion except that the roles
of div and curl have been reversed.

With (3.13)-(3.15) in hand we complete the proof. We consider

/ uf v pdr = / (grad ¢¢ + curl¥) - (grad n® + curl x*)¢ dz
0

for any ¢ € C§°(Q?). The product has four terms, and Jq grad n® - curl ¥4 dz is the
only one which is not the product of a weakly convergent sequence and a strongly
convergent sequence. But here we can integrate by parts and get

/ gradn® - curl ¥ dz = — / [7° div curl v°¢ + 7 curl 4° - grad ¢] dz
Q Q

= —/ n® curl A€ - grad ¢ dz,
0

and once again this is the product of a weakly convergent sequence with a strongly
convergent sequence. Thus, the entire integral converges, and our proof is complete.
Note that the key to the proof is in decomposing each of the weakly convergent
sequences u® and v® into the sum of weakly and strongly convergent parts and
showing that the two weakly convergent parts are in some way orthogonal. If we
think of the weakly convergent parts as oscillations superimposed on the strongly
convergent parts the key is to show that the oscillations do not interact.

4. The weak continuity of wedge products. In this section we prove
Theorem 1.1. We begin by introducing some standard notation from differential
geometry. Let A¥(Q2) denote the space of differential forms of degree k defined
over {I C R™ with standard coordinates system z. For each k, 0 k < n,

<
d: A¥(?) — A*+1(Q) denotes the exterior derivative. Recall that d = 0 for




WEAK CONTINUITY AND THE HODGE DECOMPOSTITION 615

k > n, and dd = 0 Vk Let (-,-) be the inner product on A*(Q) defined by tak-
ing {dz?* A---Adz?*: 1 <4y < - < < n} as an orthonormal basis. This defines
a natural L? inner product between elements a, 3 € A¥((1) by

(a, B) Ly () =/<a,ﬁ> dz,

Q

for a, 8 € A¥(Q). Let 6: A*+t1(Q)) — A¥(Q) denote the formal adjoint of d with
respect to the L? inner product on A*(f); i.e.,

<d0!, ﬂ)Lz = <a’ 6ﬁ>L23

for all a € A¥(Q), B € AFTH(Q).
For each k, let A: A¥(Q) — A¥(Q) denote the Laplace-Beltrami operator defined
by
Aa =déa + 6 da.

As in the precious section we define A~! to be the solution operator for the Laplace-
Beltrami operator on all of space; we note that

- ) +27
(4.18) AL WP — Wite?
is well defined and continuous for 1 < p < oo and r = —1,0,1,... and that since

A~! is the solution operator on all of space and we need not worry about boundary
conditions we have

(4.19) AA o =A"tAa = a.

Here WTP((2), r > 0, is the Sobolev space of functions whose distributional deriva-
tives up to order r can be represented by L? functions, and W~1?((1) is the dual
of W(;”"(Q), 1/p+1/p* =1, where W2 is the completion of C°(f2) in the W™?"
topology.

We now prove a lemma on the Hodge decomposition of a weakly convergent
sequence. ‘

LEMMA 4.1 (HODGE DECOMPOSITION). Assume that af: Q1 — A¥(Q) has
compact support in (1, that

(4.20) af —a in LP(Q),
and that
(4.21) do® € a compact set in W];cl’p(ﬂ),
for 1 < p < oo. Then there exist functions
X& = X,
(4.22) YE — P, in LP((1)
dy€ — dy,

such that
of =dyf+x*  —-dv+x=a.
PROOF. We begin by writing
(4.23) af = AA'af =6dA e +dSAT S,
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We note that d and A~*! commute:
(4.24) dA™'of = A7 des.
Indeed, applying A~1d to (4.23) and using dd = 0 we have
A7'def = A7'dAAT0f = ATMd(d6 - §d)A™asf
=AT'd(6 —6d)dA 1af = AT AdA af = dA s,

Thus we can write (4.23) as

(4.25) o =5A M dof + dSA™ af = ¥ + dv”.
Similarly,
(4.26) a=6A"'da+dsAa =X + dy.

From the continuity of A~! from W~1?(Q2) to W ~1?(Q) we conclude that
A~'da® € a compact set in W1P((2)

i

and hence that
x* = 6A7'dof € a compact set in LP((2).
Similarly, ¢ = §A~'a* is bounded in W!?(Q), and by compact imbedding
¥*® € a compact set in LP(Q).

These compactness results and the uniqueness weak limits give us (4.22a, b). The
weak convergence of dy® = af — x¢ follows immediately, and the lemma is proved.

We now prove a lemma that shows that the product of certain weakly convergent
sequences converges weakly as well.

LEMMA 4.2. For ¢5: 0 — A% (), suppose that
Yv§ — ¢ in LPi(Q),
dyé — dvy; in LPi(Q), i=1,.... k.
with 1 < 1/qc =1/p1+ -+ 1/pk. Then
(4.28) dyiA - Adyf —dyy A--Ady,  in the sense of distributions,
and if g > 1 then
(4.29) dyf A~ Adyp — dyr A A dipy  in LI (Q)

PROOF. We prove this by induction on k. The case k = 1 is immediate. Now
assume the lemma holds for a fixed k. Let 1 < 1/qx4; = /g + 1/pks1,0ke1 > 1
and s = n—s!'—. .. —s;. First note that the convergence in the sense of distributions

holds: For any ¢: 0 — A*(2) in C§((2), integration by parts and the fact that
dd~ = 0 imply

(4.27)

/dwf/\---/\ dy A dvg A=~ [ dyYi A A dyE AYE,, A de.
Q2 Q

This converges to the desired limit since dyf A --- A dy; converges weakly in
LI%() (gx > 1) by the induction hypothesis, and Yy, converges strongly in

LPx+1(Q1) (and hence in L9 (1)) by (4.27a). Thus, the product converges in L'(Q)
and hence in the sense of distributions.
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If gx+1 > 1 we note that dy$ A - A dyf,, is bounded in L%+ (1) by Holder’s
inequality. By Banach-Alaoglu there is an element ¥ € L%+1({]) and a weakly
convergent subsequence such that dy§ A--- Adyg,, — ¥. It follows that
(4.30) U=d¢; A A dpgy

by the uniqueness of limits.
We now prove Theorem 1.1:

PROOF. Let s =n — s; — --- — 8;. Then for any test function ¢: I — A®(Q}) in
C§° (1) we show that
(4.31) /ai/\---/\af/\'m—-»/dl/\'-'/\c'n/\¢.
Q Q

Using the same localization arguments as in the previous section, we note that
we can assume without loss of generality that the af have compact support. With
this assumption made, Lemma 4.1 gives us

of =dyf + x; = dY + X, = &,
where _
Vi — Yy s e T . 1p
e in LP (1), dy; — ¢; in LPY(Q).
X: 7 X
Thus,
/ﬂai/\---/\a?/\d)=/ﬂ(dxi+w§)/\~-/\(dx?+wf)/\¢-
By Lemma 4.2,
(4.32) dyf, Ao A dyf — dyf A A diy

for all sequences 1 < ¢; < - <15 <[. Therefore, every term in (4.32) is a prod-
uct of a strongly convergent sequence in LP({2) wedged with a weakly convergent
sequence in LP (1), 1/p + 1/p* = 1, except for dy5 A --- A dy; which converges
in the sense of distributions, again by Lemma 4.2. This completes the proof of the
theorem.

5. Comments. We conclude with a few unrelated comments and open ques-
tions:

1. In the examples of §2 weakly convergent sequences of differential forms are
constructed out of linear combinations of weakly convergent sequences of functions
u®. Thus, we have used Theorem 1.1 as a method of generating polynomials in u
of degree less than or equal to n, the dimension of the domain space. (If [ > n.
then af A--- Aaj =0.) Note that this is the maximal degree modulo coefficients
depending on components of u over which we have complete control (cf. Dacorogna
(2, p. 30)).

2. Can all weakly continuous functions under first-order differential constraints
be constructed in this manner? We are unaware of any examples that cannot, but
we are so far unable to prove even that all weakly continuous quadratic functions
are of this form.

3. In the search for a more general characterization for weakly continuous func-
tions we consider the question: Can one classify the differential operators and
quadratic maps analogous to the exterior derivative and wedge product for which
a generalized version of Theorem 1.1 holds?
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