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THE RIEMANN PROBLEM NEAR A HYPERBOLIC SINGULARITY II*

E. ISAACSONS" AN[) B. TEMPLE:I:

Abstract. This paper is interested in classifying the solutions of Riemann problems for the 22
conservation laws that have homogeneous quadratic flux functions. Such flux functions approximate an
arbitrary 2 2 system in a neighborhood of an isolated point where strict hyperbolicity fails. Here the
solution for the symmetric systems in Region III of the four region classification of Schaetter and Shearer
is given. The solution is based on the qualitative shape of the integral curves described by Schaetter and
Shearer and a numerical calculation of the Hugoniot loci and their shock types.
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1. Introduction. This is the second in a series of papers [5] in which we give the
solution of the Riemann problem for quadratic conservation laws

Ut "k 1/2{al u2 q- 2blUr + c, v},, O,

v, +1/2{a2u + 2b2uv + c2v2}, 0,

with initial data

j u, (u,, v,),
U(X 0)

u-= (u, v),
x<O,
x>O,

where u (u, v). This is one of the steps in a program outlined in [6].
Solutions of such conservation laws approximate the solutions of a general 2 x 2

system of conservation laws in a neighborhood of an isolated point at which strict
hyperbolicity fails.

We use the normal form

(1)
u, + 1/2{ au + 2buy + v},, O,

v, +1/2{bu + 2uv}, 0

of Schaeffer and Shearer 12].
We let A l(U) -<- A2(u) denote the eigenvalues of system (1); we note that for system

(1), A A2 only when u 0, in which case A 0.
In the first paper [5], we presented the solution of the Riemann problem for the

range of parameter values

a>2, b=0.
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This corresponds to the symmetric systems in Region IV of [12], [5]. In the present
work we give the solution of the Riemann problem for the parameter range

1<a<2, b=0,

which corresponds to the symmetric systems in Region III. The solutions consist of
(portions of) the 1-wave curves 7/V(u) and the 2-wave curves W2(u). These are obtained
from the Hugoniot loci and integral curves by means of both numerical and analytical
evidence. Our constructions indicate the following result.

THEOREM. For each pair of states uL and UR, there exists an intermediate state

ua4 //V(uL) such that UR //V2(u4) and the solution of the Riemann problem consists

of the 1-wave from uL to u4 followed by the 2-wave from ut to UR. Moreover, the
solution is unique in x,t-space, depends continuously on u and UR, and all shocks
appearing in solutions are 1-shocks or 2-shocks in the sense of Lax [9].

We refer to [5] for a detailed discussion of the problems and the notation.
We obtain the shapes and shock types of Hugoniot loci Yg(ut.) by means of

numerical calculation. This, together with the qualitative features of the integral curves
given by [12], [2] (see Fig. 1), is the basis for our construction of the solutions. We
present the solution of the Riemann problem in a series of diagrams for representative
values of uL.

FIG. 1. Integral curves.

The qualitative features of the solution diagrams change precisely when u. crosses
Y((0) or crosses a ray A1 =0. In Regions I-III the Hugoniot locus Y((0) consists of
three straight lines (called axes), while in Region IV this locus is a single line [12].
For the symmetric systems in Regions I-III (i.e., a < 2, b 0), one of the axes is the
u-axis and the other two are given by

v +v/2- a u.
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The rays h= 0 are given by

-v/-d u in the lower half plane,
v +x/-d u in the upper half plane.

We give the solution of the Riemann problem for representative values of uL in the
lower half plane (v_<0) because of the symmetries in system (1) (see [5]). Since the
solutions change qualitatively only at the rays Yg(0) and h 0, we choose a representa-
tive value of uL from each interior and bounding ray of the sectors (see Fig. 2):

a {u: 0 < 0 < 0},

where

,ff_ {u: O, < 0 < 02},

d24 {U: --7"/" < 19 < 1934},

012 arctan (-v/2- a),

034 arctan (+v/2- a rr,

0. arctan (-v/d).
The angles correspond to the axes and the ray /1 0, respectively.

A new feature in Region III is that the Hugoniot locus Yg(u,) and the 1-wave
curve Wl(U,.) can be disconnected [5]. This makes the solutions more complicated
than those found in Region IV.

In 2 we describe the elementary waves and Hugoniot loci, and in 3 we present
the solution of the Riemann problem.

),2-,0
XI=O

FIG. 2. The sectors .q-a and their boundaries.

2. Elementary waves. The rarefaction waves of system (1) are obtained from the
integral curves of the eigenvector fields of the Jacobian A(u). The shock waves of
system (1) are obtained from the Hugoniot loci. The general solution of the Riemann
problem that we construct is obtained by composing these waves. The solution consists
of a 1-composite wave followed by a 2-composite wave, where a p-composite wave is
a succession of shock and rarefaction waves of the p family [5]. The p-wave curve
Wp(UL) consists of all final states in p-composite waves with initial state uL.
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FIG. 3(a). The Hugoniot locus g(u/) for uL =0.
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FIG. 3(b). The Hugoniot locus Yg(ut_) for Or. =0.
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FIG. 3(C). The Hugoniot locus (ui_) for UL .

FIG. 3(d). The Hugoniot locus Y((ul_) for 0. 012.
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FIG. 3(e). The Hugoniot locus (UL) for UL e 2.

C D

1

FIG. 3(f). The Hugoniot locus (UL) for 0L 0,.
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2

FIG. 3(g). The Hugoniot locus (ut+) for u+ +d3.

FIG. 3(h). The Hugoniot locus (u++) for 0/+ 034.
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FIG. 3(i). The Hugoniot locus (IIL) for II L E S4.

FIG. 3(j). The Hugonio locus (c) for O =-.
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The qualitative shapes of the integral curves for the symmetric systems (1) in
Region III are depicted in Fig. 1 (see [12], [2]).

2.1. Hugoniot loci. The structure of the Hugoniot loci is depicted in Figs. 3(a)-(j)
for representative values of UL. These figures indicate the general topological structure
of the loci as well as the location of shock types. As UL varies, these features change
qualitatively only at the boundaries ofthe sectors s-4 (and at A 0). The topological
structure of the Hugoniot locus changes at the axes, while at the lines A =0 the
topological structure remains fixed but the location of shock types chang6s. (We do
not include A2 0 as a boundary since the change in shock types at A2 0 does not
affect the Riemann problem solutions. Specifically, the wave curves, and hence sol-
utions, do not change qualitatively at A2 =0.)

Note that the Hugoniot loci of states in quadrant IV of the u,v-plane determine
all Hugoniot loci, because the reflection of a Hugoniot locus about either the u- or
v-axis is again a Hugoniot locus [5]. For clarity, we include the Hugoniot loci for
sector 4 and its boundary rays 0 =-Tr, 0 034 because these are relevant to the
solution of the Riemann problem.

2.2. Special points. In Figs. 4(b)-(g), E is a fixed point on the positive u-axis,
and UL is taken on the integral curve through E. The point A is the limit of the
intersection of Yg(u) with the positive u-axis as u tends to E through states with v 0.

In Figs. 3(c)-(f) and 4(c)-(f), the points BL and DL are the points on (UL) at which

O’(UL, BL)" I(UL) O’(UL, D).

Necessarily, {u, D, B} is a triple shock [5].
In Figs. 3(d)-(i) and 4(d)-(i), the points C and C are the points at which (u)

is tangent to a 2-integral curve.

FIG. 4(a). Solution diagram for uL =0.
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FIG. 4(b). Solution diagram for OL =0.

FIG. 4(c). Solution diagram for uL .
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FIG. 4(d). Solution diagram for Ol

3. Solution of the Riemann problem
3.1. In Figs. 4(a)-(j) we give the solution ofthe Riemann problem for the symmetric

systems (1) in Region III. In each diagram, uL is fixed and an arbitrary point represents
UR. Figures 4(c), (e), (g) and (i) depict the solutions for uL in sectors , 2, 3 and
4, respectively, in each of which the solution diagrams are qualitatively the same.
For completeness, we include solution diagrams for u on the boundaries of these
sectors: the ray 0 012 is the axis separating sectors and 2, and the ray 0 034
is the axis separating sectors 3 and 4. The ray 0 0., which separates sectors
and 3, is the key ray on which A= 0.

In each solution diagram, the 1-wave curve f(uL) consists of the union of the
1-shock, 1-rarefaction and 1-composite curves for uL (see 3.2). For each point
u //’(UL), the portion of the 2-wave curve c/’2(UM) appearing in the diagrams is
obtained by proceeding from ut along 2-shock and 2-rarefaction curves as far as
possible in the direction of the arrows.

The solution of the Riemann problem (u, UR) consists of a 1-wave with left state
u and right state u, followed by a 2-wave with left state u and right state UR where
the intermediate state u is determined as follows: start from UR and follow the 2-wave
curve backwards from UR (opposite the direction of the arrows) until you reach a point
UM in /4:(u). The state UM SO constructed satisfies UR c2(UM) and defines the waves
in the solution. This procedure is not well-defined precisely when UR is in either the
compressive portion of (u) or the triple shock curve. (The triple shock curve is
lABs] in Figs. 4(c)-(e) and is [-u.A] in Figs. 4(f), (g). There is no triple shock curve
in the other figures). In the case of ambiguity, the solutions are unique in the x,t-plane
since then all shock speeds that occur are equal. This ensures continuous dependence
of the solution on u and UR.
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FIG. 4(e). Solution diagram for Ul 2.

FIG. 4(f). Solution diagram for OL 0,.
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FIG. 4(g). Solution diagram for UL S

FIG. 4(h). Solution diagram for 0L 034.
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II

/ G2L

’,’,. 7\ \\
’,i\/ \ \ \,

FIG. 4(i). Solution diagram for uL 4.

FIG. 4(j). Solution diagram for Ot =-Tr.
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3.2. Legend. 1-rarefaction; 1-expansive shock; 1-shock;
2-rarefaction; 2-expansive shock; ---*-- 2-shock (with or without arrows);

’,I’,’,I’,’,’,II 1-composite (rarefaction followed by shock at characteristic speed);
compressive shock; --x-- crossing shock; [S]-- expansive shock; 2-boundary,
triple shock curves; Hugoniot locus of uL and u-axis.

Note 1. Arrows on rarefaction curves indicate the direction of increasing eigen-
value. Arrows on shock curves indicate the direction of decreasing shock speed.

Note 2. 1- and 2-shocks in the Hugoniot locus of uL are indicated by dashed lines
supported by the solid line for the Hugoniot locus.
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