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THE RIEMANN PROBLEM NEAR A HYPERBOLIC SINGULARITY III*

E. ISAACSON’ AND B. TEMPLE

Abstract. This paper is interested in classifying the solutions of Riemann problems for the 2 x 2
conservation laws that have homogeneous quadratic flux functions. Such flux functions approximate an
arbitrary 2 x 2 system in a neighborhood of an isolated point where strict hyperbolicity fails. Here the
solution for the symmetric systems in Region II of the four region classification of Schaeffer and Shearer
is given. The solution is based on the qualitative shape of the integral curves described by Schaeffer and
Shearer and a numerical calculation of the Hugoniot loci and their shock types.

Key words. Riemann problem, nonstrictly hyperbolic conservation laws, umbilic points

AMS(MOS) subject classifications. 65M10, 76N99, 35L65, 35L67

1. Introduction. This is the third in a series of papers [5], [6] in which we give
the solution of the Riemann problem for quadratic conservation laws

u, +1/2{aju + 2bjuv + CLV2},, O,

v, +1/2 {a2u2+ 2b2uv + c2v2}, 0,

with initial data

u-- (u, v), x < 0,
U(X, 0)

u--(u,v), x>0,

where u-= (u, v). Such conservation laws approximate a general 2 x 2 system of con-
servation laws in a neighborhood of an isolated point at which strict hyperbolicity
fails. We use the normal form

u, + 1/2 { au + 2buy + v2}x 0,
(1)

v,+1/2{bu:+2uv},,=O

of Schaeffer and Shearer [13]. We let A(u)=< A2(u) denote the eigenvalues of system
(1) and note that A1 A2 only when u 0 in which case A 0.

In the previous papers [5], [6] we presented the solution of the Riemann problem
for the symmetric systems (1) in Regions Ill and IV which correspond to the parameter
ranges

l<a<2, b=0
and

a>2, b=O,
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respectively. In the present work we give the solution of the Riemann problem for the
parameter range

(2) 0<a<l, b=0

which corresponds to the symmetric systems in Region II. The solutions consist of
(portions of) the 1-wave curves 7g’(u) and the 2-wave curves /g’2(u). These are obtained
from the Hugoniot loci and integral curves by means of both numerical and analytical
evidence. Our constructions indicate the following result.

THEOREM. For each pair of states Ul_ and UR, the solution of the Riemann problem
consists of a succession of 1-waves and 2-waves from u i_ to U R. Moreover, the solution
is unique in x,t-space, depends continuously on uL and UR, and all shocks appearing in
solutions are 1-shocks or 2-shocks in the sense of Lax [10].

We refer to [5] for a detailed discussion of the problem and the notation.
As in [5], [6] we obtain the shapes and shock types of Hugoniot loci Yg(u.) by

means of numerical calculation. This, together with the qualitative features of the
integral curves given in [13], [2] (see Fig. 1), is the basis for our construction of the
solutions. We present the solution of the Riemann problem in a series of diagrams for
representative values of uL.

The qualitative features of the solution diagrams change precisely when uL crosses
either the Hugoniot locus (0) or a ray A= 0. In Region II, the Hugoniot locus
consists of three straight lines through the origin [13]; we refer to them as axes. For
the symmetric systems in Region II, one of the axes is the u-axis and the other two
are given by

v +v/2- a u.

The rays A= 0 are given by

’-v/-d u in the lower half plane,
v

1. +x/-d u in the upper half plane.

We give the solution of the Riemann problem for representative values of u. in the
lower half plane (v-< 0) because of the symmetries in system (1) (see [5]). Since the
solutions change qualitatively only at the rays Y((0) and A 0, we choose a representa-
tive value of u from each interior and boundary ray of the sectors (see Fig. 2)

-= {u 0, < 0 < 0},

,522 {UL: 023 < 0 <

,S’ {U L 034 < 19 < 1923},

where

,S4 {UL: --37" < 19 < 1934},

0, arctan (-v/d),

023 arctan (-v/2- a),

034 ------ arctan (+42 a

The angles correspond to the ray h= 0 and the axes, respectively.
A new feature in Region II is that both the 1-wave curve //V(u) and the 2-wave

curve W2(u) may be disconnected. In [5], [6], the Riemann problem solution is depicted
in diagrams by a connected path of wave curves in the u,v-plane from u/ to UR.
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FIG. 1. Integral curves.

A2=O

AI=0

034

023

FIG. 2. The sectors 1-,s4 and their boundaries.
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However in the present case, for states UL in sectors ,51, 2 and ,53, there is no such
connected path of wave curves whenever the state UR lies in a certain triangular region
of the u,v-plane. We address this issue further in the next section.

2. Remarks. The integral curves for the symmetric systems (1), (2) in Region II
are depicted in Fig. (see [13], [2]). The Hugoniot loci for the representative values
of UL chosen above are depicted in Figs. 3(a)-(j). The shock types are also indicated
(see 2.1). Note that in Fig. 3(e) the disconnected component of the Hugoniot locus
(UL) contains a segment consisting of 1-shocks. This phenomenon was already seen
in Region III [6]. A new feature in Region II is that the disconnected component of
(UL) also contains a segment consisting of 2-shocks. It is this feature that leads to
the appearance of the "triangular" region in Figs. 4(c3)-(g).

We now discuss the solution diagrams in Figs. 4(a)-(j). The solution consists of
a 1-composite wave followed by a 2-composite wave as in [5], [6]. Each diagram
depicts the Riemann problem solution for a fixed left state uL. An arbitrary point in
the diagram represents UR. TO obtain the solution of the Riemann problem, follow the
arrows from uL to UR along the 1- and 2-wave curves. Clarification of this procedure
is required in Figs. 4(c3)-(g) due to the appearance of the triangular region of
disconnected 2-shocks; in fact, we must augment this procedure when either: (1) UR
lies in the triangular region; or (2) the 2-wave back from UR intersects the boundary
of the region. To illustrate, we describe in more detail the solutions in Fig. 4(e) in
which the region of disconnected 2-shocks is the triangle CEF. The dashed line segments
between the vertex C and the base EF in triangle CEF are the 2-shock portions of
the disconnected components of (u) for u between u, and H on /CI(uL). In particular,
BD is the disconnected 2-shock portion of (UL); segments between C and BD are
2-shock portions of Hugoniot loci for states between u, and uL; and segments between
BD and EF are 2-shock portions of Hugoniot loci for states between uL and H. Thus,
for UR in the region CEF, the solution of the Riemann problem consists of a 1-wave
from u. to an intermediate state u4 (between H and u,) followed by a 2-shock from
uM to UR. If UR lies on any of the 2-rarefaction curves emanating from side CF, then
the Riemann problem solution consists of the solution from uL to the appropriate state
on the side CF followed by a 2-rarefaction wave from that state to UR. For completeness,
we indicate in Fig. 4(e2) the regions of UR in which the Riemann problem solutions
have a given wave structure.

2.1. Legend. - 1-rarefaction;----- 1-expansive shock;--- 1-shock,
2-rarefaction; 2-expansive shock; --->-- 2-shock (with or without arrows);

..- ’,I’,IIIIIII 1-composite (rarefaction followed by shock at characteristic speed-;
compressive shock; crossing shock; expansive shock; 2-boundary,
triple shock curves; Hugoniot locus of uL and u-axis.

Note 1. Arrows on rarefaction curves indicate the direction of increasing eigen-
value. Arrows on shock curves indicate the direction of decreasing shock speed.

Note 2. 1- and 2-shocks in the Hugoniot locus of uL are indicated by dashed lines
supported by the solid line for the Hugoniot locus.
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FIG. 3(a). The Hugoniot locus (u/) for uL=0.

FIG. 3(b). The Hugoniot locus Yg(uL) for Ot =0.
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=0

FIG. 3(c). The Hugoniot locus 9g(uL) for Ul e s.

FIG. 3(d). The Hugoniot locus ’(uL) for 0L 0,.
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FIG. 3(e). The Hugoniot locus Y((uL) for Ul

FIG. 3(f). The Hugoniot locus ff((llL) for OL 023.
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FIG. 3(g). The Hugoniot locus Yg(UL) for UL s

FIG. 3(h). The Hugoniot locus Yg(u, ).for O, Ot.
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FIG. 3(i). The Hugoniot locus (uc) for ui 4.

FiG. 3(j). The Hugoniot locus (ut)for Ol =-r.
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FIG. 4(a). Solution diagram for u/ =0.

FIG. 4(b). Solution diagram for Olj=O.
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FIG. 4(c). Solution diagram for uL

AI=O

/

FIG. 4(C2). Solution diagram for UL 6 a.
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FIG. 4(C3). Solution diagram for uL

FIG. 4(d). Solution diagram for OL 0,.
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\

\

FIG. 4(e). Solution diagram for ut M2.

Flci. 4(e2). Wave structure for Fig. 4(e).
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AI=O

FIG. 4(f). Solution diagram for OL 023.

\

FIG. 4(g). Solution diagram for uL
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F1G. 4(h). Solution diagram for 0L 034.

FIG. 4(i). Solution diagram for uc 4.
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FIG. 4(j). Solution diagram for OL---Tr.
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