Josef Ballmann

Rolf Jeltsch (Eds) Reprint|

Nonlinear

Hyperbolic Equations -
Theory, Computation Methods,
and Applications

Proceedings of the Second International Conference
on Nonlinear Hyperbolic Problems,
Aachen, FRG, March 14 to 18, 1988

Notes on Numerical Fluid Mechanics, Volume 24
(Vieweg, Braunschweig 1989)

\"/

Friedr. Vieweg & Sohn  Braunschweig/Wiesbaden




The Ll -Norm Distinguishes the Strictly Hyperbolic from a Non-Strictly
Hyperbolic Theory of the Initial Value Problem

For Systems of Conservation Laws

x*
Blake Temple
Department of Mathematics
University of California, Davis

Davis, CA 95616

Abstract

We discuss recent work of the author in which he proves that solutions to systems of two

strictly hyperbolic genuinely nonlinear conservation laws are weakly stable in the global Ll—norm:
We contrast this with the theory of the initial value problem for a nonstrictly hyperbolic system in

which weak stability in L! is shown to fail. This is understood from a study of the asymptotic wave
patterns to which solutions in this problem decay as t + +. Since solution in both cases have been

shown to be stable in the total variation and sup norms, we conclude that the L! estimate is the
first stability result in a norm that distinguishes the strictly hyperbolic from a nonstrictly
hyperbolic theory of the initial value problem. ‘

In this talk we compare the theory of the initial value problem for a 2x2 non-strictly
hyperbolic system of conservation laws Lo the corresponding strictly hyperbolic theory. In terms of
the total variation and supnorms the theories look the same. Here we demonstrate that the theories

diverge at the Ll-norm. In particular, recent work of the author gives a proof of the weak stability

in the global L -norm for systems of two strictly hyperbolic equations. In contrast to this, a study
of the asymptotic wave structures in a nonstrictly hyperbolic system leads directly to the conclusion
that no such stability result holds in a special nonstrictly hyperbolic problem. We first discuss the

weak stability result (sce "Weak Stability in the global LL-norm for systems of conservation laws”
by Blake Temple, Davis preprint), and then we discuss the asymptotic wave patterns in a simple

nonstrictly hyperbolic system with an eye toward seeing how Ll stability fails (see "The structure
of asymptotic states in a singular system of conservation laws" with E. [saacson, Davis preprint.)
We consider the initial value problem

u, + F(u)x =0, u=(u,uy), ux0)= uo(x) F= (Fl’ F2) . (C)

In the strictly hyperbolic case, Glimm demonstrated in his fundamental paper of 1965

(3] that solutions of (C) generated by the random choice method are stable in the

supnorm and in the total variation norm. Indeed, it is stability in the total variation that gives
compactness of the approximate solutions, and this resulted in the first existence theory for systems
of conservation laws. (We remark that in general we have no proof of uniqueness or continuous
dependence for solutions generated by this method.) We state Glimm's result precisely [25].
Theorem (Glimin 1965): Assume (C) is genuinely nonlinear and strictly hyperbolic in both

charagteristic fields in a neighborhood of a state @ ¢ RZ. ThenV V > 0 there exists 6 << 1 such
that i

TV {uy (0)} <V, llug (0) - 1"1||Sup <¥,
then there exists a solution to (C) satisfying
*This work supported by the NSF under the grant NSF-DMS-86—13450.
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TV{u(-t)}<CV, (TV)
(- 8) - dllg,, < C 6, (SUP)

flu (-,t)-ﬁ(-,S)IIL1 <Cltsf . (LIP)

Here C denotes a generic constant, TV denotes the total variation and || || sup denotes the supnorm.

Note that (LIP) implies that the data is taken on in the L! sense.

The author recently proved the following weak stability result in the global Ll-norm for
solutions generated by Glimms method [24):

- - 1
llu(-t) - UI|L1 $G (b, lug(+) - ““LI) (L)

where G is an explicitly constructed smooth function satisfying G(t,£) - 0 as £ - 0 for every fixed
t 2 0. Here we assume that u, (220) = .

We now contrast this with a corresponding existence theory for a non-strictly hyperbolic
system in which (TV), (SUP) and (LIP) have been shown to hold (cf [20]), but (Ll) fails for every
smooth function G satisfying G(t,£) » 0 as £ - 0. We conclude that (Ll) gives the first stability

result in a norm that distinguishes the two theories. That (Ll) fails in the next example follows
directly from an understanding of the asymptotic wave structures to which solutions decay as

t -+ +w. This was studied in joint work with E. Isaacson, Dept. of Math., Univ. of Wyoming.
Consider the 2x2 system of polymer equations:

3, +1(s,c), =0, u={s,cs), (se), + {cl(s,c)}, =0, F=(L cf). (P)

In general, system (P) is not strictly hyperbolic when {(-,c) is non-convex. E Isaacson first derived
(P) from a simple two component flow problem, and he solved the corresponding nonconvex
Riemann problem {4]. In (8], B. Keyfitz and II. Kranzer earlier solved the Riemann problem for a
system formally equivalent to (P). In [20] the author proved a global existence theorem by
Glimim's method. We state it licre in order to compare it with the strictly hyperbolic case:

Theorem (Te): If uo(-) is initial data [or (P) satislying

TV {ug( N} <V <o, lugls) -l < 4,

then there exists a global weak solution of (P) with initial data ug satisfying

TV {u(-,t)} < C V, (TV)
flu(-.t) - allg,, < 6, (SUP)
llug-,t) - u(-,s)llL1 < C|t-s| . (LIP)

Here total variation is measured in the singular coordinate system of Riemann invariants, and this
leads to a modified convergence proof, but formally, the results look the same as in the strictly
hyperbolic case of Theorem (Glimm). In joint work with E. Isaacson, we determine the asymptotic
waves that these solutions decay to as t » +, and this leads directly to the following result which

implies that the two theories diverge on the level of the Ll-norm (cf. [5]).

For the solutions u(x,t) of (P) generated by Theorem (Te) and satisfying uo(too) = {, the Llnorm

at time t cannot be controlled by the Ll—norm at time t = 0, through any nonlinear function; i.e.,
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Theorem (-L1): The estimate (Ll) FAILS in general for every smooth G satisfying G(t,€) - 0 as
& - 0 for each fixed t. Specifically, there exists a sequence of solutions u(x,t) of (P),0< s < 1,
such that ug(im) =y,

. 1
Lim flug(-) -ugll =0, (-L7)
oup 0 L Ll
but
Lim fJu?(-t) - ull [ #0 (-le)
-0 L
at any t > 0.

In the next section we discuss the asymptotic states for solutions of (P) with an eye toward

sceing (ﬂLl). We comment on the interesting role played by the admissible solutions of the
Riemann problem in this nonstrictly hyperbolic problem. In section 3 we return to the strictly

hyperbolic case, and discuss the proof of (Ll). The estimate (Ll) is a consequence of the author's
decay result [22] which states that

= t
llu(-8) - Gl gy $ F |——=trrf,
P ug() - il

where F(£) is an explicitly constructed function satislying F(£) - 0 as £ » +w, together with the new
estimate

)=l < fug(c) - @ Cé E
l(-0) -3l < ()-8l 4 +C 5 (E)

where § denotes the supnorm of the initial data “0( +). The details of the proof of this new estimate
(E) together with a further discussion can be found in the author's paper [24].

§2 The structure of asymptotic wave patterns for (P).

We view (P) as modeling the polymer flood of an oil reservoir in one space dimension as first
developed by Isaacson in [4]). By a polymer flood we mean a two component flow of immiscible
fluids, oil and a mixture consisting of water together with polymer. The polymer is a thickener
which moves passively with the water and which is assumed to affect the mutual flow of the two
components in the porous media. Here, 8 = saturation of the aqueous phase, ¢ = concentration of
polymer in water,0<8<1,0¢<¢c<1, and g(s,c) = fj%,g)_ is the particle velocity of the water. In
this way (P1) represents conservation of water plus polymer, (P2) represents conservation of
polymer, and f(s,c) gives the fraction of the total flow associated with the aqueous component at
each position x of the reservoir. The system is determined once the constitutive function f(s,c) is
specified. Properties of the flow are determined by quantitative properties of f, and we assume only

that f(-,c) is S - shaped for each fixed c, and that -gg < 0. (See Fig. 1, cf. [4,20).) These

assumptions can be justified by an argument based on Darcy's Law [4].
In this section we describe the structure of the noninteracting waves to which the solutions

constructed in (20] decay as t + +m. We then discuss the relationship between the admissible
solution of a given Riemaunn problem (P),

uyp, forx<0
ug(x) = o (RP)
up forx 20,
and the asymptotic waves to which a given solution u(x,t) of (P) satisfying

decays as t -+ +w. In this problem the admissible solution of the Riemann problem is the solution
&shown in (4] to be uniqueg constructed from waves which satisfy the Lax characteristic criterion.

lternatively, these are the solutions which do not spontaneous y introduce "extra" polymer into
the flow over and above that accounted for in the states up, and up. The noninteracting waves to
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which a general solution satisfying (AS) decays as t -+ + represent an alternate solution of the
Riemann problem (P), (RP) which in general is inadmissible by the Lax characteristic criterion.
This is because the asymptotic state must account for the "extra" polymer contained in the initial
data between X = —w and x = +«. The conclusion then is that in contrast to the classical strictly
hyperbolic theory, the asymptotic states do not depend on up = uo(-uo) and up = U0(+oo) alone, but

on

Crax = Sup {cy(x)}
X

as well. The analysis leads to the result that the solutions are not well-posed in the Ll—norm (i.e.,
(—‘Ll) holds) even though the admissible solutions of the Riemann problem depend continuously on
up, and ug in L\i oc’ and despite the fact that the solutions are Lipshitz continuous in time in the

LLnorm. Moreover, the two component flow interpretation indicates that the lack of well-
posedness in one dimension may be related 10 fingering instabilities in higher dimensions. It also
appears that well-posedness is retrieved when viscosity is not neglected. In this problem, the
admissible solutions of the Riemann probiem play an interestiu% and special role.

We first review the solution of the Riemann problem as first presented by Isaacson [4]. One
can easily verify that the eigenvalues of dF (the wave speeds for system (P)) are given by

[
A =80, o =Tl

and the integral curves of the corresponding eigenvectors through a state i are given by

R (@) = {u:c(u) =c(@)}, R (T)={u:g(u)=g(1)}.
Because {(-,c) is S - shaped, it is clear that ’\s = c On acurve in state space labeled T for the
transition curve (see Fig. 1, 2).
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/// T
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i R

Fig. 1

-

For this system, the shock and rarefaction curves coincide, and the elementary waves which
satisfy the Lax characteristic criterion consist of s-waves and c-waves. Here, s—waves solve the non-
convex scalar conservation law which (P) reduces to when ¢ = const., and c-waves are contact
discontinuities at g = const. The Lax condition for the c-waves translates into the condition that
c—waves cannot cross the Transition curve. The solution of the Riemann problem is summarized in
the following theorems (see [4,8]).
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Theorem (Is): For each up and up in the region 0 < 3 < 1, 0 < ¢ < 1, there exists a unique

solution to the Riemann problem (P), (RP) in the class of s-waves and c-waves. The solutions are
diagramed in Figures 3 and 4. Moreover, these solutions depend continuously on up and up in

1 : _
Lyoe at each time. .- SRR
,’/ R C Region [I1 ,// = I

¢ Region III LT Tl 4 (SOLN.sCS) - T |
A (SOLN.SCS) L 1 — ; .

T 77N

NSNI/ZA Vi
il \\ﬂ\*
T,

1
Fig. 3 Riemann problem solution Fig. 4 Riemann problem solution !
for u, feft of T for u_ right of T

h

The existence Theorem (Te) is obtained by extracting a convergent subsequence from
approximate solutions constructed by the random choice method using the solutions of the Riemann
problem generated in Theorem (Is). The proof relies on a positive non-increasing function F(t)
which is defined on the approximate solutions, and which dominates the total variation of the
approximate solutions at time t as measured in the singular coordinate system of Riemann
invariants. Because the total variation in the conserved quantities cannot be bounded, a modified
convergence proof must be given (see [20] for details). We now ask, what are the noninteracting
elementary waves to which these solutions decay as t - +»? We answer this by means of the
following claim:

Let u(x,t) denote a solution generated by Theorem (Te). For a given u, let x(t) satisfy

da% = g(s,c), x(0) = Xg 1

so that x(t) describes a particle path of water in the solution.

CLAIM: The particle paths are continuous curves defined and nonintersecting for all t > 0, and the
value of ¢ is constant on each particle path.

We do not give a complete proof of the CLAIM, but we argue for it as follows. Since c-waves move
with speed g, we argue first that the particle paths do not cross c-waves in the weak solutions.
Since the particle paths are nonintersecting in smooth solutions and Lipshitz continuous across s-
waves, we conclude that the particle paths are defined and nonintersecting throughout the weak
solutions. Moreover, for smooth solutions,

de(x(t),t) _ . _
_(_?&ELJ“Cxxt+Ct“Ct+gcx’0

because equations (P2) gives

0=cts+cst+cfx+fcx
=s(ct+gcx)+c(st+fx)

=s(c, +gc);
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and since ¢ is constant across s-waves and we have argued that particle paths don't cross c-waves,
we conclude that ¢ is constant on particle paths of the weak solutions. An actual proof of this is
made difficult by the fact that the claim is false for approximate solutions of the random choice
method. We conclude from the claim that the total variation in c is passively transported along
particle paths. Thus in particular, the value

€ = sup co(x)
X
satisfies

for every t > 0. We now determine the asymptotic waves through the following theorem:

Theorem (Is, Te): for each &, up, and up in our domain, there exists a unique set of noninteracting

waves taking u to up, and taking on the value € as the maximum value of ¢ at each time. In

general, these waves correspond to an inadmissible solution of the Riemann problem. Moreover, the
positive nonincreasing function F(t) used in the existence theory is minimized on these waves

among all sequences of elementary waves taking u to liR and taking on € as the maximum value of
c. These waves are diagramed in Figures 5 — 9 according to whether uy ties in regions A,BorC
determined by the value of € (see Fi%. 5).
We conclude from Theorem (Is, Te) that the solutions generated in Theorem (Te) decay to
the noninteracting waves determined by UO(—m) zup, u1(+an) = up and ¢ = Max co(x). A proof
X

here would be complete were one to show rigorously that F(t) decreases to its minimum possible
value in each solution.

In order to contrast the situation here with the classical strictly hyperbolic case, consider the
example of the asymptotic state corresponding to the values up Eup and € = c(ii) diagramed in
Figure 8, and corresponding to uy, in Region B. This is the region for which the structure of

asymptotic states differ strikingly from the structure of asymptotic states in a strictly hyperbolic
problem. For example, assume that the initial data is given by

up, x<0,
uo(x)= i 0<x<o,
uy, X2 0.

The exact solution, which corresponds to the asymptotic state llo(—w) =up = u0(+m), ¢t =c(i), is

drawn in Figure 10. In a strictly hyperbolic problem such a solution would decay to zero, because
the admissible solution of the Riemann problem for UO(—m) =up = u0(+m) is the constant solution

usup (cf [2, 11-14]). For (P), however, the solution decays to a solution containing two strong

nonlinear s—waves separated by a contact discontinuity. We can now ohserve Theorem (—|L1) by
taking the limit ¢ - 0. Indeed, when o = 0, the solution is the constant state u = up, but for ¢ > 0

the solution at times t > 0 is far from the soiution u = up, in the Ll—norm. This occurs despite the

Lipshitz continuity of the solutions in Ll we conclude that a small amount of polymer at x = 0,
t = 0 drastically alters the flow in this model.

The admissible solutions of the Riemann problem play a different role in the theory of this

non—strictly hyperbolic problem than they play in the classical strictly hyperbolic theory of Lax.
We explore this difference in the following comments.
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Comiments

(1) The classical strictly hyperbolic theory of conservation laws is a generalization of the theory
of Euler's equations in gas dynamics. One can take the point of view that the Riemann problem is
relevant because it represents the local asymptotic state in a general flow. By the scale invariance
of the equations, the flow should locally look like an asymptotic state, and Glimm's theorem can be
viewed as a justification of this picture; the random choice method replaces the solution locally by
an asymptotic state. For system (P), the asymptotic solutions are not the admissible solution of
the Riemann problem, but in fact one can speed up the convergence of the random choice method
by replacing the solution of the Riemann probiem by the asymptotic solution in each cell. Since the,
limit solution in this case conserves c—values, we expect this to generate the same solution as that
generated in Theorem (P). The admissible solutions of the Riemann problem are special in that all
asymptotic wave structures are concatenations of these. Thus the admissible solutions can be
characterized as the only solutions of the Riemann problem which give convergence to the polymer
conserving solution by the random choice method, but which require only the values of uy and up

in each cell, and not the further information of c.

(22 From the example above, it appears that continuous dependence in L! is recovered when
diffusion is not neglected. For example, if ¢ Uy, I8 added to the right hand side of (P), then we

expect the spike in Fig. 10 to diffuse away as t + +, and the solution to decay to the constant state
LERE Moreover the rate of decay would increase as o - 0, so we expect continuous dependence in

1
L aso-0.
(3)  We believe that the weak solutions generated by Theorem (Te) are limits of the viscously
perturbed equations as ¢ -+ 0. If this is indecd the case (we have no proof), then we can also

characterize the admissible solutions of the Riemann problem as follows: Let u‘(x,t) denote a
solution of the initial value problem for the viscous equation

u, + f(u)x =eu (P
where u and f are given in (P). Let Q 1 and Q2 denote the asymptotic states defined by

lelim lim uf,
"o 0
*)
Qg = lim lim ut.
-0 tow

If solutions of (P) are limits of solutions of (P€) as ¢ - 0, then Q, is the actual asymptotic solution

determined by llO(—w) =up, llo(+cn) = up and € = Max cO(x). However, our example indicates
that the limit Q, should be the admissible solution of the Riemann problem [uL, uR]. In this case,
the admissible solutions of the Riemann problem are special because Ql = Q2 only when the

asymptotic state is the admissible solution of the Riemann problem. Thus the admissible solutions
are the ones for which it is valid to interchange the limits in (*). (This comment was suggested to
the author by Philip Collela of Lawrence Livermore Laboratories).
(4)  In the polymer flood interpretation of (P) it is clear that the narrow "spike" in the example
of Figure 10 is unstable to figuring in higher dimension. We wonder whether a lack of continuous
dependence corresponds to the presence of higher dimensional instabilities in some general setting,
In conclusion, we comment that system (P) probably represents the simplest setting in
which one finds a singular hyperbolic problem. It is surprising that one can give an almost
complete analysis of the initial value problem in this case. We hope that this study of the Ricmann
problem and the structute of asymptotic states can help to shed light on the role of admissibly

criteria and the non—uniqueness of Riemann problem solutions in more complicated problems in
which strict hyperbolicity is lost.
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