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We determine the structure of the nonlinear waves to which solutions of a
nonstrictly hyperbolic system decay as ¢ —» + co. The waves in general are not the
same as the waves that solve the Riemann problem for the states at x = + o0, and
solutions do not depend continuously on initial values in the I!-norm. The role of
the Lax admissibility condition is explored. © 1990 Academic Press, Inc.

INTRODUCTION

We consider the 2 X 2 system of conservation laws which model the
polymer flood of an oil reservoir. These equations are strictly hyperbolic
everywhere except along a curve in state space where the wave speeds in the
problem coincide. The Riemann problem and Cauchy problem for this
system were solved in [4, 8, 20]. The Lax characteristic condition was used
as the admissibility criterion for solutions of the Riemann problem, and the
Cauchy problem was solved by demonstrating the convergence of the
random choice method. Here we describe the noninteracting waves to which
solutions of the Cauchy problem decay asymptotically as ¢t —» + 0. In
contrast to the strictly hyperbolic case [2, 11-14] the waves in the asymp-
totic solution for this nonstrictly hyperbolic problem are, in general, differ-
ent from the waves in the admissible solution of the Riemann problem with
left state u; = u, (—o0) and right state up = u, (+00). (Here uy(x)
denotes the initial data for the Cauchy problem.) Indeed, the asymptotic
solution, which is determined by u,, ug, and the initial maximum value of
¢ (the concentration of polymer), can in fact be an inadmissible solution of
the Riemann problem [u,, u;]. An immediate consequence of the analysis
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206 ISAACSON AND TEMPLE

is that although the admissible solutions of the Riemann problem depend
continuously on u; and uy, and although each solution of the initial value
problem is Lipschitz continuous in time in the I'-norm, the initial value
problem is not well-posed in L'. In fact, continuous dependence on initial
values fails in every L? for this one-dimensional hyperbolic problem. This
lack of continuous dependence parallels the presence of fingering instabili-
ties in the higher dimensional problem. We imagine that continuous depen-
dence is recovered when diffusion is not neglected. However, to our
knowledge, this is the first time such a lack of well-posedness has been
observed in a pure first order system of hyperbolic conservation laws. In
particular, this example violates the stability result proved in [22] for strictly
hyperbolic systems.

The analysis also highlights the role of the Lax admissibility criterion in
this non-strictly hyperbolic problem. In contrast to the classical rarefaction
shocks which violate the Lax condition, the asymptotic solutions of the
Riemann problem for this system are not unstable solutions which never
appear, but rather are, in general, solutions which are incompatible with the
Riemann data in that they spontaneously introduce polymer into the
problem. We can improve the convergence of the random choice method by
replacing the admissible solution of the Riemann problem in each cell by
the asymptotic solution determined by the right and left cell states together
with the maximum value of ¢ in each cell. In this case the analysis in [20]
can be applied essentially unchanged to obtain convergence of this modified
method—and since both the original and modified methods conserve
polymer, we expect that both methods generate the same weak solution.
From this point of view, the admissible solution of the Riemann problem is
unique among all solutions of the Riemann problem which generate the
polymer conserving solutions in the random choice method, in that it
depends only on left and right cell states, and not on the additional
information of the c-values in each cell. Another comment concerning the
role of the Lax admissibility criterion in this nonstrictly hyperbolic problem
seems relevant. If we perturb the system of conservation laws in this
example by a small viscosity term eu,, on the right-hand side, we argue (see
Section 3) that continuous dependence in L' should be recovered. More-
over, we believe that the weak solutions generated in [20] are limits of the
viscous equation as ¢ = 0 (at least for some viscosity matrices. We have no
proof of this, and the claim must depend on the choice of viscosity matrix.
For the sake of discussion, we make the claim for the identity matrix).
Assuming this, we can characterize the admissible solutions of the Riemann
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problem as the only asymptotic states that persist under the interchange of
limits + > + o0 and ¢ —» 0. We wonder whether this perspective can be of
help in determining admissibility criteria for problems with more compli-
cated hyperbolic singularities [6, 7, 15, 18].

We note that not all of the steps in the construction of the asymptotic
solutions are obtained rigorously. Our procedure is as follows: first we
argue from physical considerations that the maximum concentration of
polymer is constant in solutions generated by the random choice method.
In fact it is easy to see that this maximum value is nonincreasing even in the
approximate solutions of the random choice method [cf., 5, 20], but to show
rigorously that it is nondecreasing in the limit solution requires further
analysis. Assuming that the maximum concentration of polymer is constant
in the weak solutions, we then show that there exists a unique set of
noninteracting waves which take u; = u(— ) to u, = u(+ o0) and which
take on the same maximum value ¢ as does the initial data. We then claim
that these must be the noninteracting waves to which the solution decays
asymptotically as 1 — + oo. In support of this claim we give a proof that
the function F(z), which was shown in [20] to be a positive decreasing
function for solutions generated by the random choice method, is in fact
minimized on the asymptotic solution. This minimum is taken over all
sequences of waves which take u; to up and which also have ¢ as the
maximum value of the concentration of polymer. Thus assuming that c is
conserved in the weak solutions, the only step required to make the
argument rigorous is to show that F(z) decreases to its minimum possible
value in each solution.

1. PRELIMINARIES

We study the 2 X 2 system of polymer equations first described by
Isaacson [4),

s+ (sg), =0,
(es), + (esg) =0,

where s = saturation of water, (1 — s) = saturation of oil, ¢ = concentra-
tion of polymer, and g = particle velocity of the aqueous phase. Here
s=s5(x,1), c=c(x,t), g=g(s,¢), and —0 <x< +o00, t>0,0<3s
<1, 0 < ¢ < 1. The polymer is assumed to move passively with the water
(see [4, 20] for details). We let u = (s, c) and consider the initial value
problem (1.1) together with

(1.1)

uO(x) =u(x’0)7 (12)



208 ISAACSON AND TEMPLE

FIGURE 1

which is called the Riemann problem when

, <O’
uo(x) = { .

ug, x>0.

(1.3)

We let f(s,c) = sg(s, ¢), in which case the eigenvalues or wave speeds for
system (1.1) are A, = f, and A, = f/s = g. Elementary waves correspond-
ing to A,, A, are called s-waves and c-waves, respectively. We assume for a
constitutive assumption that f(-, ¢) is S-shaped, and that f(s, ¢,) < f(s, ¢;)
for ¢, > ¢, (see Fig. 1 and [4, 20] for details). Because f(-, c) is S-shaped,
there is a one-dimensional curve in sc-space on which A, = A, and we call
this the transition curve. The integral curves of the eigenvectors for the
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fields A, and A_ are given by ¢ = constant and g = constant, respectively,
so that A, corresponds to a line field and A, to a contact field in the sense
of [23] (see Fig. 2). The Riemann problem (1.1), (1.3) was solved by
E. Isaacson [4] in terms of elementary waves. (The Riemann problem for a
system formally equivalent to (1.1) was first solved in [8].) The solution is
reproduced in Figs. 3 and 4. Here the directed curve that leads from u; to
up in these diagrams traverses the elementary waves that solve the Riemann
problem. The Lax characteristic condition was used as an admissibility
criterion, and this translated into the condition that c-waves cannot cross
the transition curve. We note that every solution going from u; to uy is of
the form an s-wave followed by a c-wave followed by an s-wave. Moreover,
the solution of the Riemann problem at time ¢ > 0 depends continuously in
L} on the initial states u; and uy. We refer to [4, 20] for details.
Temple showed in [20] that there exists a singular transformation

v:(s,¢) = (z,¢), (1.4)

such that, if TV{{ ouy} < oo, and the sampling is random in space as well
as time, then the random choice method converges (modulo a subsequence)
to a global weak solution of the initial value problem (we refer to [20] for
details). The idea was to construct a functional F on sequences of elemen-
tary waves v,,..., ¥, by defining

2|z(u;) — z(ug)|  if yisa c-wave with s(ug) < s(u;),
F(y) =< 4|z(uy) — z(ug)]l  if yisa c-wave with s(ug) > s(ur),
{z(uy) — z(ug)| if y is an s-wave,
(1.5)
F(yy...v) = F(y) + F(v,) + -~ +F(¥,), (1.6)

where u; and uy are the left and right states of the elementary wave y.
Then for an approximate solution of the random choice method, it is shown
that TV{c(-, ?)} and F(t) are positive decreasing functions, where F(¢) is
the F value of the sequence of elementary waves given in the approximate
solution at time . This gives a total variation bound in zc-space and leads
to the results in [20]. Here we wish to determine the noninteracting waves to
which the above weak solutions decay asymptotically as 1 - + oo.

2. THE ASYMPTOTIC SOLUTIONS

We determine the asymptotic solutions by means of the following claim:
Let u(x, t) = (s(x, t), ¢c(x, t)) denote a weak solution of (1.1), (1.2) gener-
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ated by the random choice method in [20]. Let

c(t) =sup{c(x,1): =00 <x < 400} = Cpyy.

CLAIM 1. The function ¢(7) is constant in time.

We do not prove this claim, but we indicate its truth with the following
physical considerations. Let x(¢) denote a solution of the ordinary differ-
ential equation

% =g(s(x,1),e(x,1)), (2.1)
x(0) = x,.

Since g is the particle velocity of the aqueous phase, (2.1) defines the
particle paths. Since our choice of Riemann problems conserves c, we
expect these particle paths to be nonintersecting and defined for all time in
the weak solutions generated by the random choice method in [20]. More-
over, for smooth solutions

%c(x(t), t) =(cg) +c,.
But from the second equation in (1.1),
s(c,+ge,) + (5, + (sg))e=0,
so that by the first equation in (1.1),
¢, +ge, =0,

and ¢ is constant on particle paths. Furthermore, in discontinuous solu-
tions, the particle paths should never cross a c-wave because a c-wave also
propagates with speed g; and, moreover, ¢ is constant across s-waves. Thus
we expect that ¢ is constant on particle paths of the weak solutions as well.
We conclude that ¢ is constant in time. The difficulty in proving these
statements arises from the fact that sampling errors cause Claim 1 to fail in
the approximate solutions of the random choice method. The above re-
marks actually indicate the following claim which strengthens Claim 1:

CrLAaM 2. In the weak solutions generated by the random choice method
in [20], the particle paths given in (2.1) are defined and nonintersecting for
all time, and c is constant along these particle paths.
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Thus Claim 2 implies that the total variation in c¢ is passively transported
along particle paths. We determine the asymptotic solutions by the follow-
ing theorem:

THEOREM 1.  For every pair of states u; and up and value c, there exists a
unique set of noninteracting waves which take u; to ug, which take on ¢ as the
maximum value of ¢, and which minimize F. These waves are unique in the
class of admissible waves that take u; to uyp and that take on ¢ as a maximum
value of c.

For every u;, ug, and ¢, the solutions of Theorem 1 are diagrammed in
Figs. 7, 9. Here u denotes the state which lies at the intersection of ¢ = ¢
and the transition curve, and g = g(u). The diagrams are classified accord-
ing to whether u; lies in one of the following three regions 4, B, or C,
determined by ¢ (see Figs. 5, 6):

Region 4 = {u;: g(u;) < gand u; liesleftof T},

Region B = {u;: g(u,) > g},

Region C = {u;: g(u;) < g and u, liesright of T} .
The waves in a solution are traversed by the directed curve that takes u; to
ug. The solutions of Figs. 7-9 correspond to either the admissible solution
of the Riemann problem [u,, ug], or else to a solution of the form

$,C.G,S,, where S,C, is the admissible solution of the Riemann problem
[u;, 4] and C,S, is the admissible solution of the Riemann problem [#, ug].

REGION A

REGION B

REGION C

¥

Fic. 5. The three regions for the asymptotic states corresponding to ¢ = max,[cy(x)],
sc-plane.
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FiG. 6. The three regions for the asymptotic states corresponding to ¢ = max,[co(x)],
sf-plane.

We call the “asymptotic state” associated to u;, u, and ¢ that solution
which is either the solution of the Riemann problem or the solution of type
$,C,C,S, as determined by Theorem 2 and Figs. 7-9. In fact, the asymp-
totic state takes on the value ¢, = ¢ only in the sense that we can replace
the ¢c-wave in the asymptotic state by c-waves at the same g-value (and
hence the same speed) which take on the value ¢. When the asymptotic
state is viewed as a solution of the Riemann problem, these extra waves
travel at the speed of the c-wave in the asymptotic state and thus are not
observed. We presently discuss the sense in which a general solution decays
to the asymptotic state determined by the initial data. We first note that for
u; in Region A, the asymptotic state agrees with the admissible solution of
the Riemann problem, but when u; lies in Regions B or C, the solution can
be strikingly different from the admissible solution. To prove that the waves
given in Figs. 7-9 are noninteracting is a matter of checking that the wave
speeds are increasing from left to right; verifying that the asymptotic states
give the only sequences of noninteracting waves taking u, to uy with
Cmax = € is a matter of carrying out the analysis presented in [4] for
ensuring uniqueness of admissible Riemann problem solutions. We omit the
details.

We now discuss the sense in which a general solution will decay to the
asymptotic state. Assume that u(x, ¢) is an actual solution generated by the
random choice method in [20] satisfying u; = uy (— ), ug = ugy (+ 00),
and ¢ = sup{¢y(x): —o0 < x < +o00}. In this case, the solution will decay
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Fi16.7. The asymptotic states for u; € A.

to the corresponding asymptotic state given in Figs. 7-9. However, an
actual solution will decay asymptotically to the waves given by the asymp-
totic state except that the intermediate c-wave appearing in the solution
asymptotically will not in general be a sharp discontinuity. Rather, the
intermediate wave will consist of states on g = g, these states including the
state # whenever the transition curve is crossed. Thus in the actual
asymptotic solution, the intermediate wave will be a concatenation of
admissible c-waves; and the entire asymptotic solution will be the concate-

b\
NG

F1G. 8. The asymptotic states for u; € B.

¥
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Y

4

FiG. 9. The asymptotic states for u; € C.
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¥

nation of the two admissible solutions of the Riemann problem [u,, 4],
[@, ug), with the possible addition of intermediate c-waves lying on g = g.
By Claim 2, the c-values in a solution are passively transported along
particle paths. Thus the variation in ¢ for the actual asymptotic solution
must be carried by values of u appearing on g = g, and so this variation
must agree with the variation of ¢ initially. The following theorem gives
analytical evidence for the claim that the solutions generated in [20] do
indeed decay in the above sense to the asymptotic states given in Theorem 1
as t > +o0.

THEOREM 2. Among all connected sequences of admissible s-waves and
c-waves which take u; to ug and which take on ¢ as a maximum value of c,
the functional F defined in (1.5), (1.6) is minimized on the asymptotic state.
Moreover, among all sequences of waves having c,,,. = ¢ and having a given
total variation in c, F is minimized on an asymptotic solution constructed from
the asymptotic state by replacing the c-wave by a sequence of c-waves which lie
at the same g-value as the c-wave in the asymptotic state and which account for
the initial total variation in ¢ which is conserved.

Since F is positive decreasing in approximate solutions of the random
choice method, Theorems 1 and 2 argue strongly that solutions decay to the
asymptotic state given in Figs. 7-9 in the sense discussed above. We now
construct a proof of Theorem 2 using the results in [20]. First, one can
verify from Figs. 7-9 that the asymptotic state is either the admissible
solution of the Riemann problem, or else it is the solution §,C,C,S,, where
S,C; solves the Riemann problem [u,, 4] and C,S, solves the Riemann
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problem [u, uz]. (We use the notation of [20].) Again, we call these the
asymptotic states even though an actual solution asymptotically looks like
the solution constructed from the asymptotic state by replacing the c-wave
in the asymptotic state by a sequence of ¢-waves at the same g-value which
account for the total variation in ¢ which is conserved in the solutions. If,
however, F is minimized on the asymptotic state among all connected
elementary waves taking u; to up with ¢, = ¢, then it is clear that among
all sequences with a given total variation in ¢, F is minimized when c-waves
with this total variation are included in the c-wave of the asymptotic
solution. Thus it suffices to show that among all sequences of connected
elementary waves v, ...Y, having ¢, = ¢, F is minimized on the asymp-
totic state. In the case when the asymptotic state is the solution of the
Riemann problem, this is just Lemma 5.1 of {20]. Thus we need only
consider the case where the asymptotic waves are given by S,C,C,S,, as
above. Since v,,..., v, have ¢, = ¢, we can partition v, ...y, into

N Ya=0ap. B, B,

where @;...a, take u; 0 4, B,,,... B, take # t0 up, and c(u) = ¢. By
Lemma 5.1 of [20], the F value of the sequence decreases when we replace
a; ... a, by the solution S,C,S; of the Riemann problem [u,, ug], and we
replace B,+1--- B, by the solution S$,C, S, of the Riemann problem [i, ug].
More precisely,

F(vy-.-7,) = F(5,6:5,565,).

Now one can verify that our assumption that the asymptotic state is not the
admissible solution of the Riemann problem implies that either S;C; takes
u; to % or else C,S take u to ug. This follows from the fact that one of the
two Riemann problems must contain waves that cross the transition curve.
Without loss of generality, assume S;C, takes u, to u. In this case

F(5,5G8,) = F(GS,)
because C,S, solves the Riemann problem for [%, ug]. Thus
F(v,---7,) = F(5,GGS,),

where S,C;C, S, is the asymptotic state. This establishes Theorem 2.

3. FAILURE OF WELL-POSEDNESS

We consider the states u;, u;, 4, and u, diagrammed in Figs. 8 and 10.
The asymptotic solution for u; = uy is diagrammed in Fig. 10. Here, the
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[

F1G.10. The asymptotic state for u; and ¢ diagrammed in Fig. 8.

states that lie between u; and u, in the solution are values of u on
g(u) = g. Let u,(x,t) denote this solution when the c-wave has width
o > 0. Lack of continuous dependence is observed by letting o — 0, since
this asymptotic solution does not tend to the solution of the Riemann
problem for u; = up, which is the constant solution u = u;. Nevertheless,
u,(x, t) is an admissible solution because it is the concatenation of the two
admissible Riemann problem solutions [u;, #] and [#, ug]. To understand
the lack of well-posedness, consider what the solution u,(x, ¢) represents
physically. Since

s(uy) < s(uy) <s(u),

the solution u,(x, t) represents a solution which is displacing oil; i.e., oil is
being displaced from the u; region to the u, region in Fig. 10. This is due
to the presence of a small strip of polymer between u, and u, which is
enhancing the displacement of the oil. In two dimensions, this process is
unstable because the low viscosity fluids are displacing the higher viscosity
fluids; i.e., this represents a fingering instability. Thus we expect that in two
dimensions fingering would occur, the interface of polymer would collapse,
and the solution would quickly evolve into a solution near the constant
solution u; when o < 1. In this way the higher dimensional instability
helps restore well-posedness. Also, we expect that if diffusion were present,
then the spike of polymer between u; and u, would diffuse and again the
solution would quickly decay to approximately the constant u = u; when
o < 1. Thus we also expect that well-posedness is restored when diffusion
is not neglected. At this time we do not have proofs for either of these
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statements. It is interesting to note that the lack of continuous dependence
described above occurs despite the fact that each weak solution generated
in [20] is Lipschitz continuous in time in the L' norm.

We believe that the weak solutions generated in [20] are limits of the
viscously perturbed equation as e = 0. If this is indeed the case (we have
no proof), then we can also characterize the admissible solution of the
Riemann problem as follows: Let u#*(x, t) denote a solution of the initial
value problem for the viscous equation

u + f(u) = euy, (3.1)

where u = (s, cs) and f are given in (1.1). Let &/, and 7, denote the
asymptotic states defined by

o, = lim limu*,
t—> 00 £0
o, = lim lim u*.

£-»0 t— o0

If solutions of (1.1) are limits of solutions of (3.1) as ¢ — 0, then &, is the
actual asymptotic solution determined by ug(—o0) = uy, uy(+ ) = ug
and ¢ = max cy(x). However, our example in Fig. 10 indicates that the
limit </, should be the admissible solution of the Riemann problem
[u,, ug]. In this case the admissible solutions of the Riemann problem are
special because #/; = &, only when the asymptotic state is the admissible
solution of the Riemann problem. Thus the admissible solutions are the
ones for which it is valid to interchange the limits in (3.1).
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