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NONLINEAR RESONANCE IN INHOMOGENEOUS
SYSTEMS OF CONSERVATION LAWS!-2

Eli Isaacson3 and Blake Temple*

ABSTRACT: We solve the Riemann problem for a general
inhomogeneous system of conservation laws in a region
where one of the nonlinear waves in the problem takes on a
zero speed. We state generic conditions on the fluxes that
guarantee the solvability of the Riemann problem, and these
conditions determine a unique underlying structure to the
solutions. The inhomogeneity is modeled by a linearly
degenerate field. Our analysis thus provides a general
framework for studying (what we are calling) resonance
between a linear and a nonlinear family of waves in a system
of conservation laws. Special cases of this phenomenon are
observed in model problems for gas dynamical flow in a
variable area duct and in Buckley-Leverett type systems that
model multiphase flow in a porous medium.

§1 INTRODUCTION: When two different families of waves take on
the same wave speed in a nonlinear problem, we say that nonlinear
resonance occurs [11,12]. When wave speeds from different families
are not distinct, the number of times a pair of waves will interact
cannot be bounded apriori. Consequently, since waves are reflected
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in other families every time a pair of waves interact, a proliferation
of reflected waves can occur by the interaction of a single pair of
waves. Here we introduce a general framework in which resonant
interaction between a linear and a nonlinear family of waves takes
place. Such resonance arises in an inhomogeneous system of
conservation laws when a nonlinear family of waves takes on a zero

speed. By an inhomogeneous system of conservation laws we mean a
system of the general form

(1.1) ut + fau)y =0,

where we assume that a=a(x) is a variable function of x alone, so
that a represents an inhomogeneity in the problem. We express this
by the additional conservation law

(1.2) a; = 0.

(Systems of this form were previously identified by the authors
when they outlined a program for classifying the solutions of

nonstrictly hyperbolic systems. [cf. 5,8 ]) Our general problem thus
becomes

(1.3) Ut F(U), =0,

where U=(a,u), F(U)=(0,f(a,u)), and u=(uq,us,...,un)eRM, xeR, t>0.
System (1.3) is a system of n+1 equations in the n+1 unknowns a,
ug,...,un. We assume that for each fixed value of a, system (1.1) is
a strictly hyperbolic system of n equations, and that each of the
characteristic fields associated with the u variables is either
genuinely nonlinear or linearly degenerate [10]. Equation (1.2)
produces a linearly degenerate field in system (1.3) with
eigenvalue Ag=0 and corresponding eigenvector Rg (i.e.,
VAg-Rp=0). The remaining eigenvalues,

AM<hy<...<dq

of system (1.3) correspond to the eigenvalues of system (1.1) and
have corresponding eigenvectors Ry,...,R,  which lie in the

hyperplane a=const. @ We wish to study this system in the
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neighborhood of a state U,=(a,,u,) at which a nonlinear family of

waves in system (1.3) takes on a zero wave speed. Thus we assume
that

(1.4) Ak(U,)=Ag=0,
and that
(1.5) Vi Rg=0.

In §3 we state a theorem which gives generic conditions on the
flux function F that guarantee the unique solvability of the Riemann
problem in a neighborhood of a state U, at which (1.4) and (1.5)

hold. The Riemann problem for (1.3) is the initial value problem for
piecewise constant initial data

Up for x <0,
U(x,0) =
Ug for x> 0.

The Riemann problem is fundamental to the study of (1.3) because
it identifies the elementary waves that propogate, and these are
typically shock waves, rarefaction waves and contact
discontinuities. The conditions of our theorem determine a unique

underlying structure to the solution of the Riemann problem in a
neighborhood of U,.

Special cases of (1.4) and (1.5 are observed in model
problems for gas dynamical flow in a variable area duct and in
Buckley-Leverett type systems that model multiphase flow in a
porous medium. In the latter case the model equations are not given
in the form of an inhomogeneous system of conservation laws, but
we show that there exists a Langrangian type transformation that
maps the given equations to equivalent systems (in the weak sense)
that are of this form. (The transformation was shown to the authors
by D. Marchesin and Jorge Patino.) Examples of such systems have
been studied by Keyfitz and Kranzer [9] and by the authors [4,16], and
under the Lagrangian transformation these turn out to be equivalent
to an inhomogeneous scalar conservation law in our theory. Many but
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not all of the features in the scalar case carry over to the case of an
inhomogeneous system of conservation laws. For example, there are
in general n+2 waves in a solution even though there are only n+1

equations; Riemann problem solutions depend continuously on the
data in xt-space but not in state space; but unlike the scalar case,
the wave curves in the case of systems are only Lipschitz
continuous curves near the point of resonance. This makes it
difficult to apply the implicit function theorem directly, and we
show that the existence and uniqueness of solutions of the Riemann
problem in a neighborhood of a point of resonance is a consequence
of the uniqueness of intersection points of Lipschitz continuous
manifolds of complementary dimension. Our goal is to obtain an
existence theory for the Cauchy problem using Glimm's method that
applies in a neighborhood of a point of resonance in a general
inhomogeneous system of conservation laws. Such a theorem in the
scalar case can be obtained by methods introduced earlier by the
second author [16], but a sharper bound on the total variation of
solutions, as well as a quadratic potential interaction functional is
required to generalize these methods to systems. Such a quadratic
functional has not been found in any other case in which there is no
apriori bound on the number of times a pair of waves will interact.
In the scalar case the authors recently identified the asymptotic
wave structure of solutions as t tends to infinity. Indeed,
solutions in general decay to inadmissible solutions of the Riemann
problem, and as a consequence of this, a lack of continuous

dependence on the data in the LP sense was observed [6]. The authors
conjectured that some form of continuous dependence would be
retrieved when viscosity effects were included. The analysis gives
an explanation of how nonuniqueness of solutions of the Riemann
problem is explained in terms of the time dynamics of general
solutions, and similar phenomena occur in the case of an
inhomogeneous system of conservation laws. The argument for
decay in [6] went as follows: In [16] the second author constructed a
positive nonincreasing functional defined on solutions at every time
t ; and in [6] the authors showed that this functional was minimized
on the asymptotic waves patterns among all possible wave patterns
that a given solution could take on. The authors believe that a
quadratic functional that succeeds for Glimm's method in an
inhomogeneous system with resonance would help in completeing the
proof of decay and would shed light on the rate of decay in the scalar
case. Further directions include generalizing to the case where a(x)
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is a vector. The authors recently analysed this problem in a case
equivalent to the case when u is a scalar, but in the context of the
multiphase flow problem [4,16].

§2 APPLICATIONS: In this section we describe two settings in
which resonance in inhomogeneous systems of conservation laws
arise.

Flow in a variable area duct: The equations for gas dynamical
flow in a variable area duct with cross-sectional area a(x) are (1]

Pt + (pu)x = -(a¥a)pu,

(1.6) (pu)t + (pu+p)y = -(a’a)pu?,
Et + [(E+p)uly = -(a’a)[(E+p)ul.

We say that resonance occurs in transonic flow because then one of
the nonlinear waves in the problem can be zero [cf 11]. Liu was the
first to study the initial value problem for these equations from the
point of view of Glimm's Random Choice Method, and he proved
convergence of the method for solutions taking values in a
neighborhood of a state (p,pu,E) at which none of the wave speeds
in the problem is zero (see [11] and references therein ) . In [12] Liu
also gave a fairly complete analysis of a scalar model for (1.6) in
which resonance occurs. For systems, however, there is at present
no general proof that Glimm's method converges in the transonic
regime. To study this case, we rewrite these equations in the form

(ap)t + (apu)y = 0,
(1.7) (apu)y + (apu®+ap)y = -a’p,
(@E) + [a(E+p)u]y = O,

with the supplementary equation

(1 .8) at=0.

ot B RO 5 A B
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The equations obtained when the zero order term on the right hand
side is dropped yield a mathematical model for the resonant
behavior that occurs in the transonic flow. The resulting system
falls into our class. Note that the reduced system can be viewed
also as the first system to solve in a numerical time splitting
method for solving the original problem (1.7) . In the special case

that p=02p (isothermal flow), the energy equation drops out and the
zero order term can be incorporated into the fluxes to obtain the
system

(1.9) (ap)t + (apu)x =0,
ug + (u2/2+02|og p)x = 0.

Although this does not supply a physical conservation form for the
original problem, it does provide a mathematical model containing a
similar nonlinear resonance. For flow in a variable area duct, we
believe that these models isolate an important component in the
complicated behavior of transonic flow.  Marchesin and Paes-Leme
[13] studied this system in an analysis of the Riemann problem
obtained by taking a to be piecewise constant, and our point of
view here was influenced significantly by their analysis.

Buckley-Leverett type systems: We call the following equations
the polymer equations because they arise as a model for the polymer

flooding of an oil reservoir; i.e., a two phase, three component flow
in a porous medium [3,16]:

st + f(s,c)x = 0,
(1.10)
(cs)y + (cf(s,c))x = O.

Here s and c¢ correspond to a saturation and a concentration, resp., !

0<s,c<1 , f=f(s,c) is a constitutive relation, and the structure of

R
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solutions is determined by qualitative properties of f [4,16]. The
eigenvalues of system (1.10) coincide when fg=f/s. The Riemann
problem for this system was studied by isaacson in [4], and Keyfitz
and Kranzer [9] studied the Riemann problem for the system

up + [ug(u,v)lx =0,
(1.11)
v + [va(uv)ix = 0,

which is formally equivalent to the polymer system, and arose in
their study of elasticity. The polymer interpretation of these
equations suggests a natural Lagrangian transformation of the
variables. In this model g=f/s is the particle velocity of the water,
and so the particle trajectories are given by solutions of the
ordinary differential equation

x' = g(s(x,t),c(x,b).

We can thus define a solution dependent mapping of the independent

variables (x,t) to (E,t) so that E=const. defines the particles
trajectories in the transformed, or Lagrangian coordinates & and t.
One can verify that this is implemented through the mapping defined
by specifying x(§,t) through

a;(té.t) = g(x(&.1).1) |
g
1
x(€,0) = Iso(") dx .

0

Rewriting system (1.10) in the &t-coordinates yields the equivalent
system

o =0,
(1.13)

(1/s) - g(s,c)§ = 0,
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which is a system of form (1.1) , (1.2) when we make the
identifications u=1/s , a=c and h = -g . Systems (1.10) and
(1.13) are equivalent in the sense that they determine the same
weak solutions under the 1-1 mapping given by Lagrangian change of
variables. Furthermore, system (1.13) satisfies the assumptions of
our theorem at the points where Ag=A{  Thus writing a=a(g) ,

system (1.13) is an example of a scalar inhomogeneous equation in
our framework.

§3 THE RIEMANN PROBLEM: We consider the system of equations

at = 0,
u + fla,u)x =0,

where u=(u{, up,...,uy) and aeR. We can restate this in the form
(1.3) by taking U=(a,u) and F=(0,f). Here, a=a(x) is an
inhomogeneity in the equations, and ai=0 gives rise to a linearly

degenerate field with wave speed Ag=0. We consider the Riemann
problem for weak solutions in a neighborhood of a state U,=(a,, u.)

at which
M <..<A =Ag <...<Aj.

This represents the simplest example of a coincidence of wave
speeds.
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THEQOREM: Assume that f satisfies the following conditions in a
neighborhood of a state U,=(a,,u,):

(i) For each fixed value of a, the system
(u) ut + f(a,u)y =0
is strictly hyperbolic and genuinely nonlinear with e'igenvalues

Al <A <...<Ap.
(i) Ak(a,,u,) =0.

(i) The nx(n+1) matrix df/oU has full rank at U,.

(iv)  The directional derivative of ag in the direction R
satisfies

Vag-Rg |U # 0,

where Rg is the unit eigenvector for Ao=0 and aqg is the a-
component of Rg, a function of U.

Under assumptions (i)-(iv), there exists a unique solution of the
Riemann problem in a neighborhood of U., and in physical space

this solution depends continuously on the left and right states.

Moreover, for every f in this class, the solutions exhibit the same
qualitative behavior.

We indicate the proof here. For details the reader is referred to our
forthcoming paper. First of all, the assumption of genuine
nonlinearity (VAk-rk 2 0) in the k'th field of system (u) guarantees

that the equation Ak=0 defines a smooth n-dimensional surface
locally in RN+1, passing through the state U,. We call this the

transition surface 7. By (i), Rk=(ak.rk) points along the surface
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a=const., and the condition VAy-rx # 0 also guarantees that the
integral curves of Ry cut the transition surface transversally at 7.
By (ii) and (ii), oF/0U has Jordan normal form

)‘1 . ]
"\ O
0\
(J) 0
o }‘Kﬂ.
.‘ x
" ",

at U, because oF/U has (full) rank n and Ag=Ag=0 at U, .

Moreover, oF/OU has this normal form for every UeT in a
neighborhood of U, since (iii) is an open condition. In particular,

this implies that the eigenvectors R and Ri agree on 7, and ag,
the 0'th component of Rg, vanishes on T in this neighborhood. Thus
we can conclude that the integral curves for both Rg and Rk cut
the surface T transversally near the state U, . Finally, the

genericity condition (iv), that Vag-Rg |U # 0, implies that the

integral curves of R do not cross the surface a=a, at states U
near U, , and that the integral curve of Ry passing through U,

must cross the surface a=const. exactly twice at values of a near
a=a,, a<a,. Indeed, a as a function of arclength along the

integral curve of R would have an inflection point at U, if this
integral curve stayed within or crossed the surface a=a, at U,
and this would imply that Vag:Rg =0 on 7, violating (iv) . We

assume without loss of generality that the integral curve of Ry
lies below the surface a=a, near the state U+ (see Figure 1).

Since all of the conditions (i) through (iv) are open conditions, the
above conclusions about the integral curve of Rg through U, must

also hold for all UeT in a neighborhood of U,.

The solution of the Riemann problem for arbitrary states U
and UR in a neighborhood of U, is constructed as follows: we let

B e
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Ti(U ) denote the state t arclength units from U along the i-
wave curve of Up , i=1,...n. (The i-wave curve of Uy consists of
all right states that can be connected to U_ by an admissible i-

wave, [10].) By (i) , all states in the image of Ti(U) lie at level ai.

For a given value of aR , let TR(UL) denote the set of all right
states at level aR that can be connected to Ui by a solution of the
Riemann problem consisting of admissible k-waves and O-waves
alone; and let TR t(UL) denote the point t arclength units from the

transition surface along TR(UL) . (Choose t to increase in the
direction of Ak.). We say that a 0-wave which connects U to UR
on the same integral curve of Rp by a contact discontinuity of
speed zero is admissible if the integral curve of Ry does not cross
the transition surface 7 between U and UgR. (Admissibility here
is equivalent to conservation of the total variation of a in Glimm's
method [cf 4,9,16]). The curves TR(UL) are skethed in figures 2 and

3. Note that TR(UL) is a continuous curve at level aR , but is only

Lipschitz continuous due to a possible jump in the derivative at the
points labeled Q in figures 2 and 3. The continuity of the curves

TR(UL) at the special points Q follows from the triple jump

condition formulated in [5]. The solution of the Riemann problem for
arbitrary U; and UR is constructed by finding tq,....t; such that

- TN, ...Tk+1 . TR, . 1k-1 o.7
UR =Tt T g Tt T g 7 Tty (UL

By definition the elementary waves corresponding to the Titi(ui)
take U_ to UR asiranges from 1 to n, and this determines the
unique solution of the Riemann problem near U,. Since TR(U) is

only Lipschitz continuous, the implicit function theorem is difficult
to apply directly to obtain existence and uniqueness of ty,...,tn for

each pair U and Ug in a neighborhood of U,. Existence and

uniqueness is verified by demonstrating the uniqueness of

o e L
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intersection points for Lipschitz continuous manifolds of
conplementary dimension. The procedure goes as follows. We first
make the definition '

DEFN; A function

o :{teRK> |t <t} > RN
defines a Lipschitz continuous manifold with e-approximate tangent
vectors Wiq,...,.Wp in RN if

lotrae)-o) |
| wl

I ¢ '

<E§g

whenever |t|<t and |t+aejj<t. It is then not hard to prove the
following lemma:

LEMMA 1: Let ¢ = ¢(tk) and o(th.k) define Lipichitz continuous
manifolds MK and NN-K with e-approximate tangent vectors Wi, ...

Wik and Wi, 4,...,Wq, respectively, which together form a basis for
RN,
¢:RK 5 RN,

Q: RN-K _, RN .

Here ti = (t{,...tk), thk = (ks 1:--tn). Assume further that MK
and NN-K  both intersect Bs(u,) , the ball of radius & and center
u,. Then there exists a constant C > 1 such that if

e < 1/(CMp),

then MK and NN-K intersect each other at a unique point inside of
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the ball By(u,) , where
Y=CM028.

Here Mgp>1 denotes a constant that relates the Euclidean norm on RN
to the norm determined by the basis Wjy,...,W in the sense that

(1/Mp)la] < JagWq+-anWql < Mgla
holds for all o e R .
Now given Up_, and UR , define

¢(tk) = TRtko Tk-1 0°*°**o T1 UL

olto) = TN g

Here T'j denotes the inverse of the function TJ . The existence and

uniqueness of solutions of the Riemann problem then follows
directly from the next lemma (details will appear in the authors'
forthcoming paper.):

LEMMA 2: For U_ and UR ina 8-neighborhood of U, , ¢ and ¢

define Lipshitz continuous manifolds at level a=aR , with e-
approximate tangent vectors Wj = PRJ.(U,,) for j<k , and Wj = Rj(

U,) for j 2k, where P denotes the matrix that projects onto the

tangent space of 7 at U=U,, and

€= 0(d) .

We note that it is the continuity of the curves TR(UL) that leads to
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the existence and uniqueness of solutions of the Riemann problem,
and to the fact that solutions of the Riemann problem depend
continuously on the left and right states Up and UR. The Lipschitz

continuity of the wave curves follows directly from the fact that
the equations are posed in conservation form.

In conclusion, the general structure of the solutions in a
neighborhood of U, can be described as follows: to leading order

the waves in the 0,k-characteristic families correspond to the
waves in the Riemann problem solution for the scalar inhomogeneous
equation; the general solution is obtained by adjoining to these
waves the faster and slower waves from families izk . Thus, the
Riemann problem solutions of the scalar inhomogeneous equation
give the canonical structure of solutions under our generic
assumptions, just as the scalar homogeneous equation determines
the local structure to leading order in the strictly hyperbolic case.
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