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ON BLOWUP IN A RESONANT NONSTRICTLY
HYPERBOLIC SYSTEM

Lin Longwei* Blake Temple! = Wang Jinghua!

Abstract

We discuss the “blowup” in derivatives which occurs in solutions of a
2 x 2 system of conservation laws in the simplest setting in which wave
speeds can coincide, namely, an inhomogeneous equation in which the in-
homogeneity is treated as an unknown variable in the problem. For such
a system, if we linearize in both variables, the solutions of the linearized
equations blow up at a linear rate; while if we fix the inhomogeneity and
linearize in the nonlinear variable alone, then solutions will blow up at
an exponential rate. We contrast this with what happens in the nonlin-
ear problem. For the nonlinear problem, the authors have shown by the
2 X 2 Glimm and Godunov methods that solutions and their derivatives
remain bounded in terms of a singular transformation of the unknowns,
but the conserved quantities can “blow up” in the total variation norm
due to the possible formation of oscillations. Such oscillations can ap-
pear after finite time due to the formation of interacting time asymptotic
states that will later interact: and correspondingly they can also appear
as numerical oscillations in any numerical method based on time asymp-
totic wave pattern (i.e., methods based on the 2 x 2 Riemann problem).
Here we discuss the rate of blowup in this nonlinear problem. We show
that there is no bound on the rate of growth in the derivatives (as mea-
sured by the total variation of the variables at fixed time) unless the
inhomogeneous variable satisfies a certain threshold smoothness condi-
tion. We give examples, and motivate a theorem (which represents work
in progress) that shows that the growth rate in the nonlinear problem
is sublinear under the smoothness assumptions, thus indicating that (in
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terms of growth rate) the nonlinear problem behaves qualitatively more
like the less refined linearized system. Our results, which are based on a
detailed analysis of the 2 x 2 Godunov method, can also be interpreted
as verifying that the averaging step in the 2 x 2 Godunov method “wipes
out” the numerical oscillations that can occur in the Riemann problem
solution step of the method. We interpret this as demonstrating that
numerical methods based on the Riemann problem are viable in this
non-strictly hyperbolic setting.

1. Introduction

We discuss the issue of “blowup” in the total variation norm for solutions of

the 2 X 2 resonant nonlinear system of conservation laws

a¢=0,

(1)
7 + f(a:u)r = 01

a(2,0) = ao(z) = a(z),
(2)

u(z,0) = uo(z),

where u € R, @ € R, and we let U = (a,u), F(U) = (0,f(U)). System
(1) is a system with the two wave speeds Ao(U) = 0 and A (V) = 0f/6u,
and is resonant at a state where the two wave speeds coincide, making (1) a
nonstrictly hyperbolic system. This is the special case of an n X n resonant
nonlinear system as introduced in (10,11]. (Motivations for this point of view
can be found in the work of Marchesin and Paes-Leme, see for example [18].)
Note that for fixed q, system (1) is equivalent to the inhomogeneous scalar
conservation law u, + f(a(z),u), = 0. Examples of resonant systems of this
general form have been used to model problems in multi-phase flow, and are
related to problems involving transonic flow in a variable area duct [10,11]. In
this context, the canonical type of resonant behavior occurs in a neighborhood

of a state U, = (a.,u.) under the assumptions that the nonlinear wave family




BLOWUP IN A RESONANT NONSTRICTLY HYPERBOLIC SYSTEM 69

is genuinely nonlinear, the nonlinear wave speed is zero at U., and the flux

function f is monotone in a at u, [10,11]. Thus we assume

AI(U") = 0) . (3)
0
s (U.) #0, (4)
0
557 (U.) # 0. ()

These are generic conditions that generalize to the case when u is a vector as
well (10,11}, and they imply that solutions of the linearized equations blow up
as ¢ tends to infinity, cf. [10,11]. Here we motivate and state a theorem (details
to appear in the authors forthcoming paper) that states that solutions of the
nonlinear problem can grow at only a sublinear rate under the condition that
the function a(z) satisfies a certain threshold smoothness condition which was
first identified by Tveito and Winther [23], namely, Var{a'(-)} < co. (Here,
Var{f(:)} = [ |f'(z)|dz denotes the total variation of the function f, a measure
of the size of the derivative of f). Our analysis is based on a detailed study
of the 2 x 2 Godunov numerical method, and the result relies on the previ-
ous work of the authors [15] where we showed that for the nonlinear problem,
Var{z(:,t)} remains bounded for all time in solutions generated by the 2 x 2
Godunov method, where z = 2(a,u) is the variable that defines the singular
transformation first introduced by Temple in [22]. Since z is related to u by
a singular transformation, bounds on Var{z(-, t)} do not imply bounds on the
total variation of the conserved quantity u, and examples show that in the non-
linear problem, Var{u(-,t)} can initially blow up at an arbitrary rate when a
is taken to be of bounded variation. Our result is that when Var{a'(-)} < oo,
the quantity Var{u(-,¢)} can grow at only a sublinear rate, the rate depending
only on Var{a'(:)}, Var{a(-)} and Var{zo(-)}. Known counterexamples show
that there does not exist a growth rate for Var{u(:,t)} that depends only on
Var{a} even when uo(z) = 0 [22]. Here we show by counterexample that there
does not exist a rate depending only on the Var{a(:)} and the C'-norm of
a(z). We understand this as follows: the 2 x 2 Glimm and Godunov method
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are based on approximating solutions locally by time asymptotic states, and
there is no bound on the the total variation of u in the time asymptotic states
in terms of the total variation of the initial data. Our result (and also the
carlier result in [23]) can be interpreted as saying that when a(.) is sufficiently
smooth, i.e., Var{a'(-)} < oo, the rate at which the time asymptotic states are
taken on in a solution is controlled, this effect being quantified by the statement
that Var{u(-,t)} grows at a sublinear rate when Var{a'(-)} < co. In the next
paragraph we contrast this with the growth rate observed in the linearized equa-
tions. Our conclusion is that solutions of the equations obtained by linearizing
the 222 nonlinear system about the state U. blow up at a linear rate due to
resonance; and the system obtained by fixing a(z), and linearizing in u alone,
blow up at an exponential rate. We conclude, therefore, that in terms of gfowth
rate in the derivatives, the nonlinear problem behaves more like the solutions
based on the less refined linearization process. As far as we know, the Godunov
method is the only numerical method for which both the time independent
bound Var{z(:,t)} < CVar{zo(-)} as well as the bound Va.f{u(-,t)} < oo for
the conser{red quantity have been simultaneously verified. With the latter es-
timate one can verify that our solutions satisfy the Kruzkov entropy condition
(cf.[23]), which implies uniqueness for the scalar inhomogeneous equation, and
therefore, as far as we know, our analysis also gives the first proof that the so-
lutions of the scalar equation u; + f(a(z),u), = 0 generated by scalar methods
must satisfy the same time independent bounds on derivatives that have only
been verified via numerical methods based on the construction of time asymp-
totic states for the 2 x 2 system (1) [22,15]. The results ini [22] show that the
bound Var{z(:,t)} < Const.Var{z(-)}, valid for system (1), is a time indepen-
dent bound on derivatives (as measured under a singular transformation) and
thus represents a purely nonlinear phenomenon. As a motivating example, we
show that our theorem on linear growth demonstrates that in terms of growth
rate, the nonlinear equations behave more like the less refined linearized system.
Specifically, consider first the system obtained by linearizing the flux function
F(U) = (0, f(a,u)) about a state U., where U, = (a.,u.) satisfies (3)-(5). In
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this case, letting U =.U,+(—], we write F(U) = F(U.)+dF(U.)U + h.o.t., where
h.o.t. are higher order in |U|, and by (3)-(5),

sz[g 8] (6)

where = ZL(U.) # 0. Thus the linearized equations for U are

o+ [ o]0 =0, "

which have the solution % = #(z)—Ba'(z)t. We conclude that for the linearized
system, 4 and all z-derivatives of 4@ blow up at a linear rate as ¢ tends to
infinity. Consider now the more refined linearization procedure based on fixing
a = a(z) and linearizing the flux function f about the state u = u.. Setting u =
u. + @ and omitting higher order terms in |&|, we obtain f(a,u) = f(a(z),u.)+

fu(a(z),u.)i, so that the equation for @& based on this procedure is
e+ fula(@), u)a'(e) + faula(e), w)a' (@) + fula(a),u)ae = 0. (8)
Assuming now that a(0) = a., and a’(0) = ay # 0, the equation at z = 0 is
By = — fa(@u, uu)ag — fau(a., va)agh, (9)

which has the solution

i __ B éeaé‘vt
60,8) =~ + (o + D)™

Therefore, in this case, @& and all z-derivatives of @ blow up to infinity at an
exponential rate as ¢t tends to infinity so long as v # 0 and %o+ 8/v # 0, where
we set v = — fou(ax, v.), 8 = —fa(a.,u.) and @y = ©(0,0). Thus we conclude
that our result that for solutions of (1), Var{u(:,t)} grows at a sublinear rate
depending only on Var{a'(-)}, Var{a(-)} and Var{zo(-)} implies that in the
nonlinear problem, the grow rate for the derivatives of u corresponds to the

growth rate observed in the less refined linearization of the nonlinear problem.
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2. Preliminaries

In this section we state, Theorem 1, our main result on sublinear growth for
(1),(2), and then we establish notation and review the results in [15] which are
required for the subsequent proof, which is developed in the next section. At
the end of the section we show by counterexample that for solutions of (1),
Var{u(-,)} does not grow at a rate depending only on the Var{a} and the C!-
norm of a(z), the counterexample indicating that condition Var{a'(-)} is sharp
for sublinear growth. The proof of Theorem 1 is postponed until section 3. We
first state the main theorem of this paper. Let U(x,t) be a solution of (1),(2)
generated from Godunov’s method (to be discussed below) for arbitrary initial
data Up(z) CB of compact support, where B is a neighborhood of U, to be

determined below. Assume that U(x,t) is generated from initial data satisfying

Var{a'} = V! < oo, (10)
Var{a} =V, < o, (11)

and
Var{uo(-)} = V, < . (12)

In particular, this implies that (see [22]),
Var . {u(-)} =V, < . (13)
Let Sy denote the constant

Cy = sgp{lfal, | fuly | faaly | fauls | Fuul}- (14)

Our result is the following theorem, whose proof is sketched in the following

sections.

Theorem 1. Let U(z,t) be a solution of (1),(2) generated from Godunov’s
method for arbitrary initial data Uo(z), satisfying (10), (11) and (12). Then
there ezxists a constant C depending only on V!, V,, V. and Cy such that

Vary{u(-,t)} < Var,{u(-)} + Ct. (15)
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The proof of Theorem 1 follows from an analysis of the 2 x 2 Godunov
numerical method as applied to (1) which we rewrite as the 2 x 2 nonstrictly

hyperbolic system
U+ F(U). =0, (16)

where U = (a,u) and F(U) = (0, f(v)). The Godunov scheme is based on
the construction of the Riemann problem for (16). We briefly describe the
solution of the Riemann problem as outlined in [15]. The Riemann problem,
denoted [Ug, Ug), is the initial value problem for initial data given by a jump

discontinuity

_J UL ifz<0,
Uol2) = { Un ifo>0 (17)

Let A; and R; denote the eigenvalues and corresponding unit right eigenvectors
of the 2 X 2 matrix dF, i = 0,1. The eigenvalues are given by Ao(U) = 0 and
AM(U) = 0f/0u. In [11] it is shown that the assumptions (3) to (5) imply that
A1(U) = 0 defines a smooth curve I' (named the transition curvej in U-space
passing through the state U = U, in a direction transverse to the u-axis, and
thus I' is described by a smooth function a = T(U) in a neighborhood of U,. T
is the set of states where system (16) is nonstrictly hyperbolic in a neighborhood
of U.. By substituting u — T(A) for u in system (16), we obtain an equivalent
system in which I' is given by v = 0, and so without loss of generality we assume

that in a neighborhood of U,, A;(U) = 0 if and only if u = 0. The assumptions
(3) to (5) imply that the matrix dF has the Jordan normal form

dF=[(1) 8] (18)

at each state U € I'. Because (16) is nonstrictly hyperbolic at U = U., there are
in general three waves that solve the Riemann problem [15]. The wave curves for
(16) are the integral curves of the eigenvector fields Ry and R, associated with
Ao and A;. The 1-wave curves are given by a = @, @ constant, and 1-waves are
determined by solutions of the scalar conservation law u, + f(&, ), = 0. The 0-
wave curves are given by f = const. Because of (3)-(5), in a neighborhood of U,,

f = const. defines a smooth curve of nonzero curvature which is tangent to the
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curves a = const. only at the states U € I' in the au-plane; and the transition
curve I' intersects the 0-wave and 1-wave curves transversally at U.. To be
consistent with [11,15,22], we assume without loss of generality that fuu < 0
and f; < 0, so that the curves f = const. are convex down in a neighborhood
of U, (see Lemma 3.1 in [11] and Figure 1. of [15]). We restrict attention to
solutions of (16) taking values in a neighborhood B of U.. Thus let B denote a
neighborhood of U. bounded above by an integral curve of Ry and below by an
integral curve of Ry, such that the integral curves of Ry are convex down in B,
and such that each integral curve intersects the transition curve I’ transversally
at a unique point in B. Assume further that 8f/8a # 0 in B. Our assumptions
(3) through (5) imply that such an open set B exists in a neighborhood of U,.
Under these assumptions, the set B is an invariant region for Riemann problems

for system (1) (cf. [11,15,22]):

Proposition 1.  Let B denote a neighborhood of U, bounded above by an
integral curve of Ry and below by and integral curve of Ry, such that the integral
curves of Ry are conver down in B, and such that each integral curve cuts
the. transition curve I' transversally in B. Then B is an invariant region for
Riemann pféblems in the sense that if Uy, Ur € B, then all intermediate states

in the solution of the Riemann problem [Ur, Ug] are also in B.

We recall also the definition of the singular variable z defined in [22]: for
our purpose it suffices to define z by

_ ] +if(a,u) - f(a,0)] if U lies to the right of T,
2(a,u) = { —|f(a,u) — f(a,0)| if U lies to the left of T. (19)

(This is slightly different than the definition given in [22,15], but since f is
constant along integral curves of Ry and T is given by u = 0, the two definitions
are essentially equivalent). Since the curves given by f = Const. are convex

down in a neighborhood of U., we conclude that the mapping
u— z

i8 1 —1 and onto in a neighborhood of U,, and is regular except at I' where the
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Jacobian vanishes. Welet Var,U, denote the total variation of Uy in the variable
z, etc. Although for convenience we restrict attention to solutions taking values
in a neighborhood B of U., the results extend globally under straightforward
assumptions on f. We now indicate by counterexample that for solutions of
(1), Var{u(-,t)} does not grow at a rate depending only on the Var{a} and
the C'-norm of a(z) even when ug(z) = 0, the counterexample indicating that
condition Var{a'(-)} is sharp for sublinear growth. The counterexample given
in [22] shows that for solutions of (16), Var{u(-,t)} does not grow at a rate
depending only on a through the Var{a}. For this counterexample it suffices

to take a(z) = a; for z; < z < zj41, uo(z) = 0, where

a. if 520,
a;=1¢ a.+€j/N if0<j<N, (20)
a. +¢€ ifj2 N,

for some € > 0 and N € Z. In this case, Var{u(-,0+)} = O(ev/N) in the exact
solution because the wave curves a=const. and f=const. have a quadratic

tangency at u=0, cf. [22], and thus the growth rate for Var{u(:,0+)} is not

bounded as N — oo. Consider now the initial data U’ = (an(z),ud(z)) where

ud(z) =0 and a(-) € C! is defined by
an(z) = a. + a(:c)—ll\?sin(Na:), (21)

where 0 < o(z) < 1 is smooth and satisfies o(z) = 1for0 <z <1, o(z) =0
for [z| > 5/2, and |o'(z)| < 1. It is easy to verify that

and

Var{ay(z)} < 5.
But when u = 0, f,(a,0) =0, s0 at t =0, (1) reads
ue + fau)e = ue + faay,

and so

"'iv(za 0) ~ a';V(‘B)’
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(where we assume without loss of generality that f,(a.,0) = —1.) Thus for
0<z<1,

. — 2n+1)x
u,(z,O)z{ o :J{ i L‘;—LN (22)
= %

and so on the interval z € [0, 1], the solution u(z,t) satisfies
Var{u(-,dt)} ~ (N/2x)dt.

We conclude that
d
a—tVar{uN(-,O)} — 00

as N — oo, thus verifying that the rate of growth of Var{u(-,¢)} is not bounded
by a constant depending on a(z) through Var{a(-)} and the C'-norm of a(-).

3. Godunov Scheme

In this section we sketch the proof of Theorem 1. We state three technical
lemmas which are required for the proof. The proofs of the first two lemmas
are given here, and then we give the proof of Theorem 1 as a consequence of the
three lemmas. The proof of Lemma 3 is technical, and the details will appear in
the authors forthcoming paper. We now state and prove the first two lemmas
that will be used in the subsequent analysis. To start, let Uy and U, be arbitrary

states in B, and define the following second order difference:

A?fY Uy, Uy) = A*fry = flaz,us) — faz,ur) — flar,uz) + fay,uq).  (23)

Lemma 1. The following estimate holds:
A (U2, Un)] < O(1){(Aa)? + |AaArz]}, (24)

where Aa = a3 —a, and Az = ]z(az,uz)—z(al,ul)l, and O(1) denotes a generic

constant that depends only on f and B.

Proof: By (20),

Azf{"z = 2(az,up) — z(az,u;) ~ z(ay,u;) + z(ay,uy). (25)
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Now it suffices to verify (24) in the case that both u1,uz < 0 or both uy,u, > 0.
To see this, note that

Aiffa = 2(a2,u2) — 2(a3,0) = 2(a1,u5) + 2(a1,0) + 2(as, 0) - 2(a,u1) —
z(al,O) + z(alyul)
= Azf{/l,,ug + Azfgol,u,- (26)

Thus, assuming that we have verified (24) in the above two cases, if sign{u,} =

sign{u,}, then

ATl <A, ol + A% |
< O(){(Aa) + [z8a]} + {(Aa) + |z 0al}
< O(1){(Aa)? + [AaAzl},

where we use the fact that Az = 21 + 23 in this case. Thus we verify (24) in
the case that sign{u,} = sign{u,}. We do the case u1,uz < 0. To this end, let

g(a,uy,u;) be the function defined for u3,uz < 0 by the formula
2(a,u2) — z(a,u1) = g(a,ur, uz){ul — u?}. (27)

We claim that in some neighborhood of (@x, Uxy u.) (we assume this neighbor-
hood consists of the set of all (a,u1,u;) such that U, U, U, all lie in B), g
18 smooth, nonzero, and ¢~ = % exists and is smooth in this neighborhood
intersect the set u;,u; < 0. We first show that there exist an € such that
lg(a,u1,u2)| > € in this set. To see this, note that since z(a,uz) — z(a,y) =
f(a,uz)— f(a,u1), we know that if u, # Uy, then f(a,u;) # f(a, uz) if we choose
B small enough so that gf # 0 when u # 0. Thus when u; # u,,
faywa) = flam) ,

Uy — U

g(a’ up, u2) =

Moreover, fixing u; # 0, we obtain

a
P f = g(a)uly u2)2u2 + Gu, (u; - u]?)) (28)
Uz
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which iraplies that when u; = u; # 0, we have
g(a').ul:uz) = __'——l'(a)ul) # 0,
2

where we assume B is small enough so that g—:é # 0 in B. Finally, for u, = 0,

differentiate (28) to obtain
o*f
W(avu) = 29(“7 O,U) + O(u))

which implies that
18%f
g(d, 0,0) = 55;;(0.,0) # 0.

Thus we have that |g(a,u;,u;)| > € > 0 on compact subsets of B, and hence
choosing B small enough, inside B itself. The smoothness of g and g~ follow
at once from the assumed smoothness of g; thus establishing the claim. To

complete the proof of Lemma 1, note that
z(az, uz) — 2(az,u1) = 9(02,u1,u2)|ug — uil,

Z(‘h,“z) - 2(01,u1) = g(az,ul,uz)|u§ - ufl;

and thus
A’f1 3 = {g(az,u1,u2) — g(a1, u1,ua)Huj — ui} = O(1)|Aa||{u] — ui}]. (29)

Moreover, by (27),

up—u; = g (az,u1,u2){2(az,u2) — 2(az,u)}

= g'l(az,ul,uz){z(az, up) — 2(01,U1)} + g*l(az,ul,uz) :
{z(alaul) - z(a2’u1)}

= 0(1)Az + O(1)Aa

where we use the fact that z is smooth. Substituting this last line into (29)
gives

|A2f; 5] = O(1)|Aa){|Ad| + |Az|} = O(1){Ad? + AaAz},
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which establishes Lemma 1. Let U = (a,u) €B and let a; and a; correspond

to entries of states in B. Define the following second order difference:

Af(a1,82,U) = f(az,u) - 2f(a,u) + f(a1, u). (30)

Lemma 2. The following estimate holds:
A’f(aI,az, U) = 0(1)|Aa1 - Aa,l, (31)

where Aa, = a — a; and Aa; = a; — a.

Proof: Lemma 2 follows immediatly from Taylor’s theorem. Our analysis is

based on solutions of (16) constructed by the Godunov scheme following the

work in [15]. Thus let Ua.(z,t) denote an approximate solution of the Cauchy

problem (1), (2) generated by the Godunov scheme, for initial data Up(z) taking

values in the neighborhood B of U.. Specifically, we discretize R x [0, 00) by

spacial mesh length Az and time mesh length At such that
At

Am ) (3 )
where § < 1/(2]), and
A= sup {|Ao, |Ail}. (33)
(a,u)eB

(It suffices to take § < 1/(2]), but for convenience in the proof of Lemma 7, we
take § = 1/(4))). We let z,, = nAz, t; = jAt so that (zn,t;) denote the mesh

points of the approximate solution. Define
Si={(z,t): t; <t <t}

The approximate solution Uya, generated by the Godunov scheme is defined as

follows [3,4]: to initiate the scheme at n = 0, define
1

zj41
U;) = UA;(Z,O) = Z;./;)- Uo(z)d:c, 2; < T < Tjyr-

Assuming that Ua.(z,t) has been constructed for (z,t) € Uy Si, then we
define Ua. in S, as the solution of (1) with the initial values
1

UP = Une(2,tn) = K;/:"“ Use(z,ta=)dz, z;<z<zjr.  (34)
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In words, at each time tn, a piecewise constant approximation Uac(z,t,) is
obtained by taking the arithmetic averages of Ua,(z,t,~) at each interval of
the mesh, so that the solution in Sn can be constructed by solving the Rie-
mann problems [UZ,, U?] posed at each point of discontinuity (z;,t,),j € Z.
The Courant-Freidrichs-Levy {CFL) restriction (32) ensures that the Riemann
problem solutions in each S, do not interact before time tns1 [22,15]. Our

results rely on the following theorem which was proved in [15]:

Theorem 2.  Assume that the initial data Uo(z) € B satisfies the condition
Var {Uos()} < oo and Var{a(-)} < co. Then Uaz(z,t) € B for all z,t > 0,
Var,{Ua.(-,t)} < 4Var.{Uo(-)} < oo, and a subsequence of {Uaa(+,t)} con-
verges boundedly almost everywhere to a weak solution of (1),(2) as Az tends

to zero.

Welet f* = f(Uas(z;,t;)) and we use the notation Ui. = Uae(zi+,t), U, =
Use(zj41—,t), and for ¢, < t < tnt1, we let

fi = F(Uae(25,1)), f7- = Ff(Une(zj+,t)) and i+ = F(Usz(zj41—,1)).

Here, the symbol + refers to the right side and — the left side of the mesh
rectangle R?, which we define by R ={(z,t):z; <2 < zjy1,ta < t < tht1}.
Using integration by parts it is not difficult to verify that U,, satisfies the
diff?;ence equation

o ut =l -8 - f1 ). (35)

7 -

Let Au? = u? - u}_,, so that by (35) we can write

Ayttt = Au? - 6[ ;‘4_ - f;'_ - f?_1+ + f;—l—]' (36)

7

Our procedure is to estimate the right hand side of (36), the idea being to add
and subtract terms in such a way as to construct second order differences of
the form (23) and (30), together with a remainder term that forms a collapsing
sum in the estimate for Var,{Ua.} given by R e lu;-"”ll. Since we will be

estimating terms at a fixed time level tn, we will suppress the index n whenever
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states are assumed to lie at level ¢,, in an approximate solution Ua,. Thus we

use the notation f;; = f(ai,u} ), f; = f(ai,u},), and we define the first order

differences
Afj— =Jj; ~ Jij-1 (37)
Af1'+ = J’TJ’ - J:ti—l’ (38)

together with the following second order differences (cf., (23) and (30))

A’f7 = fiag = 255 + fiug (39)
A f+ J+lJ -2 ;j+f;'_1'j, (40)
and
A i1 = fii = Fio = flug + fiingon (41)
A fima = fi5 = fi = fag + fla | (42)
ATy = ffi = fiio = Fiag + Fiinge (43)

Our Theorem 1 on sublinear growth for system (1) proceeds as follows.

Definition 1.  We say that the mesh point (;,t;) falls into case one (we
write T7 € Cy) if
|Af7] < (26)7 A,

and

AuTAST <0,

If either of these fails, then we say T} € C,.

Definition 2. We say that the mesh point (z:,t;) falls into case two (we
write TP € C,) if
A < (26)7"|Aug],

AuTAfH > 0.

If either of these fails, then we say T e C,.
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Note that the type T} depends on the wave structures in the Riemann problems
posed at (z;_1,t,) and (zj44,t,) as well as (zj,tn). Theorem 1 is a consequence
of the following Lemmas:

Lemma 3. If T} € Cy, then the following estimate holds:

AT < |Aus| ~ S|AS] | + 6A ff] + Ea(5), (44)

where

Ei(j) = 60%f; | + 8%, (45)

jvj_l *
Proof: By adding and subtracting the appropriate terms, it is straightforward
to verify that (35) implies the identity
Au;-1+1 = Au; — §Af7, + §Af; — 6A2f1~' —6A? e (46)

Statement (44) follows from (46) by using Au}Af; < 0, together with the
estimate |Af;| < §7!|Auy,| of Definition 1.

Lemma 4. If T} € C,, then the following estimate holds:
[AuH < [Au;] + 8|AfE, | - 8|ASfH + Eo(5), (47)
where
EZ(J) = 5|A2ff—1' + 5[A2fj+_1'j__2|. (48)
Proof: Statement (35) implies the identity
AuTt! = Aw; - SAfT +8AFF, - SA’f, - 8A? PPy (49)
Thus (47) follows from (49) by using AutAf} >0, together with the estimate
|Af;| < 67| Auj| of Definition 2.
Corollary 1. The following estimate holds for l=1,2:

IBi(7)l < O(1){|Aejs1 — Aajl + |Aa; ~ Aaj_y|} (50)
+0(1){(|Aa;] + IAaj_ll)(Var,U;’ + Var, U7, + Var, U7 ,)},
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where Var, U denotes the total variation in z of the approzimate solution
Uac(z,t;+) in the interval z;— < ¢ < z;+, and O(1) denotes a generic con-
stant depending only on f and the supnorm bounds on the solution. Note that

by Theorem 2,
+o00
Z Var, Uy < 8V,. (51)

k=—00
Proof: By lemmas 1 and 2 of the previous section, it follows that
|A%f7] < O(1)|Bajyy — Dajl, (52)
|A*f7i 4] £ 0(1)|Aa;|{Var,U} + Var, UL, }. (53)
By the same argument, the latter estimate also holds for A?f._,, and so (50)

is evident. The following lemma is the main technical lemma used in the proof

of Theorem 1:

Lemma 5. IfT] € C1NCy, then
|Au}*| < |Auy - 8|A S5 = SIAFT] + Es(d), (54)
where

|Es(7)] < O(1){|Aajs1 — Aaj| + |Aa; — Aaj]} (55)
+0(1){(|Aa;| + |Aaj1|)(Var.U} 4+ Var, U, + Var,Ul,)};

IfTP € Ci N Cy, then
1MUY < |Auj| + 8AFE |+ 8|Af7] + Ea(5), (56)
where

|Es(7)] < O(1){|Aagjs1 — Agj| + |Aa; — Aa;,|} (57)
+O0(1{(|Aa;| + |Aa;-1])(Var, U} + Var, UL, + Var,U]_,)};

And if T;‘_l € C; and T}' € C,, then

|AfE |+ 1Af7] < Bs(j - 1), (58)
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where

1Bs(7)l < O(1){|Aaz4s — Agjf + [Aa; — Ag;_y[} (59)

+O(1){(|Ag;| + 'Aa,-_ll)(Var,U;‘ +Var, U, + Var,U,)}.

Proof: The irequalities (534-3%, 00w from 2 detailed stady cf the possible
admissible R:=mznn problem toes T7 .. TR ti2t satisfy the spectfied conditicns.
Details are omitted.

We use (44) through (58) in the proof of the following proposition:

Proposition 1. The following estimate holds:

i |Auit| < EJ: |Aug| + F + F} + E(k), (60)
k=i

=1

where F! and F} are defined by

2 [ —8AfT| if (Gin)e o
}”‘{HMﬁuifuweéh (61)

_ [ ~SAF ifGim)ec
Fi = { +6,Af111, if (j,n) € Cy, (62)

j
and E(k), defined to be E(k) = 37, Ei(k), satisfies
IE(R)l < O(1){|Aaj41 — Agy| + |Ag; - Aaj|} (63)
+0(1)(|Aq;| + IAa.,-_ll)(Var,U;1 + Var, U}, + Var, U} ,)}.

Proof: The estimate (63) follows directly from (50), (55), (57), and (59). We

prove (60) by induction. To start the induction, note that when i—j=0,(60)
reduces to

AU < Mgl + B 4 F2 4 3 By ). (64)
k=1
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Estimate (64) follows directly from (44),(47),(54) and (56) depending on the
possible values for F}!+F?. Thus, (60) holds for i-j=0. Suppose now that (60)
holds for i and j. We show that it holds for ¢ — 1 and j as well, thus verifying
(60) by induction. In fact, by (64),

|Aul| < JAW), |+ FL + FL 4+ E Eu(i-1). (65)
k=1

Putting this in (60), we obtain

Z |Auptt| < E |AuR|+ FL, + F} +(F + F2, +ZE(k +ZE,¢—1
k=i-1 k=1—1 k=1
(66)

Thus in order to prove the proposition, it is sufficient to show that
F'4+FL, < Eii— 1), (67)

By definition, F} + F2, =0 if either T; € C,,T;-1 € Cz o1 T; € C1, iy € Ca;
and F} + F?, < 0if T; € C,Ti-; € C;. But by (58) of Lemma 5, if T; €
C1,Ti-1 € Cs, then |Aff |+ |Af7| < Es(i — 1). Thus (60) is established.

Proof of Theorem 1: Let Us. be an approximate solution generated by the
Godunov scheme from compactly supported inital data Us(-) satisfying (10),
(11) and (12) and taking values in B. Since Var{za:}(:,t) is uniformly bounded,
f(uaz)(z,t) tends to a constant state as « tends to plus or minus infinity; and
thus F} and F} tend to zero as |j| tends to infinity. Thus taking i = —oo and
j = 400 in (60) and using (63), we obtain

+o00 +o00 + o0
Yo AT < Y 1A +0(1) Y {lAgjy — Adgj| + |Agj — Agjy}
k=~oc0 k=-o00 k=—o00
+oo
+0(1) Y (|Aaj| +|Aaja|)(Var. U} + Var,UR, + Var,UL,) - (68)
k=-00
+o00
.+ Y |Aak — Aaxla| < V/Az, (69)
k=—o00

+o0
> {(|8aj] + |Aaj|)(Var,U} + Var, UL, + Var, UL ,)} < 6V,V, Az, (70)

k=—00
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where we use the inequality
la'(z)] < Var{a'},

which applies because Var{a(-)} < oo and Var{a'(:)} < oo imply that a'(z) —
0 as |z| — oo. Putting these in (68) and using CFL yields
+o0 +o0
3 jAut < 3 lAuf| + cAt, (71)
k=00 ke=—o0
where C' depends only on V;, V! V,, § and Cy. Moreover, (71) applies to any
weak solution obtained as a lim;jt of approximate solutjons Uaz, and thus we

complete the proof of Theorem 1.
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