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Global Solution of the Cauchy Problem
for a Class of 2 X 2 Nonstrictly
Hyperbolic Conservation Laws*

BLAKE TEMPLE

Department of Mathematical Physics,
The Rockefeller University,
New York, New York 10021

We prove the existence of a global weak solution to the Cauchy problem for a
class of 2 X 2 equations which model one-dimensional multiphase flow, and which
represent a natural generalization of the scalar Buckley—Leverett equation. Loss of

1

strict hyperbolicity (coinciding wave speeds with a normal form) occurs on

a curve in state space, and waves in a neighborhood of this curve contribute
unbounded variation to the approximate Glimm scheme solutions. The unbounded
variation is handled by means of a singular transformation; in the transformed
variables, the variation is bounded. Glimm’s argument must be modified to handle
the unbounded variation that appears in the statement of the weak conditions, and
this requires that the random choice variable be random in space as well as time.

1. INTRODUCTION

We consider the Cauchy problem for the 2 X 2 system of nonlinear
conservation laws

s, +[sG(s,b)] , =0,  s(x,0) =s,(x),
b, +[bG(s,b)] ., =0, b(x,0)=by(x), (1.1)

where 0 < s < 1 and 0 < b < s are functions of —~coc < x < +00, 1> 0.
This system arises in one-dimensional oil recovery problems, describing how
the addition of a polymer (a water solute that increases the viscosity of
water) affects the flow of water and oil in an oil reservoir when a solution of
polymer and water is pumped into the reservoir at a constant volumetric
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rate. The equations express Darcy’s Law and the conservation of mass
under the assumption that the reservoir is uniformly porous. Here s is the
saturation of water, c is the concentration of polymer in water, and b = sc is
the overall concentration of polymer at any x and z. Thus, system (1.1)
represents a natural generalization of the scalar Buckley-Leverett equation,
the single hyperbolic equation (two phase oil and water flow) which is
obtained in (1.1) when ¢ is constant.
The Cauchy problem in (1.1) is a special case of the general problem

u, + F(u), =0, u(x,0) = uy(x), (1.2)

with u = (s, b), and F(u) = (sG(s, b), bG(s, b)). Since discontinuities can
form in the solutions of (1.2) even in the presence of smooth initial data
(cf. [4]), we look for weak solutions in the sense of the theory of distribu-
tions; 1.e., solutions which satisfy

+ o0
J[  wst Fwe + [ “u(x,006(x,00dax =0  (13)
—oo<x<+o0 —oe :
>0

for any test function ¢ € C}(x, ). The conservation laws in (1.1), however,
differ from the classical conservation laws of gas dynamics (cf. Lax [7])
primarily because sG(s, b) is not convex. This forces strict hyperbolicity
and genuine nonlinearity to fail; i.e., the eigenvectors of dF (the first
Fréchét derivative of F) become parallel on a one-dimensional curve in
state space, so the eigenvalues of dF fail to be everywhere distinct, and fail
to be monotone along the integral curves of the corresponding eigenvectors.
Equations (1.1) for multiphase flow were derived by Isaacson (2], and in [2]
Isaacson also explicitly solved the Riemann problem for arbitrary constant
states #; and u.' (The Riemann problem is the initial value problem when
ug(x)=wu; for x <0, uy(x)=ug for x > 0.) Here we prove that the
Glimm difference scheme [1] converges to a weak solution for arbitrary data
of bounded variation in s and ¢, and for certain data of unbounded
variation in s and ¢; and we assume only the physically motivated condi-
tions on the general shape of the function g(s,c¢) = G(s, cs) which are

required in the solution of the Riemann problem.
The Glimm difference scheme is a scheme by which solutions with
arbitrary data are approximated locally by Riemann problem solutions. In
the case of system (1.1), new phenomenon arise because strict hyperbolicity

1Tt is interesting to note that system (1.1) also arises in elasticity theory with a different flux
function F. In [3], Keyfitz and Kranzer derive these equations, and solve a similar nonstrictly
hyperbolic Riemann problem: Many of their techniques, including their analysis of the
Riemann invariants and their generalization of the Lax entropy condition, are applicable in the
solution of the Riemann problem for system (1.1).
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fails. For example, solutions to the Riemann problem for this 2 X 2 system
can have three nontrivial waves (at most two waves appear in 2 X 2 gas
dynamics and other typical convex and strictly hyperbolic 2 X 2 systems),
and in state space these waves can change discontinuously with respect to
u; and ugz. Moreover, the variation of the approximate Glimm scheme
solutions can go to infinity as the mesh size vanishes even when the data are
of bounded variation. Because the variation of the conserved quantities
cannot be bounded in an approximate solution, a modification of Glimm’s
argument is required to show that the weak conditions hold in the limit, and
the argument given here requires the random choice variable to be random
in space as well as time. Our technique involves constructing a 1-1
differentiable transformation ¥: (s, ¢) = (z, ¢), which is regular except
where dF is not strictly hyperbolic, and such that the variation of the
approximate solutions remains uniformly bounded in the zc-plane. In this
way we prove the main theorem, which in particular solves the Cauchy
problem for initial data of bounded variation in s and ¢:

THEOREM 1. The Cauchy problem for the 2 X 2 system of oil-polymer
equations (1.1) has a global weak solution for arbitrary initial data of bounded
variation in z and c.

Our method involves a detailed study of the Riemann problem solutions
to system (1.1), and so in Sections 2 and 3 we sketch the derivation of the
equations for oil-polymer flow, and review Isaacson’s solution of the
Riemann problem [2]. In Section 4 we describe the difference scheme, and
discuss the method of obtaining bounds on the variation of the solution at
each time step; i.e., we define I-curves, reduce the variation problem to a
problem involving “interactions” (these ideas were first formulated in [1]),
and suggest the need for a nonregular transformation ¥. In Section 5 we
define the transformation ¥, estimate the variation of Riemann problem
solutions 1n the coordinates z and ¢, and apply Helly’s theorem to obtain a
convergent subsequence of approximate solutions. Finally, in Section 6 we
modify Glimm’s proof of the convergence of the weak conditions in order to
handle the unbounded variation in # and F(u) that can occur in the
statement of the weak conditions (1.3). The analysis gives a rate of conver-
gence of order r'/®+2%) (where r is the mesh length) in case the wave speeds
have kth order contact at the curve where strict hyperbolicity fails.

It is interesting to note that in [7], Liu and Wang obtain existence for a
system of the form (1.1) under assumptions on G which maintain the linear
independence of the eigenvectors of dF, so problems with unbounded
variation do not arise there. The only other example of a global existence
theorem for 2 X 2 nonlinear systems of comnservation laws is for isothermal
gas dynamics [8], where an explicit functional form of the flux function
F(u) is required.
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2. DERIVATION OF THE EQUATIONS

We assume that oil, together with solutions of water and polymer in
varying concentrations (aqueous phase), are forced to flow through a
uniformly porous one dimensional oil reservoir at a constant volumetric
rate. The fluids are assumed to be incompressible, and the polymer is
assumed to be a solute of water that increases the viscosity of water but is
insoluble in oil; and so the particle velocity of the polymer at any point in
the reservoir equals the particle velocity of the water at the point. (Water
and polymer are viewed as distinct, mutually soluble, incompressible fluids,
so that concentrations are determined by volumetric proportions.) Darcy’s
Law [6] relates the pressure drop across a section of the reservoir to the
volumetric flow rate of a viscous fluid through that section; i.e., when only
one substance of viscosity p flows in the reservoir, we have

Darcy’s Law: 0= —ﬁu (2.1)

pooXy =X

Here Q is the volumetric flow rate of the fluid through that section of the
reservoir between x; and x,, P, — P, is the corresponding pressure drop,’
and A4 is the cross sectional area of the reservoir assumed to be unity by
choice of unmits. K is the absolute permeability of the reservoir, which
depends on the microscopic structure of the interlocking channels in the
porous medium through which the fluid flows; since we assume that the
reservoir is uniformly porous, K is constant for flow involving a single
viscous fluid. Choosing units so that the volumetric flow rate is unity,
Darcy’s Law for a single fluid is given locally by

K
=0=—=P.. 2.2

But because oil and water are immiscible, a joint flow in the reservoir
occurs, on a microscopic level, by forcing the interlocking channels in the
medium to partition between those that accept oil flow and those that
accept water flow. This effect tends to inhibit the overall flow, since, for
example, channels filled with oil can become blocked by surrounding
channels of water. Thus, during oil and aqueous flow, the “nonlinear”
interlocking of the channels produces relative permeability constants k, and
k, which depend at each point on the concentrations of the fluids at that
point. In this case, Darcy’s Law for joint flow becomes [6]:
_ ko(s)

= -———2=P,
o Po

_ k)
.= = (2.3)
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for respective oil and water—polymer flow, where s(x, ) is the volumetric
proportion of the reservoir at (x, ¢) occupied by water and polymer, c(x, )
is the volumetric proportion of the polymer in water, b(x, t) = ¢(x, t)s(x, t)
is the volumetric proportion of polymer in the reservoir at (x,?), and
e (c) is the viscosity of the aqueous solution, an increasing function of c.
Here Qy[resp. Q,] is the volumetric flow rate of oil [resp. water—polymer]
and we assume that the overall flow rate Q = Q, + @, is unity. Using this
fact, we can eliminate P,_in (2.3) to conclude that

k,(s)

_ p(c)
ko(s)  kols)
p(c) " Bo

Q, =f(S, C), (2'4)

where f(s, ¢) is the fraction of the total volumetric flow associated with the
aqueous phase. We assume that f(s, ¢) is a smooth function such that f(s, ¢)
increases from zero to one with one inflection point (which represents a
maximum value of the first dernivative) when ¢ is constant, and such that
f(s, ¢) decreases with increasing c for fixed s, as indicated in Fig. 1. This can
be regarded as an experimental fact (cf. [6]). (Mathematically, we assume
that (df/dc)(s,c) < 0 for 0 < s < 1, and for convenience also assume that
the curves f(s, ¢) all make pth order contact with the s-axis at s = 0, some
p > 1.) The graphs of k(s) and k,(s) have the shapes shown in Fig. 2.
Finally, to obtain the conservation equations, note that since Q, is the
volumetric flow rate of the water—polymer solution, and since particles of
water and polymer flow at the same velocity, the particle velocity of the
aqueous phase must be Q_/s = f(s, ¢)/s. This is defined to be g(s, ¢). By
analysing a volume element, we obtain the Fulerian equations of motion of
the fluid, which express the conservation of water together with polymer,

FIGURE 1
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k_(S) "a(s)

FIGURE 2

and the conservation of polymert, respectively:
sc+[g(s,¢)s] . =0,
b+ [g(s,c)b], =0

These are the desired equations, where properties of

(s, ¢)

(1.1)

g(s,c) = G(s,b) =

are derived from properties of f(s, ¢).

3. SOLUTION OF THE RIEMANN PROBLEM

To solve the Riemann problem for system (1.1), we first find the rarefac-
tion curves. Since F = (sG(s, b), bG(s, b)) with g(s, c) = G(s, b), we ob-
tain

G + 5G, sG,
dF = ,
bG G + bG,

N

where a subscript denotes partial differentiation with respect to that argu-
ment. A calculation shows that the eigenvalues of dF are G = f/s and
G + sG, + bG, = f,(s,c), and the respective eigenvectors of dF are
(G,, —G,) and (1, ¢). Integral curves of the first eigenvector therefore lie
along constant G (since VG is perpendicular to (G,,— G,)), and integral
curves of the second eigenvector lie along constant ¢ (since Ve = V(b/s) =
(—b/s%,1/s)= (1/s)—c, 1), which is perpendicular to (1, ¢)). Thus, the
two “normal modes” for system (1.1) are solutions that take values on
G = const. and propagate with speed G (and so form contact discontinui-
ties), together with solutions that take values on ¢ = const. and propagate
with speed f,.
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We now calculate the shock curves for system (1.1). Shock waves are
solutions with discontinuities that propagate with speed o, such that the
following jump conditions hold between the states on the left- and right-hand
side of the discontinuity [4]:

oluy —ugl = [F(”L) - F(“R)] .

This is a system of two equations which, after eliminating ¢ and simplifying,
yields

bRsL(GR - GL) = bLSR(GR - Gp).

The solutions to this equation are G; = G and ¢; = cg (obtained by letting
b = sc), and the respective wave speeds are 6 = G, = Gz and 6 = (f(u;)
— f(ug))/(sy + sg). The first set of conditions confirms the fact that one
family of solutions consists of discontinuities which propagate along con-
stant G with speed G, while the second set of conditions implies that
solutions in the other family propagate along constant ¢ with wave speed f,
at points of smoothness, and ( f(u,) — f(ug))/(s; — sz) at points of dis-
continuity. This confirms the fact that solutions propagating at constant ¢
must satisfly the nonconvex scalar conservation law (the Buckley—Leverett
equation)

St+f(s5 C)x=0, (31)

obtained from the first equation in (1.1) by identifying g(s, ¢) = f(s, ¢)/s.
Since unphysical weak solutions can occur (cf. [5]), in the next paragraph we
apply additional “entropy conditions” to determine the correct solutions
that move at constant ¢ or G. We call these physical solutions “s-waves”
(saturation waves) and “c-waves” (concentration waves), respectively, and
so we label the corresponding wave speeds (eigenvalues) for these families
A, =f,and A, = G = g. Then the general Riemann problem can be uniquely
solved by joining together successive s-waves and c-waves. )

Note, first, that since f(s, ¢) has one inflection point for fixed ¢, and since
g = f/s is the slope of the chord joining the point (s, f(s, ¢)) to the origin
(see Fig. 3), the wave speeds A, = f, and A, = g are equal along a curve
(labelled “T”, the transition curve) in the sc-plane. A study of Fig. 3 now
enables us to graph the curves g = const. and ¢ = const. in the sc-plane
(Fig. 4), where solutions will be studied. (The conditions on f(s, ¢) imply
that the curves along which g is constant give ¢ as a monotone function of s,
except on the transition curve 7, where a maximum value of c is taken.
These curves continue smoothly to the curve s = 0 which defines the curve
g = 0.) To clarify the relationships between the variables, in Fig. 5 we have
drawn this in the sb-plane, the plane of conserved quantities. Now s-waves,
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solutions that move at constant ¢, must satisfy the scalar equation (3.1), and
so the entropy condition for scalar equations applies; i.e., solutions that
move at constant ¢ are obtained by taking ‘“upper convex envelopes” (if
$; < sz) or “lower convex envelopes” (if 5; > s;) along the graph of f. This
method of constructing s-wave solutions is diagrammed in Fig. 6. To obtain
the physically meaningful solutions that move at constant g, we apply the
entropy condition of Lax [5] for general » X n systems of conservation laws.

(E) A weak solution consisting of adjacent constants u; and uy separated by
a line of discontinuity in xt-space is an admissible solution (a shock or contact
discontinuity) if and only if n + 1 of the characteristics generated by u, and
uyg, impinge on the line of discontinuity.

From Fig. 3 it is easily verified that (E) holds for solutions that move at
constant g if and only if the solution does not cross the transition curve T.
Thus a c-wave is a solution that connects two states at constant g on the
same side of T by a contact discontinuity of speed g. (This application of
(E) is due to Keyfitz and Kranzer [3].) The construction of such a solution is
in Fig. 7.

Now to solve the general Riemann problem [u,, uz] it is only necessary
to connect u, to uy by s- and c-waves so that the corresponding wave speeds
increase from left to right. Such a solution in the xt-plane exists and is
unique for every #, and ug, and the general solution is given in Figs. 8 and
9. Here Fig. 8 gives the solutions when u; lies to the left of the transition
curve T, while Fig. 9 gives the solutions for u; to the right of 7. These
diagrams are read as follows: to solve the Riemann problem [«;, u], follow
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F1G. 8. Riemann problem solution for u; left of T (i.e., follow the arrows to ug).

the dark arrows that continuously connect u; to uy in either Fig. 8 or Fig. 9.
The arrows will cross from one to three s- and c-waves, depending on
whether u lies in region 1, II, or III relative to ,. Then graph these s- and
c-wave solutions in the x¢-plane in the direction of the dark arrows, as done
in Figs. 6 and 7. The composite of these solutions is the solution to the
Riemann problem [u,, uz]. A sample solution is given in Fig. 10 for the
states u; and u, plotted in Fig. 9. Note that the waves in an arbitrary
Riemann problem solution can be denoted by scS (the s-wave “s” followed
by the c-wave “c” followed by the s-wave “S”), where one or more of s, ¢,
or S could be zero. This completes the derivation of the solution to the
Riemann problem for system (1.1).

Note that because the coordinate change from (s, b) to (s, ¢) degenerates
at s = 0, the Riemann problem solutions are unique in the sc-plane, but fail
to be unique in the sh-plane when s = 0. For this reason we always assume
that data is given first in sc-coordinates. Since g > const. is an invariant
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region for Riemann problems, nonuniqueness at s = 0 can also be handled
by bounding solutions away from s = 0.

4. THE GLIMM DIFFERENCE SCHEME

We now apply the Glimm difference scheme to prove the existence of a
solution to system (1.1) for general initial data u,(x) = y(x). To establish
the scheme, we define a mesh of small rectangles in the xt-plane. Then, in a
random way, we approximate the solutions across the bottom of each
rectangle by adjacent constant states, so that inside each rectangle, the
solution can be approximated by the Riemann problem solutions of Section
3. Helly’s theorem can be applied to obtain a convergent subsequence of
such approximate solutions, once we obtain a uniform bound on the
variation of the approximate solutions as measured under a nonregular
transformation of the plane of conserved quantities. This will require only
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that the initial data J(x) have bounded total variation in the transformed
plane. A measure space argument is then applied to show that a convergent
subsequence satisfies the weak conditions (1.3) in the limit.

We first define the approximate Glimm scheme solutions u,(x, 7) pre-
cisely, and develop notation necessary for the subsequent proof. Let r be a
mesh length in x, and let the corresponding mesh length in ¢ be given by
¢ = Mr, where
= > sup (A, A (41)

0<sx1
O<cxl

1
M

Q |~

(This is the Courant—Friedrichs-Lewy condition, required to ensure that the
Riemann problem solutions do not interact during any one time step). Let
(m, n) denote any pair of integers such that n > 1 and m + n is even. (This
notation is maintained throughout this paper.) Let R, , be the rectangle of
base 2r and height ¢ having the point (mr, ns) at the top center of the
rectangle. This forms a staggered grid of rectangles diagrammed in Fig. 10.
LetA =11, ,[—1,1] be the measure space product of copies of the interval
[—1,1] equipped with normalized Lebesgue measure, one copy for each
rectangle. (That is, the measure of the set E =[1,, ,E,, is I, ,3p(E,,),
where p denotes Lebesgue measure.) Let 2 € 4 and write a = {a,,,). Now to
define u, (x, t) at t = 0 - 9, approximate the initial data in each interval
[(m — Dr,(m + 1)r] for m even by the constant value {(mr), so that
Riemann problems are formed at the bottom center of each rectangle R,,;
(for m + 1 even), lying on the x-axis. Once we have solved a Riemann
problem in R, ,, let u,, (x) for (m — 1)r < x < (m + 1)r be the corre-
sponding solution that occurs along the top of the rectangle R,,, (at time
t = n¢). Then to continue the scheme to time ¢ = (n + 1)g, approximate the
solutions u,,,(x) along the top of R,,, by the constant function u,, (mr +
a,,,r). This establishes Riemann problems at the bottom center of the
rectangles lying on ¢t = (n + 1)¢, and so defines the function u,(x, t) by
induction. (Note that R,,, depends only on r, while «,,,(x) depends on both
r and a.) We call the points (mr,0) and (mr + a,,,r, n¢) mesh points, and
for notational convenience we identify a,,, with the mesh point (mr +
a,,,r, ne), so that the value u,, (mr + a,,,r) is denoted u,,,(a,,,). We also
say that two mesh points are “adjacent” if the corresponding rectangles
intersect.

In order to obtain bounds on the variation of the approximate solutions
u,(x,t) at every time level, we need a functional F which measures the
variation of a solution along any “I-curve.” An I-curve J is defined to be
any continuous piecewise linear curve in x¢-space that successively connects
adjacent mesh points, so that the mesh index n increases monotonically
from x = — 00 to x = + oo, and such that J is linear between adjacent mesh



GLOBAL SOLUTION TO A CAUCHY PROBLEM 349

FIGURE 11

points (cf. Fig. 10 and [1]). The main point here is that the unique /-curve
that connects the mesh points on ¢ = ng to those on ¢ = (n + 1)o crosses all
the waves in the Riemann problem solutions that occur between ¢ = n¢ and
t = (n + 1)o. We let O denote the initial /-curve that connects mesh points
on ¢t = 0 to those on ¢ = 4. Partially order the I-curves by saying that larger
curves lie toward larger time and call J, an immediate successor of J, if both
I-curves pass through the same mesh points except at one value of /, where
J, = J,. Our method is to define a functional F(J) which dominates the
variation on J of ¥ - u, (x, t), where ¥ is a particular 1-1 function that
transforms the plane of conserved quantities in a non-regular way. We then
show that F(J,) < F(J)) for every J, an immediate successor of J;, and so
by induction we obtain the desired bounds on the variation once we see that
F(0)is uniformly bounded by the total variation of ¥ - Y(x). It is important
to note that the estimate F(.J,) < F(J,) is proved by studying the interac-
tion that occurs in the diamond A between J; and J, as drawn in Fig. 11.
Letting A, and A, denote the upper and lower half of A as shown in Fig. 11,
it is clear that the waves that cross A, solve the Riemann problem [u,, ug],
while the waves that cross A, solve the consecutive Riemann problems
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(v, upl, (4, ug]- Thus to show that F decreases between J; and J,, it
suffices to study “interactions”; i.e., it suffices to obtain estimates that
compare the variation of the waves in the Riemann problem solution
[u;, ug] to the combined variation in the waves of the solutions [u,, u,,]
and [u,,, ug], for arbitrary u,,.

Note that we cannot hope to obtain uniform bounds on the total
variation of the approximate solutions u = (s, b) because the equations are
not strictly hyperbolic at the transition curve T; or more precisely because
the curves g = const. and ¢ = const. (curves on which Riemann problem
solutions propagate) form a coordinate system that degenerates on T.
Indeed, if we choose the initial data ¢(x) to lie on T, as in Fig. 12, the
variation in s of the waves that cross the initial J-curve O will go to infinity
as r approaches zero. A second problem that arises because the equations
are not strictly hyperbolic is that the waves in the solutions of the Riemann
problems, drawn in the sc- or sb-planes, form curves that are discontinuous
functions of u, and uz. Thus, discontinuous increases in the variation
change of the solution between A, and A, can occur as u; and u, are
smoothly varied. Two key examples are shown in Fig. 13. The first problem
above is solved by defining a nonregular transformation that sufficiently
flattens the sc-plane near T so as to bound the variation in s that can ac-
cumulate around the transition curve; and the discontinuities in the sec-
ond problem above are resolved by appropriately choosing the functional F.

171

Uptx) The initial data ufxl lies
on the tronsition curve,

The T-curve O is o Sequence
T-curve O

of almost parallel s- and c-waves

which aquires unbounded variation

as the mesh length approaches zera.

$—» S

1

Fic. 12. Example of the appearance of unbounded variation in the approximate solutions.
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F1G. 13. Two examples demonstrating that the waves in a Riemann problem solution are not
continuous with respect to u; and ug, but the F-value is.

5. BOUNDS FOR INTERACTIONS

In this section we show that for any fixed a € A4 and any sequence of
mesh lengths r that approaches zero, there is a subsequence of approximate
solutions u,(x, t) = u, ,(x, t) that converges in L' on horizontal lines. This
is proven by obtaining a bound on the total variation of a Riemann problem
solution [u;, ug] in terms of the combined variation in the solutions [u,,u,,]
and [u,,, ug] for arbitrary states u;, u,, and u,; and this requires that
variation be measured under a nonregular transformation V.

We let x denote the map that-takes (s, ¢) to (s, b) = (s, cs), and we let u
denote either the point (s,c) or x(s, c). Problems with x~! are easily
avoided by always assuming that values of u are prescribed in the sc-plane,
the plane where Riemann problems are uniquely solvable. (x is everywhere
differentiable, but fails to be 1-1 and regular at the singular point s = 0.)
For an arbitrary function u(x), x € R, it is important to keep track of the
dependant variables in which total variation is measured. Thus, if ¥:
(s, ¢) = (d, e) is a transformation, we let Var,,u(-) or Var,,u denote the
total variation of the function obtained from u(x) by transforming values to
the de-plane. It is easily verified that if Var_u(-) < oo, then also Var,,u(-)
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< oo if ¥ is differentiable, but ¥~! is guaranteed to map functions of
bounded variation to functions of bounded vanation only if ¥ is also
regular (i.e., only if the Jacobian determinant of ¥ is everywhere nonzero).
We now define a differentiable transformation ¥: (s, ¢) — (z, ¢) which is
1-1 and regular except on 7. It then follows that the class of functions
satisfying Var, .u < oo contains all functions of bounded variation m s
and c.

Our definition of ¥ involves locating a unique point in the sc-plane where
a given curve g = const. intersects the transition curve 7. But if g is
sufficiently small, the curves g = f/s = const. are not connected, and do
not intersect 7' (cf. Fig. 3). For this reason we need to continue the curves
g = const. into the extended sc-plane in some nonintersecting differentiable
way, so that the resulting curves change from strictly increasing to strictly
decreasing on some smooth continuation of T. Because the curves g = const.
already defined in [0, 1] X [0, 1] are smooth and have a derivative dc/ds
equal to zero only on 7, such a continuation can be done in many ways. So
choose any smooth continuation of T to values of ¢ between 1 and 2, and
extend the curves g = const. in a smooth way so that they are monotone
except at 7, where they take a maximum value of ¢ in [0,2]. Such an
extension is indicated in Fig. 14. For values of g < 1, the curves g = const.
lie only to the left of T in the sc-plane, and so need only be continued to T
on the left. We can now define the z-coordinate of a point P = (s, c) in
[0, 1] X [0, 1] by appealing to the unique value of ¢ € [0, 2], where the curve
g = g( P) intersects the transition curve 7. Define z = z(s, ¢) as follows:

21 =le(Q) — (P)|
sign z = + if P lies to the left of 7 in the sc-plane (5.1
= — if P lies to the right of T in the sc-plane,

where Q is the point where the curve g = g(P) intersects T (again see Fig.
14), and ¢(Q) [resp. c¢(P)] is the c-coordinate of Q [resp. P]. Now it is clear
that since g = f/s, dg/ds > 0 away from T and away from s = 0, and so
(9z/8s)(s, c) > 0 here also. But at s = 0, the curves f(-, ¢) all have p th
order contact with the s-axis at s = 0, and so it can be verified that the
curves g = const. can be extended to the transition curve near g = 0 in such
a way that 0 < (9z/9s)0, ¢) < co. Therefore, assuming we have chosen
such an extension, (dz/3s)(s, ¢) > 0 everywhere in [0, 1] X [0, 1] except at
T, and so

¥:[0,1] x [0,1] = [-2,2] x [0, 1] :
(s,¢) = (z,¢) (5.2)

is one to one differentiable everywhere, and is regular except at 7.



GLOBAL SOLUTION TO A CAUCHY PROBLEM 353

c(Q) 1
zZ(P)= -lc(Q)-¢c(P)|< O

(ie.,g(P)SO for P left of T
g(P)120 for P right of T)

cm T

F1G. 14. Defining the coordinate z by continuing the transition curve and the g-const.
curves in a differentiable way.

To keep track of the dependent variables, we let u denote either (s, b) or
(s, ¢) but we let w denote (z, ¢) where it is always assumed that x and ¥
accomplish the transformations between variables.

We now define the strengths of the waves in a Riemann problem solution.

Let c[resp. s] denote a c-wave [resp. an s-wave] that solves a Riemann
problem [u;, uy]. Define

Is] = |Az]
]

2 |Ac| if s increases from u; to uy along ¢ (5.3)

4 Ac| if s decreases from u; to uy along c,

where Az [resp. Ac] denotes the change in z [resp. the change in c] between
u; and ug. If J is an I-curve, we define

F(J) = ZJ‘.|si| + el (5.4)

where the sum is over all waves that cross J. Refer to Fig. 13 to see that for
J =[u;, ug], F(J) is continuous with respect to u, and u,. By studying
interactions in the sc-plane, we now show that among all finite sequences of
s- and c-waves that “connect” u; to # F is minimized by the waves in the

Riemann problem solution [«,, uz]. To make this precise, we generalize the
definition of I-curve.
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An I-curve has been defined as a piecewise linear curve in xt-space that
crosses a sequence of waves from the Riemann problem solutions that
appear in the approximate solutions u,,(x, t). Thus the I-curve defines a
mapping from a curve in the xz-plane to the curve in the sc-plane which
traces out a sequence of s- and c-wave curves given by the waves that J
crosses from left to right in the xz-plane. It is this curve in state space that
determines Var J and Var, J. It is convenient for us to generalize the
notion of I-curve to include any finite sequence of connected s- and c-wave
curves in the sc-plane. By connected we mean that the left state of a wave in
the sequence is the right state of its predecessor. Thus an I-curve can be
given by listing in order the waves in the sequence, and in this case, any
subinterval of the list is also an I-curve. We let Var, J and Var, J denote
the sum of the variations at some fixed time level of the separate s- and
c-wave solutions determined by J. Finally, we say that an I-curve joins #; to
up if the left state of the first wave is u;, and the right state of the last wave
is 5. We let [u;, uz] denote the unique I-curve that traces the waves in the
Riemann problem solution [u;, uz]. Note that F(J) can still be defined by
(5.4) for any I-curve J, and if J, is an immediate successor of J, then
Ji, Jo, A, and A, are all I-curves. We therefore have that F(J,) — F(J;) =
F(A,) — F(A;), and we use this to prove the following theorem:

THEOREM 5.1. If J, is an immediate successor of J, then F(J,) < F(J)).

Theorem 5.1 is a consequence of the following propositions. Here we let
upper and lower case “c” [resp. “s ”’] denote arbitrary c-waves [resp. s-waves |
and we allow waves to have zero strength.

PROPOSITION 5.1. Let J' = s'c’S’” be a generalized I-curve that takes u,
10 ug. Then F(J) < F(J'), where J = [u, ug] = scS.

PROPOSITION 5.2. Let J' = ¢'s'C’ be a generalized I-curve that takes u,
10 ug. Then F(J) < F(J'), where J = [ug, ug] = scS.

Since the proofs of Propositions 5.1 and 5.2 involve a study of cases, we
postpone the proof until Appendix 1.

LEMMA 5.1. Let J,=b, --- b, for b, = c, or s, be a generalized I-curve
that takes u; to ug. Then F(J) < F(J,), where J = [uy, ug] = scS.

Proof. We first show that there is an I-curve J = 5’c’S’ that takes u, to
ug such that F(J') < F(J,). We prove this by induction on the number of
c-waves in J,. Let u, denote the state that joins b,_; to b;, and assume that
J =+J =s'c’S’ for any such I-curve J'. We show that there exists an
I-curve J” containing at most one c-wave, such that J” takes u; to ug and
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F(J") < F(J,). First, if there exists consecutive waves b,b;,, in J, such that
b,b,., = 5,5.,,, then Proposition 5.1 (with ¢’ = 0) implies that F(b,b,.,) >
F(s), where [u,, ,,,] = s (since ; and u,,, lie at constant c). Therefore
F(J,)> F(J,_)whereJ,_; =b,... b,_sb_,... b,and J,_, takes u to ug
with the same number of c-waves. Therefore we can assume that no such
pair b;b, | exists in J,. But if no consecutive s-waves occur in J,, then since
J, = s'c'S’, there must be an i such that b;b; | = ¢;¢;y, OF bbb, 1biin =
¢,5, . 1€;+,- Without loss of generality, assume the latter case, where b;b, b,
takes u, to u, 5. Then by Proposition 5.2, F(b;b, b ;) > F(scS), where
[, ;5] = scS, and so F(J,)> F(J) where J =b,... b,_y5cSbh,,5... b,
takes u, to ug. But J has one fewer c-wave than J,, which proves by
induction that there is an I-curve J” that takes u; to ug such that J”
contains at most one ¢-wave, and such that F(J,) > F(J”). But by the
comment above, F(J) > F(J’), where J' contains at most one c-wave and
J’ contains no consecutive s-waves, and hence J’ = s’¢’S’ for some s'c’S’

which takes u, to ug. Therefore, by Proposition 5.1, we have
F(J) < F(J') < F(J,).
This completes the proof of Lemma 5.1.

Proof of Theorem 5.1. Since F(J,) — F(J,) = F(A,) — F(4,), we need
only show that F(A,) — F(A,) < 0. But A, takes u; to u, and contains the
waves in the solutions of two consecutive Riemann problems, so that
A, = 5,¢,8,5,¢,S,. Therefore, since A, = [u,, uz], we have by Lemma 5.1
that F(A,) < F(4,). This completes the proof of Theorem 5.1.

From (5.1) it is clear that the strength of an s- or ¢-wave dominates the
variation in z and ¢ of that wave, and that F(J) > Var, J for every I-curve
J. Therefore, Theorem 5.1 implies that there is a uniform bound on
Var, u,,(-,t) at every time step, so long as F(0)=0(1) Var,y. This
follows once we show that

Var, J = 0(1)lw, — wg| (5.5)

for any Riemann problem [u,, uz]=J, where w, = (z;,¢;) and wy =
(zg, cg); for then we can write

F(0) < 4 Var, J' < O LI¥ - ¢ (x,1) = ¥ - ¢ (x,) < O(1)Var, .y

(where J* are the Riemann problem solutions traced out by 0, and x; are the
mesh points at 1 = 0). To venfy (5.5), define S(¢) to be the set of points in
the sc-plane within a distance of & from 7. Then for u; and u, not in S(e),
(5.5) is clearly true, since Riemann problem solutions have a finite number
of waves that globally lie in a bounded set, and which locally involve waves
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that intersect transversally in the sc-plane; while for #, and ug in S(e),
Var, (J) < 5w, — wg| for ¢ sufficiently small, by construction of z. This
verifies (5.5) and so proves that at each ¢ > 0 (and for any r and a € 4),

Var, u, (-, 1) = 0(1)Var, . (5.6)
Statement (5.6) implies, by a standard argument (see [1]), that the approxi-
mate solutions w,,(x, t) are L' continuous in time uniformly in a. This is
stated in the following lemma whose proof is given in Appendix 2.

LEMMA 5.2 f:zlwra(x! t2) - wra(x7 tl)ldx = 0(1){|t2 - tll + r}Va‘rzc‘P:-
where 0(1) is independent of r, a, and t,.

We can now prove the main theorem of this section, which uses the
compactness argument in [1] due to Olenik. In what follows, a sequence of
functions V,, of one real variable is said to converge to ¥ in L} _ if, for every
M>0,V, > Vin L'[-M, M].

THEOREM 5.2. Let a € A and let  be any initial data satisfying Var, 4 <
oo. Then for any sequence of mesh lengths r which approaches zero, there
exists a subsequence r, and a function u such that, for any T, u, (-, 1)
converges in L\ . to u(-, t) uniformly for t < T. (Note that since u,,(x,0) =
Y(mr) for (m — Dr < x < (m+ Dr, u, (-,0) also converges to { in L)

Proof. By (5.6), w,,(-, t) has uniformly bounded total variation on every
time level, and so by Helly’s theorem, a subsequence converges in L' on
bounded intervals [x| < M of every horizontal line. By the diagonal process
we can achieve this result on the countable dense set of rational times
t = h/k. Let w, = w, be this subsequence. We apply Lemma 5.2 to show
that there is a further subsequence wy, that converges uniformly in
L'[—M, M] at every fixed t < T < oo; i.e., we write

fj[M|wi(x, 1) = w(x, t)|dx <f_MM‘wi(x, t) — w,-(x, %)

For fixed k, choose /(k) so that r, < 1/k and so that if i, j > I(k), the
middle term on the R.H.S. above is uniformly bounded by 1/k whenever
h < kT. Then by choosing 4 from these values, and applying LLemma 5.2,
the R.H.S. of (5.7) can be bounded by 0(1)(1/k) for every ¢ < T. Therefore,
Wy iy converges uniformly in L'[— M, M] at every ¢t < T. Since M and T are
arbitrary, we can apply this idea a countable number of times to conclude
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that there is a further subsequence w,(x,¢) such that for any T < oo,
w, (-5 1) converges in L', to w(-,7) uniformly in ¢ < 7. The uniform
continuity of ¥~! and x now implies this result for u,(x, 1) = x - ¥~ L.
w,(x, 1) and u(x, 1) = x - ¥~ U w(x, t). This concludes the proof of Theo-
rem 5.2

6. THE WEAK SOLUTION

We have shown that for any fixed a € A and any sequence of mesh
lengths r approaching zero, if Var,y is bounded, then there is a subse-
quence of the u,(x,t) that converges to some function u,(x,¢). The
convergence is in L! _ of space, and is uniform on bounded intervals of time.
It is not true, however, that the solution u,(x, ) satisfies the weak condi-
tions (1.3) for every a € A. As a simple counterexample, let a,,, = 0 for
every (m, n), and let the initial data be data for a Riemann problem whose
solution is a single shock wave. It is easy to see that the limiting solution has
the same discontinuity as the Riemann problem solution except that it
moves with speed /6 = 1 /M and not the shock speed. We prove, on the
other hand, that u_(x, ¢) is a weak solution to system (1.1) for almost every
a in the measure space 4, and so conclude the proof of Theorem 6.1. The
main point here is that our bound on the variation of the approximate
solutions (inequality (5.6)) is given in terms of z and ¢, so that variation in
u,, can accumulate wherever ¥ is not regular (i.e., near the transition curve).
Since the weak conditions (1.3) must be stated in terms of the conserved
quantities, we must modify Glimm’s argument in [1] to handle this un-
bounded variation in u.

We need to measure how close u,, is to a weak solution of (1.1), so for
any C' function ¢(x, t) with compact support in —o0 < x < 400, 1 > 0
(e, ¢ € C), define

D(r,a,¢) = /0°°f_°°w(¢,um + ¢ F(u,,)) dx dr + f7°° (>, 0)4,(x) dx,
(6.1)

where {(x) = y(mr) for (m — 1)r < x < (m + 1)r and Var, 4y < oo. Since
u,, is a weak solution of (1.1) in each horizontal strip ne < ¢t < (n + 1)g, we
can compute

(r,a,¢)= Z f ¢(x, no)(u,,(x, no) — u,,(x,ns — 0))dx. (6.2)

We are interested in the error term D(r, a, ¢) when ¢ is only piecewise
constant with compact support, and so we take equation (6.2) as the
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definition of D(r, a, ¢) when ¢ is in this general class of test functions. Note
that we cannot then equate (6.2) with (6.1) unless ¢ is also smooth. For
every r, we decompose the error term into a sum of integrals defined along
the top of each rectangle R, ; ie., let

mn!

Don(7:8,8) = [ 6(x, 1) () = () (6.3)

so that
D(r,a,¢)= Z ol Py, $). (6.4)

(Here, recall, that u,,(x)=u,,(x,ne) for (m— Dr<x < (m+ Dr,
U A ) = “mn("_” + a,,,r), and summations over all (m, n) such that
n > 1 and m + n is even). Now for any test function ¢ € C/, define

¢(x,1) = ¢(mr,ns) onR,,,. (6.5)

That 1s, ¢, is constant on each of the rectangles in the mesh determined by
the mesh length r, and ¢, agrees with ¢ at some point in each rectangle.
Note that since ¢ € CZ, ¢, has compact support uniformly in r, and
moreover

19lle < 9]l co- (6.6)
Since ¢ € CJ, ¢ is uniformly Lipschitz in x and ¢, so that
6 = ¢/l < 0()r, (6.7)

where 0(1) depends only on ¢. Finally, we shall need the following facts
which are easily verified:

|Dmn(r’ a’ ¢)| < 0(1)“¢|| rvaISC mn>
|D,..(r, a, ¢} < O(1)l|9ll .7 Var, u,,,- (6.8)

Now consider IXr, a, ¢,) as a function of a € 4. Let { , ), denote the
inner product for L*(A), and let | ||, denote the L? norm for A. The main
lemma of this section is:

LEMMA 6.1. For any fixed ¢ € C},

2
tim [D(r, -, 4, = 0.

We prove this with the aid of the following propositions.
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PROPOSITION 6.1. For any fixed ¢ and any fixed mesh length r, if
(m, n) = (m’, n'), then

(D7, 9,), Dy, -, 9,)) . = 0. (6.9)

Proof. 'Without loss of generality, assume »’ < n. Note that the value of
D, A(r,a,¢,) depends only on values of g;; lying in the “domain of
dependence” of (m’, n’) (i.e., values of g,; in the triangle centered below
(mr, na) with lateral sides of slope +d/r = £M). Therefore, writing
D, (a)=D,(r,a, ), where arguments not appearing are assumed to be
held fixed, we have that the value D,,,.(a) is independent of a,,,, and so

<Dmn(')’Dm /D (g )
- L‘Dm’n’(“)flemn(a) da,,, di =0

mn?>

since

/' p,,(a)da,,
-1
= (mr,n6) [ [ (1 + @) = 0 (%)) dx da,,,
—1Y(m—-1Dr

= a(mr, na) [ [V, (8) = i (3)) dx g = 0.

(m—Dr Y(m—=1Dr

Here A denotes the measure space obtained from A4 by deleting the
[—1,1],,, factor, and & € A. This concludes the proof of Proposition 6.1.

By (6.9), D, ,(+) is orthogonal to D, ,..(-) with repsect to L?(A), and so we
conclude

2 2
||D(l‘, T ‘i)r)"l = Z ||Dmn(r’ "q)r)”Z’ (610)

and since ¢, has compact support uniformly in r, there are 0(1)r 2 nonzero
terms in this sum (0(1) depending only on ¢). We cannot now apply (6.8)
directly to (6.10) in order to prove Lemma 6.1 (as done in [1]) because here
we have no uniform bound on the vaniation of the approximate solutions in
s and c. To remedy this, for each a € 4 and mesh length r, we partition the
set of all rectangles in the xz-plane according to how far the values u,,,(x)
lie from the transition curve 7 (the only place where unbounded variation in
the approximate solutions u,, can accumulate.)
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Recall that for any small € > 0, S(¢) is the strip in sc-space of all points
within a distance strictly less than ¢ of 7. Now u,,,(x) is a function of
x € [(m — Dr,(m + 1)r] whose image consists of the states in the solution
of the Riemann problem that occurs at the mesh point (mr, (n — 1)¢). So
for each r and a € 4, we can partition the set of all mesh rectangles into
two subsets, according to whether the image of u,,,(x) lies entirely within
S(e) or not. Let R = R(r, a, £) denote the set of all indices (m, n) which
index the u,,, whose images lie strictly within S(e). Now for every r, € and
¢, we estimate (6.10) as follows:

% 1Pz = [ |Dun(a)] da

2
”D(rs ) ¢r)||2

=/A Y. D, (a)| da

N

sup X |Dyun(a)]’

acAd m,n

Y D, (@) + ¢

A

for some a € A. We can now partition this sum according to whether
(m, n) € R(r, @, €) = R or not, and write

ID(r, )b L D@+ L D@+ (6.11)

(m,n)eR (m,n)¢R

In order to show that || D(r, -, ¢,)||% goes to zero with r, we estimate the
sums in (6.11) differently. The first sum is estimated as follows: for &
sufficiently small, the sc-variation in any Riemann problem solution which
is contained entirely within S(¢), is dominated by its variation in s, and
since there are at most three waves in any solution, this variation must be
dominated by 5e. Thus, if values of u,,, lie entirely within S(e), then
Var_u__ < 5¢. We now apply (6.8) and write

scmn

(m+Dr
D75 @, 6,)] = |¢,(mr, na) f( T () = (X)) dx

m—Dr

< 0(1)||¢l|re ' (6.12)

for any u,,, whose values lie entirely within S(¢), and so

Y D@ < L o()rre,

(m,n)ER
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where 0(1) depends only on ¢. But there are 0(1)r~% nonzero terms in this
sum, and so

Y |D,.(@)| <0(1)e. (6.13)

(m,n)ER

We now estimate the second sum in (6.11) with the aid of the following
proposition:

PROPOSITION 6.2. If values u,,, (x) are not entirely contained within S(t),
then

Var,u,,, < Const(e)Var,.u,,, (6.14)
and for any ¢ € C(},
r,a, ¢ < Const(e ¢ rvarc mn>
D, ( ) (eNl$llor Var, (6.15)
an (75 @, 9, )| < Const(e)||¢|| .7 Var, u,,,,

where Const(e) denotes a constant that depends only on e.

Assuming Proposition 6.2 (whose proof we postpone until after the proof of
Lemma 3.1), we obtain

Y ID,.(a)* < X |rConst(e)Var, u,,|*

(m,n)ER m,n

< r*Const(e ) ZZ(Va Lo l,)

< r?Const(€) Z(Z Var, u m,,)i,

where, since ¢ is fixed, we have absorbed ||¢||., into Const(e). But for fixed
n and any a € A, we have (by (5.6))

Zva ZC mn O(I)Varlftp
and so we can continue

( Z),Hl (@) < 7? Const(e)? Z(Varzc\b)
< rConst(e)’ (6.16)

since there are 0(1)r~' nonzero terms in the summation over x. Putting
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(6.13) and (6.16) into (6.11) yields

ID(r, -, 9,)]> < 0(1)e* + Const(e)*r, (6.17)

where the constants are uniform for fixed ¢. Thus we can choose € small to
make the first term in (6.17) small, and then choose r small at that ¢ to make
the second term small, to conclude

. 2
tim [D(r. -, 9, = 0.

This concludes the proof of Lemma 6.1, once we give the

Proof of Proposition 6.2. (We do the case for D(r, a, ¢) in (6.15), the
estimate for D(r, a, ¢,) being obtained similarly.) Since z(s, ¢) = 0 only on
the transition curve T, and since S(&)¢ (the complement of S(e) in [0, 1] X
[0,1]) is compact and bounded away from 7, the continuity of z(s, c)
implies that there exists a constant §(e) > 0 such that

|z(s,c)| > 8(e)  inS(e)". (6.18)

Choose € > 0 such that
0l< X s, (6.19)

We now consider two cases, depending on whether the image of u,,, lies
entirely within S(g)¢ or not. First, if the values of u,,,(x) are so contained,
then since ¥ : (s, ¢) = (z, ¢) is one to one and regular on the compact set
S(€)°, there exists a Const(&) such that

Var, u,, < Const(¢)Var, u,,,.

scomn

Thus by (6.8),

0(1)|],or Var,

scTomn

1Dpn(r, @, ¢)) <
< ConSt(E)ll¢||oorVa‘rzcumn’ (615)A
which proves the proposition in the first case.

Now assume that the image of u,,, is not entirely contained within S(&)*.
Since by assumption this image is not contained within S(e), there must
exist two points u; = (s, ¢,) and u, = (s,, ¢,) in the image of u,,,, such that
u, € S(&) and u, € S(e). By (6.19), z(u,) — z(u,) > 8(e)/2. Therefore

Var, u,,, > S(E). (6.20)

zcTmn
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But the solution to any Riemann problem occurs in the compact set
[0,1] X [0, 1] in sc-space, and so it is easily seen that there exists a constant
K > 0 such that the variation in s and ¢ of this solution at any time step is
uniformly bounded by K. since u,,(x) is the solution at = n¢ of a
Riemann problem posed at (mr, (n — 1)s), we have

)3(6)

Var_u <K=(K 2

scmn 8(5) 2
< K— 2 Va‘rzcumn

8(e)
= Const(&)Var, u,,,,,

where we have applied (6.20). Therefore, by (6.8), we can conclude

|D,,..(7, a, )| < 0(1)||¢|| . Var, u,,
< Const(&)||¢l|,,r Var

ZC mn
This concludes the proof of Proposition 6.2, and so completes the proof of
Lemma 6.1. Note, however, that if the curves g = const. and ¢ = const.
make kth order contact on the transition curve T, we can estimate Const(e)
= 0(1)e~*~'. To see this, define As at a point P = (5, ¢) to be |s — 5’| where
Q = (5, ¢) lies on the transition curve. Then the kth order contact of the
curves g = const. and ¢ = const. means that z = O(1)(As)**! at any P,
where 0(1) 1s unmiform in P. From this we can conclude that on S(e)°,
> Ge**! while at some & small, z = 0(1)&**! < 1Ge**! in S(&) for some
constant G independent of e. Therefore, 8(e) can be replaced by Ge**! in
(6.18) and (6.19), so that for (6.15), and (6.15)y, Const(e) is 0(1)e *~ 1.
Thus Const(e)? is 0(1)e~ 242 in (6.16) and (6.17). We use this fact at the
end of this section to obtain a rate of convergence of the approximate
solutions in the presence of this kth order contact along the transition
curve.

The fact that | D(r, -, ¢,)||5 approaches zero as r approaches zero for fixed
¢ implies that, given any sequence of mesh lengths » approaching zero, there
exists a subsequence r, such that D(r,, a,¢, ) —> 0 as r, > 0 for almost
every a € A. But D(r, a, ¢) as defined in (6.1) is linear in ¢, so that for
¢ € C; we can write

D(r,a,¢)=D(r,a,¢,)+D(r,a,¢ — ¢,). (6.21‘)

Therefore, Lemma 6.1 implies that (for fixed ¢) D(r,, a,¢) > 0asr, = 0
for almost every a € 4 if we can show that D(r,a,¢ — ¢,) >0 asr > 0
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for all a € A. This 1s
LEMMA 6.2. For any fixeda € A and ¢ € C,

lim [D(r, 2,9 ~ ¢,)| = 0. (6.22)

Proof. Let ¢ be any small positive number and leta € 4 and ¢ € C, be
fixed. By the triangle inequality

[D(r,a,¢ =&)< X D, (r.a,¢—¢)

= E ‘Dmn(rv a, o — ¢r)i

(m,n)eR

+ Z |Dmn(r’ a, ¢' - ¢r)|s (623)
(m,n)&R

where R = R(r, a, €). We use (6.12) to estimate the first sum and (6.15) to
estimate the second sum.

Y Du(r.a, 0 =) < X 0o — dllre

(m,n)ER
< Y 0(1)r%e (6.24)
< 0(1)e,

where we have applied (6.7) and the fact that there are 0(1)7~* terms in this
sum (0(1) depending only on ¢).

Y |Puu(r,a, ¢ — ¢,)| < X Const(e)li¢p — ¢[|,r Var, u,,,
(m,n)SER m.n

< Const(e)r?), (ZVarZCumn)

< Const(e)r?). Var,

(6.25)

< Const( €)r,

where we have applied (6.7), (5.6), and the fact that there are 0(1)r ! terms
in the summation over n. Replacing (6.24) and (6.25) in (6.23) yields (at any
fixed a and ¢)

|D(7, a,¢ — ¢,)| <0(1)e + Const(e)r. (6.26)

Since 0(1) and Const(&) are independent of r, we can choose e small to make
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the first term in (6.26) small, and then choose r small at that € to conclude

lim |D(r,a,¢ — ¢,)| =0

r—0
for every ¢ € Cj and a € A. This completes the proof of Lemma 6.2, and
so we can conclude from Lemma 6.1 together with (6.21) that, given any
fixed ¢ € C} and any sequence of mesh lengths r approaching zero, there
exists a subsequence 7, such that

lim D(r,,a,¢)=0 forae.a€ 4. (6.27)

r.—0
We now extend this result to hold uniformly over ¢ € C;.

LEMMA 6.3. Given any sequence of mesh lengths r approaching zero there
exists a subsequence r, and a set N of measure zero in A, such that, if
a € A\ N, then

lim D(r,,a,¢) =0

r,—0
for any ¢ € C.

Proof. Choose a countable set of functions {¢) C C; such that {¢} is
dense in C!, uniformly on compact sets. That is, assume that every function
¢ € C, is the limit of a sequence of functions from (¢} such that every
function in this sequence has its support within a single compact set (such a
set of functions can easily be constructed via the diagonal process). By the
diagonal process we can obtain from (6.27) that, given any sequence of
mesh lengths r approaching zero, there exists a subsequence 7, and a set N
of measure zero in A, such that if a € A \ N, then

lim D(rk, a, ¢i) =0
r.—0

for every ¢'. But for ¢ in C;, the definition (6.1) of D(r, a, ¢) is equivalent
to the integral equation (6.2); and (6.2) is linear in ¢ and involves only first
derivatives of ¢. Therefore, since u,, and F(u,,) are uniformly bounded,
(6.2) implies that :

ID(r,a, ¢ — ¢)| < 0()lI¢' - dllc

where 0(1) depends only on the set in which ¢’ and ¢ have compact support.
Now let ¢ be an arbitrary element of Cj, and choose {¢/} in (¢} so that ¢’
converges to ¢ in C', and assume that the supports of ¢/ and ¢ all lie within
a single compact set. Let § > 0 be arbitrary, and choose j; large so that

; é
0(Dlig”" — lic: < -
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For any fixed a € A\ N, choose r; small so that for r, < r,
. 8
1D(r, a, ¢’o| < 7
Then for r, < r, we have

ID(,, a,9)| <[D(r,, a, 97)| +|D(r,. a, o7 — ¢7))

Since § is arbitrary, we have proven Lemma 6.3.

Proof of Theorem 1. Let {/(x) be any initial data satisfying Var, ¢ < oo,
and let 7 be any sequence of mesh lengths approaching zero. By Lemma 6.3,
there exists a subsequence r, and a set N of measure zero in 4 such that, if
a € A\ N, then

lim D(r,,a,¢)=0
r—0

for every ¢ € C;. Now by Theorem 5.2, there exists a further subsequence,
call it r,, and a function u,, such that u, ,(x, t) converges to u,(x, ¢) and
F(u, [x, 1)) converges to F(u,(x, t)) in L .(x, t). Therefore, applying the
Lebesgue Dominated Convergence Theorem, we conclude that

0= lim D(r,,a, o)
r.—0

- ff g, + F(u,)o, dx d + f_m ¥(x,0)9(x,0) dx

—oo<x< + oo
>0

for any ¢ € C; and a € 4 \ N; and so u,(x, t) is a weak solution to system
(1.1) with initial data y(x). This completes the proof of Theorem 6.1.

When the curves g = const. and ¢ = const. make & th order contact on the
transition curve (or equivalently, when the wave speeds A and A . make kth
order contact on the transition curve), we can use (6.17) and (6.26) together
with the fact that Const(e) = 0(1)e *~! (obtained in Proposition 6.2) to
obtain a rate of convergence for | D(r, -, ¢)||5. That is, we have
|2

1p(r, -, )l = [1D(r. - 9)" = [ID(r, . 9) + D(r.-. 8 = 9,)
< [IpG o)+ [Ip(r 0= 0l

+L|D(r7'a¢r)|lD(rw'=¢—¢,)l.
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Applying (6.17) to estimate the first integral, and (6.26) to estimate the
second two integrals we obtain

ID(r, -, )| < Const(e)*r + 0(1)e? + (Const(e)r + 0(1)e)’
+ (Const(e)r + 0(1)e)fA|D(r, L)l (6.28)

But [,|D(r, -, ¢,)| = 0(1), where 0(1) depends only on ¢, because
[Ip(r, 00l = [ID(r,- 00 + [ [D(r-. )]
4 E ANE

2
< fA|D(r,-,¢,>| +1

< Const(e)’r + 0(1)e + 1 = 0(1),
where E = {a € A:|D(r, -, ¢,)| > 1}. Therefore, (6.28) becomes

ID(r, -, ¢l < 0(1){Const(e)*r + &), (6.29)
where
Const(e) = 0(1)e %1

We can maximize the rate of convergence in (6.29) by choosing & = r!/G+26
and so conclude that

ID(r, a,¢)|3 = 0(1)r'/E"20

gives the best rate of convergence implied by our analysis.

APPENDIX 1

Here we prove the following two propositions:

PROPOSITION 5.1.  Let J' = scs take uy to uy. Then F(J') = F(J), where
J = luy, ugl.

PROPOSITION 5.2. Let J' = c¢;s¢c, take u; to un. Then F(J') = F(J),
where J = [u;, ug].

These propositions are true basically because the Riemann problem
solution always takes the “weaker” c-wave (a c-wave along which s de-
creases) whenever three waves appear in the solution. A rigorous proof
involves a study of cases, and in order to reduce the number of cases, we
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define the “addition” and “interchange” of two waves. First, if J = 5,5,
takes u; to ug, define the addition of s, and s, to be the unique s-wave s
such that J = 5 takes u; to ug. If J = c,c,, where ¢, lie on the same side of
the transition curve T, define the addition of ¢, and ¢, to be the unique
c-wave ¢ such that J = ¢ takes u; to ug; and if ¢, lie on opposite sides of T
with c(u;) < c(ug) [resp. c(u;) > c(ug)], define J = s [resp. J = 5¢] to be
the unique J-curve of this form that takes u; to u,. With these definitions it
is easy to check that F(J)> F(J) (see Fig. 15). We now define two
instances in which we can interchange the order of s- and c-waves on an
I-curve J without changing the value of F(J). If J = sc [resp. cs] takes u; to
up and a “parallelogram” of s-waves and ¢-waves can be drawn between u;
and u, on one side of T (as indicated in Fig. 16), then we define the

3
—p O
>

U

— S > S

FtI=Fiss)<FIS)=F(T) F(T)=F(cc)<FE)=FJ)

T c T

F(I)=Fleep=lc I+l FIN=Fcc=lcl+lic,
=Z1A-C1+21A-BI =2|A-Bl+ 21A-C1
€21B-Ci+21A-BIl £21A-B1+21B-C1
ZIEI+IBI=F(ES)I=F(T) SIS+ IEI=F(5E)=F(T)

F1G. 15. Examples of the addition of two waves.
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¢ = _ c
c c __ -
g E FJ=F(sc)=FEE)=F()

(=
-
)
%!
c
£

F(T)=F (¢5)=1c1+1s1
=41C-D1+ (IB-CI+IA-C1)
=(IB-C1+2IC-D1+IA-Cl)+2IC-DI
=181+ ISI=F(38)=F(T)

F(I=F(sch=lIsl+Icl
=(1B-GCl+IA-C1)+4IC-DI
=21C-DI+(]B=CI+2IC-DI+IA-C1)

=Ig1-18l = F(ES)=F(T)

> S

FiG. 16. Examples of the interchange of two waves.

interchange of J to be the I-curve J = ¢5 [resp. 5¢] that takes u; to u along
the sides of this parallelogram opposite the sides of J. When such a
parallelogram cannot be drawn, we can only define the interchange of J in
certain cases; i.e., let ¢* [resp. ¢” ] denote a c-wave that moves toward
increasing s [resp. decreasing 5], and let ¢, [resp. cgx] denote a c-wave that
lies to the left [resp. right] of T. Then if J = ¢ s [resp. scg ], we define the
interchange of J to be the unique I-curve J = sc [resp. &5] which takes u; to
up (see Fig. 16). If J equals sc¢ or ¢s and takes u; to ugz, and J has an
interchange J, then it is easy to check that the Riemann problem [u;,, ug]
must be either J or J. Moreover, Fig. 16 verifies that F(J) equals F(J). We
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If u lies to the left of P, then
J= [UL’UFFCLFJ’ so
F(37)=F(J).

If up Ties to the right of P, then
J=[u, >4y =3¢
F(J°)=2 |c-D|+( |B-C| +2| C-D{ +I A-C!)
=(2]B-CI+|A-C|)+4|C-D|=F(J).

If u_lies to the left of P, then
J is interchangeable, so
F(J7)=F(J).

If u, Ties to the right of P, then
J={u, »ug} =s, €8
F(J7)=F(s,spcp)=F(s,T8)=F(J).

If ug lies to the left of P, then
J is interchangeable, so
Ay-—----- F(J7)=F(J).

If u, lies to the right of P, then

[¢]
|
|
1
i
1
/

. J={ug »Ug) =54 ¢45,
) \ F(J’)=IB-Dl +(|A-DI+|C-DI)
NEEE 21B-Cl+21B-D! +1A-Bl =F(J).

—> £

;7

.
—_ +
J=scf

F1G. 17. The proof that F(J") > F(J) for the six cases of Proposition 5.0.

now prove the following:
PROPOSITION 5.0. If J'=s5c or J' = cs and J' takes u; to ug, then
F(J) = F(J), where J = [u,, ugl.

Proof. We do a case by case study depending on whether cis ¢™ orc¢ ™,
whether ¢ is ¢; or ¢z, and whether J” is sc or cs. This makes eight cases. But
if J/ = ¢} s or scf;, then J’ is interchangable, and so F(J') = F(J) since
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T

If ug Ties to the right of P, then

J’ is interchangeable, so
F(J')=F(J).

If ug Ties to the left of P, then
J= u,Ug =54C S5, SO
F(J37)=F(cgs,s,)=F(sc s,)=F(J).

If u_ lies to the \right of P, then
J=u ,ug =s cg=4d7, so0 i
F(J’) = F(J).

If u, lies to the left of P, then
J=[u_,ug] =€ S , sO
F(J7) = (1A-DI+IB-D|)+[B-Cl)=F(J).

If u_ lies to the right of P, then
J’ 1is interchangeable, so
F(J"}=F(J).

If u Ties to the left of P, then
J=Tug-Ug] = 54C 5,
F(J")= 4lB-D} + 1A-cl
7|a-Bl +21B-Dl +( B-Dl + ]c-DI )=F(J).

FIGURE 17 Continued.

J = J'orJ = J'. This leaves six cases, and Fig. 17 verifies the proposition in
each case.

Proof of Proposition 5.1. 1If sc or ¢S can be interchanged, then we can
reduce the problem so that Proposition 5.0 applies; e.g., if ¢5 is an inter-
change for sc, then we can write

F(J') = F(scS) = F(&sS) > F(c5) > F(J),

where we have “added” 5§ and written 5. Therefore, assume that neither sc
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[f ug lies to the right of P, then
F(J") > F(s,c,5,) and
F(s,T,5,) > F(J) by "parallelograms”.

If ug lies to the left of P, then
J=[ug ,ug] = 51(_:252, so
F(J)»F(J) by interchanging.

[f u_ lies to the right of P, then
J= [ ,ug] = s3¢,5,and
obtain F(J’) » F(J) by
interchanging s, cgwith C,§,.

If u_ lies to the left of P, then
F(J7) 3 F(s,c,5,) and
F (s,c,8,) 2 F(J) by interchanging.

S=56GS
(s=s,88s, A §=55)

F1G6. 18. The proof that F(J’) > F(J) for the two cases of Proposition 5.1.

nor ¢S can be interchanged, so that in particular ¢ = ¢~ . We check two
cases, depending on whether ¢~ lies to the left or right of the transition
curve T. For the first case, assume ¢~ lies to the left of 7. Then s must cross
T (otherwise we can interchange s and ¢™ by constructing a “parallelogram™).
This yields an I-curve diagrammed in Fig. 18, where it is verified that
F(J) = F(J).

For the second case, assume ¢~ lies to the right of 7. Then S crosses T
(otherwise we can interchange ¢~ and S by constructing a “parallelogram”).
This yields an I-curve diagrammed in Fig. 18, where again it is verified that
F(J" » F(J). This completes the proof of Proposition 5.1.

Proof of Proposition 5.2. Again, if c,s or sc, is interchangeable, then we
can interchange and add waves until Proposition 5.1 applies; e.g., if ¢,S is
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J=es¢ep ,d=5,C5,
F(J7) = 41c-DI+( |A-DI + 1B-D|) + [D-El
2ia-cl + 2 | c-E| +IB-C| =F(J).

— S

The case when C decreases along J

J7 = cys ¢y JF S5,
F(J)=2IDE|l+ ( |c-D| + |A-D| } + 4 [B-D]
ziB-c| + 2/B-E| + |A-Bl =F(J)

The case when C increases along J

Fi1G6. 19. The proof that F(J') > F(J) for the two cases of Proposition 5.2.

an interchange for sc,, then we can write
F(J') = F(c,&,S ) > F(5e8) > F(J),

where we have taken c,¢, to “add” to 5¢ (&5 is similar). Therefore, assume
that ¢,s and sc, are not interchangeable, which implies that J’ crosses T (for
otherwise we can construct a parallelogram and interchange). Also, note
that if the variable ¢ increases along one c-wave and decreases along the
other c-wave on J’, then it is easy to check that F(J') » F(cs) or F(J') >
F(sc) where either cs or sc takes u; to uy; and so Proposition 5.0 implies
that F(J') » F(J). Therefore, assume that the variable ¢ either increases
along both ¢, and ¢, or decreases along both ¢, and c¢,. This makes four
cases depending on whether J’ crosses 7" from left to right or from right to
left, and on whether ¢ increases or decreases along J’. But if J' crosses T
from left to right, then a quick check shows that either ¢;s or sc, is
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interchangeable. This leaves only two cases to check: J’ crosses T from right
to left and c either increases or decreases along J'. Figure 19 verifies that
F(J) = F(J) in these two cases, and so completes the proof of Proposition
5.2.

APPENDIX 2

In this section we supply the proof of Lemma 5.2. If the initial data vmp(x)
satisfy Var, / < oo, then

./; |wra(x7 ZZ) - wra(x7 tl)ldx = 0(1){|t2 - tll + r>Varzc\1b-

Proof. This is a consequence of the Courant—Friedrichs—Lewy condition
(4.1) which forces a uniform bound 1/M = r/s on the speed with which
waves can propogate in the approximation solution w,,(x,¢). That is,
assuming that ¢, > ¢, it is easily verified that at any point x, |w, (x, 1,) —

w,(x, ;)| is bounded by the variation of w,(y, ¢,) for y between x— Mz,
—t|—r and x + M|t, — ;| + r. But at every time level, w, (-, ¢) is a
function of bounded variation and so the absolute value of its distributional
derivative is a measure whose mass on every x-interval is the total variation
of u,,(-, t) on that interval. Thus we can write

S ol 12) = oo ) = 00 [ f

x—Mt,—t|—r

x+Mt,—t)|+r

dw,o(, 1)
d—y dy dx

This is equal to an integral with respect to the product measure

aw,(y,1)

& dy dx

over the convex region —oo < x < +oo, |y — x| < Mlt, —tj+r. We
continue to estimate by changing the order of integration:

© ey Mi—ntr | dw(y, 1)
= 0(1 Y dx| =2 g
( )./ / dy Y

—wVy—Mt,— 1| —r

aw, m(y,t)

= 0()(Mlt, — 1, + 1) / W

= 0(1){|t, — ¢, + r)Va.rzcxlx,

where we have applied (5.6) in the last step. This completes the proof of
Lemma 5.2.
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