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Global Solution of the Cauchy Problem 
for a Class of 2 x 2 Nonstrictly 
Hyperbolic Conservation Laws* 
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We prove the existence of a global weak solution to the Cauchy problem for a 
class of 2 × 2 equations which model one-dimensional multiphase flow, and which 
represent a natural generalization of the scalar Buckley-Leverett equation. Loss of 

strict hyperbolicity (coinciding wave speeds with a (~  I ) normal form) occurs on 

a curve in state space, and waves in a neighborhood of this curve contribute 
unbounded variation to the approximate Glimm scheme solutions. The unbounded 
variation is handled by means of a singular transformation; in the transformed 
variables, the variation is bounded. Glimm's argument must be modified to handle 
the unbounded variation that appears in the statement of the weak conditions, and 
this requires that the random choice variable be random in space as well as time. 

1. INTRODUCTION 

We consider the Cauchy problem for the 2 x 2 system of nonlinear 
conservation laws 

,, + [ sG( , ,  b ) ]  x = 0 ,  = 

b t + [ b G ( s ,  b)]x  = 0, b(x ,O)  = bo(x) ,  (I.1) 

w h e r e 0 ~ < s ~ <  1 and 0 < b ~ < s  are functions of - o e  ~<x~< +o% t > / 0 .  
This system arises in one-dimensional oil recovery problems, describing how 
the addition of a polymer (a water solute that increases the viscosity of 
water) affects the flow of water and oil in an oil reservoir when a solution of 
polymer and water is pumped into the reservoir at a constant volumetric 
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rate. The equations express Darcy's Law and the conservation of mass 
under the assumption that the reservoir is uniformly porous. Here s is the 
saturation of water, c is the concentration of polymer in water, and b = sc is 
the overall concentration of polymer at any x and t. Thus, system (1.1) 
represents a natural generalization of the scalar Buckley-Leverett equation, 
the single hyperbolic equation (two phase oil and water flow) which is 
obtained in (1.1) when c is constant. 

The Cauchy problem in (1.1) is a special case of the general problem 

u, + F ( u ) ~  = O, u (x ,O)  = Uo(X), (1.2) 

with u = (s, b), and F(u)  = (sG(s,  b), bG(s, b)). Since discontinuities can 
form in the solutions of (1.2) even in the presence of smooth initial data 
(cf. [4]), we look for weak solutions in the sense of the theory of distribu- 
tions; i.e., solutions which satisfy 

ff u,t  + F(u)~,  x + u ( x , O ) , ( x , O )  dx = 0 (1.3) 
OCD 

t~>O 

for any test function q~ ~ Clo(X, t). The  conservation laws in (1.1), however, 
differ from the classical conservation laws of gas dynamics (cf. Lax [7]) 
primarily because sG(s~ b) is not convex. This forces strict hyperboficity 
and genuine nonlinearity to fail; i.e., the eigenvectors of dF (the first 
Frrchrt derivative of F )  become parallel on a one-dimensional curve in 
state space, so the eigenvalues of dF fail to be everywhere distinct, and fail 
to be monotone along the integral curves of the corresponding eigenvectors. 
Equations (1.1) for multiphase flow were derived by Isaacson [2], and in [2] 
Isaacson also explicitly solved the Riemann problem for arbitrary constant 
states u L and u n ) (The Riemann problem is the initial value problem when 
Uo(X ) = u L for x <<, O, uo(x  ) = u n for x >/0.) Here we prove that the 
Glimm difference scheme [1] converges to a weak solution for arbitrary data 
of bounded variation in s and c, and for certain data of unbounded 
variation in s and e; and we assume only the physically motivated condi- 
tions on the general shape of the function g(s, e ) =  G(s,  cs) which are 
required in the solution of the Riemann problem. 

The Glimm difference scheme is a scheme by which solutions with 
arbitrary data are approximated locally by Riemann problem solutions. In 
the case of system (1.1), new phenomenon arise because strict hyperbolicity 

~It is interesting to note that system (1.1) also arises in elasticity theory with a different flux 
[unction F. In [3], Keyfitz and Kranzer derive these equations, and solve a similar nonstrictly 
hyperbolic Riemann problem: Many of their techniques, including their analysis of the 
Riemann invariants and their generalization of the Lax entropy condition, are applicable in the 
solution of the RAemann problem for system (1.1). 
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fails. For example, solutions to the Riemann problem for this 2 x 2 system 
can have three nontrivial waves (at most two waves appear in 2 × 2 gas 
dynamics and other typical convex and strictly hyperbolic 2 X 2 systems), 
and in state space these waves can change discontinuously with respect to 
u L and u R. Moreover, the variation of the approximate Glimm scheme 
solutions can  go to infinity as the mesh size vanishes even when the data are 
of bounded variation. Because the variation of the conserved quantities 
cannot be bounded in an approximate solution, a modification of Glimm's 
argument is required to show that the weak conditions hold in the limit, and 
the argument given here requires the random choice variable to be random 
in space as well as time. Our technique involves constructing a 1-1 
differentiable transformation if': (s, c)--,  (z, c), which is regular except 
where dF is not strictly hyperbolic, and such that the variation of the 
approximate solutions remains uniformly bounded in the zc-plane. In this 
way we prove the main theorem, which in particular solves the Cauchy 
problem for initial data of bounded variation in s and c: 

THEOREM 1. The Cauchy problem for the 2 X 2 system of oil-polymer 
equations (1.1) has a global weak solution for arbitrary initial data of bounded 
variation in z and c. 

Our method involves a detailed study of the Riemann problem solutions 
to system (1.1), and so in Sections 2 and 3 we sketch the derivation of the 
equations for oil-polymer flow, and review Isaacson's solution of the 
Riemann problem [2]. In Section 4 we describe the difference scheme, and 
discuss the method of obtaining bounds on the variation of the solution at 
each time step; i.e., we define/-curves,  reduce the variation problem to a 
problem involving "interactions" (these ideas were first formulated in [1]), 
and suggest the need for a nonregular transformation o/. In Section 5 we 
define the transformation q', estimate the variation of Riemann problem 
solutions in the coordinates z and c, and apply Helly's theorem to obtain a 
convergent subsequence of approximate solutions. Finally, in Section 6 we 
modify Glimm's proof of the convergence of the weak conditions in order to 
handle the unbounded variation in u and F(u) that can occur in the 
statement of the weak conditions (1.3). The analysis gives a rate of conver- 
gence of order r 1/(3+2k) (where r is the mesh length) in case the wave speeds 
have k th order contact at the curve where strict hyperbolicity fails. 

It is interesting to note that in [7], Liu mad Wang obtain existence for a 
system of the form (1.1) under assumptions on G which maintain the linear 
independence of the eigenvectors of dF, so problems with unbounded 
variation do not arise there. The only other example of a global existence 
theorem for 2 x 2 nonlinear systems of conservation laws is for isothermal 
gas dynamics [8], where an explicit functional form of the flux function 
F(u) is required. 



338 BLAKE TEMPLE 

2. DERIVATION OF THE EQUATIONS 

We assume that oil, together with solutions of water and polymer in 
varying concentrations (aqueous phase), are forced to flow through a 
uniformly porous one dimensional oil reservoir at a constant volumetric 
rate. The fluids are assumed to be incompressible, and the polymer is 
assumed to be a solute of water that increases the viscosity of water but is 
insoluble in oil; and so the particle velocity of the polymer at any point in 
the reservoir equals the particle velocity of the water at the point. (Water 
and polymer are viewed as distinct, mutually soluble, incompressible fluids, 
so that concentrations are determined by volumetric proportions.) Darcy's 
Law [6] relates the pressure drop across a section of the reservoir to the 
volumetric flow rate of a viscous fluid through that section; i.e., when only 
one substance of viscosity/~ flows in the reservoir, we have 

KA P2-P1 
Darcy's Law: Q = (2.1) 

X2 -- X 1 

Here Q is the volumetric flow rate of the fluid through that section of the 
reservoir between x 1 and x2, P2 - P1 is the corresponding pressure drop,' 
and A is the cross sectional area of the reservoir assumed to be unity by 
choice of units. K is the absolute permeability of the reservoir, which 
depends on the microscopic structure of the interlocking channels in the 
porous medium through which the fluid flows; since we assume that the 
reservoir is uniformly porous, K is constant for flow involving a single 
viscous fluid. Choosing units so that the volumetric flow rate is unity, 
Darcy's Law for a single fluid is given locally by 

1 = Q =  - K P  x. (2.2) 
~t 

But because oil and water are immiscible, a joint flow in the reservoir 
occurs, on a microscopic level, by forcing the interlocking channels in the 
medium to partition between those that accept oil flow and those that 
accept water flow. This effect tends to inhibit the overall flow, since, for 
example, channels filled with oil can become blocked by surrounding 
channels of water. Thus, during oil and aqueous flow, the "nonlinear" 
interlocking of the channels produces relative permeability constants k 0 and 
ko which depend at each point on the concentrations of the fluids at that 
point. In this case, Darcy's Law for joint flow becomes [6]: 

 o(S) 
Q0 = - ~ P x ,  

/Xo 

ka(s) Px, (2.3) 
Qa = ~a(c ) 
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for respective oil and water-polymer flow, where s(x, t) is the volumetric 
proportion of the reservoir at (x, t) occupied by water and polymer, c(x, t) 
is the volumetric proportion of the polymer in water, b(x, t) = c(x, t)s(x, t) 
is the volumetric proportion of polymer in the reservoir at (x, t), and 
/~a(c) is the viscosity of the aqueous solution, an increasing function of c. 
Here Q0[resp. Q~] is the volumetric flow rate of oil [resp. water-polymer] 
and we assume that the overall flow rate Q = Qo + Qo is unity. Using this 
fact, we can eliminate Px in (2.3) to conclude that 

 o(S) 

Oa= k~(s) ko(s ) = f ( s , c ) ,  (2.4) 

where f(s,  c) is the fraction of the total volumetric flow associated with the 
aqueous phase. We assume that f (s ,  c) is a smooth function such that f(s,  c) 
increases from zero to one with one inflection point (which represents a 
maximum value of the first derivative) when c is constant, and such that 
f(s,  c) decreases with increasing c for fixed s, as indicated in Fig. 1. This can 
be regarded as an experimental fact (cf. [6]). (Mathematically, we assume 
that (0 f /0c ) ( s ,  c) < 0 for 0 < s < 1, and for convenience also assume that 
the curves f(s,  c) all make p th  order contact with the s-axis at s = 0, some 
p > 1.) The graphs of k0(s ) and k~(s) have the shapes shown in Fig. 2. 

Finally, to obtain the conservation equations, note that since Q~ is the 
volumetric flow rate of the water-polymer solution, and since particles of 
water and polymer flow at the same velocity, the particle velocity of the 
aqueous phase must be Q J s  = f(s, c)/s. This is defined to be g(s, c). By 
analysing a volume element, we obtain the Eulerian equations of motion of 
the fluid, which express the conservation of water together with polymer, 

f 

c=o 

¢--I 

S=l 

FIGURE 1 

z ,S  
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to(S-3 kofS) 

S=l 

FIGURE 2 

and the conservation of polymer, respectively: 

s, + [ g ( , , c ) s ]  ~ = 0, 

b, + [ g (s ,  c )b ]  ~ = O. 

These are the desired equations, where properties of 

g(s, c) = G(s, b) f ( s ,  c) 
s 

are derived from properties of f (s ,  c). 

(1.1) 

3. SOLUTION OF THE RIEMANN PROBLEM 

To solve the Riemann problem for system (1.1), we first find the rarefac- 
tion curves. Since F = (sG(s, b), bG(s, b)) with g(s, c) = G(s, b), we ob- 
tain 

a+,G, ] 
dF = bG, G + bGb]' 

where a subscript denotes partial differentiation with respect to that argu- 
ment. A calculation shows that the eigenvalues of dF are G = f / s  and 
G + sG s + bG o =fs(s ,  c), and the respective eigenvectors of dF are 
(Gb, --G,) and (1, c). Integral curves of the first eigenvector therefore lie 
along constant G (since X7G is perpendicular to (G b , -  Gs)), and integral 
curves of the second eigenvector lie along constant c (since Vc = v ( b / s )  = 
( - b / s  2, l / s )  = ( 1 / s ) ( - c ,  1), which is perpendicular to (1, c)). Thus, the 
two "normal  modes" for system (1.1) are solutions that take values on 
G = const, and propagate with speed G (and so form contact discontinui- 
ties), together with solutions that take values on c = const, and propagate 
with speed fs. 
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We now calculate the shock curves for system (1.I). Shock waves are 
solutions with discontinuities that propagate with speed o, such that the 
following jump conditions hold between the states on the left- and right-hand 
side of the discontinuity [4]: 

o [ u  L - uR] = [ F ( u L )  -- F(uR) ] . 

This is a system of two equations which, after eliminating o and simplifying, 
yields 

bRSL(G R -- GL)  = bLsR(G R - GL) .  

The solutions to this equation are G L = G R and c L = c R (obtained by letting 
b = sc),  and the respective wave speeds are o = G L = G R and a = ( f ( U L )  
- - f ( U R ) ) / ( S  L + SR). The first set Of conditions confirms the fact that one 
family of solutions consists of discontinuities which propagate along con- 
stant G with speed G, while the second set of conditions implies that 
solutions in the other family propagate along constant c with wave speed fs 
at points of smoothness, and ( f ( U L ) - - f ( U R ) ) / ( S  L - - S R )  at points of dis- 
continuity. This confirms the fact that solutions propagating at constant c 
must satisfy the nonconvex scalar conservation law (the Buckley-Leverett  
equation) 

s t + f ( s ,  c)x = 0, (3.1) 

obtained from the first equation in (1.1) by identifying g(s ,  c)  = f ( s ,  c ) / s .  

Since unphysical weak solutions can occur (cf. [5]), in the next paragraph we 
apply additional "entropy conditions" to determine the correct solutions 
that move at constant c or G. We call these physical solutions "s-waves" 
(saturation waves) and "c-waves" (concentration waves), respectively, and 
so we label the corresponding wave speeds (eigenvalues) for these families 
~s = f~ and ~c = G = g. Then the general Riemann problem can be uniquely 
solved by joining together successive s-waves and c-waves. 

Note, first, that sincef(s,  c) has one inflection point for fixed c, and since 
g = f / s  is the slope of the chord joining the point (s ,  f ( s ,  c)) to the origin 
(see Fig. 3), the wave speeds ~t s = fs and Xc = g are equal along a curve 
(labelled " T " ,  the transition curve) in the so-plane. A study of Fig. 3 now 
enables us to graph the curves g = const, and c = const, in the sc-plane 
(Fig. 4), where solutions will be studied. (The conditions on f ( s ,  c)  imply 
that the curves along which g is constant give c as a monotone function of s, 
except on the transition curve T, where a maximum value of c is taken. 
These curves continue smoothly to the curve s = 0 which defines the curve 
g = 0.) To clarify the relationships between the variables, in Fig. 5 we have 
drawn this in the sb-plane, the plane of conserved quantities. Now s-waves, 



342 B L A K E  T E M P L E  

f = constant 

~ ~ S ! 

! 

FIGURE 3 

1 

g = o  

/ x. 
/ X 

/ \ 

t / - - ,  \ 

, , ,  T ', i 

. . . .  i 

g = grnox 1 

FIGURE 4 



G L O B A L  S O L U T I O N  TO A C A U C H Y  P R O B L E M  343 

/ \ 

b ,/ x 

/ .-. ~ " , ~ 1  

/ ~.'~ T / ~  I 
/ / 

I / / /  . / ' / N  I I I  

I / 

FIGURE 5 

solutions that move at constant c, must satisfy the scalar equation (3.1), and 
so the entropy condition for scalar equations applies; i.e., solutions that 
move at constant c are obtained by taking "uppe r  convex envelopes" (if 
s L ~< s R) or "lower convex envelopes" (if s r >1 s R) along the graph of f .  This 
method of constructing s-wave solutions is diagrammed in Fig. 6. To obtain 
the physically meaningful solutions that move at constant g, we apply the 
entropy condition of Lax [5] for general n × n systems of conservation laws. 

(E) A weak solution consisting of  adjacent constants u L and u R separated by 
a line of  discontinuity in xt-space is an admissible solution (a shock or contact 
discontinuity) i f  and only if  n + 1 of  the characteristics generated by u L and 
uR, impinge on the line of  discontinuity. 

From Fig. 3 it is easily verified that (E) holds for solutions that move at 
constant g if and only if the solution does not cross the transition curve T. 
Thus a c-wave is a solution that connects two states at constant g on the 
same side of T by a contact discontinuity of speed g. (This application of 
(E) is due to Keyfitz and Kranzer [3].) The construction of such a solution is 
in Fig. 7. 

Now to solve the general Riemann problem [uL, UR] it is only necessary 
to connect u L to u R by s- and c-waves so that the corresponding wave speeds 
increase from left to right. Such a solution in the xt-plane exists and is 
unique for every u L and uR, and the general solution is given in Figs. 8 and 
9. Here Fig. 8 gives the solutions when u L lies to the left of the transition 
curve T, while Fig. 9 gives the solutions for u L to the right of T. These 
diagrams are read as follows: to solve the Riemann problem [uL, u R ], follow 
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FIG. 7_ c-wave solutions. 
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FIG. 8. Riemann problem solution for u L left of T (i.e., follow the arrows to un). 

the dark arrows that cont inuously connect  u L to u R in either Fig. 8 or Fig. 9. 
The arrows will cross f rom one to three s- and c-waves, depending on 
whether u R lies in region I, II, or I I I  relative to u L. Then  graph these s- and 
c-wave solutions in the xt-plane in the direction of  the dark arrows, as done 
in Figs. 6 and 7. The composi te  of these solutions is the solution to the 
Riemann  problem [u L, UR]. A sample solution is given in Fig. 10 for the 
states u L and u R plot ted in Fig. 9. Note  that the waves in an arbitrary 
Riemann problem solution can be denoted by  scS  (the s-wave " s "  followed 
by the c-wave " c "  followed by  the s-wave '<S "), where one or more  of s, c, 

or S cou ld  be zero. This completes the derivation of  the solution to the 
Riemann problem for system (1.1). 

Note  that because the coordinate change f rom (s, b) to (s, c) degenerates 
at s = 0, the Riemann problem solutions are unique in the sc-plane, but  fail 
to be unique in the sb-plane when s = 0. For  this reason we always assume 
that data is given first in sc-coordinates. Since g >~ const, is an invariant 
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FIG. 9. Riemann problem solution for u z fight of T (i.e., follow the arrows to uR). 

region for Riemann problems, nonuniqueness at s = 0 can also be handled 
by bounding solutions away from s =- 0. 

4. THE GLIMM DIFFERENCE SCHEME 

We now apply the Gl imm difference scheme to prove the existence of a 
solution to system (1.1) for general initial data uo(x ) = q~(x). To establish 
the scheme, we define a mesh of small rectangles in the xt-plane. Then, in a 
random way, we approximate the solutions across the bot tom of each 
rectangle by adjacent constant states, so that inside each rectangle, the 
solution can be approximated by the Riemann problem solutions of Section 
3. Helly's theorem can be applied to obtain a convergent subsequence of 
such approximate solutions, once we obtain a uniform bound on the 
variation of the approximate solutions as measured under a nonregular 
transformation of the plane of conserved quantities. This will require only 
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FIG. 10. An explicit solution (for the P, Jemann problem posed in Fig. 9). 
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that the initial data ~k(x) have bounded total variation in the transformed 
plane. A measure space argument is then applied to show that a convergent 
subsequence satisfies the weak conditions (1.3) in the limit. 

We first define the approximate Grimm scheme solutions ura(x , t) pre- 
cisely, and develop notation necessary for the subsequent proof. Let r be a 
mesh length in x, and let the corresponding mesh length in t be given by 
o = Mr, where 

r 1 
a - m  ~ sup (X,,Xc>. (4.1) 

0~<s~<l 
0~<c~<l 

(This is the Courant-Fr iedr ichs-Lewy condition, required to ensure that the 
Riemarm problem solutions do not interact during any one time step). Let 
(m, n) denote any pair of integers such that n >/ 1 and m + n is even. (This 
notation is maintained throughout this paper.) Let Rm, be the rectangle of 
base 2r and height 0 having the point (mr, no) at the top center of the 
rectangle. This forms a staggered grid of rectangles diagrammed in Fig. 10. 
Let A = I-I,,,, [ - 1, 1] be the measure space product of copies of the interval 
[ - 1 ,  1] equipped with normalized Lebesgue measure, one copy for each 
rectangle. (That is, the measure of the set E --- Fire, ,Era, is Fire, ,½t~(Em,), 
where g denotes Lebesgue measure.) Let a ~ A and write a = (a,n,). Now to 
define Ura(X, t) at t = 0 .  o, approximate the initial data in each interval 
[ ( m -  1)r ,(m + 1)r] for m even by the constant value qJ(mr), so that 
Riemann problems are formed at the bottom center of each rectangle R,~ 1 
(for m + 1 even), lying on the x-axis. Once we have solved a Riemann 
problem in Rm,, let Umn(X ) for (m - 1)r ~< x ~< (m + 1)r be the corre- 
sponding solution that occurs along the top of the rectangle Rm, (at time 
t = no). Then to continue the scheme to time t = (n + 1)o, approximate the 
solutions Um,(X ) along the top of R,~, by the constant function Umn(mr + 
a,,or). This establishes Riemarm problems at the bottom center of the 
rectangles lying on t = (n + 1)o, and so defines the function Ura(X, t) by 
induction. (Note that Rmn depends only on r, while Um,(X ) depends on both 
r and a.) We call the points (mr, 0) and (mr + am,r, no) mesh points, and 
for notational convenience we identify am, with the mesh point (mr + 
arnnr , no), SO that the value um,(mr + amn r) is denoted u,nn(amn ). We also 
say that two mesh points are "adjacent" if the corresponding rectangles 
intersect. 

In order to obtain bounds on the variation of the approximate solutions 
U~a(X, t) at every time level, we need a functional F which measures the 
variation of a solution along any "/-curve." A n / - cu rv e  J is defined to be 
any continuous piecewise linear curve in xt-space that successively connects 
adjacent mesh points, so that the mesh index n increases monotonically 
from x = - o~ to x = + o¢, and such that J is linear between adjacent mesh 
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points  (cf. Fig. 10 and [1]). The main  point  here is that  the u n i q u e / - c u r v e  
that connects the mesh points on t = no to those on t = (n + l)a crosses all 
the waves in the Riemann problem solutions that  occur between t = n o and 
t = (n + 1)0. We let (9 denote the in i t ia l / -curve  that connects mesh points  
on t = 0 to those on t = o. Partially order the / -curves  by  saying that larger 
curves lie toward larger time and call J2 an immediate  successor of Jl if bo th  
/ -curves pass through the same mesh points except at one value of  m, where 
J2 >/J1. Our  method is to define a functional  F ( J )  which dominates  the 
variation on J of ~t' - Ura(X , t), where ' t '  is a part icular 1-1 funct ion that 
t ransforms the plane of conserved quantities in a non-regular  way. We then 
show that F(J2)  ~< F(J1) for every J2 an immediate  successor of  Jl, and so 
by  induct ion we obtain the desired bounds  on the variation once we see that 
F ( 0 ) i s  uniformly bounded  b y t h e  total variation of  ,I, - if(x). I t  is impor tant  
to note that the estimate F(J2)  ~< F ( J l )  is proved by  studying the interac- 
tion that occurs in the d iamond A between J1 and J2 as drawn in Fig. 11. 
Letting Aa and A t denote the upper  and lower half  of  A as shown in Fig. 11, 
it is clear that  the waves that cross A u solve the Riemann  problem [uL, uR] , 
while the waves that cross A l solve the consecutive Riemann problems 
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[u L, UM], [U M, UR]. Thus to show that F decreases between Jl and J2, it 
suffices to study "interactions"; i.e., it suffices to obtain estimates that 
compare the variation of the waves in the Riemann problem solution 
[uL, Un] to the combined variation in the waves of the solutions [UL, UM] 
and [um, un] , for arbitrary u M. 

Note that we cannot hope to obtain uniform bounds on the total 
variation of the approximate solutions u = (s, b) because the equations are 
not strictly hyperbolic at the transition curve T; or more precisely because 
the curves g = const, and c = const. (curves on which Riemann problem 
solutions propagate), form a coordinate system that degenerates on T. 
Indeed, if we choose the initial data q~(x) to lie on T, as in Fig. 12, the 
variation in s of the waves that cross the initial/-curve (9 will go to infinity 
as r approaches zero. A second problem that arises because the equations 
are not strictly hyperbolic is that the waves in the solutions of the Riemann 
problems, drawn in the sc- or sb-planes, form curves that are discontinuous 
functions of u L and u R. Thus, discontinuous increases in the variation 
change of the solution between A u and A t can occur as u L and u R are 
smoothly varied. Two key examples are shown in Fig. 13. The first problem 
above is solved by defining a nonregular transformation that sufficiently 
flattens the sc-plane near T so as to bound the variation in s that can ac- 
cumulate around the transition curve; and the discontinuities in the sec- 
ond problem above are resolved by appropriately choosing the functional F. 

T 

u o (- a ° l t  Uo(X ) 

%(* ~ / ~  

T 

T - c u r v e  

The in i t ia l  data Uo(X) lies 
on the transi t ion curve. 

J • S 

l 

The I-curve 0 is o Sequence 
of almost parallel s- and c-waveS 

which aquires unbounded variation 

as the mesh length approaches zero. 

D S 

FIG. 12. Example of the appearance of unbounded variation in the approximate solutions. 
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[UL,IJR] : C ) [UL,U~] = s'c" 
F(c)= lc l=4 ]~-RI  

F(s'c') = Is'l ~icl = ( I n -  RI + [P- RI)  ÷21P-RI 

F(S'¢'}- F (s) = 3 ] P - a l  = 0 (i) l UffU~I 

T 

i i ~  ~ c .................. U ~  

s" U~ U R I • S 

[u,,u,] = ¢ ~ [u,,t~ =es" 

F(c)--lc 1=4 IP-R] 

F(c's3=lc l÷ Isl:ZrP-al +(IP-R ] + la-al)  

F(CS')-F{c)= IP-C~ I = O(~)l%-u~l 

FIG. 13. Two examples demonstrating that the waves in a Riemann problem solution are not 
continuous with respect to u L and uR, but the F-value is. 

5. BOUNDS FOR INTERACTIONS 

In this section we show that for any fixed a ~ A and any sequence of 
mesh lengths r that approaches zero, there is a subsequence of approximate 
solutions Urk(X, t) = Urka(X , t) that converges in L 1 on horizontal lines. This 
is proven by obtaining a bound on the total variation of a Riemann problem 
solution [u L, uR] in terms of the combined variation in the solutions [uL, uM] 
and [uM, uR] for arbitrary states uL, u M and uR; and this requires that 
variation be measured under a nonregular transformation 't'. 

We let X denote the map that.takes (s, c) to (s, b) = (s, cs), and we let u 
denote either the point (s, c) or X(s, c). Problems with X -]  are easily 
avoided by always assuming that values of u are prescribed in the sc-plane, 
the plane where Riemann problems are uniquely solvable. (X is everywhere 
differentiable, but fails to be 1-1 and regular at the singular point s = 0.) 
For an arbitrary function u(x) ,  x ~ R,  it is important to keep track of the 
dependant variables in which total variation is measured. Thus, if ~I,: 
(s, c) ~ (d, e) is a transformation, we let VardeU(- ) or Vardeu denote the 
total variation of the function obtained from u(x )  by transforming values to 
the de-plane. It is easily verified that if Varscu ( . )  < oo, then also VaraeU ( • ) 
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< o¢ if xI' is differentiable, but  ,I,-1 is guaranteed to map functions of 
bounded  variat ion to functions of  bounded  variation only if ' t '  is also 
regular (i.e., only if the Jacobian determinant  of  ,I, is everywhere nonzero). 
We now define a differentiable t ransformat ion "I': (s, c) ~ (z, c) which is 
1-1 and regular except on T. It then follows that the class of  functions 
satisfying Varzcu < c¢ contains all functions of bounded  variat ion in s 
and c. 

Our  definition of  "I' involves locating a unique point  in the sc-plane where 
a given curve g = const, intersects the transit ion curve T. But if g is 
sufficiently small, the curves g = f / s  = const, are not  connected,  and do 
no t  intersect T (cf. Fig. 3). For  this reason we need to cont inue the curves 
g = const, into the extended sc-plane in some nonintersecting differentiable 
way, so that the resulting curves change f rom strictly increasing to strictly 
decreasing on some smooth  cont inuat ion of  T. Because the curves g = const. 
already defined in [0, 1] x [0, 1] are smooth  and have a derivative dc/ds 
equal to zero only on T, such a cont inuat ion can be done in m a n y  ways. So 
choose any smooth  cont inuat ion of  T to values of  c between 1 and 2, and 
extend the curves g = const, in a smooth  way so that they are mono tone  
except at T, where they take a max imum value of c in [0, 2]. Such an 
extension is indicated in Fig. 14. For  values of  g < 1, the curves g = const. 
lie only to the left of T in the sc-plane, and so need only be cont inued to T 
on the left. We can now define the z-coordinate  of  a point  P = (s, c) in 
[0, 1] x [0, 1] by  appealing to the unique value of  c ~ [0, 2], where the curve 
g = g(P) intersects the transit ion curve T. Define z = z(s, c) as follows: 

Izl = I c ( Q )  - c ( e ) l  

sign z = + if P lies to the left of T i n  the sc-plane (5.1) 

= - if P lies to the right of  T in the sc-plane, 

where Q is the point  where the curve g = g(P) intersects T (again see Fig. 
14), and c(Q) [resp. c ( e ) ]  is the c-coordinate of  Q [resp. P].  N o w  it is clear 
that  since g = f/s, Og/Os > 0 away f rom T and away f rom s = 0, and so 
(Oz/Os)(s, c) > 0 here also. But at s = 0, the curves f ( . ,  c) all have p th 
order  contact  with the s-axis at s = 0, and so it can be verified that the 
curves g = const, can be extended to the transit ion curve near g = 0 in such 
a way that 0 < (Oz/Os)(O, c) < c¢. Therefore, assuming we have chosen 
such an extension, (Oz/Os)(s, c) > 0 everywhere in [0, 1] x [0, 1] except at 

T, and so 

* :  [0, 1] X [0, 11 ~ [ - 2 , 2 1  X [0, 11 

(s, c) (z, c) (5.2) 

is one to one differentiable everywhere, and is regular except at T. 
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_/_  / t / _  I ~ - I  

_r, , 

z ( P ) =  - Ic(O.)- c(P )I< 0 

( i .e . ,g(P)~O fo r  P le f t  of T 
g(P)~-O f o r  P r i g h t  of  1" ) 

FIG. 14. Defining the coordinate z by contimfing the transition curve and the g-const. 
curves in a differentiable way. 

To keep t rack of the dependent  variables, we let u denote  either (s, b)  or 
(s, c) but  we let w denote  (z, c) where it is always assumed that  X and "I' 
accomplish the t ransformat ions  between variables. 

We now define the strengths of  the waves in a R i emann  p rob lem solution. 
Let  c[resp, s] denote  a c-wave [resp. an s-wave] that  solves a R iemann  
p rob lem [uL, un].  Define 

Isl = I~zl 

Icl = 2 IAcl if s increases f rom u L to u R along c (5.3) 

= 41Ac I if s decreases f rom u L to u R along c,  

where Az [resp. Ac] denotes the change in z [resp. the change in c] between 
u L and u R. If  J is a n / - c u r v e ,  we define 

F(J) = ~ l s ,  I + Icel, (5.4) 
J 

where the sum is over  all waves that  cross J. Refer  to Fig. 1 3 to see that  for 
J = [u  L, UR], F ( J )  is cont inuous with respect  to u L and u R. By studying 
interact ions in the sc-plane, we now show that  among  all finite sequences of  
s- and c-waves that  " connec t "  u L to u F is minimized by  the waves in the 
R iemann  p rob l em solution [UL, U R ]. To  make  this precise, we generalize the 
definit ion o f / - c u r v e .  
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A n / - c u r v e  has been defined as a piecewise linear curve in xt-space that  
crosses a sequence of waves f rom the Riemann problem solutions that 
appear  in the approximate  solutions u ,a (x ,  t) .  Thus t h e / - c u r v e  defines a 
mapping  f rom a curve in the xt-plane to the curve in the sc-plane which 
traces out a sequence of s- and c-wave curves given by  the waves that J 
crosses f rom left to right in the xt-plane. It  is this curve in state space that 
determines Var~cJ and VarzcJ. It  is convenient  for us to generalize the 
not ion o f / - c u r v e  to include any finite sequence of connected s- and c-wave 
curves in the sc-plane. By connected we mean  that  the left state of a wave in 
the sequence is the right state of  its predecessor. Thus a n / - c u r v e  can be 
given by listing in order the waves in the sequence, and in this case, any 
subinterval of  the list is also a n / - c u r v e .  We let V a L c J  and VarzcJ  denote  
the sum of the variations at some fixed time level of the separate s- and 
c-wave solutions determined by  J. Finally, we say that a n / - c u r v e  joins u L to 
u R if the left state of the first wave is u L, and the right state of the last wave 
is u R. We let [u L, uR] denote the u n i q u e / - c u r v e  that traces the waves in the 
Riemann  problem solution [u L, UR]. Note  that  F ( J )  can still be defined by  
(5.4) for any / -curve  J, and if J2 is an immediate  successor of  J1, then 
Jl, J2, AI, and A u are a l l / -curves .  We therefore have that  F(J2)  - F(J1 )  = 

F ( A )  - F(At)  , and we use this to prove the following theorem: 

THEOREM 5.1. I f  J 2 is an immedia te  successor o f  J l, then F(  J2) <~ F(  J O. 

Theorem 5.1 is a consequence of  the following propositions. Here we let 
upper  and lower case " c "  [resp. "s  "] denote arbitrary c-waves [resp. s-waves ] 

and we allow waves to have zero strength. 

PROPOSITION 5.1. L e t  J '  = s ' c ' S '  be a genera l i z ed / - curve  that takes  u L 

to u R. Then F ( J )  <~ F ( J ' ) ,  where J = [u L, u R ] = scS.  

PROPOSITION 5.2. L e t  J '  = c ' s 'C '  be a genera l i z ed / - curve  that takes  u L 

to u R. Then F (  J )  <<. F (  J ') ,  where J = [u L, u R ] = scS. 

Since the proofs of Proposit ions 5.1 and 5.2 involve a study of  cases, we 
pos tpone  the proof  until Appendix  1. 

LEMMa 5.1. L e t  J~ = b 1 . .  • b, for  b i = c i or s i be a genera l i z ed / - curve  

that takes u L to u R. Then F(  J )  <~ F(  J~), where J = [u L, u R] = scS.  

P r o o f  We first show that there is a n / - c u r v e  J '  = s ' c ' S '  that  takes u L to 
u R such that  F ( J ' )  <~ F(Jn) .  We prove this by  induct ion on the number  of 
c-waves in Jn- Let u i denote the state that joins b,_ 1 to b ,  and assume that 
Jn .x J ' =  s ' c ' S '  for any such / -curve J ' .  We show that  there exists an 
/ -curve  J "  containing at most  one c-wave, such that J "  takes u L to u R and 
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F ( J " )  <<. F(Jn). First, if there exists consecutive waves bib~+~ in J ,  such that  
b~b~+~ = s~s~+ l, then Proposi t ion 5.1 (with c '  = 0) implies that F(b~b~+ l) >1 
F(s) ,  where [u i, ui+2] = s (since u i and ui+ 2 lie at constant  c). Therefore 
F(Jn) >~ F ( J , _ l ) w h e r e J , _ l  = b l . . .  bi lsbi+2.., b, and J ,_  l takes uL to uR 
with the same number  of c-waves. Therefore we can assume that no  such 
pair  bib~+ 1 exists in Jn. But if no  consecutive s-waves occur in Jn, then since 
J, ~ s'c'S',  there must  b e a n  i such that b~bi+ l = cic~+ l or b~bi+lb,+ 2 = 
c~s~+ l Ct + 2- Without  loss of generality, assume the latter case, where b~b~+ ~b~+ 2 
takes ui to u~+ 3. Then by  Proposi t ion 5.2, F(b~b~+lb~+2) >1 F(scS) ,  where 
[ui, ui+3] = scS, and so F ( J , )  >1 F ( J )  where .1 = b l . . .  bi_lscSbi+3..,  b, 
takes u L to u R. But J has one fewer c-wave than J, ,  which proves by  
induct ion that there is an / -curve  J "  that takes u L to u R such that J "  
contains at most  one c-wave, and such that  F(Jn)>~ F(J" ) .  But by the 
comment  above, F ( J " )  >~ F ( J ' ) ,  where J '  contains at mos t  one c-wave and 
J '  contains no consecutive s-waves, and hence J '  = s'c'S" for some s'c'S'  
which takes u L to u s. Therefore, by  Proposi t ion 5.1, we have 

F ( J )  <~ F ( J ' )  <~ F(J~) .  

This completes the proof  of Lemma 5.1. 

Proof of Theorem 5.1. Since F(J2)  - F(J1) = F ( A )  - F(2X/) , we need 
only show that  F(Au)  - F(A t) ~< 0. But A t takes u L to u R and contains the 
waves in the solutions of two consecutive Riemann problems, so that 
A t = slclS~s2c2S 2. Therefore, since A = [uL, uR], we have by L e m m a  5.1 
that  F(Au)  ~< F(A/) .  This completes the proof  of  Theorem 5.1. 

F r o m  (5.1) it is clear that  the strength of an s- or c-wave dominates  the 
variation in z and c of that  wave, and that F ( J )  >~ VarzcJ  for eve ry / - cu rve  
J. Therefore, Theorem 5.1 implies that there is a uni form bound  on 
VarzcUra(" , t) at every time step, so long as F ( ( 9 ) =  0(1) Varz?p. This 
follows once we show that  

VarzcJ = o(1)lw  - wRI (5.5) 

for any Riemann  problem [u L, uR] = J, where w L = (z  L, cL) and w R = 
( zs ,  cs) ;  for  then we can write 

F((9) ~< 4~ ]Varz~J '  ~< 0 (1 )~] [ ' t " -  @(X,+l) - " I ' -~p(x , )  I ~< 0(1)Varz?p 
i i 

(where j i  are the Riemann  problem solutions traced out  by  0, and x i are the 
mesh points at t = 0). To verify (5.5), define S(e) to be the set of points in 
the sc-plane within a distance of e f rom T. Then  for u L and u R not  in S(e), 
(5.5) is clearly true, since Riemann problem solutions have a finite number  
of  waves that  globally lie in a bounded  set, and which locally involve waves 
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that intersect transversally in the sc-plane; while for u L and u R in S(e), 
Varzc(J ) ~< 5lw L - wR[ for e sufficiently small, by construction of z. This 
verifies (5.5) and so proves that at each t >/0 (and for any r and a ~ A), 

VarzcUra(. , t)  = 0(1)Varzcq~. (5.6) 

Statement (5.6) implies, by a standard argument (see [1]), that the approxi- 
mate solutions w,a(x , t) are L ~ continuous in time uniformly in a. This is 
stated in the following lemma whose proof is given in Appendix 2. 

LEMMA 5.2. fS_~Iw, a(X, t2) -- W,~(X, tl)ldx = 0(1)(It 2 - tll + r)Varzc+, 
where 0(1) is independent of  r, a, and t i. 

We can now prove t he  main theorem of this section, which uses the 
compactness argument in [1] due to Olenik. In what follows, a sequence of 
functions V~ of one real variable is said to converge to V in L]o c if, for every 
M >  O, V k ~ V i n L I [ - M , M ] .  

THEOREM 5.2. Let  a ~ A and let ~ be any initial data satisfying Varz~ ~ < 
~z. Then for  any sequence of  mesh lengths r which approaches zero, there 
exists a subsequence r k and a function u such that, for  any T, Urk~(', t) 
converges in L]o ~ to u( . , t)  uniformly for t <<, T. (Note  that since Ura( X, O) = 
~ ( m r )  for ( m  -- 1)r ~< x ~< (m + 1)r, Urka(" , O) also converges to ~ in L~oc). 

Proof  By (5.6), w,~(., t) has uniformly bounded total variation on every 
time level, and so by Helly's theorem, a subsequence converges in L 1 on 
bounded intervals Ixl ~ M of every horizontal line. By the diagonal process 
we can achieve this result on the countable dense set of rational times 
t = h / k .  Let w,, = w t be this subsequence. We apply Lemma 5.2 to show 
that there is a further subsequence wt~  that converges uniformly in 
L I [ - M ,  M ]  at every fixed t ~< T < ~ ;  i.e., we write 

M h w j ( x ,  

+CwJ(  
For fixed k, choose l ( k )  so that r k <~ 1 / k  and so that if i, j >~ l(k), the 
middle term on the R.H.S. above is uniformly bounded by 1 / k  whenever 
h <~ kT.  Then by choosing h from these values, and applying Lemma 5.2, 
the R.H.S. of (5.7) can be bounded by 0 ( l ) ( l / k )  for every t ~< T. Therefore, 
wt(~) converges uniformly in L I [ - M ,  M] at every t ~< T. Since M and T are 
arbitrary, we can apply this idea a countable number of times to conclude 
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that there is a further subsequence w,k(x, t) such that for any T < oo, 
w,k(-, t) converges in L]o ~ to w(., t) uniformly in t ~< T. The uniform 
continuity of q ' -1  and X now implies this result for u,k(x, t) = X • q'-1 . 
w,k(x, t) and u(x, t) = X " "t'-1 . w(x, t). This concludes the proof  of Theo- 
rem 5.2. 

6. THE WEAK SOLUTION 

We have shown that for any fixed a ~ A and any sequence of mesh 
lengths r approaching zero, if Varzc ~ is bounded, then there is a subse- 
quence of the u,~(x, t) that converges to some function Ua(X, t). The 
convergence is in L~o~ of space, and is uniform on bounded intervals of time. 
It  is not true, however, that the solution u~(x, t) satisfies the weak condi- 
tions (1.3) for every a ~ A. As a simple counterexample, let am, = 0 for 
every (m, n), and let the initial data be data for a Riemann problem whose 
solution is a single shock wave. I t  is easy to see that the limiting solution has 
the same discontinuity as the Riemann problem solution except that it 
moves with speed r / o =  1 / M  and not the shock speed. We prove, on the 
other hand, that u~(x, t) is a weak solution to system (1.1) for almost every 
a in the measure space A, and so conclude the proof  of Theorem 6.1. The 
mare  point here is that our bound on the variation of the approximate 
solutions (inequality (5.6)) is given in terms of z and c, so that variation in 
U,a can accumulate wherever ,I~ is not regular (i.e., near the transition curve). 
Since the weak conditions (1.3) must be stated in terms of the conserved 
quantities, we must modify Gl imm's  argument in [1] to handle this un- 
bounded variation in u. 

We need to measure how close u,~ is to a weak solution of (1.1), so for 
any C I function ep(x, t) with compact  support in - oo < x < + oc, t >/0  
(i.e., @ ~ C1), define 

D(r,a, ep)=.f~ f ~ (q,,u,o + q~,,F(u,~))dxdt + f ~  ep(x,O)~,(x)dx, 
0 - ¢ ~  o¢ 

(6.1) 

where ~k~(x) = ~p(mr) for (m - 1)r ~ x ~< (m + 1)r and Varz?k < ~ .  Since 
U,a is a weak solution of (1.1) in each horizontal strip na < t < (n + 1)a, we 
can compute 

D(r ,a ,q~)=  ~ f~ q~(x, no)(u,~(x, no)-u,~(x, no-O))dx. (6.2) 
n = l  --e~ 

We are interested in the error term D(r, a, q~) when q~ is only piecewise 
constant with compact support, and so we take equation (6.2) as the 
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definition of D(r, a, q,) when ~ is in this general class of test functions. Note 
that we cannot then equate (6.2) with (6.1) unless q~ is also smooth. For 
every r, we decompose the error term into a sum of integrals defined along 
the top of each rectangle Rmn; i.e., let 

t ' (m+  1)r . Dmn(r,a, dP)=J(m_l)rdP~x,l'la)(umn(amn)-Umn(x))dx ( 6 . 3 )  

so that 

D(r,  a, cO) = • Dm~(r , a, CO). (6.4) 
i'n~?l 

(Here, recall, that Umn(X ) = u,a(x , no) for (m - 1)r ~ x ~< (m + 1)r, 
Um~(am~ ) = utah(mr + amnr), and summations over all (m, n) such that 
n >/ 1 and m + n is even). Now for any test function ~ E Co 1, define 

q~r(x, t) = ~b(mr, no) on Rmn. (6.5) 

That is, 0r is constant on each of the rectangles in the mesh determined by 
the mesh length r, and ¢~r agrees with q~ at some point in each rectangle. 
Note that since q~ ~ C 2, q~r has compact support uniformly in r, and 
moreover 

IlCrll~ ~< I1'~11~- (6.6) 

Since q, ~ Clo, eO is uniformly Lipschitz in x and t, so that 

IIq' - q'rll~ ~< 0(1)r,  (6.7) 

where 0(1) depends only on ~. Finally, we shall need the following facts 
which are easily verified: 

IDm,(r, a, 4')1 ~< 0(1)llq'll~,rVar, cu,,,,  

IDm,( r, a,  t~)r) j ~ 0(1)llfflloorVar~cu,,~. (6.8) 

Now consider D(r, a, ep,) as a function of a ~ A. Let ( , )A denote the 
inner product for L2(A), and let II Ih denote the L 2 norm for A. The main 
lemma of this section is: 

LEMMA 6.1. For any fixed ep ~ C~, 

lim l iD(r , - ,  O~)l[~ = O. 
r ----~ 0 

We prove this with the aid of the following propositions. 
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PROPOSITION 6.1. For any fixed 0 and any fixed mesh length r, if 
( m, n) ~ ( m', n'), then 

( Dm,(r, , Or), D,~,,,(r, ., f~r) > A = 0 .  (6.9) 

Proof Without loss of generality, assume n' ~< n. Note that the value of 
Dm,,,(r, a, q'r) depends only on values of ais lying in the "domain of 
dependence" of (m', n') (i.e., values of a,j in the triangle centered below 
(mr, no) with lateral sides of slope +o/r  = ++_M). Therefore, writing 
Dm,(a) = Dm,(r, a, Or), where arguments not appearing are assumed to be 
held fixed, we have that the value Dm,,,(a ) is independent of amn , and SO 

Dmo('), Dm'°'('))A = fADmn(a)Dm,n , (a )  

= f~D,,,,,(a) f ' lDm, (a )dam,  dd= O 

since 

f l lDm, (a)dam,  

,6(mr,,r, \ f l  f (m+ 1)r[ [ = ha) I ] ~,um,~mr + amnr) - utah(x)) dx damn 
- 1 " ( r n -  1)r 

r(m+ 1)r :(rn+ 1)r-  

= dPr(mr , no)J(rn-1)r  J(m-1)r  (Umn(~)  -- Umn(X) )  dx  d~ = O. 

Here ,4 denotes the measure space obtained from A by deleting the 
[ -  1, 1]m . factor, and fi ~ A. This concludes the proof of Proposition 6.1. 

By (6.9), Dmn (" ) is orthogonal to Din,n, (") with repsect to L2(A), and so we 
conclude 

liD(r, , Or)ll  = Z IIDm,(r, , (6.10) 
/'F/, F/ 

and since Or has compact support uniformly in r, there are 0(1)r 2 nonzero 
terms in this sum (0(1) depending only on q~). We cannot now apply (6.8) 
directly to (6.10) in order to prove Lemma 6.1 (as done in [1]) because here 
we have no uniform bound on the variation of the approximate solutions in 
s and c. To remedy this, for each a ~ A and mesh length r, we partition the 
set of all rectangles in the xt-plane according to how far the values Umn(X ) 
lie from the transition curve T (the only place where unbounded variation in 
the approximate solutions ur~ can accumulate.) 
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Recall that for any small e > 0, S(e) is the strip in sc-space of all points 
within a distance strictly less than e of T. Now Um,(X ) is a function of 
x ~ [(m - 1)r, (m + 1)r] whose image consists of the states in the solution 
of the Riemann problem that occurs at the mesh point (mr, (n - 1)a). So 
for each r and a ~ A, we can partition the set of all mesh rectangles into 
two subsets, according to whether the image of um,(x ) lies entirely within 
S(e) or not. Let R = R(r, a, e) denote the set of all indices (m, n) which 
index the Um. whose images lie strictly within S(e). Now for every r, e and 
~,, we estimate (6.10) as follows: 

][D(r ,- ,  ~.)[[~ = ~ [[D..(-)[[22 = m~.. fA[Dm.(a)[2da 
g/'/~ n 

=/~ ~ ID-.(a)l 2aa 

sup E [O,n.(a)[ 2 
a E A  m, n 

E IDm.( )l + 
m , n  

for some ~ ~ A. We can now partition this sum according to whether 
(m, n) ~ R(r, ~, e) = R or not, and write 

[[D(r,','/',)[l~< E ID--(a)l=+ E IDm.(a)12+  =- (6.11) 
(m ,  n ) ~ R  ( m ,  n ) ~ R  

In order to show that LID(r,-, ~,)ll~ goes to zero with r, we estimate the 
sums in (6.11) differently. The first sum is estimated as follows: for e 
sufficiently small, the sc-variation in any Riemann problem solution which 
is contained entirely within S(e), is dominated by its variation in s, and 
since there are at most three waves in any solution, this variation must be 
dominated by 5e. Thus, if values of u , ,  lie entirely within S(e), then 
VarscUm, < 5~. We now apply (6.8) and write 

]Dmn(r, a, d~r) [ dpr(mr ' __"(m + 1)r-l)r dx = na))~m ( u , . . ( a ~ . )  - um. (x ) )  

~< 0(1)ll,~lloore (6.12) 

for any U,n n whose values lie entirely within S(e), and so 

E ]Dm.(a)[ 2 <~ E 0(1) r=e2, 
(m,  n ) ~ R  m, n 
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where 0(1) depends only on q~. But there are 0(1)r -2 nonzero terms in this 
sum, and so 

Z IDm.(a)l = ~ 0(1)~ 2. (6.13) 
(m, n)~R 

We now estimate the second sum in (6.11) with the aid of the following 
proposition: 

PROPOSITION 6.2. 
then 

l f  values Umn( X ) are not entirely contained within S(e), 

Vars~um. ~< Const(e)VarzcUm,, (6,14) 

and for any q~ E C 1, 

IDm,( r, a, q~)[ ~< Const( e){lePlloor VarzcUm, , (6.15) 
ID,,,( r, a, ~r)l ~< Const( e)llq~ll~r Var~cUm,, 

where Const(e) denotes a constant that depends only on e. 

Assuming Proposition 6.2 (whose proof we postpone until after the proof of 
Lemma 3.1), we obtain 

IDm,(a)l 2 ~< ~ Irfonst(e)Varz~umnl 2 
(m ,n )~R  m,n 

~< r2 C°ns t (e )2E E (Varzcum,) 2 

~< r2Cons t (e )2~  ( ~  VarzcUmn) 2, 

where, since q~ is fixed, we have absorbed I1¢11~ into Const(e). But for fixed 
n and any a ~ A, we have (by (5.6)) 

E V a r ~ u , . .  ~ O(1)Var=~ 
m 

and so we can continue 

E Inmn(~t)'[ 2 ~ r2Cons t (e )2E (Varz~¢): 
(m, n)q~R n 

~< r Const(e)2 (6.16) 

since there are O(1)r-I nonzero terms in the summation over n. Putting 
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(6.13) and (6.16) into (6.11) yields 

liD( r, " ,   r)ll  0(1)  = + Const(e) 2r, (6.17) 

where the constants are uniform for fixed ~. Thus we can choose e small to 
make the first term in (6.17) small, and then choose r small at that e to make 
the second term small, to conclude 

lim l iD( r , . ,  ~)1[2 2 = 0. 
r---~ 0 

This concludes the proof of Lemma 6.1, once we give the 

Proof of Proposition 6.2. (We do the case for D(r, a, gO) in (6.15), the 
estimate for D(r, a, q)~) being obtained similarly.) Since z(s, c) = 0 only on 
the transition curve T, and since S(e) c (the complement of S(a) in [0, 1] x 
[0, 1]) is compact and bounded away from T, the continuity of z(s, c) 
implies that there exists a constant 8(e) > 0 such that 

[z(s, c)[ >/8(e)  in S(e) c. (6.18) 

Choose ~ > 0 such that 

[z(s, e)[ ~< ~ in S(~). (6.19) 

We now consider two cases, depending on whether the image of urn, lies 
entirely within S(~) "c or not. First, if the values of u,~,(x) are so contained, 
then since 't t : (s, c) ~ (z, e) is one to one and regular on the compact set 
S(~) c, there exists a Const(e) such that 

Thus by (6.8), 

VarscUm, ~< Const(e)VarzcUmn. 

IDm,(r, a, q')l ~ 0(1)ll¢ll~rYarscum~ 

Const(~)ll~hll ~r  VarzcUmn, (6-15)A 

8(e) (6.20) VarzcUmn >~ - - f -  

which proves the proposition in the first case. 
Now assume that the image of Umn is not entirely contained within S(~) c. 

Since by assumption this image is not contained within S(e), there must 
exist two points u 1 = (s 1, ct) and u 2 = (s 2, Ca) in the image of Um, such that 
u I ~ S(~) and u 2 ~ S(e) c. By (6.19), z(u2) - Z(Ul) >~ 8(e)/2. Therefore 
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But the solution to any Riemann problem occurs in the compact  set 
[0, 1] × [0, 1] in sc-space, and so it is easily seen that there exists a constant  
K > 0 such that the variation in s and c of this solution at any time step is 
uniformly bounded  by K. since um,(x  ) is the solution at t = no of  a 
Riemann problem posed at (mr,  (n - 1)~), we have 

= Const(e)Varz~U,, . ,  

where we have applied (6.20). Therefore, by  (6.8), we can conclude 

IDm,(r, a, q~)[ <~ 0(1)[l~ll~r Var~cum, 

Const(e)l l~ll~r WarzcUm~. 

This concludes the proof  of Proposi t ion 6.2, and so completes the proof  of 
Lemma 6.1. Note,  however, that  if the curves g = const, and c = const. 
make k th  order contact  on the transition curve T, we can estimate Const(e) 
= 0(1)e - k - l .  To see this, define As at a point  P = (s, c) to be [s - s '  I where 
Q = (s', c) lies on the transit ion curve. Then the k th  order contact  of  the 
curves g = const, and c = const, means that z = 0(1)(As) ~÷1 at any P, 
where 0(1) is uni form in P. F r o m  this we can conclude that on S(e) c, 
z >1 Ge ~+1, while at some g small, z = 0(1)g k+l ~< ½Ge k+l in S(g) for some 
constant  G independent  of  e. Therefore, 6(e) can be replaced by  Ge k+l in 
(6.18) and (6.19), so that for (6.15)A and (6.15)B, Const(e)  is 0(1)e - k - l .  
Thus Const(e) 2 is 0(1)e -2k 2 in (6.16) and (6.17). We use this fact at the 
end of  this section to obtain a rate of convergence of  the approximate  
solutions in the presence of this k t h  order contact  along the transit ion 
c u r v e .  

The fact that  biD(r, -, ,/,r)l12 2 approaches zero as r approaches zero for fixed 
~, implies that, given any sequence of mesh lengths r approaching zero, there 
exists a subsequence r k such that D(rk, a, 4~rk ) ~ 0 as r~ ~ 0 for almost 
every a c A. But D(r,  a, ep) as defined in (6.1) is linear in qs, so that for 
q5 ~ Co ~ we can write 

D ( r ,  a, q~) = D ( r ,  a, epr ) + D ( r ,  a, (~ - q~r)" (6.21) 

Therefore, Lemma 6.1 implies that (for fixed q~) D(rk, a, q,) ~ 0 as r k ~ 0 
for almost every a ~ A if we can show that D(r,  a, ep - q~r) ~ 0 as r ~ 0 
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for all a ~ A. This is 

LEMMA 6.2. For any f ixed a ~ A and ¢~ ~ Cd, 

lira ID(r,  a, e~ - ¢r)l = 0. 
r--* O 

(6.22) 

Proof  
fixed. By the triangle inequality 

Let e be any small positive number and let a + A and 4) ~ C~ be 

Z [Dm.(r,a,¢-q~r)] 
Ftl,lrl 

E ID,~.(r,a, eP-ePr)l 
(m, n )~R  

+ X ID,..(r,a,q'-q'r)l, 
(m, n)q~R 

(6.23) 

where R = R(r ,  a, e). We use (6.12) to estimate the first sum and (6.15) to 
estimate the second sum. 

E IDm,(r ,a ,  e P - 4 r ) l  <~ E 0(1) l i f t -  q~r]l~re 
( m , n ) c R  m,n  

< ~] 0(1)rZe (6.24) 
m,n  

~< 0(1)e, 

where we have applied (6.7) and the fact that there are 0(l)r  -2 terms in this 
sum (0(1) depending only on ¢). 

~_, ID,,,n(r, a, q> - d?r) I <~ ~_, Const(e)l[* - *r[[~rVarzcum, 
(m, n)q~R m, n 

E garzcUm n < C ° n s t (~ ) r2~  ( ,~ ) ( 6 . 2 5 )  

~< Cons t ( , ) r2~Varzc+  
n 

Const(e)r ,  

where we have applied (6.7), (5.6), and the fact that there are 0(1)r-1 terms 
in the summation over n. Replacing (6.24) and (6.25) in (6.23) yields (at any 
fixed a and 4)  

[D(r, a, ¢0 - Or)[ <~ 0(1)e + Const(e)r .  (6.26) 

Since 0(1) and Const(e) are independent of r, we can choose e small to make 
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the first term in (6.26) small, and then choose r small at that e to conclude 

l im ID(r ,  a, gO - ¢r)[ = 0 
r---* 0 

for every + ~ C~ and a ~ A. This completes the proof of Lemma 6.2, and 
so we can conclude from Lemma 6.1 together with (6.21) that, given any 
fixed 0 ~ Co 1 and any sequence of mesh lengths r approaching zero, there 
exists a subsequence r k such that 

lim D(rk ,  a, q~) = 0 for a.e. a ~ A. (6.27) 
r k ~ 0  

We now extend this result to hold uniformly over q, E Co 1. 

LEMMA 6.3. Given any sequence of  mesh lengths r approaching zero there 
exists a subsequence r k and a set N of  measure zero in A,  such that, i f  
a ~ A \ N, then 

lim D(rk ,  a, ep ) = 0 
rk ---, 0 

for any ~ ~ c~. 

Proof. Choose a countable set of functions (ff~) c C 1 such that (0') is 
dense in C 1, uniformly on compact sets. That is, assume that every function 

~ Co ~ is the limit of a sequence of functions from (~') such that every 
function in this sequence has its support within a single compact set (such a 
set of functions can easily be constructed via the diagonal process). By the 
diagonal process we can obtain from (6.27) that, given any sequence of 
mesh lengths r approaching zero, there exists a subsequence rg and a set N 
of measure zero in A, such that if a ~ A \ N,  then 

l im D(  rk , a, q; ) = O 
rk--*O 

for every q~i. But for ~ in Cd, the definition (6.1) of D(r ,  a, ~)  is equivalent 
to the integral equation (6.2); and (6.2) is linear in ~ and involves only first 
derivatives of ~. Therefore, since Ura and F(ura ) are uniformly bounded, 
(6.2) implies that 

]D(r, a, eO i - ¢p)] < 0(1)H0 ~ - ~[Ic' 

where 0(1) depends only on the set in which 4~ i and 0 have compact support. 
Now let ~ be an arbitrary element of Co 1, and choose (~J) in (,~i) so that CJ 
converges to ¢ in C l, and assume that the supports of qsJ and ~ all lie within 
a single compact set. Let 8 > 0 be arbitrary, and choose j0 large so that 

8 
0(1)II'U° - ~]lcl ~< 5"  
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For any fixed a ~ A \ N, choose r o small so that for r k < ro, 

6 ID(rk, a,  J0[ 3" 

Then for rk < r 0 we have 

8 
< ~ + ~ = ~ .  

Since 8 is arbitrary, we have proven Lemma 6.3. 

Proof of Theorem 1. Let ~ (x)  be any initial data satisfying Varzc ~ < ~ ,  
and let r be any sequence of mesh lengths approaching zero. By Lemma 6.3, 
there exists a subsequence r k and a set N of measure zero in A such that, if 
a ~ A \ N ,  then 

lira D(rk, a, ep ) = 0 
rk~0 

for every ~ ~ Co ~. Now by Theorem 5.2, there exists a further subsequence, 
call it rk, and a function u a, such that ur~(x, t) converges to ua(x, t) and 
F(urk~(x, t)) converges to F(u~(x, t)) in L]oc(X, t). Therefore, applying the 
Lebesgue Dominated Convergence Theorem, we conclude that 

0 = lim D(rk, a, ep) 
rk~.0 

g £ = ufp t + F(u~)q~.dxdt + +(x ,O)+(x ,O)  dx 
¢:~ < X "< -b  ~ OC 

t>~o 

for any e~ ~ Co 1 and a ~ A \ N; and so uo(x, t) is a weak solution to system 
(1.1) with initial data +(x). This completes the proof of Theorem 6.1. 

When the curves g = const, and c = const, make k th order contact on the 
transition curve (or equivalently, when the wave speeds X~ and ~c make k th 
order contact on the transition curve), we can use (6.17) and (6.26) together 
with the fact that Const(~)= 0(t)e -k-~ (obtained in Proposition 6.2) to 
obtain a rate of convergence for liD(r, -, ~)[]2. That is, we have 

l iD( r , . ,  ~)[[~ = fA [D( r , - ,  (b)]z = fA I D ( r ' ' '  mr) + V ( r , ' ,  ~ - ~)r)[2 

fAID(r, ', ~,)1~ + fA[D(r,',~,-*A] ~ 

+ fa[D(r , . ,  ~ ) [ [ D ( r , - ,  q~ - q~r)]" 
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Applying (6.17) to estimate the first integral, and (6.26) to estimate the 
second two integrals we obtain 

liD(r, , ~)ll~ ~ C°nst(e) 2r + 0(1) e2 + (Const(e)r  + 0(1)e) 2 

+ (Const(+ + 0(1)*)fAID(r,., ~,)1. (6.28) 

But lAID(r , . ,  ~)1 = 0(1), where 0(1) depends only on ¢, because 

f A l D ( r , ' , e a r ) ] =  f E l D ( r , ' , * r ) ]  + f A \ e l D ( r , ' , O r ) ]  

fA ID(r,, ,,)12 + 1 

<~ Const (e)2r  + 0(1)e 2 + 1 = 0(1), 

where E = (a ~ A : ID(r, -, ~)1 >I 1). Therefore, (6.28) becomes 

liD(r, ", ~)11~ ~ 0(1) (Const( e) 2r + e), (6.29) 

where 

Const(e) = O(1)e k- ,  

We can maximize the rate of convergence in (6.29) by choosing e = r 1/o + 2k~ 
and so conclude that 

l iD(r,  a, q,)ll 2 = 0(1)r ' /O+=~ 

gives the best rate of convergence implied by our analysis. 

APPENDIX 1 

Here we prove the following two propositions: 

PROPOSITION 5.1. 
J = [uL, uR]. 

PROPOSITION 5.2. 
where J = [uL, uR]. 

These propositions are true basically because the Riemann problem 
solution always takes the "weaker" c-wave (a c-wave along which s de- 
creases) whenever three waves appear in the solution. A rigorous proof 
involves a study of cases, and in order to reduce the number of cases, we 

Let J '  = scs take u L to u R. Then F( J ' )  >~ F(J), where 

Let  J ' =  clsc 2 take u L to u R. Then F(J ' )  >~ F(J), 
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def ine  the " a d d i t i o n "  and  " in t e r change"  of two waves. Firs t ,  if J = sis 2 
takes u L to ua,  def ine  the  add i t ion  of  s I and  s 2 to be  the unique  s-wave 
such that  J = 3 takes  u L to u R. If  J = cic2, where  c i l ie on the same side of 
the t rans i t ion  curve T, define the add i t ion  of Cl and  c 2 to be  the  unique  
c-wave ~ such that  J = ? takes u L to UR; and if  ci_lie on  oppos i te  sides of T 
with  c(uL) ~< c(uR) [resp. C(UL) >I- C(UR)], def ine  J = ~ [resp. J = ~ ]  to be  
the u n i q u e / - c u r v e  of this form that  takes ut~ to u R. W i t h  these def ini t ions  it 
is easy to check that  F ( J ) > t  F ( J )  (see Fig. 15). W e  now def ine  two 
ins tances  in  which we can in terchange  the o rde r  of s- and  c-waves on an 
/ -curve  J wi thout  changing  the value  of  F(J) .  If  J = sc [resp. cs] takes u L to 
u a and  a " p a r a l l e l o g r a m "  of s-waves and c-waves can be  d rawn be tween  u L 
and u R on one side of T (as ind ica ted  in Fig. 16), then we def ine  the 

T T 
C C 

f 

UL 

S t 

g I~ I s2 

.'w S 

F(.T) = F( SlS.~ F (g  ) = F ( ~ )  

C1 (;2 

LI L 

}' 5 

F( ff )=F(c1¢2}~  < F (~ )=F (~ ' )  

c T e T 

o l / Y  u. 
-~ S 

F (,,T) : F (clcz) : Ic I+1c21 

: 2 1 A - C I  + 2 1 A - B I  

2 IB-CI  + 21A-BI  

~ - I ~ l + l g l =  F(~ g ) :  F (.T) 

F (3 ' )=  F (clcza = I c I-t'l c~l 

--21A-BI+ 2 IA-C 1 

~<21A-BI+21B-CI  

--I g l+  I~1 =F( .~  ~) :- F ( 3  = ) 

FIG. 15. Examples of the addition of two waves. 
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A ¸ 

B 
C 

U L 

¢ 

S 
UL / 

UL S 

~ U R 

> S  

S "'x U 

\ \  c 

'I g 

> $ 

F (,1") = F(s  c )=F (g 5 )=F (~  ) 

F(a')=F (e 's)=l  Cl+ I s l  
= 4 1 C - D  I + ( I B - C I + I A - C  I ) 

=( I B - C  I +  2 1 C - D I  + I A - C I ) - ~  21C-D I  

=IF, I+ I ~ I = F ( ~ ) : . F ( 3  =) 

A 

B 
C 

. . . . .  " ; 7 "  

__/,,' 

x x 
s % 

%%% C + 

U~ 

F(a ' )=  F(S cD~- Is l÷ ld ' l  

= ( I B - G I ÷ I A - C  I )+41C-DI  

~- 21C-DI  + ( I B - C  I + 2 1 C - D  I+ IA-C I) 

= l i ~ l - l g l  = F ( E g ) = F ( ~ )  

I, S 

FIG. 16. Examples of the interchange of two waves. 

interchange of J to be  t h e / - c u r v e  J = ~ [resp. 37] that  takes u L to u R along 
the sides of  this para l le logram opposi te  the sides of J. When  such a 
para l le logram cannot  be drawn, we can only define the interchange of J in 
certain cases; i.e., let c + [resp. c - ]  denote  a c-wave that  moves  toward 
increasing s [resp. decreasing s], and let c z [resp. ca] denote  a c-wave that  
lies to the left [resp. right] of  T. Then  if J = c { s  [resp. sc~ ], we define the 
interchange of J to be the u n i q u e / - c u r v e  J = sc [resp. g~] which takes u z to 
u n (see Fig. 16). I f  J equals sc or cs and takes u L to uR, and J has an 
interchange o~ then it is easy to check that  the R iemann  p rob lem [uL , uR] 
mus t  be  either J or J.  Moreover ,  Fig. 16 verifies that  F ( J )  equals F ( J ) .  We 
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- -  - -  - -  U ] a l  s 

I f , .  ~.__! / 

T 

d'= c~s 

I f  u l i e s  to  the l e f t  o f  P, then 

J: ~c.~:~[s:d; so 
F(J')=F(J). 

I f  u R l i e s  to the r i g h t  o f  P, then 

J= Lu L,U~ =~e 

F(J'  )=2 LC- DI +( iB-CL +2i C-DL +I A-C I) 

=(21B-CI+IA-CI)+41C-DI=F(J).  

T 

. c ~  P 

j':s= Z 

$1 e UL 

}. s 

I f  u L l i e s  to the l e f t  o f  P, then 

J is in te rchangeab le ,  so 

F (J ' )=F (J ) .  

I f  u L l i e s  to  the r i g h t  o f  P, then 

J= [UL,U ~ =s1~ 
F(J / )=F (s . , sZc [ )=F (s ,~ )=F (J ) -  

T 

p S/ U L S 4 
i 

j'_ 

I f  u L l i e s  to the l e f t  o f  P, then 

J is  in te rchangeab le ,  so 

F (J ' )=F (J ) .  

) g 

I f  u L l i e s  to the r i g h t  o f  P, then 

J= [u, ,u e] =s, c, s 2 
F(J' )=LB-DI +( IA-DI+ IC-D] )  

>-IB-CI +21B-DI +IA-BL =F(J).  

FIG. 17. The proof that F(J') >1 F(J) for the six cases of Proposition 5.0_ 

now prove the following: 

PROPOSITION 5.0. If J' = sc or  J'  = cs a n d  J'  takes  u L to uR, then 

F (  J ' )  >~ F ( J ) ,  where  J = [UL, uR]. 

P r o o f  W e  do a case by  case study depending on whether c is c + or c - ,  
whether c is e L or c R, and whether J'  is sc or cs. This makes eight cases. But 
if  J'  = e Z s or s e ~ ,  then J'  is interchangable,  and so F ( J ' )  = F ( J )  since 
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T 
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u • ~ / s l  

j'-_~# 
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• S 

I f  u R l i es  to the r i g h t  o f  P, then 

J/ is interchangeable,  so 

F(JJ)=F(J).  

I f  u R l i es  to the l e f t  o f  P, then 

J= UL,U R =S I C 5 2,  SO 

F(J')=F(c~SlS2)=F(Sl C Sz)=F(J)- 

= T 

. . . .  7 -  I . . . .  ~- U R ,/,,,/,io, 
- - I  - a! 

UL P / $ 
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a'--s~ 

I f  u L l i es  to the r i g h t  o f  P, then 

j :  [UL,U ~ :s c~= J / ,  so 

F(J') = F(J). 

I f  u L l ies to the l e f t  of  P, then 

j= [UL,UR] =~ S ~ so 

F(JQ = (IA-DL÷IB-DI)+IB-CI)=F(J) - 

A 

B 

C 

D 

T 

,.:_-?--/,,- 
~ /  UR P 

}'S 

I f  u L l ies  to the r i gh t  o f  P, then 

J~ is interchangeable,  so 

F ( J I ) : F ( j ) .  

I f  u L l i es  to the l e f t  o f  P, then 

J=[UL,UR] = S1C S 2 

F(J~) = 4IB-DL + qA-CI 

>/iA-BI +21B-DI +( IB-DI ÷ IC-DI )=F(J). 

FIGURE 17 Continued. 

J = J' or J = 7'. This leaves six cases, and Fig. 17 verifies the proposi t ion in 
each case. 

Proof of Proposition 5.1. If sc or cS can be interchanged, then we  can 
reduce the problem so that Proposit ion 5.0 applies; e.g., if ~ is an inter- 
change for sc, then we  can write 

F( J') = F(scS) = F ( ~ S )  >i F ( ~ )  >~ F( J) ,  

where we  have "added" }S and written ~. Therefore, assume that neither sc 
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c T 

$2 I 51 • UL 

C-I- -- Ct 

S1 

d'= S C-LS 

( S=SlS  z) 

a U R 

I f  u R lies to the right of P, then 
F(J ~) ~ F(s1~g I) and 

F(s1~1~ I)~F(J) by "parallelograms". 

I f  u R lies to the le f t  of P, then 

J= [UL,UR] = S~C2ga, SO 
F(J') ~F(J) by interchanging. 

) S 

T 

S 

u ~' c s~s ~ R  
_ s~ ~ \ s, \ 

UL 

) S 

dr= S C~S 

( s=s2% % , S=siS) 

I f  u L l ies to the right of P, then 

J:~L~U~ = %~iSzand 
obtain F(J j) ~ F(J) by 

interchanging slc~with c~gl- 

I f  u L lies to the le f t  of P, then 

F(J/) ~ F(s~czsz)and 

F (s~c2$ ~ ~ F(J) by interchanging. 

FIG. 18. The proof that F(J') >1 F(J) for the two cases of Proposition 5.1. 

nor cS can be interchanged, so that in particular c = c - .  We check two 
cases, depending on whether c -  lies to the left or right of the transition 
curve T. For the first case, assume c -  lies to the left of T. Then s must cross 
T (otherwise we can interchange s and c + by constructing a '° parallelogram"). 
This yields an /-curve diagrammed in Fig. 18, where it is verified that 
F( J') >~ F( J ). 

For the second case, assume c -  lies to the right of  T. Then S crosses T 
(otherwise we can interchange c -  and S by constructing a "parallelogram"). 
This yields a n / - c u r v e  diagrammed in Fig. 18, where again it is verified that 
F(J ' )  >~ F ( J ) .  This completes the proof  of Proposition 5.1. 

Proof of Proposition 5.2. Again, if czs or sc 2 is interchangeable, then we 
can interchange and add waves until Proposition 5.1 applies; e.g., i f  C2 ~ is 
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c T 
! 

j / =  c i s  c 2 , J = s l c  s z 

F ( j  ~) = 41C-DI+( IA-DI  + IB-DI)  + [D-El 

>~lA-cl + 2 I C-E I + qB-cl : F ( J ) .  

The case when C decreases along d 

T 

A . . . . . . .  ~'~ 
UI ~ i 

B 

D - - -  "~ c 

Cl 

E UL 

d / : ClS c z, J + s i c  s 2 ,  

F (O') = 2 ID-EI + ( tC-DI + IA-DI ) + 4 IB-DI 

~>IB-CI + 21B-El + hA-BI =F(J) 

s 

The case when C inc reases  a long J 

FIG. 19. The proof that F(J') >~ F(J) for the two cases of Proposition 5.2. 

an interchange for sc2, then we can write 

F ( J ' )  = F ( c I ~ 2 S  ) >~ F ( g e S )  >~ F ( J ) ,  

where we have taken Cl? a to " a d d "  to g? (?g is similar). Therefore, assume 
that  ClS and sc 2 are not  interchangeable, which implies that J '  crosses T (for 
otherwise we can construct  a parallelogram and interchange). Also, note 
that  if the variable c increases along one c-wave and decreases along the 
other  c-wave on J ' ,  then it is easy to check that F(J ' )  >I F(cs) or F(J ' )  >t 
F(sc) where either cs or sc takes u L to uR; and so Proposi t ion 5.0 implies 
that F(J ' )  >1 F(J ) .  Therefore, assume that the variable c either increases 
along both  c~ and c z or decreases along both  c~ and c 2. This makes four 
cases depending on whether J '  crosses T f rom left to fight or f rom right to 
left, and on whether c increases or  decreases along J ' .  But if J '  crosses T 
f rom left to right, then a quick check shows that either q s  or sc 2 is 



374 B L A K E  T E M P L E  

interchangeable. This leaves only two cases to check: J '  crosses T from right 
to left and c either increases or decreases along J ' .  Figure 19 verifies that 
F ( J ' )  >~ F ( J )  in these two cases, and so completes the proof  of Proposition 
5.2. 

APPENDIX 2 

In this section we supply the proof of Lemma 5.2. If the initial data '~(x) 
satisfy Varzc ~ < oo, then 

f ~ [ % , ( x ,  t 2 ) -  Wra(X,  t l ) l d x  = 0(1)(It 2 - tl[ + r)Varzc+. 
d or3 

Proof This is a consequence of the Courant -Fr iedr ichs-Lewy condition 
(4.1) which forces a uniform bound 1 / M  = r / s  on the speed with which 
waves can propogate in the approximation solution wra(x, t). That is, 
assuming that t 2 > t 1, it is easily verified that at any point x, Iwra(x, tE) - 
wry(x, tj)l is bounded by the variation of wry(y, tl) for y between x - Ml t  z 

- ttl - r and x + Mi t  2 - tll + r. But at every time level, w~,(., t) is a 
function of bounded variation and so the absolute value of its distributional 
derivative is a measure whose mass on every x-interval is the total variation 
of urn(., t) on that interval. Thus we can write 

f_°°oo]Wra(X, tE) --Wra(X, tl)ldx = O(l) f°c fx+M[tE-tll+r dwra(Y't) dydx 
x - M  t E - - t  I - - r  dy 

This is equal to an integral with respect to the product measure 

I dwra(y, t)  
dy dydx  

over the convex region - o o  < x < +o% lY - -  Xl <~ MItE -- tll + r" We 
continue to estimate by changing the order of integration: 

= O( l ) f  d  o(y, t) dy 
" - ~ Y - M I t E - t l l  - r  I dy 

dw, o(y, t) dy 
= 0(1)(MIt  2 - tl[ + r) dy 

= 0(1)(It 2 - ttl + r)Varz?k, 

where we have applied (5.6) in the last step. This completes the proof of 
Lemma 5.2. 
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