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ABSTRACT: New phenomena occur in the solution of the Riemann problem for a sys-
tem of two conservation laws that models three-phase flow in a porous medium. Both the
development of a computer program for general 2 x 2 Riemann problems and techniques
from bifurcation theory, geometry, and dynamical systems have been essential for the dis-
covery and understanding of the complex features of the model. Using these methods, we
construct the global solution for one such model.
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RESUMO: MODELO DE ESCOAMENTO MULTIFASICO COM PROBLEMAS DE
RIEMANN SINGULARES. Novos fenomenos ocorrem na solugao do problema de Riemann
para um sistema de duas leis de conservagdo que modela escoamento tri-fasico em um
meio poroso. Tanto o desenvolvimento de um programa de computador para problemas
de Riemann gerais 2 x 2, como técnicas da teoria de bifurcagdo, geometria e sistemas
dindmicos, tem sido essenciais para a descoberta e entendimento de aspectos complexos
do modelo.. Usando estes métodos, construimos a solugao global para um destes modelos.
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1. INTRODUCTION

New mathematical phenomena have been discovered in the study of the wave structure
in a system of two conservation laws that models three-phase flow in a porous medium. In
understanding these phenomena and in constructing the Riemann problem solution, the
interplay of computational experimentation and mathematical theory has been crucial.
The purpose of this paper is threefold. The first is to summarize the new phenomena and
the methods employed to construct nonlinear waves. The second is to present the solution
of the Riemann problem for the case in which the fluids have equal viscosities. The final
purpose is to give an overview of open questions concerning global Riemann problems.

The mechanism that generates new phenomena is the presence of an isolated hyper-
bolic singularity or umbilic point: an isolated point interior to state space at which the
characteristic speeds coincide. That is, the system fails to be strictly hyperbolic. In fact,
the Jacobian matrix of the system is a multiple of the identity at this point, and all direc-
tions are characteristic. The usual construction of the solution of the Riemann problem
for classical (i.e., strictly hyperbolic) systems, which relies on a local coordinate system of
characteristic directions at every point, cannot be used near the umbilic point. Ordinarily,
it is this coordinate system that guarantees the transversality of wave curves of different
characteristic families. For a model in which the three fluids have equal viscosities, the
rarefaction curves exhibit three-fold rotational symmetry about the umbilic point. This
contrasts with classical systems in which the rarefaction curves form a rectangular coor-
dinate system. Furthermore, the shock curves in this model have a nontrivial topological
behavior. Therefore the wave curves, which are constructed using rarefaction and shock
curves, have a complicated structure: transversality of wave curves of different families
does not hold, and open regions of states fail to be covered by the classical construction of
Riemann solutions.

One consequence is the need to use nonclassical transitional waves to complete the Rie-
mann solution. These waves are not associated with a single characteristic family; rather,
they are transitions between waves of the two characteristic families. These transitional
waves may be continuous (rarefaction waves) or discontinuous (shock waves).

Lax’s classical entropy criterion for determining admissibility of shock waves by count-
ing characteristics has been successful for many hyperbolic systems. Although it has the
advantage of simplicity, it does not resolve either the existence or uniqueness question for
models such as the one under consideration. To construct physical solutions, therefore, we
restore the influence of small parabolic terms that have been neglected in the formulation
of the conservation law [6], [12]. Thus we admit those shock waves that can be obtained
as the zero viscosity limit of traveling waves of the parabolic equation. This viscous profile
criterion has advantages as well as drawbacks: it is physically motivated, and the solution
of the Riemann problem exists and is unique for models with isolated umbilic points (see
§3); however, the criterion is difficult to enforce in numerical computations, and for some
conservation laws it is insufficient to insure that solutions are unique (see, e.g., [32], [1]).

Our work has focused on finding the Riemann solution for a system of conservation
laws arising in oil reservoir engineering; the model is described in §2. This system has
a unique interior state at which the characteristic speeds coincide. In order to solve this
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particular problem, we have developed a computer program that solves general 2 x 2
Riemann problems. This program has been essential for discovering and understanding
the complex features exhibited by solutions of this highly nonlinear model. The solution
for equal fluid parameters is presented in §6. The structure of the solution is topologically
similar to that obtained in [40] where a simpler problem containing an umbilic point is
solved. However, the detailed wave structure of the solution in §6 is more complex.

The failure of strict hyperbolicity for various models of three-phase flow has been
proved [37], [42], [31], [45] using topological arguments. For example, it occurs in Stone’s
model, which is used commonly in petroleum engineering [8]. This model exhibits an
elliptic region, i.e., a region in which the characteristic speeds are complex [42]. In general,
perturbations of a system having an isolated umbilic point produce systems having bounded
elliptic regions [36], [34]. However, the isolated umbilic point is preserved by the large
perturbations of the model caused by the inclusion of gravitational effects [31], [45]. These
effects arise from the different densities of the various fluids. We consider the umbilic point
as suggestive of an elliptic region [34], and therefore expect the solution of this model to
shed light on standard engineering multiphase flow models.

The analysis of this problem in a neighborhood of the umbilic point has proved to be
fruitful. A summary of the resulting theory of Riemann problems for quadratic polyno-
mial flux functions in two variables is found in §3. The wave curves associated to both
characteristic families, as well as the manifolds on which they bifurcate, are described in
84. In §5 we describe the viscous profile criterion. We also discuss the novel transitional
shock waves that appear in this problem; see [21] for more discussion. All of the admissible
waves are used in §6 to construct the Riemann solution for the model. Details of the so-
lution are presented in several cases that illustrate new features and persisting difficulties.
Conclusions are drawn in §7, and remaining problems in the area are listed.

2. A MODEL FOR THREE-PHASE FLOW

For several years we have been studying the Riemann problem for a system of two
conservation laws that models three phase flow in a porous medium. This model approx-
imates the flow of oil, water, and gas in a petroleum reservoir. The importance of such
problems was emphasized in 1941 by Leverett and Lewis [28]. The two-phase scalar prob-
lem for oil and water was solved in 1942 in the classical work of Buckley and Leverett [4],
who established the formation of saturation shock waves, or oil banks, as the mechanism
responsible for oil recovery in petroleum reservoirs.

A solution of a model of three-phase flow is the aim of our work. The simplified
model represents the conservation of mass of each fluid combined with Darcy’s force law.
Compressibility, capillarity, and gravity effects are neglected. With appropriate boundary
conditions, the model is represented in one spatial dimension by the system of conservation
laws

uy + f(u,v), =0,
ve+ g(u,v), =0
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with f = U/D, g = V/D,and D = U + V 4+ W. Here, U, V, and W are the phase
mobilities of oil, water, and gas, respectively; they depend on the saturations u, v, w and
the viscosities a, b, ¢ of the three fluids. The saturations are non-negative and sum to
unity; hence, w =1 —u —v.

" Laboratory measurements are qualitatively consistent with the approximations V =
V(v) = v2/b, W = W(w) = w?/¢, and U = U(u,v) where U depends only weakly on v
[8]. Stone’s model, which is used commonly in petroleum engineering, consists of a special
choice of the dependence of the mobility U on the saturations u and v. This model exhibits
an elliptic region [2]. In our simplified model, we take U = U(u) = u?/a, and instead of
an elliptic region there exists an umbilic point. The umbilic point is easily determined:
requiring the Jacobian matrix 8(f,¢)/9(u,v) to be a multiple of the identity matrix leads
to equality of the derivatives U’ = V' = W', which can be proved to occur at precisely one
interior point [31]. Umbilic points also occur at the corners of the triangle; the Riemann
problem near the corners has been studied by Schaeffer and Shearer [35).

The solution for the parameter choice a = b = ¢ is presented in §6.

3. WAVES NEAR REGULAR OR SINGULAR POINTS

In this section we discuss the waves appearing in solutions of Riemann problems. The
classical construction of Lax for strictly hyperbolic systems is presented in §3a, and the
new features that arise near an umbilic point are described in §3b.

3a. The Classical Solution

There is a beautiful construction by Lax [27] of the solution of the Riemann problem for
nearly constant data for systems of any number of equations. The classical theory applies
to systems of conservation laws which are strictly hyperbolic and genuinely nonlinear.
That is, the Jacobian matrix Df of the flux f = (f, g) has distinct real eigenvalues A\; < X,
corresponding to right eigenvectors r; and ro, and each eigenvalue varies monotonically
along the integral curves of the corresponding eigenvector field. These integral curves give
rise to rarefaction waves, which are smooth solutions u = (u,v) that depend only on the
ratio z/t and satisfy A(u(z,t)) = z/t. A shock wave consists of two constant states u_ and
u; separated by a discontinuity traveling with speed s = s(u_, u,); the states are related
by the Rankine-Hugoniot jump condition s (uy — u_) = f(uy) — f(u-). For a given state
u_, the set of states uy satisfying the jump condition forms the Hugoniot locus H(u_) of
u_, which parameterizes shock waves. This locus consists of two branches that emanate
from u_ in the directions of the eigenvectors. We call this locus the Hugoniot curve to
stress that it is a one-dimensional object, even for systems with an arbitrary number of
equations.

The wave curves associated with each characteristic field are the main ingredients in
the construction of the solution of the Riemann problem in the classical case. Each of the
two wave curves through a state u_ consists of two portions joined smoothly at u_: the
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rarefaction curve and the shock curve of the corresponding field. The rarefaction curve
is the portion of the integral curve of the eigenvector field through u. along which the
eigenvalue increases. The shock curve is the portion of the Hugoniot curve through u—
that is tangent to the rarefaction curve and along which the shock speed s decreases. In
the strictly hyperbolic case, the (right) eigenvector fields, and hence their integral curves,
cross transversally. Therefore the wave curves, which are tangent to these integral curves,
also intersect transversally. Thus the solution of the Riemann problem is obtained by
following the first wave curve from a given left state to a middle state and then following
the second wave curve from this middle state to a given right state. Loosely speaking,
the wave curves form a coordinate system for the construction of the Riemann problem
solution.

3b. Near the Umbilic Point

For the model described in §2, the rarefaction curves are depicted in Figure 3.1 (com-
pare [36]). Rarefaction curves corresponding to the smaller characteristic speed are drawn
as double lines, while those for the larger speed are single lines. The arrows on the curves
indicate the direction of increasing characteristic speed. It is clear that there is no longer a
coordinate system throughout a neighborhood of the umbilic point, although there is one
in a neighborhood of any other point.

Fig. 3.1. Rarefaction curves. Fig. 3.2. A Hugoniot curve.

Another new feature is that the Hugoniot curves can have detached branches. This
is indicated in Figure 3.2 for the Hugoniot curve of a state ur, at which the two primary
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branches cross. States on the curve at which the shock speed coincides with a characteristic
speed of a state on either side of the discontinuity are marked; these states are important
for constructing wave curves and viscous profiles. In other models [22], the Hugoniot
curve may have closed loops. The Hugoniot curve also changes topology as its origin
crosses a certain locus, the bifurcation manifold, which is defined in the next section.
(See Figure 3.3.) As uy approaches the bifurcation manifold, the detached branch of the
Hugoniot curve approaches the local branch. This behavior, which has no analogue in
scalar conservation laws, makes even more difficult the task of finding a coordinate system
in which to determine the Riemann problem solution.

Generically, the behavior of rarefaction and shock curves near an isolated umbilic
point is dictated by the second order Taylor expansion terms of the fluxes f. It is natural
to study the Riemann problem for models with homogeneous quadratic polynomial flux
functions. Such homogeneous quadratic models depend on a two parameter family, and
the Riemann solutions exhibit four different kinds of behavior [36]. Solutions of Cases I-
IV with a special symmetry are described in [40], [22], [24], [23]. General solutions for
Cases II-IV appear in [39], and for Case I in [17], [38]. The differences among the several
cases is related to the existence and relative position of certain special manifolds (see §4).

Within a neighborhood of the umbilic point, our flow model falls into Cases I and II.
There is a one to one correspondence between the position of the umbilic point and the
viscosity ratios a : b : ¢ in our model. For each of the two cases, the possible locations of the
umbilic point is shown in Figure 3.4. The isolated umbilic point becomes a bounded elliptic
region when linear terms are added to homogeneous quadratic fluxes [34]. The solution for
such perturbed Cases I and II are studied in [18] and [19] using the Lax entropy criterion;
in these cases, solutions are not unique.

Fig. 3.3. The bifurcation manifold. Fig. 3.4. Cases for umbilic positions.
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Rarefaction curves do not enter the elliptic region. When they intersect its boundary,
the 1- and 2-rarefaction curves have the same direction: generically they form a cusp, but
at special points they join smoothly. In the latter case, a new phenomenon happens, which
is described geometrically in [34]: the 2-rarefaction curves can continue as l-rarefaction
curves, forming what we call transitional rarefaction waves [21]. Another type of transi-
tional wave, transitional shock waves, is described in §5. Such transitional waves are a
nonclassical feature. In our model with umbilic points, there is one transitional rarefaction
curve in Case II.

A shock branch cannot start at a point within the elliptic region; thus shock curves
have more complicated shapes when elliptic regions are present [18]. More work is needed
to understand the solution of the Riemann problem for systems with nonhomogeneous
quadratic fluxes, as such systems possess elliptic regions.

Quadratic Riemann problems have proved to be amenable to analysis. The region
where this analysis holds is the center-most part of Figure 4.5; it represents an exceedingly
small part of the area of interest in our model. It is clear that computer experiments, as
well as topological methods, play an important role in understanding the global solution
of the model.

4. WAVE CURVES

In this section, we describe briefly the basic ingredient necessary for the generalization
of the classical construction of the Riemann problem solution utilized in our computer
program. Reference [11] contains further details. This ingredient is the wave curve, a
representation of certain coherent sequences of invariant waves as points in the space of
possible states. Since they usually have many branches, wave curves are not actual curves;
this terminology is used because they are one-dimensional.

In physical space, the solution consists of a sequence of rarefaction fans, discontinuities,
and constant states; these elementary waves are grouped into waves that belong to the first
family (1-waves), to the second family (2-waves), or constitute transitional waves. In all
the cases we have studied so far, the solution of the Riemann problem consists of either:
(1) the left state, 1-waves, a constant state, 2-waves, and the right state; or (2) the left
state, 1-waves, a constant state, a transitional wave, a constant state, 2-waves, and the
right state. These solutions obey the geometrical constraint that speeds in physical space
increase from left to right.

Wave curves in our problems differ from classical wave curves in several respects. First,
they are represented in state space by three types of elementary segments, consisting not
only of shock waves and rarefaction waves as in the classical case, but also of composite
waves, which are shock waves adjacent to rarefaction waves: the final states u satisfy

uc H(') with X (u')=s(uu’),

where u' ranges in a rarefaction segment. These waves appear when the problem is not
genuinely nonlinear [29] and [33]. Second, in each wave curve there are many such elemen-
tary segments. Each elementary segment must stop whenever its wave speed attains an
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extreme, and the type of elementary segment that follows is determined by simple rules.
Third, since Hugoniot curves possess nonlocal (i.e., detached) branches, wave curves also
have complicated shapes; e.g., they may have disconnected parts or branching points. One
consequence is that our computer program cannot use only continuation algorithms to find
the wave curves. Rather, global searching algorithms are employed.

The continuation rules for wave curves are justified by the Bethe-Wendroff theorem
[47], as applied to determine the qualitative behavior of the wave speed along a wave curve.
This analysis is conveniently performed using wave speed diagrams, which generalize to
systems Oleinik’s convex envelope construction for scalar conservation laws [33). Using
these techniques, the stability of wave curves, with respect to perturbations of left state,
can be established [11]. We have implemented the continuation algorithm in a computer
program that constructs both the local and nonlocal branches of wave curves.

A typical wave speed diagram is shown in Figure 4.1. The horizontal axis corresponds
to a parameterization of the wave curve, and the vertical axis is speed. The solid lines are
the two characteristic speeds, while the dashed (resp. crossed) curves are the propagation
speeds of shock waves (resp. composite waves). The example shows the speeds for the

-wave curve starting at a state uz. Near this state the curve consists of rarefaction and
shock waves, as usual. The rarefaction segment ends when the characteristic speed reaches
a maximum, at which point the wave curve follows a segment of composite waves. Points
on the composite correspond to points on the rarefaction at the same speed; these points,
which work back along the rarefaction segment, are indicated by dots. The composite
segment ends when its speed coincides with the faster characteristic speed on the right,
and is followed by another rarefaction segment, whose speed eventually maximizes, leading
to another composite segment. This composite segment ends when the corresponding
rarefaction points have reached the beginning of the segment; then the wave curve continues
with a new composite segment based on the previous rarefaction segment. Finally, this
last composite wave ends when its speed coincides with the faster characteristic speed on
the left, where the wave curve becomes a shock segment.

The wave curve corresponding to the wave speed diagram is shown in Figure 4.2.
Again, solid, dashed, and crossed curves represent rarefaction, shock, and composite seg-
ments, respectively. Also shown is a disconnected branch of the wave curve. Waves on a
wave curve are physical only if they obey appropriate admissibility criteria. If such criteria
are not satisfied, spurious solutions to the Riemann problem can arise. We avoid these
solutions by admitting only those shock waves that possess viscous profiles (see §5). In
Figure 4.2, the shock waves employed to construct the nonlocal branch are not admissible
in this sense, so that this branch must be discarded.

The Bethe-Wendroff theorem says that generically the speed s(u’,u) of a shock or
a composite based at u’ has an extremum at a state u on a segment of a wave curve if
and only if s = Ai(u) for i = 1 or i = 2, provided that Li(u) - (u — u') # 0; here, 1;(u)
is a left eigenvector of the Jacobian matrix. Using the Bethe-Wendroff theorem, we have
proved that certain loci play a fundamental role in determining the nature of a wave curve:
these are the bifurcation manifold, the inflection manifold, the hysteresis manifold, and
the double contact manifold. These loci might have boundaries, self-intersections, self-
tangencies, and other singularities, but we call them manifolds to emphasize that they
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Fig. 4.1. A wave speed diagram for the Fig. 4.2. A wave curve near the center
local branch. of the domain.

have dimension n — 1 for systems with n equations. Several other manifolds, which are
based on these four manifolds, are important in proving the stability of wave curves (see
[11}); in the model studied here, however, they are of secondary importance.

The bifurcation manifold is where shock curves change topology. A state u belongs
to the bifurcation manifold for family 7 when there is a state u’ # u such that

u' € H(u) with X;(u') =s(u,u’) and L(u)-(u'—u)=0.

Note that the Bethe-Wendroff theorem does not apply on a bifurcation manifold.

The inflection manifold is named by analogy with scalar conservation laws. It is the
manifold where genuine nonlinearity is lost: the eigenvalue does not vary monotonically
along a rarefaction curve near an inflection point. Thus rarefaction curves stop at this
manifold. At a state u on the inflection manifold,

VAi(u)-ri(u)=0.

The hysteresis manifold contains states of a composite scgment joined to the end of a
rarefaction segment by a nonlocal shock wave. Thus a state u lies on this manifold when
there is a state u’ such that

ue H(u') with X(u')=s(u,u’) and VX(u') r;(u')=0,

for all u’ # u on the inflection manifold. This manifold is important for constructing
nonlocal composite branches.
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The double contact manifold consists of states u for which there is a state u’ such
that the shock wave joining u and u’ has speed coincident with the characteristic speeds at
both its sides. (This is called a double contact discontinuity.) The states u and u’ satisfy

u € H(u) with A(u) =s(u,u’) = A;(u'),

where the families ¢ and j may be different. Composite segments end at the double contact
manifold.

Because of the presence of the boundary of the physical region, another manifold plays
a role in the model problem, which we call an interior boundary contact. It is the manifold
of states u joined to points u’ on the boundary by characteristic shock waves, namely

u € H(u') with u’ on the boundary and X;(u) = s(u,u’) .

A boundary contact wave occurs when a junctions between wave segments coincides with
the boundary.

The manifolds are defined implicitly by nonlinear maps from R? to R?~!, where pis as
large as four. Their computation involves solving such nonlinear equations by triangulating
a cube in R?. We have written a general-purpose program to accomplish this, and have
computed the manifolds for equal viscosities a = b = ¢ = 1. Figures 3.3 and 4.3-6 show
the projections of the manifolds into state space.

Fig. 4.3. Inflection manifold. Fig. 4.4. Hysteresis manifold.

The construction of wave curves usually yields many branches and multiple solutions
for Riemann problems. To avoid this difficulty, we consider a shock wave to be admissible
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Fig. 4.5: Double contact manifold. Fig. 4.6: Boundary contact manifold.

Fig. 4.7: Boundaries for 1-wave curves. Fig. 4.8: Boundarics for 2-wave curves.

only if it has a viscous profile (as discussed in §5). Therefore only the solid parts of the
manifolds drawn in the figures play a role, since the dashed parts involves non-admissible
shock waves. For the same reason, the second branch in the wave curve of Figure 4.2 is
also discarded.

The wave curve based on uy, suffers bifurcation only if one of its segments does. There-
fore the wave curve does not bifurcate unless uy, lies on a manifold defined by conditions
related to the inflection, bifurcation, hysteresis, or double contact manifolds or physical
boundary. Bifurcation also occurs if the wave curve contains certain exceptional points,
defined precisely in [11]; the wave curves drawn backward from exceptional points give rise
to additional bifurcations. The manifolds for which the wave curve based on uj, bifurcates
are called uy-boundaries. For homogeneous flux functions these boundaries coincide with
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the four basic manifolds [22], [24], [23], [39], [17], [38].

The u;-boundaries for the 1-wave curves and 2-wave curves are drawn in Figures 4.7
and 4.8, respectively. Because of the threefold and reflection symmetry, it suffices to draw
them in one-sixth of the domain triangle. The wave curves with uy, in each of the regions
shown in the figures have the same topology and consist of the same sequence of segments.
In Figure 4.7 the curves (AG) and (GH) are sections of the 1-boundary contacts from
Figure 4.6. The curve (HJ) is the l-rarefaction ending at H; it plays a role because the
1-wave curve for a state ur to the left of (HJ) has only a local branch, while to the right of
(HJ) it has also a nonlocal branch (Figure 6.1). In Figure 4.8, where the uz-boundaries for
family 2 are drawn, (EF) is a 2-boundary contact manifold, (BC) is a 2-double contact
manifold, (BD) is a 2-inflection manifold, and (AB) is a 2-rarefaction curve ending at
B. The curves (AG) and (GH) in Figure 4.7 also affect the structure of 2-wave curves,
although they have been suppressed in Figure 4.8. Therefore there are five different types
of 1-wave curves, corresponding to uy, in each region of Figure 4.7, and ten types of 2-wave
curves, corresponding to the regions of Figure 4.8. Examples of these wave curves will be
described in §6; in §5 we discuss our criterion for choosing appropriate branches of wave

- curves.

It is an important open problem to understand how these manifolds are affected by
changes in the parameters specifying the system of conservation laws. This amounts to
studying the bifurcation of the general Riemann problem as the model is varied.

5. VISCOUS PROFILES

It has long been known that the set of shock waves must be restricted by using physical
considerations, thereby preventing nonuniqueness of solutions of the Riemann problem. In
the case of multiphase flow, a small diffusive term modeling capillary pressure effects is
restored in the hope of obtaining unique solutions. Therefore we have used the entropy
condition of vanishing viscosity: a shock joining u_ to u; must be the limit, as the positive
parameter e tends to zero, of traveling wave solutions of the parabolic equation

u; + f; = e(D(u)u,),

with the boundary conditions u(—oo) = u_ and u(+o00) = u,. Since the traveling wave
u is a smooth function of { = (z — st)/e, this equation can be integrated once to yield the
dynamical system

D(w)ug = £(w) - f(u_) — s(u—u_),

for which both u_ and uy are singularities of the vector field. A traveling wave solution
corresponds to an orbit connecting these two states and is called a viscous profile of the
shock wave.

For classical systems it has been shown that there are connecting orbits for weak Lax
shock waves [9], [5]. For 1-shock waves, these orbits connect a repelling node to a saddle
point; for 2-shock waves, they connect a saddle point to an attracting node. These types
of connections, even when extended to include strong shock waves and limiting cases, are
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insufficient to complete the solution of the Riemann problem in our model. It is necessary
to introduce a new kind of discontinuity whose profile is the connection between two saddle
points of the vector ficld. Such a discontinuity appcars alrcady in a homogeneous quadratic
model [40]. Because this discontinuity can be preceded by a 1-wave and followed by a 2-
wave, 1t i1s not associated to any classical family. We refer to it as a transitional shock
wave, because its role is similar to that of the transitional rarefaction waves described in
§3. From the viewpoint of dynamical systems, the orbits for these transitional shock waves
are structurally unstable, in contrast to those for classical shock waves.

Transitional waves are either transitional shock, rarefaction, or composite waves. Al-
lowing for these additional waves, the existence of a solution of the quadratic models is
guaranteed [40], [17], [38] and [21] in the case when D = I. In [17], a detailed study of the
associated dynamical systems and their singularities is made.

For general constant D, the nature of the transitional shock waves is very different
from that for the degenerate case D = I. This is discussed in [21]. It is also shown there
for Casc II of the quadratic models that different global solutions of the Riemann problem
exist, depending on which of the two entropy criteria is used, the characteristic criterion
of Lax or the viscous profile criterion. The solutions are different because the viscous
profile criterion disallows those Lax shock waves that do not have profiles and admits
those transitional waves that do.

We remark that the viscosity criterion is not sufficiently sharp to guarantec uniqueness.
In fact, there are systems having multiple solutions all of whose shock waves have viscous
profiles (see, e.g., [32], [1]). Thus additional physical criteria must be invoked to reduce
further the class of admissible shock waves.

6. RIEMANN SOLUTION FOR THE MODEL

In this section we give a bricef description of the solution of the general Riemann
problem for the model with cqual viscosity ratios and D = I. We describe the 1-, 2-, and
transitional wave curves arising from uy, in some of the regions depicted in Figures 4.7 and
4.8. In the following figures, solid curves comprise points representing rarefaction waves,
with arrows indicating the dircction of increasing speed. Shock waves and composite waves
are represented as points on dashed curves and crossed curves, respectively. We refer to
these curves as rarefaction, shock, and composite segments.

Wave curves of the first family for uy and up: in two of the regions of Figure 4.7 are
shown in Figure 6.1. The wave curve for uy: consists of a rarefaction segment (L'b), a shock
segment (L'a), and a composite segment (bc). A composite wave in (bc) is a rarefaction
wave from uj to a point in (L'b) adjoined by a shock wave from this point to the point
in (bc); the shock wave is characteristic on 1ts left side. If uz: is moved above (AG), a new
shock segment appears near the boundary of the triangle. This segment is (gh) in the wave
curve for uy; g lies on the boundary when L' lies on (AG). If uj: is moved to the right
of (HJ), its wave curve develops a nonlocal branch. Thus for uy, the local branch of the
1-wave curve is (eLfgh), and the nonlocal branch is (nop). The curve (no) is a composite
segment based on (fL), while (op) is a shock segment. When uy, is moved below (GH),
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the shock segment (op) disappears and (no) extends to the boundary; if uy, lies on (GH),
the point o is on the boundary.

In Figure 6.2 we show the 2-wave curves for uy, and uy, in two of the regions of Figure
4.8. (For clarity, Figure 6.2 and 6.3 have not been drawn to scale.) The wave curve for
uzs is (aL'bed); we have chosen uy to lie below the line (AG) from Figure 6.1. If up,
is moved to the left of (EF), the point c reaches the boundary and the shock segment
(ed) disappears. The 2-wave curve (eLfghijkl) for a point uz above (AB) has the same
general shape, but other segments arise because of proximity to the umbilic point. The
curves (eL) and (ki) are shock segments; (Lfg) and (hi) are rarefaction segments; and
(gh), (ij), and (jk) are composite segments based on (9f), (ih), and (fL), respectively.
The point f lies on the double contact manifold (BC); it corresponds to the point A on
the trefoil in Figure 4.5. The 2-wave curve through u; does not extend to the boundary
because shock waves cease to be admissible at the points e and I. As u; is moved down
in Figure 6.2, ! reaches the boundary precisely when uy, is on the curve (GH), while e
reaches the boundary when uy is on the curve (AG).

Fig. 6.1. 1l-wave curves. Fig. 6.2. 2-wave curves.

Transitional waves occur for points uy, on the bifurcation manifold. The different cases
depend on whether uy, liesin (AE), (EH), (HC), (CD), or (DO) (see Figures 4.7 and 4.8).
In Figure 6.3 we show the transitional waves for ug, in (HC). The segment (mn) consists of
admissible crossing shock waves, while (hm) consists of crossing composite waves based on
(CL). A crossing composite wave consists of a crossing shock wave preceded by adjacent
2-rarefaction wave; this is a new wave structure not found in any of the quadratic models
described in §3. If the point uy, is moved past H, the point n moves to the boundary, and
if uz, crosses C, the points & and m coalesce.
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Also shown in Figure 6.3 is the 2-wave curve; (eLC Dhijkl) is obtained as the limit
of the wave curve (eLfghijkl) of Figure 6.2 as uj tends to the bifurcation manifold.
Similarly, the limit of the 1-wave curve through uy in Figure 6.1 consists of local shock
segments from the bifurcation manifold to the boundary, together with a nonlocal shock
segment, which extends from n to ¢ in Figure 6.3. If ur in Figure 6.1 is moved along the
rarefaction curve toward f, then the point n remains fixed, while o tends to n and p tends
to q.

We are now ready to solve the general Riemann problem. As much as possible, we
use the classical construction: first follow a 1-wave curve from the state uy, to a state uyy,
and then follow the 2-wave curve from ups to the state up. To complete the solution for
all possible pairs (uy, ugr), however, transitional waves are required. We show an example
of the construction in Figure 6.4; uy, is as in Figure 6.1. (If uy, lies to the left of (HJ), the
segment (np) in Figure 6.4 disappears and (hn) extends to the boundary.)

Fig. 6.3. Transitional wave curves. Fig. 6.4. Solution of the Riemann problem.

Given uy, construct the local 1-wave curve (abc) through uy; then, for any state
uys on (abc), construct the 2-wave curve through ups. This defines points ug that can be
reached by a local 1-wave curve from uy to ups followed by a 2-wave curve from ups to ug.
Notice that the speed of the wave from ups to ugp must exceed the speed of the wave from
uz, to ups. This geometric consistency restriction sometimes eliminates an end portion of
a 2-wave curve. Thus the allowed 2-wave curves end at the dashed curves (ab), (Bh), and
(k7). In this way we obtain the solution for the given state uy and any state up that
lies to the left of (Bhy). To obtain the solution for states up on the right of this curve,
we use the transitional waves (hn) based on b as well as points on the nonlocal branch




162 E.L. Isaacson, D. Marchesin, B. L. Plohr, and J.B. Temple

(np) of the 1-wave curve; from these points on (hnp) we construct the 2-wave curves.
Numerical experiments and the triple shock rule [22] show that the geometric consistency
requirements force these 2-wave curves to stop precisely on (Bhy). An explanation can be
found in [43].

The general solution for the given uy, is now complete. The wave structure consists
of one of the following sequences: (1) the left state, a 1-wave group, a constant state, a
2-wave group, and the right state; or (2) the left state, a 1-wave group, a constant state, a
transitional wave, a constant state, a 2-wave group, and the right state. A transitional wave
appearing in the solution is either a crossing shock wave or a composite of a 2-rarefaction
wave and a crossing shock wave. For other states uyz, the solution may be obtained by
similar considerations. This solution is L}, -continuous in the Cauchy data uy, ug; the
continuity may be verified by inspection. A justification for many features of the foregoing
construction is found in [11], [43]. The latter reference also treats three-phase flow models
with only two equal fluid viscosities.

The solution just described has a direct consequence for petroleum reservoir simula-
tion. The mechanism that allows the efficient recovery of oil in petroleum reservoirs is the
formation of oil banks, or saturation shock waves. Because oil recovery is maximized by
strong shock waves, it is important that numerical methods used in oil reservoir simulation
be accurate for these waves. For the particular choice of physical parameters considered
in this work, some of the largest shock waves are nonclassical: the nonlocal 1-family shock
waves and the crossing shock waves.

We expect that standard numerical methods employed in oil reservoir simulation are
inaccurate for nonclassical waves, for two reasons. First, many numerical schemes spread a
strong shock wave across several mesh zones, replacing it with several weaker shock waves;
but this approximation is not valid for nonlocal shock waves, which are non-contractable.
(Schemes such as the random choice method [13] do not make this approximation.) Second,
crossing shock waves are sensitive to the precise form of the diffusion term [12]. In contrast
to classical shock waves, which are affected only by the overall magnitude of the viscosity,
the asymptotic states in a crossing shock wave are dependent on the relative sizes of
components of the viscosity matrix. Dissipative numerical schemes on coarse grids calculate
transitional shock waves that correspond to the numerical viscosity, rather to than the
physical viscosity. This indicates that better numerical methods are needed in such areas
of application as multiphase flow, magnetohydrodynamics, and elasticity. The solutions of
Riemann problems serve as test problems for developing such methods.

7. CONCLUSIONS

As many new questions as answers have been uncovered in the process of developing
theory and computer algorithms to analyze the Riemann problem for a simple three-phase
flow model. We feel that techniques in global analysis, dynamical systems, bifurcation
theory, singularity theory, topology, and geometry will play an essential role in establishing
the mathematical theory for this class of problems. We conclude by pointing out some
open questions.
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It has been established that many properties of the model do not depend upon the
quadratic nature of the phase mobility functions. However, except for the example of
fourth order [16], Riemann problem solutions for homogeneous polynomial flux functions
of higher degree are not known. These problems might shed light on the global structure
of solutions for systems with different behavior at infinity. Some issues pertaining to
bifurcation properties of the associated dynamical system are studied in (30].

Bifurcation properties of the Riemann problem solution as a function of the initial data
are partially understood [39] [11]. This includes the behavior of the boundary manifolds
described in §4. The bifurcation properties are almost completely unknown as a function
of parameters in the conservation laws. Varying the viscosities in the model [43], as well
as including the effects of gravity [31] and [45], should prove illuminating.

The lack of uniqueness of Riemann problem solutions based on shock waves with
viscous profiles and the strong dependence of these solutions on the particular viscous
terms utilized [14], [15], [7], [21], [46] are serious indications that entropy and modeling
issues in the ‘context of nonstrictly hyperbolic conservation laws must be reconsidered
from more fundamental points of view [6], [32]. A detailed study of the bifurcation of the
dynamical system of §5 is important to determine the possible limitations of the viscous
profile criterion [41].

The global Riemann problem solution for systems of more than two equations remains
as a challenging problem. Elasticity and plasticity are important applications. Umbilic
points were identified recently in models for elasticity [44] and for magnetohydrodynamics
3], [10]. A system of three equations arising in multiphase flow, which generalizes the
model in [20], has been studied [43]. Even the general Riemann problem for two equations
with several umbilic points, coincidence curves [26], or elliptic regions [25] poses interesting
geometrical and topological questions. Stone’s model provides a suitable context in which
to study many of these issues (2], [8], and [42].
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