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NONLINEAR RESONANCE IN SYSTEMS OF CONSERVATION LAWS*

ELI ISAACSON" AND BLAKE TEMPLE

Abstract. The Riemann problem for a general inhomogeneous system of conservation laws is solved
in a neighborhood of a state at which one of the nonlinear waves in the problem takes on a zero speed.
The inhomogeneity is modeled by a linearly degenerate field. The solution ofthe Riemann problem determines
the nature of wave interactions, and thus the Riemann problem serves as a canonical form for nonlinear
systems of conservation laws. Generic conditions on the fluxes are stated and it is proved that under these
conditions, the solution of the Riemann problem exists, is unique, and has a fixed structure; this demonstrates
that, in the above sense, resonant inhomogeneous systems generically have the same canonical form. The
wave curves for these systems are only Lipschitz continuous in a neighborhood of the states where the wave
speeds coincide, and so, in contrast to strictly hyperbolic systems, the implicit function theorem cannot be
applied directly to obtain existence and uniqueness. Here we show that existence and uniqueness for the
Riemann problem is a consequence ofthe uniqueness of intersection points of Lipschitz continuous manifolds
of complementary dimensions. These systems are resonant for two reasons: The linearized problem exhibits
classical resonant behavior, while the nonlinear initial value problem exhibits a "nonlinear resonance" in
the sense that wave speeds from different families of waves are not distinct; so the number of times a pair
of waves can interact in a given solution cannot be bounded a priori. Since waves are reflected in other
families every time a pair of waves interact, a proliferation of reflected waves can occur by the interaction
of a single pair of waves. Examples of resonant inhomogeneous systems are observed in model problems
for the flow of a gas in a variable area duct and in Buckley-Leverett systems that model multiphase flow
in a porous medium.
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1. Introduction. We are interested in characterizing the resonant behavior that
occurs in an arbitrary inhomogeneous system of conservation laws in a neighborhood
of a state at which one of the nonlinear wave families has a zero wave speed. By an
inhomogeneous system of conservation laws, we mean a system of the form

(1.1) ut +f(a, u)x =0,

where a a(x) is a variable function of x alone; thus a represents an inhomogeneity
in the problem. We express this by the additional conservation law

1.2) at O.

(Systems of this form were previously identified by the authors when we outlined a
program for classifying the solutions of nonstrictly hyperbolic systems (cf. [5], [6],
[8]).) Our general problem thus becomes

(.3) U,+F(U)=O,

where U: (a, u), F(U) (O,f(a, u)), u (u,, u2, ", u,,) R", f: (fa,f, ,f,)
R", x R, t-> 0. System (1.3) is a system of n + 1 equations in the n + 1 unknowns a,
ul," ", u,. We assume that, for each value of a, system (1.1) is a strictly hyperbolic
system of n equations, and that each of the characteristic fields is either genuinely
nonlinear or linearly degenerate [3], [10], [14]. Equation (1.2) produces a linearly
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degenerate field (i.e., VAo. Ro-0) in system (1.3) with eigenvalue Ao=0 and corre-
sponding eigenvector Ro of the Jacobian matrix OF/OU. The remaining eigenvalues
AI <A2<’’ "<An of system (1.3) correspond to the eigenvalues of system (1.1) and
have corresponding right eigenvectors R1 =(0, rl),"" ", Rn (0, rn), which lie in the
hyperplane a-const. Here the vectors rl,...,rnR at a state U-(a, u) are the
unit right eigenvectors of the corresponding n x n matrix Of/Ou. We let l, , In denote
the corresponding left eigenvectors of the matrix Of/Ou normalized so that lj.rj 1
for j-1,..., n. We wish to study system (1.3) in a neighborhood of a state U,-
(a,, u,) at which a nonlinear family of waves in system (1.3) has a zero wave speed.
Thus we assume that

(1.4) Ak(U,) Ao 0

and that

(1.5) VAk" Rk] t, # 0.

In Theorem 3.1 we show that these assumptions, together with the nondegeneracy
assumption

(1.6) l.Ll,#0,
guarantee that, in a neighborhood of the state U,, the Riemann problem has a unique
solution with a canonical structure. (Here fa denotes the partial derivative Of/Oa.) The
Riemann problem for (1.3) is the following initial value problem for piecewise constant
initial data:

UL forx<0;
U(x, O)

UR for x>0.

The Riemann problem is fundamental to the study of (1.3) because it identifies the
elementary waves that propagate--typically, shock waves, rarefaction waves, and
contact discontinuities. Our main result is that, for each pair of states UL and UR in
a neighborhood of U,, there is a unique solution of the Riemann problem that is
determined by a canonical underlying structure of the elementary waves in the problem.

One consequence ofthe genericity assumptions (1.5) and (1.6) is that the linearized
system in the O-hk block has the normal form

Resonant behavior occurs in the linearized problem because the solution u(x, t)=
a’(x)t / c blows up as tends to infinity. The nonlinear initial value problem exhibits
a "nonlinear resonance" in the sense that wave speeds from different families of waves
are not distinct, and so the number of times a pair of waves can interact in a given
solution cannot be bounded a priori. Consequently, since waves are reflected in other
families every time a pair of waves interact, a proliferation of reflected waves can be
produced by the interaction of a single pair of waves. Another consequence of (1.4)-
(1.6) is that there is a surface on which wave speeds coincide, and thus our systems
do not fit the framework of [15] in which the coincidence occurs at a single "umbilic"
point.

Special cases of (1.3) are observed in model problems for the flow of a gas in a
variable area duct and in Buckley-Leverett systems that model multiphase flow in a
porous medium. In the latter case, the model equations do not have the form of an
inhomogeneous system of conservation laws, but there is a Lagrangian transformation
that maps the model equations to an equivalent system (in the weak sense) that does
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have this form. (The transformation was shown to the authors by Marchesin and
Patino.) Examples of such systems have been studied by Keyfitz and Kranzer [9] and
by the authors [4], [17]. Under the Lagrangian transformation, these are equivalent
to system (1.3), where u is a scalar. We refer to this as the scalar case. In each of these
examples, a coincidence of wave speeds occurs, and (1.4)-(1.6) are satisfied. Many,
but not all, of the features in the scalar case carry over to the case where u is a vector
and where (1.1) describes an inhomogeneous system of conservation laws. For example,
there are, in general, n + 2 waves in the solution of an inhomogeneous system, even
though there are only n / 1 equations, and Riemann problem solutions depend con-
tinuously on the data in x, t-space, but not in state space. However, unlike the scalar
case, the wave curves for systems are only Lipschitz continuous curves near the point
of resonance. This makes direct application of the implicit function theorem difficult,
and we show that the existence and uniqueness of solutions of the Riemann problem
in a neighborhood of a point of resonance is a consequence of the uniqueness of
intersection points of Lipschitz continuous manifolds having complementary
dimensions.

Wave interactions are significantly more complicated in system (1.3) than in a
strictly hyperbolic system. For example, Temple showed in 17] that solutions satisfy
a time-independent estimate on the total variation as measured under a singular
transformation of the conserved quantities. Such time-independent estimates are
relevant to the study of the asymptotic decay of solutions into noninteracting wave
patterns as tends to infinity.. This was analyzed in [7], where it was shown that the
decreasing nonlinear functional introduced in [17] is minimized on a unique set of
noninteracting waves that, in general, are inadmissible solutions of the Riemann
problem; it was conjectured that these are the time-asymptotic waves in the solution.
In one dimension, the total variation of a solution at time is the most natural measure
of the total strength of the waves in the solution at time t, and thus it is natural to
expect that the total variation of the solution at time should be bounded by the total
variation at time =0, at least for sufficiently weak waves. This time-independent
estimate was proved by Glimm for strictly hyperbolic systems in his fundamental paper
[2] and has been applied to obtain rates of decay of the solutions asymptotically as
tends to infinity. Simple examples, however, show that the total variation of solutions
of (1.3) at a time > 0 cannot be bounded by the total variation at time t- 0 in the
space of conserved quantities, uniformly in time, even when u is a scalar and a(x) is
smooth. The analysis in [17] gives time-independent bounds on solutions when u is a
scalar and is based on a singular transformation of the (a, u)-plane. We believe that
an analysis of the elementary waves through the theory of the Riemann problem may
well be useful for obtaining time-independent bounds on solutions and a corresponding
understanding of the time-asymptotic decay of solutions for vector-valued u because
the elementary waves in the solutions of the Riemann problem describe the time-
asymptotic wave patterns to which an arbitrary solution evolves. To extend the results
in the scalar problem to the case when u is a vector, a sharper bound on the total
variation of solutions is needed, as well as a quadratic potential interaction functional.
Such a quadratic function has not been found in any other case in which there is no
a priori bound on the number of times a pair of waves can interact.

In 2 we describe two physical problems that are modeled by resonant
inhomogeneous systems. In 3 we state and discuss Theorem 3.1, which is the main
result of the paper. We introduce Lipschitz continuous manifolds with approximate
tangent vectors in 3, and we show in Theorem 4.4 that two such manifolds having
complementary dimensions intersect in a unique point. In 5 we prove Theorem 3.1
by constructing Lipschitz continuous manifolds from wave curves and applying the
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results of 4. Our work on resonant inhomogeneous systems was influenced significantly
by Marchesin and Paes-Leme [13].

2. Applications. In this section we describe two physical settings in which reso-
nance in inhomogeneous systems of conservation laws arises.

Flow in a variable area duct. The equations for the flow of a gas in a variable area
duct with cross-sectional area a(x) are [1]

p,+(pu)x=-(a’/a)pu,

(2.1) pu ), + pu2 +p -(a’/a pu2,
E -[(E --p)U]x---(a’/a)[(E +p)u].

The equations express the conservation of mass (p), momentum (pu), and energy (E),
respectively. We say that resonance occurs in transonic flow because one of the
nonlinear waves can have a zero wave speed (cf. Liu [11]). Liu was the first to study
the initial value problem for these equations using Glimm’s random choice method
[2], and he proved convergence of the method for solutions taking values in a
neighborhood of a state (p, pu, E) at which the wave speeds are bounded away from
zero (see [11] and the references therein). In [12] Liu gives a fairly complete analysis
of a nonconservative scalar model for (2.1) in which resonance occurs. At present,
however, there is no general proof that Glimm’s method converges for systems in the
transonic regime.

To obtain a model problem, we rewrite system (2.1) in the form

(ap),+(apu),=O,

(2.2) apu + apu2+ ap), a’p,

(aE),+[a(E+p)u],,=O,

with the supplementary equation

(2.3) a, =0.

Dropping the zero-order term from the right side of (2.2) yields a mathematical model
for the resonant behavior that occurs in transonic flow. The resulting system has the
form of system (1.3). Note that this reduced system also can be viewed as the first
system to be solved in a numerical time-splitting method for (2.2).

In the special case where p-c2p (isothermal flow), the energy equation drops
out, and the zero-order term can be incorporated into the fluxes to obtain the system

(2.4) (ap), +(apu), =0,

u, + (u/2 + c2 log p),, O.

Although this does not supply a physical conservation form for the original problem,
it does provide a mathematical model containing a similar nonlinear resonance in the
transonic regime. A straightforward calculation verifies that lk" fa[ U,----cEp, and thus
conditions (1.4)-(1.6) are valid for system (2.4). For flow in a variable area duct, we
believe that these models isolate an important component in the complicated behavior
of transonic flow. Marchesin and Paes-Leme [13] study this system in an analysis of
the Riemann problem obtained by taking a to be piecewise constant; our point of
view was influenced significantly by their analysis.
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Buckley-Leverett systems. We call the following equations polymer equations
because they arise as a model for the polymer flooding ofan oil reservoir (i.e., two-phase,
three-component flow in a porous medium [4], [17]):

s, +f(s, c), O,
(2.5)

(cs), +(cf(s, C))x =0.

Here s and c denote the water saturation and the polymer concentration, respectively,
and satisfy 0<s-<l and 0_<-c=<l, while f=f(s,c) is a constitutive relation. The
structure of solutions is determined by qualitative properties of f [4], [17]. The
eigenvalues of system (2.5) coincide when fs =f/s. The Riemann problem for this
system is studied by Isaacson in [4], while Keyfitz and Kranzer [9] study the Riemann
problem for the equivalent system

u,+[ug(u, V)]x o,
(2.6)

v, +[vg(u, v)] =o,
which arises in their study of elasticity. The polymer interpretation of these equations
suggests a natural Lagrangian transformation of the variables. In this model, g =f/s
is the particle velocity of the water, and so the trajectories of the water particles are
given by solutions of the ordinary differential equation x’= g(s(x, t), c(x, t)). We can
thus define a solution-dependent mapping of the independent variables (x, t) to (, t)
so that sc const defines the particle trajectories in the transformed, or Lagrangian,
coordinates (, t). This transformation is defined by

(2.7) sO(x, t)= s(z, t) dz,
(O,t)

where x(O, is the particle path through the point x 0 at time O. Rewriting system
(2.5) with respect to (, t) yields the equivalent system

C -"0,
(2.8)

(1/s),-g(s,c)=O,

which has the form (1.1), (1.2) when we make the identifications u= l/s, a =, and
h--g (cf. [1, p. 30]). Systems (2.5) and (2.8) are equivalent in the sense that they
determine the same shock wave solutions under the 1-1 mapping given by the
Lagrangian change of variables. In the case where the nonlinear family of waves is
genuinely nonlinear on the transition surface [4], 17], system (2.8) satisfies assumptions
(1.4)-(1.6) at points where Ao A1.

3. The Riemann problem. We consider the system of equations a,=0, u,+
f(a, u) =0, where u-(u1, u,..., u,)R" and aR. We can write this system in
the form (1.3) by taking U (a, u) and F= (0,f). Here a a(x) is an inhomogeneity
in the equations, and a, 0 gives rise to a linearly degenerate field with wave speed
Ao-0. We consider the Riemann problem for weak solutions in a neighborhood of a
state U.- (a., u.) at which

A l<" "<Ak:AO<" "<An.

This represents the simplest example of a coincidence of wave speeds. Our main result
is the following theorem.
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THEOREM 3.1. Assume that, in a neighborhood of a state U, (a,, u,), the n x n
system

u,+f(a,u),,=O,

is strictly hyperbolicfor each fixed value ofa, and is either genuinely nonlinear or linearly
degenerate in each characteristic field. Let

Al(a, u) < h2(a, u) <. < h.(a, u)

denote the eigenvalues of this system with corresponding right eigenvectors rl,’", rn
and left eigenvectors 11, , l. Assume that thefunctionfsatisfies thefollowing conditions
at the state U,:

(i) hk(a,, u,)=0,
(ii) X7hk. rl , 0,
(iii) lk f,I t, 0.

Then there exists a unique solution of the Riemann problem in a neighborhood of U,,
and this solution depends continuously in physical space on the left and right states.
Moreover, for every f in this class, the solutions exhibit the same qualitative behavior.

We discuss the main consequences of assumptions (i)-(iii) here and complete the
proof of Theorem 3.1 in the following two sections. First, assumption (ii) guarantees
that the equation Ak 0 defines a smooth n-dimensional surface locally inR+1 that
passes through the state U,. We call this the transition surface . The eigenvector
Rk (0, rk) points along the hyperplane a const, and condition (ii) guarantees that
the integral curves of Rk cut the transition surface transversally. Moreover, condition
(iii) implies that the n x (n+ 1) matrix of/oU=[fa ;f] has maximal rank n at U,. To
see this, note that, since Ak Ao 0 and A Ak at U,, f has rank n- 1. Moreover,
since lk’flt, 0, and since lk" r=0 for k, Of/OU must have rank n. Consequently,
the Jacobian matrix dF=-OF/OU has rank n at U, since F (0,f), so that OF/OU has
the Jordan normal form

(J)
0 1

0 0

k+l

at U,. We conclude that OF/OU has the normal form (J) for every U in a
neighborhood of U, because (iii) is an open condition. In particular, this implies that
the eigenvectors Ro and Rk can be chosen off to have smooth extensions that agree
on . Thus, by condition (ii), the integral curves for both Ro and Rk Cut the surface

transversally near the state U,. Specifically, off the surface , Ro
c(1, -(Of/Ou)-l(of/Oa)), where c is chosen to make Ro a unit vector, so that Ro continues
smoothly to Rk (0, rk) on . Finally, condition (ii) implies that the integral curves
of Ro that pass through states Uo in a neighborhood of U, do not cross the
hyperplane a ao at Uo, and this implies that the integral curves of Ro passing through
states Uo must cross the hyperplane a const exactly twice at values of a on one
side of a ao. This follows directly from the following lemma.

LEMMA 3.2. Let U(e) (a (e), u (e)) denote the arclength parameterization of the
integral curve of Ro (ao, to) that satisfies U(O)= U,, and assume conditions (i)-(iii)
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of Theorem 3.1. Then

(3.1) a’(O) 0 and a"(O) V ao Ro VAk" rk
=-0.

u, lk" fa
Proof. The specified integral curve is defined by U’= Ro(U) with U(0) U,. That

is, a’= ao and u’=ro with a(0)= a, and u(0)= u,. In particular, a’(0)=0, since
Ro Rk (0, rk) on . In addition, the integral curve satisfies

(3.2) f(a(e), u(e))=f(a,, u,).
Differentiating (3.2) with respect to e yields

(3.3) f,a’ +fu’ 0.

We write

u’= ci(e)ri(e),
i=1

where ri(e)=ri(U(e)) is the ith right eigenvector offu at U(e). Since u’(0) =ro=rk,
we must have that ci(0)=0 for iS k, and ok(0)= 1. Differentiating (3.3) with respect
to e, we obtain that

(3.4)

However,

and thus

d
faa(a’)2 +fa"+-e {f,u’} 0.

i=1 i=1

d--- {Lu ci( e )Ai( e )ri( E -t- ci( E {/i(E)ri(e)}.
i=1 i=1

At e =0, we have that Ak(0)=0 and a’(0)=0, so that

cl(O)A,(O)r,(O)= E c(O)A(O)r,(O)
i=1 ik

and

u,

{VAk" rk}rkl U,.

Thus evaluating (3.4) at e 0 yields

(3.5) faa"+ Y clAr+{Vk" rk}rk--0.
ik

Multiplying both sides of (3.5) by lk(U,), we obtain that

VAk" rka"(0)
1" f. .,

where we have used the biorthogonality relations lk’ri 0 for iS k and the normaliz-
ation lk" rk 1. This completes the proof. U
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The conditions in Theorem 3.1 imply that the integral curve of Ro that passes
through the state U, (a,, u,) touches the hyperplane a a, only at U, and does
not cross it. Without loss of generality, we assume that a"(O) < 0; i.e., the integral curve
lies below the hyperplane a a, near the state U, (see Fig. 1). By continuity, the
above conclusions hold for all points in in a neighborhood of U,. In particular,
the integral curves of Ro passing through states Uo (ao, Uo) near U, must cross
the hyperplane a al, al < ao exactly twice in a neighborhood of U,, as indicated in
Fig. 1.

The solution of the Riemann problem in a neighborhood of U, is constructed as
follows" Let T(UL) denote the state arclength units from UL along the/-wave curve
of U, 1,..., n. (The /-wave curve of U consists of all right states that can be
connected to U by an admissible/-wave [10].) Since system (1.1) is strictly hyperbolic
for any a, all states in the image of Ti(U/) lie at level aL. For a given value of aR, let
TR(UL) denote the set of all right states at level ag that can be connected to U by
a solution of the Riemann problem consisting of admissible 0-waves and k-waves only,
and let TR(u) denote the point arclength units from along TR(UL). (Choose
to increase in the direction of Ak). We say that a 0-wave that connects U to UR on
the same integral curve of Ro by a contact discontinuity of speed zero is admissible if
the integral curve of R0 does not cross the transition surface between U and UR.
(Admissibility here is equivalent to conservation of the total variation of a in Glimm’s
method (cf. [4], [9], [16]).) The curves TR(uL) are sketched in Figs. 2 and 3. Note
that TR(UL) is a continuous curve at level aR, but is only Lipschitz continuous due
to a possible jump in the derivative at the points labeled Q in Figs. 2 and 3. The
continuity of the curves TR(UL) at the special points Q follows from the triple shock
condition formulated in [5]. Alternatively, note that, for every a <ao, the integral
curve of Ro passing through a state Uo (ao, Uo) intersects the surface a aR ao
at exactly two points, which we can assume to be the points labeled P and Q in Figs.
2(a), 2(b), and 3. Thus the wave that takes UL P to UR Q lies in the hyperplane
a- aR and thus must be a shock wave for the n n system u, +f(aR, U)x--0. Since

a
U. j__ RO=Rk

RO

.- U

FIG.
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aL

aR
P / o"

R

FIG. 2(a)

aR

aL

FIG. 2(b)

aR

aL

P=Q=UT

FIG. 3
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this wave is also a 0-wave, and since Ro Rk at U., the wave from P to Q also must
be a k-wave of speed zero. The continuity of TR(UL) in U-space, as well as the
continuous dependence of waves in x, t-space on UR Tg(UL), follows directly from
this observation. The existence and uniqueness of solutions of the Riemann problem
for arbitrary UL and UR in a neighborhood of U. is accomplished by demonstrating
the existence and uniqueness of values tl,... t, such that

U=T oTg+oTo g-o..T,,_, Ttl(UL).tk+

By definition, the elementary waves corresponding to the TI(Ui) take U to UR as
ranges from 1 to n, and this determines the unique solution of the Riemann problem
near U.. Since the curve TR(UL) is only Lipschitz continuous, the implicit function
theorem is difficult to apply directly to obtain existence and uniqueness of tl," ", t,
for each pair U and UR in a neighborhood of U.. In the next two sections, we verify
existence and uniqueness as a consequence of the existence and uniqueness of intersec-
tion points for Lipschitz continuous manifolds of complementary dimensions. We note
that it is the Lipschitz continuity of the curves TR(UL) that leads to the existence and
uniqueness of solutions of the Riemann problem and to the continuous dependence
of x, t-space on the left and right states U and UR. The Lipschitz continuity of the
wave curves follows directly from the fact that the equations are posed in conservation
form. In the true gas dynamics equations (2.1), conservation fails, and uniqueness of
Riemann problem solutions, as well as continuous dependence on left and right states,
is lost in a neighborhood of resonance (cf. [13]).

In conclusion, the general structure of the solutions in a neighborhood of U. can
be described as follows: to leading order, the waves in the 0, k-characteristic families
correspond to the waves in the Riemann problem solution for the scalar inhomogeneous
equation; the general solution is obtained by preceding these waves by slower waves
from families 1,. ., k-1 and following these waves with faster waves from families
k + 1,..., n. Thus, under our generic assumptions, the Riemann problem solutions of
the scalar inhomogeneous equation determine the leading-order structure of solutions
in the 0, k-family, just as the scalar homogeneous equation determines the local
structure to leading order in each family of a strictly hyperbolic system.

4. Lipschitz continuous manifolds. In this section we define the notion of a d-
dimensional Lipschitz continuous manifold in R with e-approximate tangent vectors.
The main result of the section (Theorem 4.4) is that, under appropriate conditions,
two such manifolds in R with complementary dimensions intersect in a unique point.
We begin by setting our notation.

For any positive integer m, let R denote m-dimensional real coordinate space
with the supremum norm

(4.1) x] --[(X1,""" Xm)[ max {Ix[: i= 1, , m}.

For any x, R" and z > 0, denote the open ball with center x, and radius z by

and let

B(x,, ’r) {x R m’. IX-- X,[ < 7")

Im {X Rm: IX[ < ’} B(O, z).

The standard basis vectors el, , em R are given by ei (0, , 1, , 0), where
the 1 is the ith component.
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Now let n and d be fixed positive integers and suppose that wl, , Wd are linearly
independent vectors in R n. (Necessarily, n _-> d). Since all norms on a finite-dimensional
space are equivalent, there exists a constant Mo->_ 1 that depends upon only Wl, , Wd
such that

for all at =(at1,..., atd)6 R d.
DEFINITION 4.1. Suppose that e, > 0, the function b" Id R" is continuous, and

the vectors w,..., Wd are linearly independent in R". Then d= C(id) is called a
d-dimensional Lipschitz continuous manifold with e-approximate tangent vectors
W,’’’,Wd if

(4.2)
6(t +aej) 6(t)-w <e

a

whenever t, t + ae/6 Id et 0 and 1 -<j =< d. We say also that b defines Md.
We note that condition (4.2) is equivalent to the existence of a point e/ R" that

satisfies

(4.2’) (t+ae) (t)+aw +aej with lejl<_- e.

Before proving the main result, we deduce two elementary consequences of (4.2):
that is Lipschitz continuous and that is 1-1. The latter holds, provided that e is
a sufficiently small positive number. First, we prove two useful estimates.

LEMMA 4.2. Assume that " Id R" satisfies condition (4.2). If t, t + at Ia where
at (at 1," atd ), then

](t+ )- (t)l -< (Mo +
and

d

[b(t+at)-b(t)- wl-dl[.
j=l

Proof The second inequality is a straightforward consequence of condition (4.2’)
and the identity

d d

b(t+at)-b(t)-Z atjwj= E b(t.)-b(t._)-at.w
j=l j=l

d

Z 6(t_ + e)- 6(t_)- w,
j=l

where to-=t and tj---t+= atiei, since t 1d for O<-j<=d. The first inequality follows
from the second and the triangle inequality.

PROPOSITION 4.3. Assume that " Id- R defines a d-dimensional Lipschitz con-
tinuous manifold d with e-approximate tangent vectors Wl, , Wd. Then ch is Lipschitz
continuous. Moreover, if
(4.3) e < (dMo)-1,
then ch is 1-1.

Proof The Lipschitz continuity of b follows from Lemma 4.2. To prove that
is 1-1, assume that there exist s, t Id such that b(s) b(t). Define at =(at1 atd)
Rd by

s-t at lel +" q- atded
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and set to -= t and tj t += aiei for 1 j _-< d. Then tj I a. for 0 =<j < d. Now

d

0 (s)- (t) Y (tj)- b(tj_l)
j=l

d

E (tj_l / cgej) (tj_l).
j=l

By (4.2’), however, (tj_ + ajej) (tj_l) OljWj / ajej, where lejl -< e. Thus

d d

2 2
j=l j=

so that

Mff l l
j=l j=l j=l

This contradicts (4.3) unless s t.
Now consider the intersection of two affine linear subspaces (linear manifolds)

NIk and M2"-k in R" with respective tangent vectors w,. Wk and Wk+,’" W,.
Assume that Wl,’’ ", w, form a basis for R" and that Mo -> 1 satisfies

(4.4) o ,w, <- Mol, l.
i=1

Suppose that UoeM1k and VO]-k and define a--(o1,... an) by

VO O Ol )

i=1

.-k intersect at the unique point UM R" defined byThen M k and M
_

I’IM llO / 20l’iWi )0- OliWi"
i=1 i=k+l

Moreover, the distance between the intersection point and the known points on the
manifolds can be estimated by

I’UM--UOI-’- OZiWi <= Mol,l<-- Mlvo- uol,
i=1

with a similar estimate for UM-
In the case of nonlinear manifolds, the point UM, defined above, gives only an

approximation to the point of intersection, and it may not lie in either of the manifolds.
Consequently, we find the intersection by "projecting" u onto the manifolds and
then iterating this construction.

THEOREM 4.4. Let

(4.5) 6"

define Lipschitz continuous manifolds M kl and M-k with e-approximate tangent vectors
Wl, , wk and Wk+I, ", W,, respectively, where w , w,form a basisfor R". Assume
that

1
(4.6) e<

2nMo
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and that there is a state u, R n, a number p with O< p 1, and points poe Igor and
qo Ik satisfying

(4.7) 6(Po), q(qo) B(u,, 6)

for some positive number 6 <=(1-p)r/(4Mo). Then 1 and -k intersect at a unique
point, and the intersection point lies in the ball B(u,, y), where

(4.8) y 3/(6)=- 6M)6.

Proof First, note that I I-k In. Now define a" In R as follows: for any
point (p; q)11-k, the point a a(p; q)-= (al,’"’, cn) is given by

(q)- b(p) aiwi.
i=1

Also, define ’I- R by

(p; q) (p + . q- c)

where a(p;q)=(a(p;q);(p;q))=(a,...,a; a+,...,a,) and let u=
uM(p; q) R denote the approximate intersection point of the manifolds

u (p)+ Y aw (q)- aw.
i=1 i=k+l

n-kIt follows that the manifolds 1 and 2 intersect at b(p)= q(q) if and only if
ce(p; q) 0 if and only if (p; q) is a fixed point of . We will show that has a unique
fixed point.

First, we prove the existence of a fixed point by iterating . For each (p; q)
Ik I n-k (4.4) yields

I(p; q)l -< Mol w,I-- Mol,(q)- (p)l,
i=1

so that

(4.9)
I(p; q)-(p; q)l ](1;_

--I(p; q)l =< Molg,(q)- q,(P)I.

If (p; q) Ig, then Lemma 4.2 implies that

k

b(p+ a l) b(p) + E Olili "JI- E
i=1

with

(q-a2)=(q)- oziwi+e2
i=k+l

with I=1 (n k)l=[,

Therefore b(p+ O 1) UM(p; q) + el and (q- a2) uM(p; q) + 82. Consequently,

(4.10)
I(q- =)- b(p+ al)l [eli--]-I=1 kl’[ + (n k)l=l

_-< n[[ <- (nMo)l(q) (P)I.
Now define the sequence {(p,, ;qm)} for m 0, 1, 2,... by

(Pm+l qm+l)= dP(Pm qm)
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(For now, we assume that the sequence is well defined; that is, (p" ;q’)E I x In-k
for all m. We verify this later.) We show that the sequence is a Cauchy sequence. From
(4.9) and (4.10) we have that

[(P’+I qm+l)- (Pm q)l- leD(Pro qm)- (P" qm)l

Mol(qm)-(P’)[

and

lP(qm+)- 4,(p.,+,)l (nMoe)l 4,(q.,)- b (p’)l.

The second inequality can be iterated to yield

(4.10),, It(q’)- b (p’) <-_(nMoe)" Itp(qo)- b (Po)l,
and then the first inequality implies that, for any rn => 0, s-> 1,

I(P’+s;q’+s)--(P’;qm)l <= I(P/;q/l)-(P;q)l
j=m

(4.11)

m+s--1

m+s--1 )j)<= (nMoe Mol(qo)-b(po)l

_<-
(nMoe)" Mo](qo) b (po)],
1- nMoe

provided that nMoe < 1. This proves that the sequence is a Cauchy sequence. Denote
the limit by (p; q) and assume that (p; q) E Ik I-k (we verify this below). Since

b and q are continuous, (4.10)" implies that q(q) b(p), so that (p; q) is a fixed
point of @.

To complete the proof of existence, we must show that the sequence is well defined
and that its limit lies in the domain of . Assume that (Po; qo),""", (Pro-1 q’-l) are
in Ik I-k. Then (p" q" is well defined, and, from (4.11), we obtain that

I(Pm q’)--(Po; qo)l=<
1 nMoe

Mo[ q,(qo)- b (po) I.
Consequently,

I(p q)l I(po; qo)l+
1 nMoe Mol(qo)- 4, (po)],

and hence

1I(p; q)[<--](po; qo)l / Mo[(qo)- 4,(po)l.
1- nMoe

The result follows from the choice of e and 6, since Iq(qo)-4(Po)[ <26.
The estimate on the location of the intersection point is obtained as follows. From

(4.11) we obtain that

I(p; q) (Po; qo)l
1 nMoe

Mo] q,(qo)- q(Po)l < 4Mo6.
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Therefore, by Lemma 4.2,

Ib (Poo) b (Po)l <-- (Mo+ ek)4Mot,

so that

Ib(p)- u,I--< (Mo+ ek)4Mo + <-_ 6M&
Now we show that has at most one fixed point. Assume that there are two fixed

points (Pl; ql) and (P2; q_). Then

b(pl) (q) and b(p2)= (q2).

However,
k

b(p2)- q(Pl) ceiwi q- el,
i=1

ff(q2)-P(q,) a,w+ e2,
i=k+l

where a (P2-P, q2-ql) and lell_-< klale levi<= (n k)lale. Subtracting yields

M-’II_-< Y ,,- ,w, -<-nixie,
i=1 i=k+l

and this contradicts (4.6) unless a =0. This completes the proof of uniqueness. U

5. The Riemann problem in a neighborhood of Z. Choose U, (a,, u,) . Since
a is constant along /-wave curves, 1,..., n, it is convenient for us to study the
solution in u-space R instead of U (a, u)-space R "/1. Thus let rl,’’ ", r. denote
the eigenvectors of df at U,. Let vl,’’’, vn_l denote an orthonormal basis for the
tangent space of (a,), where (a) is the (n-1)-dimensional surface in R defined
by (a) {u R n" (a, u) }. Thus

Vl, Vn--1, rk

is a basis for R’. Let Pu denote the projection of u onto span {v,. , v,_l} along rk.
For UL (aL, UL), let Fi(UL), a subset of R", denote the /-wave curve of uL at level
aL. For aL fixed, we let Ti(UL, t)=-- T(UL) denote the point in R" that is arclength
units from UL along F(UL), where we take to be positive along the rarefaction curve
and negative along the shock curve. For fixed aL and aR, let F(UL) in R" denote the
k-wave curve of UL at level aR; i.e., the set of all states UR such that the Riemann
problem UL, UR] is solvable by a 0-wave and a k-wave only. (F(U) is a subset of
R" that is determined by the choice of aR). For fixed aL and aR, we let

TR(uL, t) Tte(UL)
denote the state URF(UL), which is arclength units from the state /S

T

where U T(UL) is given by

u T uL) Fff(UL) fq (aR).

=-u(u),

In other words, ur is the point in R" at which the curve TR(UL,’) intersects the
transition surface at level dR. Again, the function uT(UL) is determined by a fixed
choice of a and dR.

For fixed a and dR, now consider the functions Ti(ut, t), uT(uL), and TR(u, t).
Since (1.1) is strictly hyperbolic and genuinely nonlinear at fixed a, we know that T
is a C2 function of its arguments. As we noted in 2, u 7- is defined in terms of smoothly
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varying integral curves and shock curves, and so it also is a C function of its argument
uL. Moreover, the function TR(uL, t) is continuously diiterentiable except at values
of corresponding to the point Q in Figs. 2 and 3. At this point, TR(uL, ") is only
Lipschitz continuous with a jump in the derivative bounded by Cala-aRI. NOW let
u, UR, a, and aR be fixed. For t (p; q)= (ta,’’’, tk’, tk+a,’’’, tn), define the func-
tions b(p) and p(q) as follows:

Tt,(UL),
(5.1)

((0) TtRk
O(q) T--(k+l)tk+ Tn(UR),

where T;q denotes the inverse of T. Our aim is to show that in some neighborhood
of u., b and define Lipschitz continuous manifolds in R" with e-approximate
tangent vectors Wl,... Wn, where

for j < k;
wj=

rj for j => k.

We can then apply Theorem 4.4 by showing that e < 1/2nMo when we restrict to states
close enough to U..

LEMMA 5.1. There exist positive constants tra,/5a, and C2 such that, if at and aR
lie in {a: [a-a.l< tr < trl} and u and v are arbitrary states in B(u., /5), O</5 </51, then

uT(u)--uT(v)= P(u-v)+ e2,

whcl’c

Proof. This follows directly from the fact that u T is smooth and that u T lies on
the smooth surface . (By definition, u T is obtained approximately by projecting onto

along Ro.)
LEMMA 5.2. There exist positive constants r2, tr2 < ira,/5 </51, and Ca such that, if

0</5 </52 and aL and aR lie in {a: la--a.l< tr < tr2}, then u T is defined for all u in

B(u., /5), TR is defined for all (u, t) in B(u., /5) x Ia with

TR(u, t)- TR(V, t)= uT(u)--uT(v)+ e,

where

le[_-< Cl(r/ )]tl

Proof This follows directly from the fact that the tangent vector to TR(uI, is
equal to rk to within an error of O(1)(tr+/5) (see Figs. 1-3).

Now set urn(t) -= Tt T,(UL). Then, for each positive constant/5 </52, there
exist positive constants/5’ </5, tr < tr2, and < r_ such that if aL {a: la a.[ < tr} and
UL B(U.,/5’), then the Riemann problem at level aL is defined, takes values in B(u.,/5),
and satisfies the condition

(5.2)
Urn(t+ aej)- urn(t)

Rj + O(1)(tr +

whenever t, t + aej I for a # 0 and j 1, , n. The existence of constants/5, tr, and
r follows directly from the local properties ofthe Riemann problem in strictly hyperbolic
systems because (1.3) defines a strictly hyperbolic system at each level at, and these
systems depend smoothly on at.
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LEMMA 5.3. Let 6’< 6 < 6_, tr and " be chosen so that (5.2) holds. Suppose that
uL, UR B(u,, 6) and assume that ai, aR {a" la a,I < tr}. Then there exists a positive
constant Ca such that

(5.3)
(P/ ae) (P)-w

whenever p, p/ ae Ik, for a 0 and 1 <-j <= k.
Proof. First, for j- k, let

Then

and

C3(o" q-- 6)

k-1uu T,_ T,,(u).

(p+ aek) n TRTtk+a(UM)= (UM, tk + 0)

b(p) T,(UM)= Tn(UM, tk).

Thus (5.3) follows directly from the Lipschitz continuity of TR(u, in this case.
Now consider the case where j < k. Then, letting p’= (tl, tk_l) and

Um (pt) k-1Ttk_ Tt,(UL),
it follows from (5.2) that

u,(p’ + ceej) Um(p’)
=rj+ O(1)&

By Lemma 5.1,

u ou,(p’+e)-uou(p’)

Thus, by Lemma 5.2,

(p+ aej)- (p)

as desired.

P(U’(P’+ae)-Um(p’))
Prj + O(1)((r + 6)

w; + 0(1)(o’+ 6).

rR(um(p’+ aej), tk)- TR(um(p’),

p(Um(p’+ae)--Um(p’))
wj + 0(1)(o’+ 6),

We have the following theorem.
THEOREM 5.4. For each positive constant 6 < 62, there exist positive constants C,

6’< 6, tr, and " such that, if ui and UR are states in B(u,, 6’) and if ai and aR lie in

{a: la-a,l<tr}, then the mappings qb and given in (5.1) for It[< " define Lipschitz
n-k with e-approximate tangent vectors Wl, Wk andcontinuous manifolds and 2

Wk+I,’’’" ,Wn, respectively, where e<-C(tr+6). Moreover, and take values in

B(u,,6).
Proof Since the wave curves for a strictly hyperbolic system depend smoothly on

left and right states, q defines a C2 manifold for each UR in a neighborhood of u,,
and thus, in the case of q,, the result follows directly from (5.2). The result for follows
directly from Lemma 5.3. [3
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Now choose 3 < 6 and 0" small enough so that e C(0" + 63) < 1/2nMo, where,
again, Mo is chosen to satisfy the condition

MI[I--< ,,,,---Moll,

Then, for Itl < , and define Lipschitz continuous manifolds M and M-k with
e-approximate tangent vectors Wl,’’’,Wk and Wk+,’’’,W., respectively; so, by
Theorem 4.4, there exists a positive constant 6 (which must be chosen small depending
upon r3) such that, if

B(u,, 6) and -k B(u.,

then and -k intersect at a unique point in B(u,, 7), where

(5.4) ()8M.
We can now prove the following theorem, which gives the existence and uniqueness

of solutions of the emann problem in a neighborhood of the state U,.
THEOREM 5.5. IfUL and UR each lie in B(u,, ), and if laL- a,[ < 3, JaR a,[ < g3,

then there exists a unique solution of the Riemann problem in the class of admissible
O-waves, shock waves, and rarefaction waves taking u-values in B(u,, 3).

Proofi We have that -k= {UM}, where UM lies in B(u,, 83). Thus, by (5.1),

(5.5) , To...
and

T-(+o... T((5.6) u. ,+, u),

for some t g, where [t[< z3 by our choice of 8<< 1. Thus, setting UL (aL, U),
UM (aM, UM), and UR (aR, UR), (5.5) defines the unique solution of the emann
problem UL, UM] in the class of 0-through k-waves taking u-values in B(u,, 83); and
(5.6) defines the unique solution of the emann problem [UM, UR] in the class of
(k+ 1)-through n-waves taking u-values in B(u,, 3). The concatenation of these
solutions gives the unique solution of the Riemann problem UL, UR] in B(u,, 3),
since then

=Tt." T UL.

This completes the proof of Theorem 3.1.
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