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Shock waves in general relativity -

a generalization of the Oppenheimer—Snyder
model for gravitational collapse

&1. In 1939, J.R. Oppenheimer, and H. Snyder, [4], published the
first paper on gravitational collapse. In this pioneering paper, they
gave a mathematical model based on spherically symmetric solutions of
the Einstein gravitational field equations, and they provided rigorous
results which supported the conclusion that “black holes” could form
from gravitational collapse of massive stars. Their method was to use
the covariance of the equations to match two solutions across an inter-
face, thereby providing the first example of a solution of the Einstein
equations having interesting dynamics. However, the 0.5. model requires
the simplifying assumption that the pressure be identically zero. In
this paper, we describe a generalization of the O.S. model in which the
pressure is non-zero. In our case, we replace the boundary surface of
the star in the 0.S. model by a shock-wave interface across which mass
and momentum are transported. We also present a general theory for
matching two solutions of the Einstein field equations at arbitrary
shock-wave interfaces, across which the metric is only Lipschitz contin-
uous; i.e. smooth surfaces across which the metric derivatives have a
jump discontinuity. We apply this general theory to explicitly
construct shock wave interfaces in spherically symmetric solutions of
the Einstein equations, and these provide a natural generalization of
the 0.S. model to non-zero pressure. We also briefly discuss some
interesting mathematical problems associated with Lipschitz continuous
solutions of the Einstein gravitational field equations. Complete
details can be found in [7].

§&2. In this section we shall review the basic notions in Einstein’s
Theory of General Relativity; for a more complete discussion, see, e.g.,

[1,3,8].
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We consider a 4-dimensional space time manifold with metric tensor
g = (gij) having signature nij = diag(-1, 1, 1, 1). The Einstein

field equations are

G = kT, (1)

where G denotes the Einstein tensor, and T 1is the stress-tensor, the
source of the gravitational field. Here k = 8nG/c4, where G 1is
Newton’s gravitational constant, and ¢ 1is the speed of light. 1In a
given coordinate system x = (xo, xl, x2, xa), xo = ct, the metric
tensor has components gij = gij(X)’ which defines a 4 x 4 symmetric
matrix. In this coordinate system, (1) takes the form (in components),

G,. = kT, . , (2)
1] 1)
where
1
G.,=R,. - >Rg.., (3)
ij ij 2 ij

is the Einstein tensor and Rij and R denote, respectively, the Ricci

tensor, and the scalar curvature obtained from the Riemann curvature

tensor for the metric g . The Riemann curvature tensor is given by
i _ i i i o i i
Rice = Ty, e Pk ¥ Tor Uik Tox T (4)

and Rij and R are obtained by contractions:

c o
R.. =R, ., R =R
ij icj (o)
Here we use Einstein’s summation convention, whereby summation is

“ =

assumed (from O to 3) over repeated up-down indices. The notation “,i
denotes differentiation with respect to the variable xi, and all
indices run from O to 3. The F;k denote the Christoffel symbols for
the metric connection determined by g and are defined by

Fﬁk = & Eik,o * Bojk * Bko, 5]

We recall that the Fik define the geodesics associated to the metric
as determined by the equations,
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el WX 120 1,2 3. (5)

The raising and lowering of indices is done via the metric. For

axample,

where glJ denotes the inverse of gij
The Einstein tensor G satisfies the condition div G = 0, where div
denotes the covariant divergence, defined in terms of the covariant

derivative V of the metric connection for g ; 1i.e.,

i i i i o o i
UGy =Gy =6yt Cox 6 k Go -
so that
(div G) . = G* = ¢ +1r° c¢¥ - rr° Gg*.
J jio j,o ot jt o

We remark that div G = 0 holds identically, and thus it follows that
for solutions of (1) we must have div T = 0. The point is that div G
= 0 1is a geometric identity, independent of the Einstein equations (and
holds as a consequence of the Binanchi identities; see [1,3,8]1), while
div T = 0 relies on both the identity div G = 0 as well as in the
Einstein equations (1). For example, in §3, below, we shall consider
the case of a “perfect fluid”; here the stress-energy tensor takes the

form

N 2
Tij = (p + pc )u.luj + pgij , (6)

where p denotes the pressure, u = (ui) denotes the 4-velocity of the flu
particle, and p denotes the mass-energy density, as measured in a

frame of reference moving with the fluid particle. We assume too that

the gas is barotropic; i.e. p 1is a function of p alone; p = plp).

Thus in this case, div T =0 gives 4 additional equations which hold

on solutions of (1). These equations reduce to the Euler equations for
compressible fluids (which express the conservation of energy and

momentum), when g 1is taken to be the flat Minkowski metric, g.. =

1]
nij = diag(-1, 1, 1, 1); see [1,3,6,8].
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It is well-known that shock-wave discontinuities form in solutions of
the compressible Euler equations, [5,6]. In this case, the Rankine-
Hugoniot jump conditions

[Ti.]n. = 0 (7)

Jii

expresses the weak formulation of the conservation of energy and
momentum across shocks. (Here n = (ni) is the normal vector to the
shock surface, and the square bracket denotes the jump across the
discontinuity.) In the development below, we will generalize the OS
model for gravitational collapse by matching two (metric) solutions of
the Einstein equations (1) in a Lipschitz continuous manner. We were
unable to verify the jump conditions (7) directly because these involve
the fluid variables in (6), and a direct verification involves using
div T = 0, which is not an identity, and so cannot be handled without
involving the full Einstein equations (1). However, we will show below
how to bypass this problem, via a general theorem ([7]), showing that
(7) follows as a geometric identity from the corresponding identity div
G = 0, together with geometric constraints on the second fundamental
form defined on the shock surface. The second fundamental form K : T2
— T on a co-dimension-one surface X with normal vector field n

by
embedded in an ambient Riemannian space with metric tensor gij , is a
tensor field defined on £ in terms of the metric, and describes how 2
is embedded in the ambient space. Here TZ denotes the tangent space

of %2, and K is defined by

K(X) = -V,n, X € TZ . (8)
If the metric is only Lipschitz continuous on Z , K 1is determined
separately from the metric on each side. In the next section, we give
necessary and sufficient conditions, (the Israel conditions), for
conservation to hold at a Lipschitz continuous shock interface, these
being given in terms of geometric conditions on the jump in K across
the surface. We conclude that the physical conservation laws are a
consequence of geometrical constraints, built a priori into the Einstein
tensor, together with geometrical constraints describing how the shock

surface is embedded in the ambient space time manifold.
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£3. In extending the 0S model for gravitational collapse, the
following three metrics are relevant; (c.f [8]). First we have

Schwarzschild metric:

ds® = - { (L JdEZ * [ g - 2 ]dF2 + 10 de? (S)
r r

where M 1is a constant and

aQ® = de° + sin°e d¢° ,

is the standard metric on 52 . The metric (S) describes the
gravitational field due to a ball in R3, with no matter outside (empty
space).

Next there is the Robertson-Walker metric:

2
ds® = -dt® + R(1)° [ a2 dQZJ ; (RW)
2
1 - kr
where k 1s a constant, and R(t) 1is called the cosmological scale

factor. The (RW) metric describes a homogeneous, isotropic universe:
no preferred point, no preferred direction.

Finally, we have the interior Schwarzschild metric:

2

ds” = -B(r)dt® + ( g - M)

-1

] dre + T°dQ° ; (1S)
=
this metric describes the interior of a star. Here the following

equations hold:

B, = 2P ( 9)

p+p

—3- =y 7-1
][1 , 4mr’p ][1 _ 2GM(r) ] O (10)

-r° p' () = GM(T)p(T) [1 + =
r

ol ITl

M/ (F) = A4nrp(T) , (11)

where p 1is the pressure and p 1is the density. Equation (10) is
known as the “fundamental equation of Newtonian astrophysics, with
general relativistic corrections supplied by the last 3 factors”; cf.
[8]. Note that (11) implies that M(r) is the “total mass inside the

133

sphere of radius r.

307




Now all 3 of these metrics solve the Einstein equations (1), where T
is the stress-energy tensor of a perfect fluid, given by (6). We
further assume that we have “co-moving coordinates”, so the velocity

vector is given by

(u;) = ( -vg,, " 0,0,0)

Now let$ consider the O.S. problem, ([4]). Namely, we define a
coordinate mapping, (t,r) — (t,r) such that the (RW) metric is equal

to the (S) metric along a 3-dimensional shock surface. The solution is,

(c.f. [4]), to take p = 0, then r = Rr and the matching occurs at the
“surface of the star”, r = a; c.f. Figure 1
(s)
M= plo)a
r 2MG
RrT=g=2 k==
a
Figure 1

One shows, [4], that R{t) vanishes at some finite time TO. Thus
([41), “a fluid sphere of initial density p(0) and zero pressure will
collapse from rest to a state of infinite density in the finite time
Th”. This is the celebrated 0S result, and it gave the first example of
gravitational collapse. Note that there is no pressure inside the star
to possibly prevent collapse.

Now we consider the following problem, ([7]). Namely, we define a
coordinate mapping (t,r) — (t,r) such that the (RW) metric is equal
to the (IS) metric along a 3-dimensional shock surface. We show, ([7]),
that there exists a shock-wave solution for arbitrary equations of state
p =plp) in (RW) and p = p(p) in (IS).1 The shock surface is given
by

M(F) = 413‘- p(t)T> (12)

1
A nongdegeneracy condition must be checked, but is valid e.g. for
p = op.
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nd defines r = r(t) along the shock, (provided that (p - p) # 0; this
s valid if dp/dr < 0.)

Now let’s examine (12) more closely. First consider the lhs. Fix
L; then M(FO) is the total mass inside the ball of radius Fo , wWere

he (IS) solution continued to values of T < Fo' Now consider the rhs.
lef ine M to be the total mass inside a ball of radius r at time t in
he (RW) solution:

~ r 2 AT —3

M = J amp(t) s'ds = - plt) r

0
‘hus (12) implies that M(r) 1is the total mass inside the ball of

-adius 1, at a fixed time t in the (RW) metric. We conclude that
'12) expresses a global conservation of mass principle.

Next, differentiate (12) with respect to t to get the shock speed

. dr _ p(t)r
dt slpl 7
shere [p] denotes p - p. Now in the classical theory of shocks, ([5]),
»nly shocks which move into the fluid with lower pressure are stable;
shocks moving into higher pressure are unstable (rarefaction shocks).
50 if p’ > 0, then the shock is stable if s > 0, and unstable if
5 < 0.
We next turn to an important problem; namely, if 2 metrics match

_ipschitz continuously across a surface I, does the weak form of

conservation of energy and momentum hold across Z ? That is, is

[Tij]ni = 0; c.f. Figure 2.

/N

Figure 2
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Now on solutions of (1), [Tl‘]]ni =0 iff

[Gij]ni =0 . (13)

That is, assume that div G = 0 holds on each side of X, and g is
Lipschitz continuous across . We pose the question: Does G satisfy
the weak form of div G = 0; namely does (13) hold. The answer is no,
in general. But, in our problem, the Lipschitz continuity of g

reduces the 2 conditions (13) to the one condition

[Tij]ninj = 0. (14)
To understand why this is so, we must first discuss the theory of jump
conditions in general relativity.

Thus, suppose we are given a surface S across which a metric
g = g Vv 8 is only Lipschitz continuous (c.f. Figure 2). Recall from
(8) the definition of the extrinsic curvature K; in our case K is
determined separately from the metric g on each side of £ . 1In [7],
the following theorem was proved.

Theorem (Israel). If the extrinsic curvature K is continuous across
Z, then conservation holds; i.e. (13) is valid.

We apply this result to prove the following theorems, (c.f. [7]):
Theorem 2. For spherically symmetric matrices, the extrinsic curvature
K is continuous across £ if and only if [Ti‘j]nin\j = 0.

In fact, we prove that for spherically symmetric matrices, (e.g.
(S), (RW) or (IS)), the smoothness problem and the problem of
conservation are related. To see this, we first construct a Gaussian
normal coordinate system, (wl,---,wn) associated with a surface % in
a neighborhood N of a point Po on . Namely, suppose g has y-
components gij - By a smooth coordinate transformation, we may assume
that T is defined in N by y™ = 0. For PeZnaN let 7 (0) =
P, ép(O) = n , where S 1is arclength, and n is the normal vector.
Define the w" coordinate in N as the “distance from =” as follows

(c.f. Figure 3): 1If yp(s) = Q, set w'(Q) =s. Define
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P pA
>
fo F
Figure 3
i . . i i . i
W coordinates, (i = 1,---,n - 1) by w (P) = y (P), and define w

in N by taking w' to be constant along each yp(s); i.e.

wi(Q) = w'(P) iff Q = 7,(s) for some s and P e .

The coordinates (wl,---,wn) are called Gaussian normal coordinates.
Note that w is only c! related to y because the geodesics normal
to Z are, in general, only C1 curves since the Fﬁk can, in
general, have jump discontinuities on X if the metric match only
Lipschitz continuously on 2. We now have the following theorem ([7]).

Theorem 3. Assume g and g are two spherically symmetric metrics.

g: ds2

~alt, r)dt® + b(t,r)dre + c(t,r)de® |

g ds° = -a(f,r)dt® + b(T,T)dr- + S(T, 0’ ,
that match Lipschitz continuously along a 3-dimensional shock X, and
that there exists a smooth transformation ¥ : (t,r) — (t,r) such that
the matrices agree on the surface r = r(t). (We implicitly assume that

® and ¢ are continuous across X). Assume too that c(t,r) =

c(¥(t,r)), and that the shock surface r = r(t) is mapped to the
surface r = r(t) by ¥(t,r(t)) = (t,r(t)). Finally, assume that the
normal n to £ is non-null, and that n(c) # 0, where n(c) denotes
the derivative of ¢ in the direction n . Then the following are

equivalent:

311




- . 2 1,1

guvg Iis c” in Gaussian normal coordinates, (15)
[61]n, = 0 (16)
JHi ’
[6"Y]n.n, =0, (17)
N
[K] =0 . (18)
Here [f] = f - f denotes the Jump in the quantity f across Z, and

K isthe 2nd fundamental form on the shock surfaces. (To contrast, for
general Lipschitz continuous matrices, [G;]ni = 0 iff both of the

following Israel jump relations hold, (c.f. [2,3,6]):

[(tr ©)° - tr(x)] =0, and [divK - a(tr k)] =0 . (19)

(In these formulas tr denotes the trace, div is the covariant
divergence, and d denotes exterior differentiation on the surface. )
We conclude then, that one condition (17), not two, must be imposed for
conservation to hold, in our problem. Thus if r(t), (where r(t) -

R(t)r(t) ), denotes the shock surface, then a calculation gives

- 2 2
[TInn. = 0= G+ p)r-(pspy) B UL -k | (p-p) 12X~ 0. (20)
i3] A 2 2
R R
-1
(Here A(r) = [ 1 - EE¥£52~] » and B 1is given by (9)). As a check, for

the OS model, p =p =0 so (20) becomes

2
pr2 + P w = 0 , (21)
R

and hence if p > 0, then p=0= f, S0 no solution is possible for
non-zero pressure!

Now in [7], the idea is to fix p,p, and M(F) in the (IS)
solution, and to obtain ordinary differential equations for R(t) and

p(t):

2
ct? is the class of C! functions with Lipschitz continuous
derivatives.
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R® = 22 pR® - k (22)

p = _g—t (pR°) / 3r%R . (23)
Note that if p = p(p), this gives two equations for p and R and
determines a unique solution; thus conservation, (20), need not hold.
However, we take a different approach and allow p to be free, taking
(20) to be an extra constraint. We find that on the shock surface I,

we obtain an autonomous system of ode’s for (r,R):

R = ZI¥ oR® -k (24)

2 2
(5+p)r2_(5+5)§(1_‘k_")+(p-5)(1;k_r_)=0. (25)
R® R

Here the equations (12), (23) and r = Rr are used to eliminate p and
p in terms of r and R.

It remains to study the system of equations (24), (25); in particular
to show that p > 0, in the large; we have proved this locally. The
system (24) can be used to study gravitational collapse; in particular
it is interesting to see if non-zero pressure can prevent collapse.

We have outlined a procedure by which solutions with interesting
dynamics can be constructed out of simple solutions, since the matched
solutions dynamically evolve from one solution to (a coordinate
transformation of ) another solution as the shock surface propagates.
This procedure leads us also to the construction of new cosmological

models.

We remark that many interesting problems arise from Lipschitz
continuous but not c'? metrics. In particular we have an example
showing that there exist Lipschitz continuous shock waves which satisfy
the Israel jump relations (19) across a shock interface, but cannot be
transformed to a C' metric. For such metrics, can we interpret the
Jjump conditions, [Tﬁ]ni = 0, as representing conservation of energy and
momentum? The answer is yes, only in “locally Lorenztian” frames; i.e.
frames where gij(P) = 0, so Fik(P) = 0. In these frames the divergence

theorem holds up to higher order corrections. But for general Lipschitz
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continuous metrics, can one transform to a locally Lorentzian frame?
(The answer is that one can for C1 metrics; in particular for
spherically symmetric metrics). For general Lipschitz continuous
metrics, there can be d-function sources on the shock surface, because
as gij is only Lipschitz continuous, the second derivatives, gij,ke’
can be S-functions. Then the Einstein tensor Gij » and hence the
stress-energy tensor Tij » can also contain 8-functions. Such
d-function sources can serve as sources of energy and momentum, and
hence “physical” conservation can fail to hold. It is thus an issue for
Lipschitz continuous metrics, as to how [T;]ni =0 is to be
interpreted; in particular when does this equality imply conservation?
(For spherically symmetric metrics, in particular for our extension of
the 0.S. case, we show that a c'! matching can be achieved in some
frame, so there are no d-function sources in this frame, and we are able
to construct locally Lorentzian frames; hence [Tj]ni = 0 can be
interpreted as conservation of energy and momentum.) As discussed in
(7], the introduction of Lipschitz continuous metrics also raises
interesting new questions of existence, uniqueness, and admissibility

for weak solutions of the Einstein field equations (1).
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