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A COMPARISON OF CONVERGENCE RATES FOR GODUNOV’S
METHOD AND GLIMM’S METHOD IN RESONANT NONLINEAR
SYSTEMS OF CONSERVATION LAWS*

L. LINT, J. B. TEMPLE}, AND J. WANGS#

Abstract. We obtain time independent bounds on derivatives, prove convergence, and establish
a rate of convergence for Godunov’s numerical method as applied to the initial value problem for a
resonant inhomogeneous conservation law which is treated as a 2 x 2 nonstrictly hyperbolic system.
We compare the results with a corresponding analysis of Glimm’s method and see that our analysis
gives equivalent (sharp) convergence rates in the strictly hyperbolic setting, but an improvement is
seen in Godunov’s method over Glimm’s method in the nonstrictly hyperbolic resonant regime. The
2 x 2 Glimm and Godunov methods are the only methods for which we can obtain time independent
bounds on derivatives; these bounds represent a purely nonlinear phenomenon because there are no

corresponding time independent bounds for the linearized equations which blow up at a linear rate
in time.
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1. Introduction. We consider the initial value problem for the 2 x 2 resonant
nonlinear system of conservation laws

(1)

(2)

U(.’B,O) = UO(-T),

where © € R, a € R, and we let U = (a,u). This is the special case of an n x n
resonant nonlinear system as introduced in [10], [11]. System (1) is a system with the
two wave speeds A\g(U) = 0 and A\ (U) = 8f/0u. Here we consider the problem of
the convergence of the 2 x 2 Godunov method for solutions of (1) taking values in a
neighborhood of a state U,, where we assume (these assumptions were introduced in

(10}, [11})
3) M (U.) =0,
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(4) %Al(U*) 20,
(5) %mm¢&

Condition (3) states that the wave speeds A9 and Ay coincide at U, condition (4) states
that the nonlinear family of waves is genuinely nonlinear at Uy, and condition (5) is a
nondegeneracy condition introduced in [11] that determines a canonical structure to
the nonlinear wave curves in a neighborhood of the state U,. The initial value problem
is more complicated when wave speeds coincide, and one can show that unlike the
strictly hyperbolic problem, in the resonant problem (1), the total variation of the
solution at time ¢ > 0 (a measure of the strength of the nonlinear waves present)
cannot be bounded by the total variation of the initial data in this setting, even for
sufficiently weak solutions. Moreover, the process by which solutions decay to time
asymptotic wave patterns is correspondingly more interesting and more complicated
than in the strictly hyperbolic case [17], [7]. In this paper we obtain time independent
bounds on derivatives, prove convergence, and establish a rate of convergence, for
Godunov’s numerical method as applied to solutions of (1) and (2) in a neighborhood
of such a state U,. The fact that such time independent bounds exist at all is a purely
nonlinear phenomenon and is surprising in that the resonant linearized system blows
up. The analysis in [22] carries over directly to problems (1) and (2), thus providing
a corresponding convergence theorem for Glimm’s numerical method.

We prove that the 2 x 2 Godunov method converges to a weak solution of (1)
and (2) (modulo extraction of a subsequence) by showing that the total variation
of any approximate solution of (1) and (2) at time ¢ > 0 is bounded by the initial
total variation when the total variation is measured under the singular transformation
U : (a,u) — (a, z), which was introduced in [22] (see also [8]). We sharpen the analysis
in [22] that gives a rate of convergence for Glimm’s method, and we use the improved
estimates to conclude that the best rate of convergence of the 2 x 2 Godunov method
implied by our analysis is

(6) R(Uas, ¢) = O(Az?/ 1FP)),

where Ua; = (aaz, uaz) denotes the Godunov approximate solution, p is the order
of contact between the wave curves at the points of coinciding wave speeds, and R
denotes the residual of the weak solution

00 +oo +o00
(7) muszQ[ (U + F(U)ps) dzdt + [ Up(@)po(e) de,

where ¢(x,t) is any smooth test function. We can compare this with the rate of
convergence of Glimm’s method in this problem, which by our methods (sharpening
[22]) is given by

(8) / R(Uarzs ¢)2 da = O(Axl/(1+2p)).
10,1,

Here, Uy, denotes the approximate solution generated by the Glimm scheme, where
a € A =1I[0, 1];; denotes the random sequence which determines the choice of sam-
pling in Glimm’s method. (The rate originally obtained in [22] was Az'/(3+2P) which
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is not correct when p = 0. The improvement here is in estimate (37) of Proposition
3, which refines the estimate obtained in Proposition 6.2 of [22].) Note that when
p = 0, both of the rates in (8) and (6) reduce to the known rate O(Az) for the con-
vergence of these methods in the presence of a total variation bound in the conserved
quantities. (In fact, condition (4) forces p = 2 at the state U,, but we can consider
the more general case p # 2 as well.) We attempt to make a meaningful comparison
of these rates as follows: the error estimate in (8) is given in terms of the integral
of R(Uynz, $)? over the measure space of sampling sequences. Now estimate (8) can
be interpreted as saying that the convergence rate of R(Uyaq, ¢)?, averaged over all
equidistributed sequences (a set of measure one in A), is O(Axz), suggesting that the
average rate of convergence of R(Uxaz,®) is O(Ax!/2). However, the best equidis-
tributed sequences (a set of measure zero in A), give an improvement in convergence
over the average by essentially a power of two (ignoring logarithms); thus we expect
that in the best cases, the convergence of R(Uqaz, ) in Glimm’s method is O(Ax).!
Thus when p = 0, the comparison of the rates (7) and (8) should be valid, suggesting
that (7) and (8) may provide a fair basis of comparison when p > 0. We believe that
there is an improvement in the convergence of the Godunov method over the Glimm
method for p > 0 due to the fact that the averaging in the Godunov method regular-
izes the oscillations that can occur in both methods at the states of coinciding wave
speeds (see [22]). Specifically, the Glimm method is designed to give an accurate time
evolution of elementary waves through an exact calculation of wave interactions. The
problem here is that the coordinate system of wave curves is singular at the points of
coinciding wave speeds, and thus the solution for smooth initial data which is trans-
verse to the wave curves is not well approximated by elementary waves, and so the
piecewise constant approximation scheme generates oscillatory waves that are exactly
time evolved by the Glimm method. The averaging process in the Godunov method
regularizes these oscillations at each time step.

We are only able to obtain the time independent bounds on derivatives for the
2x 2 Glimm and Godunov methods, and have not succeeded in obtaining these bounds
directly by any other 2 x 2 method (including the Lax—Friedrichs scheme), nor for
any of the scalar methods that apply to the system u; + f(a(x),u), = 0. Moreover,
because of the resonant behavior near the state U,, the total variation of u at any time
cannot be bounded by the total variation of the initial data when a is only of bounded
variation, making it difficult to obtain estimates for the derivatives of u directly at
each fixed time. Indeed, (3)—(5) imply that the linearized equations for (1) at the
state U, are given by

at=0)

®) ut + fo(Us)az =0,

and thus it is easy to see that the solution in the linearized case is u(z,t) =
—fo(Us)a/ (z)t + ug(x). Thus in the linear problem, v and all z-derivatives of u blow
up at a linear rate. The results here and in [22] confirm that solutions of the non-
linear problem satisfy time independent bounds on derivatives when uo(-) and a()
are of bounded variation, and this shows that the nonlinear problem is much more
regular than the linearized problem. The methods of Oleinik [19] and Kruzkov [13],

1 Proving this rigorously is an open problem. The conclusion is suggested by the convergence
properties of a single shock. For a rigorous result in this direction, see {24, Lem. 3.3], where, in the
strictly hyperbolic case, R(Uqagz, ) is shown to be at least O(Az/3) for all o except on a set of
measure < O(Axzl/3) .
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which apply to the inhomogeneous scalar conservation law u; + f(a(x), u), = 0 when
a € C?, yield at best Gronwall-type exponential growth bounds on the total variation
in u. Thus it has not been shown that the entropy solutions of Oleinik and Kruzkov
satisfy the time independent bounds that we are obtaining via the 2 x 2 methods.
This appears to be a subtle problem for arbitrary a(-) of bounded variation, because
the argument of Kruzkov is easy to apply only when based on a total variation bound
on u, and the established total variation bound on z does not imply estimates on
the total variation of u when a(-) is not smoother than C!. Counterexamples show
that there is no bound on the rate of blowup of u in the total variation norm that is
based on the C'-norm of a alone. The issue of uniqueness, continuous dependence,
and blowup will be addressed in a subsequent paper, where we will obtain the corre-
spondence of the entropy solutions and the solutions generated by the 2 x 2 Godunov
method by establishing the sharp result that the blowup in the total variation of u
is sublinear when the total variation of ug and of da/dz is finite. The averaging in
Godunov’s method is used to advantage, and no one to date has obtained a total
variation estimate for the conserved variable u based on Glimm’s method. This will
establish, for the first time, the entropy conditions of Kruzkov and the time inde-
pendent bounds on z-derivatives simultaneously in solutions generated by the same
numerical method (Godunov’s method), thus giving the first proof that the classical
solutions of the scalar, resonant inhomogeneous equation u; + f(a(z),u); = 0 blow
up in the z-derivatives of the conserved variables just like the linearized problem, but
satisfy uniform bounds for all time on the derivatives as measured under a singu-
lar transformation that is only meaningful in the nonlinear problem. (See also [23]
where exponential growth bounds on u are obtained under similar assumptions via
an upwind scheme that applies to the polymer equations (see (10) below, an Eulerian
formulation of (1) and (2)).)

A special case of a resonant system of form (1) is obtained in the Lagrangian
formulation of the polymer equations (see [5] and [22])

st + f(sac)x =0,
(10)
(es)e + (cf(s,¢))z = 0.

System (10) is the Eulerian formulation of a model for the polymer flooding of an oil
reservoir, a two-phase, three-component flow in which s represents the saturation of
the aqueous phase, c represents the concentration of polymer within this phase, and
g = f/s plays the role of the particle velocity of water, 0 < s,c < 1. The relevant
constitutive assumption is that g(-,c¢) is positive, convex down, and g(0,c) = 0 =
g(1,¢) [5]. These assumptions imply that the wave speeds Ao = 0 and \; = s?g,
coincide on a curve in state space. The equivalence of system (10) with system (1)
is obtained through the Lagrangian map defined by specifying £(z,t) through the
solution dependent mapping

05(89;’, t) = g({(l‘,t),t),

3
5(30,0)2/0 —l——das.

so(x)

The Lagrangian map takes system (10) to the equivalent system [11]
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thOa

(é)t —g(s,¢)e =0,

which is of form (1) under the identification a = ¢, u = 1/s, and z = £. Since
the state space and wave curves are the same for system (10) and (11), the analysis
of Glimm’s method for (1) or (11) is equivalent to that given in [22] for (10), but
the analysis of Godunov’s method is fundamentally different. Indeed, we are able
to obtain the time independent bounds for Godunov’s method in the Lagrangian
formulation essentially because the contact discontinuities move at zero speed, and
thus the process of averaging at each time step does not involve states on the contact
discontinuities in (11) as it does in the Eulerian formulation (10). As a final comment,
we note that in this paper we address the problem of solving the initial value problem
for (1) by Godunov’s method locally in a neighborhood of a state U, where (3)—(5)
hold. However, the analysis applies globally to the problem (11) under the appropriate
constitutive assumptions.

It is important to note that (6) and (8) give rates of convergence which depend
only on the total variation of the initial data Up(z) = (ao(x),uo(x)) as measured
under the singular transformation W. There is no corresponding time independent
convergence rate provided by the methods of Kruzkov [13] and Oleinik [19] since their
methods do not provide time independent bounds on derivatives and apply only when
a(z) is sufficiently smooth. A study of (1) when a is of bounded variation is equivalent
to studying the time asymptotic wave patterns when a is smooth.

(11)

2. Preliminaries. We now construct solutions of (1) and (2) by the 2 x 2 Go-
dunov scheme. We first review the solution of the Riemann problem and the con-
struction of the singular transformation ¥ as they apply to system (1) near a state
U, satisfying (3)-(5). We rewrite system (1) as

(12) Ui+ F(U): =0,

where U = (a,u) and F(U) = (0, f(u)). Nonstrictly hyperbolic systems of form (12)
were previously discussed in [12], [5], [7]-[11], but the construction of ¥ first given
in [22] applies to the Eulerian formulation (10) of (12), and we now translate those
results into the setting of a resonant inhomogeneous system. We use the notation set
out in [11]. The Riemann problem, denoted [Uy,Ug], is the initial value problem for
initial data given by a jump discontinuity

_ U, ifz<0,
(13) UO(C”)—{ Up ifz>0.

Because (12) is nonstrictly hyperbolic at U = U,, there are in general three waves
that solve the Riemann problem as follows: the eigenvalues of (12) are Ao(U) = 0 and
A1(U) = 8f/0u. In[11] it is shown that the assumptions (3)—(5) imply that A1 (U) = 0
defines a smooth curve I' (named the transition curve) in U-space passing through
the state U = U, in a direction transverse to the u-axis. Moreover, the matrix dF'
has the form

(14) dF:[(l’ 8}
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F1G. 1. Generic quadratic tangency of integral curves.

at each state U € I'. The wave curves for (12) are the integral curves of the eigenvector
fields Ry and R; associated with A\g and A;. The 1-wave curves are given by a = a,
a constant, and 1-waves are determined by solutions of the scalar conservation law
ut + f(@,u), = 0. The 0-wave curves are given by f = const Because of (3)-(5),
in a neighborhood of U,, f = const defines a smooth curve of nonzero curvature
which is tangent to the curves a = const only at the states U € T" in the au-plane;
and the transition curve I' intersects the 0-wave and 1-wave curves transversally at
U,. Without loss of generality and in order to be consistent with [22] and [11], we
assume that fyu < 0 and f, < 0, so that the curves f = const are convex down in a
neighborhood of U, (see Lemma 3.1 in [11]) as diagramed in Fig. 1.

Thus, let B denote a neighborhood of U, bounded above by an integral curve
of Ry and below by an integral curve of Ry, such that the integral curves of Ry are
convex down in B, and such that each integral curve intersects the transition curve
I' transversally at a unique point in B. Assume further that df/da # 0 in B. Our
assumptions (3)—(5) imply that such an open set B exists in a neighborhood of U,.
In [11] it is shown that for Uy, and Ur € B, the Riemann problem [Ur, Ug] is solved
uniquely by at most three elementary waves: a negative speed 1-wave followed by a
zero speed 0-wave followed by a positive speed 1-wave (as seen moving from left to
right in the zt-plane). The condition that a 0-wave cannot cross the transition curve
" serves as an entropy condition [5], [12]. The solution diagrams for the solution of
the Riemann problem are reproduced in Figs. 2 and 3 for the two cases when Uy, lies
to the left and the right of the transition curve I'. The following proposition holds
[11], [22].

PROPOSITION 1. Let B denote a neighborhood of U, bounded above by an integral
curve of Ry and below by and integral curve of Ry, such that the integral curves of
Ry are convexr down in B, and such that each integral curve cuts the transition curve
I’ transversally in B. Then B is an invariant region for Riemann problems in the
sense that if Up,Ug € B, then all intermediate states in the solution of the Riemann
problem [Ur,Ug| are also in B.
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Fic. 2. The Riemann problem for Uy, left of T.

We now define the singular transformation ¥:(a,u) — (a,z) by specifying the
function z = z(a,u). For a given U = (a,u), let Ur(U) be the point where the 0-wave
curve through U intersects the transition curve T, so that Ur € T" and f(Ur) = f(U).
Then Ur is well defined in a neighborhood of U,, and we can define

| ar —a if U lies to the right of I,
(15) 2(a,u) = { a—ap if U lies to the left of T

Since a < ar in a neighborhood of U, due to the convexity of the integral curves of
Ry, we conclude that the mapping

U (a,u) — (a,2)

is 1 — 1 and onto in a neighborhood of U,, and is regular except at I' where the
Jacobian vanishes. We let Var,,Uy denote the total variation of Uy in the variables a
and z, etc. Now let v denote an arbitrary elementary wave, i.e., a 0-wave or a l-wave.

Following [22], we define the strength || of the elementary wave v having left state
Uy, and right state Ug as follows:

|2(UL) — 2(Ug)| 1if v is a 1-wave,
(16) vl =< 2|2(Ur) — 2(Ug)| if v is a O-wave and ur > ug,
4|2(Uy) — 2(Ug)| if v is a O-wave and uy < ug.
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u

FIG. 3. The Riemann problem for UL, right of T.
We say that ~v1,...,v, is a connected sequence of elementary waves taking Uy, to Ur
ifUL=UL, Up=Ugand Us, =U;t,i=1,...,n—1, where U} and U}, denote the
left and right states of the wave ;. For such a sequence vy, . .., vy, define

(17) Py, cm) =) 1l
=1

We use the following proposition which was obtained in [22] for the Eulerian problem
(10), but which is valid for the Lagrangian problems (11) or (1) because the Lagrangian
transformation that takes (10) to (11) preserves the weak equations and thus the
structure of the wave curves in state space. For a proof we refer to [22], [11].

PROPOSITION 2. There exists a neighborhood B of U, such that if U, Ug € B,
then

F([UL,URr]) £ F(m,-- -, ),

where y1,...,7vn 1S any connected sequence of elementary waves in B taking Uy, to
Ug.

Let p denote the order of contact between the integral curves of Ry and R; at
U €T. According to Lemma 3.1 in [11], the assumption that \; is genuinely nonlinear
at U, (assumption (4)) implies that p = 2. However, it follows directly from [22] that
Propositions 1 and 2 apply equally well under the assumptions that the region B is a



832 L. LIN, J. B. TEMPLE, AND J. WANG

neighborhood of U, bounded above in au-space by an integral curve of Ry and below
by an integral curve of R, that the integral curves of Ry are convex down in B and
intersect T' uniquely and transversally in B, and that df/0a # 0 in B, but with the
weaker assumption that the integral curves of Ry and R; make pth order contact at
T'. Thus we can treat the case p > 2 by relaxing assumption (4) and assuming that
our problem (1) is posed in such a region B. We make this assumption from here on
out. Finally, for technical reasons, we assume that B is chosen sufficiently small so
that |da/du| < 1 along each integral curve of Ry in B. All of our above assumptions
hold for B in a neighborhood of a point U, of interest.

3. The Godunov scheme. We now apply the Godunov scheme to construct the
approximate solutions Ua,(z,t) to the Cauchy problem (1), (2) for arbitrary initial
data Up(z) taking values in the neighborhood B of U, and satisfying Var,,Uy(-) < 0o.
In the next section we will establish a rate of convergence of the method in terms of
the order of contact p of the 0- and 1-wave curves at the transition curve I'. First we
discretize R x [0,00) by spacial mesh length Az and time mesh length At such that

At

1
A<
(18) Ay =A< s (Bl )

a,u)€EB

and we let z, = nAz, t; = jAt so that (z,,t;) denotes the mesh points of the
approximate solution. Define

S; = {(l',t) 1 <t< ti+1}~

The approximate solution Ua, generated by the Godunov scheme is defined as follows
[3], [4]: to initiate the scheme at n = 0, define

1 Tj+1

(19) UY = Upny(z,0) = — Up(z)dz, = <z <xjy1.
J Az J,,

Assuming that Ua.(z,t) has been constructed for (z,t) € U?z_ol S;, then we define
Uaz in S, as the solution of (1) with the initial values

Zj+1
(20) Uj" = Une(2,tn) = Ai/ Uz, tp—)dz, z; <z <41
T Ja,
In other words, at each time t,, a piecewise constant approximation Ua,(z,t,) is
obtained by taking the arithmetic averages of Ua.(x,t,—) at each interval of the
mesh, so that the solution in S,, can be constructed by solving the Riemann prob-
lems [UZ,U7* ] posed at each point of discontinuity (z;,t,),j € Z. The Courant—
Friedrichs-Lewy (CFL) restriction (18) ensures that the Riemann problem solutions
in each S,, do not interact before time t,,1 [22], and thus, at each time level t,,+,
the Godunov approximate solution determines a sequence of connected elementary
waves taking Upa,(—00,t,+) to Uag(+00,t,+) in the sense of §3. (Indeed, we will
show that Var,,Ua(-,t) < 4Var,,Up(-), from which it follows that Ua,(—o00,t,+) =
Up(—o0) = U_o and Uny(+00,tn+) = Up(+00) = Uto.) Since the solution of the
Riemann problem in general consists of three waves, we can label these waves as
In={0}:0€e{ij—-1/3,45,7+1/3},{j € Z,n € Z}. Here we let Vi3V Vi3
label the three waves emanating from the mesh point (z;,t,) from left to right in
the xt-plane, respectively (see Fig. 3). Similarly, we label the right and left states of
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the elementary waves so that fy;’_l /3 is the 1-wave that solves the Riemann problem
[U;'l—uU;‘l—z /3], 7 is the O-wave that solves the Riemann problem [U;’_2 /3,U;‘_1 /3],
and v, 5 is the 1-wave that solves the Riemann problem [U;l_1 /3 U7, as labeled in
Fig. 3. We now prove the following theorem.

THEOREM 1. The functional F (defined in (17)), evaluated on the sequences of

elementary waves defined at each time level in the Godunov approzimate solution U,
18 monincreasing in time; i.e.,

F(Jps1) < F(Jp).

Proof. Since Ut = (aj*',u?*") is obtained by averaging Unq(z, tny1-) over

the interval (z;,2;41) as defined in (19), we have that

. 1 [T+
a"tt = a} dx = a}

J Az J,, J

for all'j € Z and
(21) Min{uj_ /3,47, u}yq/3} < u}’"’l < Max{u]_;3,u},ujq/3}-
Thus it follows from Proposition 2 that (cf. Fig. 3)

(22) FIUPH U < FIUPH, Uyl + FIU a0 Uyags) + FIU 2 U

Summing both sides of inequality (22) over all integers and regrouping we obtain

F(Jnp1) =) FU, URH

j+1
Jj€Z
(23) < Z{F[U?H, sl + FUR 5, Uftpoysl + FlU )5 UriY
jez
= AP0} 15 U + FIUPL Uy ja] + FLU 135 Upyagal -
j€Z

By (17),

(24) F[U}l—1/3>U;L+1] + F[U]’.’”“, sl =127 z;’+1| + |Z;'1+1 = 27413l

But for fixed a, the variable z is a strictly increasing function of w, thus it follows
from (21) that

(25) Min{z;’_l/3, zy, z;‘+1/3} < z?“ < Max{z;'_l/3,z;‘, Z?+1/3}§

and thus from (25) and simple inequalities for real numbers we have

1
|Z?—1/3 - Z?+l| + |Z;L+ - ?+1/3| < |z?—1/3 =z + |25 — Z;L+1/3|

(26) = FUJ 5, U]+ FUP, U 5]
Therefore, substituting (24) and (26) into (24) gives

F(Jni1) = 3 FIUI, U2
JEZ
(27) < SO{FW 15 UP) o+ FIUR, U]+ FIUR 15 U]}
JEZ

= S FIUP, Ul = F(J),
JjEZ
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thus completing the proof of Theorem 1.

By the same argument given in [22], we can conclude from Theorem 3 that
Var,,Ua, is uniformly bounded in Az and At; and similarly we can obtain that the
approximate solutions Wa, = (aaz, zaz) are L' Lipschitz continuous in time. There-
fore, by a standard compactness argument [2], there exists a subsequence Wa,, (z,t)
that converges boundedly almost everywhere in the upper half zt-plane. The continu-
ity of U~! and the fact that by Proposition 1, Ua.(x,t) € B for all (x,t), imply that
Uag, converges boundedly almost everywhere to a function U. By a general theorem
due to Lax and Wendroff [15], U must be a weak solution of the Cauchy problem (1)
in the sense that

R(U,¢) = lim R(Uss,,¢)=0.

We thus obtain the following result regarding the convergence of the Godunov nu-
merical method in the resonant regime.

THEOREM 2. The 2 x 2 Godunov numerical method converges boundedly and
pointwise almost everywhere (modulo extraction of a subsequence) to a weak solution
of the resonant nonlinear system (1.1) for arbitrary initial data in N which is of
bounded variation in a and z. Moreover, the solution is regular in the sense that it
remains in N for all time, is uniformly Lipschitz continuous in the L'-norm generated
in az-space, and satisfies the time independent estimate

(28) Var, U(-,t) < 4Var, . Uy(-).

In particular, (28) is a time independent bound on the derivatives of the solution.
Note that because 9z/0u = 0 on T, Var,,(U) < Varg,(U), but (28) does not provide a
bound on the total variation of the conserved quantities U. Indeed, counterexamples
[22] show that, just as in the linearized problem (6), the Var,, (U(-,t)) cannot be
bounded uniformly by Var,, (Up) for solutions of the resonant nonlinear problem (1).

4. Rate of convergence. In §3 we showed that a subsequence of the Godunov
approximate solutions Ua,, converges globally to a weak solution U under the as-
sumptions of Theorem 2. In this section we give a rate of convergence of the residual
R(Uay, ®) which applies to any sequence of mesh lengths Az — 0. We prove the
following theorem.

THEOREM 3. Assume that the integral curves of Ry and R; make pth order
contact at each point U € T B in the au-plane, and assume that Uy satisfies the
assumptions of Theorem 2 (Var,,(Up) < 0o, Up(z) € B). Let Up,(z,t) be the approz-
imate solution generated from Uy by Godunov’s method for the resonant nonlinear
system (1). Then the following error estimate holds:

(29) D(Az,¢) = |R(Uag, ¢)| < CAgY/#P+D,
where C' is a constant depending only on Var,,(Uyp), || ¢ ||c1, and d = diam(Supp{¢}).

Proof. Since Ua.(,t) is an exact weak solution of (1) in each strip S, = {(z,¢) :
tn <t <tpt1}, n € ZT, the following estimate holds:

D(A-’L';d)) = Z/mﬂ—l ¢(.’L’,tn)[UAz($atn_) - UAm(fl',tn)] dx
n,j v %i
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_ Z {/xj+1¢ x], )[UAx tn—) — Ung(z,tn)] dz

n,j J

4 [ 900 t0) = 601t Va1 -) ~ U“(x’t")]dx}

J

Il

(30)

E Dnj )
n,j
where

31) Dy, = / T (s ) = 35 6)) U e (@ tn—) — Una(, )] da

i

and we have used (20). But since Ua, = (aaz, uaz), We can estimate

Dugl <119 llor Ao [ Vel 1) - Unala, )] d
(32) < C(A:E)zVarau{Unj},

where U,; = Up;(x) denotes the restriction of the function Uay(z,t,—) to the inter-
val (z;,2;41), and Vare,{U,;} denotes the total variation of U,;(z) in terms of the
variables a and u over the interval (z;,x;11]. It follows from (31) and (30) that

(33) D(Az,¢) < C(Az)* Y Vargu{Un;},
(n,7)€O©

where © denotes the set of mesh points such that ¢ # 0 forsome z; <z < xj11,t =y,
and C is a constant depending only on ||¢|lc:. We now estimate (33) in terms of
Vare.{U,;}. To this end, denote by S(e) the strip in the au-plane consisting of all
points whose u-distance from I' is strictly less than e. Because we assumed at the
outset that B was chosen small enough so that the integral curves of Ry and R;
intersect I uniquely and transversally in B, we can conclude that an elementary wave
in B can intersect the boundary of S(€) at most twice inside B for e sufficiently
small. Now Up;(x) is a function of x € (x;, ;1] whose image consists of states
in the approximate solution Uaz(z,t,—) that occurs at the interval (z;,x;41]. Let
R = R(Az,€) denote the set of all indices (n,j) € © which index the Uy (x) whose
images lie strictly within S(e), and let R denote the complement of R in © (cf. [22]).
Thus we can partition the sum in (33) according to whether (n, j) € R or (n,j) € R,
and write

(34) D(Az,¢) < C(Az)? Y Varg,Un; + C(Az)® > VarguUn;.
(n,j)ER (n,j)ER

The first sum is estimated as follows: for e sufficiently small, the au-variation in any
one Riemann problem solution, which is contained entirely within S(e), is dominated
by its variation in w (recall that we assume that da/du < 1 along the integral curves
of Ry in B), and since there are at most three waves in Unz(z,t;—), ¢ € (z;,%;j41),
this variation must be dominated by 5e. Therefore we have

(35) (Az)* Y Varg,Un,; < Y 5e(Az)?

(n,j)GR (n7j)€R
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But since d = diam{Supp¢}, there are no more that (d/Ax)? nonzero terms in this
sum, and so

(36) (Az)? )" Varg,Up; < 5d%.
(n,j)ER

We now estimate the second sum in (34) with the aid of the following proposition.
PROPOSITION 3. If the function U,;(x) is not entirely contained within S(e) and
the curves f = const and a = const make pth order contact an I', then

(37) Vara,Unj < O(1)e P Vara: {Un;} + be.

Assuming Proposition 3 (whose proof we postpone until after the proof of Theo-
rem 3), we complete the proof of Theorem 3 as follows: first obtain (the summations
are restricted to (n,j) € O if not indicated)

C(Az)? Y Vara,{UR,} < C(Az)> > {O(1)e PVare.{Un;} + 5¢}
(n,j)ER (n,§)ER
<O()(Ax)* ) € PVarg. {Un;} + C(Az)* Y be
n’j nij
= 0(1)(Az)? Y e PVar, . UR, + C(Ax)* > 5e
n n,j

(38) < O(1)(Aze™ + ).

Here the fact that the total variation of Ua,(z,t) in a and z is bounded, and that
there are only (d/Axz) ™! nonzero terms in the summation over n and (d/r) 2, nonzero

terms in the summation over n and j are used. It now follows from (34), (36), and
(38) that

(39) Dz < O(1)(Aze™ +€).

We can minimize the right-hand side of (39) by choosing ¢ = Az'(®*+1) and so
conclude that

Daz < O(1)(Az)Y/(PHD),

This completes the proof of Theorem 3, once we give the proof of Proposition 3.
Proof of Proposition 3. We first consider the case U,;(z,t) is entirely contained

in S(e) (the complement of S(¢) in B). For this case we prove that

0z(a,u)
Ou

> 0(1)e?

for all (a,u) € S(e). We recall that the mapping ¥ : (a,u) — (a,2) is a 1 — 1
smooth function defined on B, which is regular except at points on I". Moreover,
by assumption, the f = const curves (the integral curves of Ry) describe the convex
down function of v in B, which take a maximum value of a on I'. Thus, let

ar(u) = a(f,u)
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denote the value of a which corresponds to given values of f and u, so that for fixed f,

ay(-) describes the f = const curve as parameterized by u. The curve ay(: ) is smooth,
convex down, and takes a maximum value of a at the unique value of u = u'’ = u (a, f)
where (af(ul),u") € T'. The assumption that the f = const and a = const curves
make pth order contact on I" in B means that there exists a constant M;, depending
only on the function f(a,u) and the set B, such that

(40) a!Wh) =0, i=1,...,p,
1 (p+1),, T

41 < a? u )< M

( ) Ml—— f ( )—— 1

for all f. Here, agf) denotes the ith derivative of the function ay with respect to
the variable u, and we restrict the values of all variables to those defined on B. In
particular, this implies that

¢

9f 0 i
(42) 8ui(“’“)‘0’ i=1,...,p,
1 6p+1f
(43) W, < W(a’u) < My

for all (a,u) € B since we have made the assumption that df/da(a,u) # 0 in B. To
see this, note that if we partial differentiate the identity

(44) a = a(f(a,u),u)
with respect to u holding a fixed, we obtain
Oa Of o
afou O D) =0;
and so for (a,u) € I'( B we obtain (da/df # 0),
of
45 — =0.
(45) 50 = 0

Differentiating (44) twice with respect to u and using (45) yields
o _
ou?

for all (a,u) € T'. Continuing we conclude that

o' f .
(9ui =Y, Zzla"*)p,

and

Ba Pt f (i)
afowit Tof (W =0

for all (a,u) € ' B from which (42) and (43) follow.
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Now the function z(a,u) defined in (15) can be equivalently given by

_ [ ap(u?) —a if U lies to the right of T,
(46) #(a,u) = { a—ag(ul) if U lies to the left of I,

Consider, then, two points (a,u1) and (a,us) in B which are outside of S(e). Without
loss of generality, assume u; < ug lies to the right of T". Let fi = f(a,u1), f2 = f(a, uz)
and let ug, ul, and u} be such that (a,uo), (af, (ul),u!), and (ay,(u}), u}) all lie on
I'. It follows from (46), that

|z(a, ug) - Z(avulf)l = |a'f2(ug) —af (u£)|
(47) > —lag, (ub) — ag, ()] + lag, (u}) — ag, (u)].
But
lag, (uh) — ag,(u])] < O)aP ™V |uf — uf [P+
(48) S 0(1)'2(&, Ug) - z(a,ul)l,

where we use the fact that I" cuts the lines u = const transversally at each point.
Moreover,

|af2(’u’ll-‘) —af (u¥)| = la(f%u{) - a(f17u¥)|

(19) > 00) [ 227,082~ 1)
But
of
(50) f2 = fi = fla,u2) — fa,u1) = 0(1)%(&“1)(”2 - up)
and
oL (a,u1) = 5L a,) = 2L (a0)

6P+1f »

(51) = O(l)m(a,uo)(ul — ug)?,

whenever |u; — ug| < € for some € sufficiently small. Now for |u; — ug| > € we know
that |0z/0u(a,u1)| > 0, and thus by compactness we can obtain

> Const(€)eP.

1s)
\a—z(a,ul)

Thus we need only consider the case [u; — ug| < € Then from (49)-(51) we have
(52) lag,(u1) = ag, (u1)] = O(1)e? (uz — w),
since |u; — ug| > €. Putting (52) and (48) into (47) gives

(14 0())|2(a,uz) — z(a,u1)| = O(1)e?(ug — u1),
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from which the desired result

0z(a,u)

u

(53) > O(1)e?

follows, the constant O(1) being independent of e. Thus, if the function U,; takes

values entirely within S(e), statement (53) implies that

(54) Varg, {Un;} < O(1)e PVar,,{Uy;}.

We now consider the case when Up;(x) takes values in both S(e) and S(e). Since
Unj(z) = Unz(-,tn), * € (xj,2;41], by construction, the values of U,; lie on the
connected sequence of elementary waves 7;‘;11/3, 7?;21/3, 'y;’;ll (see Fig. 3). The three
wave curves corresponding to these elementary waves make a continuous curve in the
au state space, and, by assumption, this curve must meet the boundary of S(€) at
least once, and at most four times. Note here that we use the assumption that B is
a small enough neighborhood of T, so that the 0- and 1-wave curves in B intersect I’
uniquely and transversally in B, as well as the entropy condition that the 0-waves do
not cross I'. Thus we deduce that

(55) Varau{Unj|g(E)} < Be,

where Uy|g(ey denotes the restriction of Uy,; to the values it takes inside S(e); and by
(54) we have

(56) Vargu{Unjls} < O(1)e PVarg,{Un;}.
Inequalities (55) and (56) give
(57) Varg,{Un;} < O(1)e PVar,,{Upy;} + be.

This completes the proof of Proposition 3.

Proposition 3 is a refinement of the inequality obtained by Temple [22]. There
the respective inequality is

(58) Vara,{Unj} < O(1)e” P DVar, {U,;} + O(1)e.

The improvement in inequality (57) over (58) implies a better convergence rate for
the approximate solutions Usa, generated by Glimm’s method, as analyzed in [22].
In this case we define

+o00

oo + 00
(59) D(Az,a,) = /0 / (Unnate + F(Uans)ds) de dt + / Uo(2) o (x) da

— 00

Then the analysis in [22] using (57) in place of (58) gives the following result on the
rate of convergence of Glimm’s method.

THEOREM 4. Assume that the integral curves of Ry and Ry make pth order
contact at each point U € T\ B in the au-plane, and assume that Uy satisfies the
assumptions of Theorem 2 (Var,,(Up) < oo, Up(z) € B). Let Usnx(z,t) be the ap-
proximate solution generated from Uy by Glimm’s method for the resonant nonlinear
system (1). Then the following error estimate holds:

(60) ID(Az, -, $)[13 < O(1)(Az)"/CP+1),
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where | D(Az,-,¢)|13 = [, D(Az, o, ¢)*da, and o € A where A denotes the measure
space product A =[], ;[0,1], each [0,1] equipped with Lebesgue measure [2].

As indicated above, the rates obtained in Theorems 1 and 2 are correct for the
strictly hyperbolic case p = 0, thus indicating that they may provide a basis for com-
paring the convergence rates of the Glimm and Godunov methods in the nonstrictly
hyperbolic case (1) as well.
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