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CONVERGENCE OF THE 2x2 GODUNOV METHOD FOR A
GENERAL RESONANT NONLINEAR BALANCE LAW*

ELI ISAACSONt AND BLAKE TEMPLE

Abstract. We introduce a generalized solution of the Riemann problem for a general resonant
nonlinear balance law, and we prove the convergence of the 2 2 Godunov numerical method based
on these solutions. In particular, we obtain generic conditions that guarantee a canonical structure
for the elementary waves in the solution of the Riemann problem, and an interesting multiplicity of
time-asymptotic wave patterns is observed and characterized.
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1. Introduction. We study the initial value problem

+ a,
(1)

U(x,O) Uo(x),

for the system

at =0,

ut + f(a, u)x a’g(a, u),

da(where a’- ax -) in a neighborhood of a state U, (a,, u,) where the nonlinear
wave speed f vanishes. Here, U (a, u), )r (0, f), G (0, a’9), and a a(x)
is an inhomogeneous term that is treated as a variable (so that (2) is a system of two
balance laws) to express the dependence of the time-asymptotic wave patterns on the
inhomogeneity, and as a first attempt to model systems of this form.

In this paper we define a generalized solution of the Riemann problem for system
(2), we isolate generic conditions on the functions f and g that guarantee a unique
canonical structure to the elementary waves that appear in the solutions near U,,
and we construct the solution of the Riemann problem in a neighborhood of a state
U, under these generic conditions. Because of the inhomogeneous term in (2), there
exists a multiplicity of solutions to the Riemann problem, (cf. [18], [19]), and here we
introduce a new admissibilty criterion for Riemann problem solutions of (2). In the
final section we prove the convergence of the 2 x 2 Godunov numerical method [3] based
on these admissible solutions of the Riemann problem, and time-independent bounds
on solutions as well as convergence (after extraction of a subsequence) is proved when
a(x) is an arbitrary function of bounded variation. Because of the appearance of a
delta function in (2) when a is discontinuous, there is no classical weak formulation
of (2) when a is discontinuous, but in the final section we prove that the limits of
the converging approximate solutions generated by the 2 x 2 Godunov method do
converge to weak solutions of (2) when a is Lipschitz continuous.
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Note that one can replace f(a, u) by f(a(x), u) in (2), in which case (2) reduces
to a scalar conservation law with z-dependence. Our point of view here is to study
(2) as a 2 x 2 nonstrictly hyperbolic system, and in this paper we characterize the
generic structure of the time-asymptotic wave patterns (the solutions of the Riemann
problem), and analyze the effects of implementing these elementary wave patterns in
the 2 x 2 Godunov numerical method. The theory of scalar conservation laws does not
apply to numerical methods which are based on the elementary waves for (2) when (2)
is treated as a resonant nonlinear system. The presence of the coinciding wave speeds
allows for oscillations to develop in solutions, and, in particular, this implies that the
total variation of a solution u(z, t) at time t > 0 can be arbitrarily large relative to both
the total variation of the initial data u(x, 0) and the total variation of a(z), the latter
being a measure of the strength of the sources. This makes time-independent bounds
on solutions that much more interesting in the presence of resonance. Moreover,
when (2) is treated as a resonant nonlinear system, standing waves near points of
coinciding wave speeds approximate rarefaction shocks of the scalar conservation law,
and because of this, spurious oscillations can appear in numerical methods based on
solutions of the Riemann problem, and entropy estimates from the scalar theory are
difficult to obtain. Our interest in the Godunov method stems from the fact that the
averaging step in the Godunov method has a regularizing effect in that it tends to
wipe out the numerical oscillations that appear in the Riemann problem step of the
method, and this was proven to be the case in [16] under the restriction g 0. In 4
of this paper we obtain time-independent bounds on approximate solutions generated
by the 2 x 2 Godunov method for (2), using the generalized solution of the Riemann
problem which we establish in 3. Thus we believe that (2) is of considerable interest
because it is a canonical, nontrivial setting in which the phenomenon of oscillations
in solutions of resonant nonlinear systems appears and can be analyzed (of. [12], [14],
[71, [0], [31).

The conditions on the functions f and g that give the generic structure of ele-
mentary waves near U, are that f and g be smooth and satisfy:

(a)

(4)

()

()

and

f(u,) #o

(u,)- A(u,) # o

f,,(u,) o

f(u,) =0,

(we assume f(U,) < 0),

(we assume g(U,)- f(U,) > 0),

(we assume f(U,) < 0),

(7) 9(u,) o.

The structure is qualitatively different for g > 0 and g < 0, and a complete
description of the structure of the elementary waves (shock waves and rarefaction

waves), in a neighborhood of U. is given in both cases. In the case 9 =- 0, the system
(2) reduces to

(8) ut + f (a, u)x O,

and the canonical structure of the waves presented in [10] for system (8) is obtained
from the ones given here in the limit g 0. Note that when a --constant, so that
a’ 0, the solutions of (2) solve the equation (8), which is a scalar conservation law
because a is fixed.
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The structure of asymptotic wave patterns is understood in terms of the solutions
of the Riemann problem, i.e., the initial value problem with initial data given by the
jump discontinuity

UL ifx <0,
(9) v0()= v ix>0.

The presence of the inhomogeneous term ag in (2) introduces nonuniqueness of so-
lutions of the Riemann problem. This nonuniqueness results from a multiplicity of
time-asymptotic wave pattens to which solutions will decay as t - c for given states
UL and UR at x -c and x +e, respectively. Analogous multiplicities are ob-
served in nozzle flow and in shallow water flow down a ramp [1] (see also [2], [4]-[6],
[9], [11], [19]). Our procedure is to construct a nonlinear functional F that generalizes
the functional F defined in [22]. We use this functional as an entropy condition to
pick out a set of admissible solutions of the Riemann problem. This functional assigns
an "F-value" to every nonlinear wave, and we choose the admissible solutions of the
Riemann problem as the ones that minimize the total variation in a as well as the
"F-value" of the waves in the solutions. (Our admissible solutions are in general not
unique.) We use this minimization property to show that the sum of the F-values of
the waves in a solution at a given time level is monotone decreasing in time in the ap-
proximate solutions generated by the 2 2 Godunov method based on the admissible
solutions of the Riemann problem given here. In particular, this implies the stability
of the scheme (in the total variation norm defined in terms of the singular coordi-
nate system of wave curves), as well as the compactness of the approximate solutions.
Since the functional F measures the strength of a wave, our results demonstrate that
a finite amount of wave strength is generated in solutions of (2). This helps explain
why, as waves interact due to the nonlinearity of wave speeds, we expect solutions to
decay to time-asymptotic wave patterns. In particular, we observe that, unlike linear
equations that blow up in the presence of resonance, we expect the general resonant
nonlinear system with source terms to exhibit decay instead of blowup.

Note that there is no general weak formulation of (2) when a is discontinuous,
and so our solutions of the Riemann problem are actually generalized weak solutions
of (2). In 4 we show that the solutions generated by the 2 2 Godunov method arc
bounded and converge (modulo extraction of a subsequence) and are weak solutions
of (2) in the case when a is Lipschitz continuous. Also, it is interesting to note
that the solutions of the Riemann problem in general contain four elementary waves,
whereas at most three were observed in [10] when g 0. Equation (6) implies that
(8) is genuinely nonlinear for each fixed a in a neighborhood of a, when u is in a

neighborhood of U,. For definiteness, we assume that

(10) f(U,) < 0,

to be consistent with [10]. A nonlinear hyperbolic wave is a solution of the Riemann
problem for the scalar conservation law (8) in which a is constant.

2. Preliminaries. To begin, we first show that system (2) has standing wave
solutions that can be rescaled into discontinuities; thus, these waves can be treated
as elementary waves as in the theory of hyperbolic conservation laws.

Let (a(x), u(x)) be a standing wave (i.e., time-independent) solution of (2). Then

d
d--f a’9,
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which is equivalent to

fada + fdu gda.

We rewrite this as

(11) (fa g)da + fdu O.

The nondegeneracy assumption (5) implies that fa g 7/= 0 in a neighborhood of U,,
and therefore (11) is equivalent to the autonomous ODE

da fu(12)
du g- f

This equation has a unique solution through each point in a neighborhood of U, in
the (a,u)-plane. Thus, for any solution a as(u) of (12) and any smooth function
V)(x), the curve u (x), a as(v)(x)) is a standing wave solution of (2). Moreover,
if aL as(UL) and an as(un), then the standing wave discontinuity

; (aL, UL) if X < O,
(13) U(x,t)

(an, u) if x > O,

is obtained as a limit of smooth solutions; specifically, if (z) -- 0(z) where

f UL if x < 0,
o(x)

un if x > O,

then U (as(99(x)), 9(x)) -- U(x,t). We view the standing wave discontinuities
defined in (13) as elementary waves (in fact, contact discontinuities) for system (2).
In 3, we construct the general solution of the Riemann problem for (2) (in a neigh-
borhood of U,) in the class of standing waves and nonlinear hyperbolic waves. In
4, we prove the convergence of the 2 x 2 Godunov method based on this generalized

solution of the Riemann problem.
The standing wave curves are solutions of (11). Note that for a standing wave,

da
(14)

du

Moreover, if da/du 0, then

0 if and only if f 0.

d2a f(15)
du g- fa

< O.

Thus, d2a/du2 < 0 in a neighborhood of U,.
DEFINITION 1. The transition curve T associated with system (2) is the set

(16) o}.

Since fu 0, the implicit function theorem implies that (in a neighborhood of
U,) 7- is a smooth curve passing through U,, which we denote by

(17) u uT(a).

The curve T comprises the states near U, for which the nonlinear wave speed is zero.
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By (14) and (15), the standing wave curves - (a(u), u) (in a neighborhood of
U,) are convex down, cross 7- transversally, and maximize a on 7-. (See Fig. 1.)

We now define the 0-speed shock curve corresponding to a given standing wave
curve. By our choice of signs (f < 0 and g- f > 0), the entropy shock waves (see
[21]) for the scalar conservation laws (8) jump always from left to right in the (z, t)-
plane and (a, u)-plane simultaneously; thus, by the Rankine-Hugoniot jump relation
for shocks,

the 0-speed shocks (s 0) cross T from left to right at a constant value of f. By (6)
and (14), the curves f constant (near U,) also are convex down in the (a, u)-plane,
taking a maximum value of a on T. (See Figs. 1 and 2.) Since f < 0 and f 0 on

T, f decreases with increasing a along T.
Now, for a given standing wave a a(u) and a given state (a, u) on the standing

wave to the left of T (i.e., < u(a)), define and g such that the states (a, g)
and (a, g) lie to the right of T at the same a-level and lie, respectively, on the same
standing wave curve and constant f curve as the state (a, ). That is, g satisfies

(18) a(g) a(u),

and g satisfies

(19) f(a, ) f(a, ).

DEFINITION 2. Let a a(u) be a standing wave. Then (assuming f < 0), the
O-speed shock curve corresponding to standing wave a is the curve

 r(a)

T

FIG. 1. The qualitative shape of both the standing wave curves and the curves of constant f.

O-speed

q ."shock curve

Standing

.1__ 1 wavecurve

FIG. 2.
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(When f > O, we change to u >_ uz-(a) and z <_ u-(a).)
LEMMA 1. If gu < O, then for each standing wave a a(u), the corresponding

O-speed shock curve lies to the right of the standing wave curve in the (a, u)-plane.
That is, if (a, u) satisfies a a(u) with u < u-(a), then

(20) f(a, ) < f(a, (t) f (a, u).

If gu > 0, then the corresponding O-speed shock curve lies to the left of the standing
wave curve in the (a, u)-plane. That is,

(21) f(a, t) > f(a, ) f(a, u).

Proof. Let a as(u) denote a given standing wave, assume that aL as(UL)
where (aL, UL) lies to the left of T, and let L and L satisfy (18) and (19), respec-
tively. Let aM a(UM), where (aM, UM) is the unique point where the standing
wave crosses T. (See Fig. 2.) Also, let aL(u) and aR(u) denote the restrictions of

a(u) to UL U UM and UM <_ u <_ u tL, and let uL(a) and u(a) denote their
inverses. Then

(22) ,u) du

a(u)

a(uc)

g(a, UL (a)) da +
r
i
Jas(UM)

g(a, uR(a)) da

{g(a, uL(a)) g(a, uR(a))} da,

where we have used as(uR) aL a(UL). Therefore, if g < 0, then g(a, uL(a)) >
g(a, un(a)) for a a(UM), SO that by (22)we obtain

0 < If]- f(a(uR), un)- f(a(uL), UL)

f(aL, tL) f(aL, UL)

f(aL, L) f(aL, L).

This, together with the assumption fa < 0, implies that the 0-speed shock curve lies
above and to the right of the standing wave curve as(u) (see Fig. 2). The proof for
the case gu > 0 is similar. []

3. The Riemann problem. We now construct the solution of the Riemann
problem (2) for arbitrary left state UL and right state U in a neighborhood of U..
The solution consists of standing wave discontinuities and nonlinear hyperbolic waves,
as in the classical theory of conservation laws [13], [21], [8]. The presence of the
inhomogeneous term ag in (2) introduces a nonuniqueness of solutions of the Riemann
problem.
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In Figs. 3-6 we give the admissible solutions of the Riemann problem. The
nonlinear waves satisfy the standard entropy condition for the scalar conservation
law (8); cf. [21]. As a further entropy condition, we require that solutions of the
Riemann problem have a total variation in a (along the standing wave curves in the
solution) no larger than laL--aRI. (This ensures that no additional variation in a(x) is
introduced into numerical solutions based on these solutions of the Riemann problem.)
In the case of an individual standing wave discontinuity, this entropy condition implies
that a is monotone in a smooth standing wave approximation of the discontinuity. An
equivalent requirement is that standing wave discontinuities do not cross T [8].

Even with these entropy conditions there is a multiplicity of solutions of the
Riemann problem. To obtain the compactness of solutions generated by the 2 x 2

F. 3. gu < 0, UL < uT(aL ).

FG. 4. gu < 0, UL > uT(aL).
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FIG. 5. gu > O, uL < uT(aL).

FG. 6. g > 0, UL > uT(aL).

Godunov method (based on these admissible solutions of the Riemann problem) in
the next section, we impose as a further condition that the functional F defined
below (in analogy with the functional introduced in [22]) be minimized on the waves
in the admissible solution of the Riemann problem. This final condition still does
not lead to uniqueness. However, any further choice does not affect the compactness
of the approximate solutions. We note also that the F-value of admissible solutions
depends continuously on Uc and UR even though the waves change discontinuously
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in the (z, t)-plane. This reflects an interesting instability in the time asymptotics of
solutions of (2).

We define F and the "singular" coordinate z in analogy with the quantities defined
in [22]. The coordinate z is based on the singular coordinate system of nonlinear
hyperbolic wave curves (a constant) and standing wave curves as observed in the
(a, u)-plane. (The system is singular since the curves are tangent on T.) For each
point (a, u), let (ar, ur) denote the unique point where the standing wave curve
through (a, u) crosses T. Now define the singular coordinate z by

z(a, u) sgn(u ur)la az-I
and the strength 171 of the elementary wave /by

(23)
Iz(U )-z(V )l

4}z(UR)--z(UL)[

if 7 is a nonlinear wave,

if 7 is a standing wave with UR <
if 7 is a standing wave with uR > UL

[22], [18]. For a Riemann problem solution consisting of a sequence of elementary
waves 1,. /, define

(24)
i=1

The solutions of the Riemann problem that minimize F among all sequences
of elementary waves taking Uc to UR are diagrammed in Figs. 3-6 for the cases
g < 0, g > 0, and Uc to the left of T, Uc to the right of T. The cases g < 0 and
g > 0 are qualitatively different because of the location of the 0-speed shock curve.
To read the diagrams, start at Uc and follow the arrows to an arbitrary state UR. The
wave curves traversed then give the elementary waves in the solution of the Riemann
problem going from left to right in the (z, t)-plane. It is easy to verify that in the
limit as g tends to zero, these diagrams reduce to those for the resonant homogeneous
system

at O, ut + f(a, U)x 0

[10]. In this sense, the present analysis generalizes that for g 0.
In Figs. 3-6, the solid convex down curves denote standing wave curves, and the

dotted curve to the right of T denotes the 0-speed shock curve corresponding to the
standing wave curve through Uc. In Figs. 3 and 4, the dotted line falls to the right
of the standing wave curve through Uc because g < 0. Similarly, in Figs. 5 and 6, it
falls to the left because g > 0. (The proof that F is minimized on these admissible
solutions follows by the argument given in [22] and [7] where the relevant geometry
is the same.) We discuss the multiplicity of solutions in Figs. 3-5 below. In Fig. 6,
solutions are unique.

In each of Figs. 3-5, there is a region of right states U for which there are

multiple solutions of the Riemann problem that minimize the total variation in a. In
the interior of the region there are always three solutions, while at the boundary the
multiplicity reduces to two solutions. We expect that all solutions of the Riemann
problem represent possible time-asymptotic states to which solutions of the Cauchy
problem can decay. Note also that some solutions are composed of four elementary
waves, whereas there are at most three waves when g 0 [10].
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Discussion of Fig. 3 [g < 0; UL to the left of T]. A multiplicity of solutions
occurs when UR lies within the interior of the region ABC, e.g., UR H. The three
solutions are: UL -- F -- H, UL -- D -- G -- H, and UL -- E -- H. (Here,
e.g., UL F denotes the elementary shock wave taking UL on the left to F on the
right. Since F lies to the right of the 0-speed shock curve (the dotted line), and since

f < 0, UL F is a shock wave of negative speed.) All of these solutions have the
same F-value.

Discussion of Fig. 4 [g < 0; UL to the right of T]. A multiplicity of solutions
that minimize the total variation in a (but do not necessarily minimize F) occurs
when U lies within the interior of the region ABC, e.g., Uu H. The three solutions
are: UL F H, UL - A- E H, and UL A-- D G H. The F-value is
minimized only on the first of these, and thus in this case there is a unique admissible
solution except on the boundary where the two solutions have the same F-value.

Discussion of Fig. 5 [g > 0; UL to the left of 7"]. A multiplicity of solutions that
minimize the total variation in a occurs when UR lies within the interior of the region
CEADB, e.g., U H. The three solutions are: UL ---+ I - H, UL --+ F -- G --> H,
and UL -- J - K G - H. In this case minimizing the F-value picks out the
unique solution UL -- I .H, except on the boundary where again the two solutions
have the same F-value.

Discussion of Fig. 6 [g > 0; UL to the right of T]. In this case the solution
that minimizes the total variation in a is unique.

The next result follows directly from the diagrams and implies an L bound on
approximate solutions generated by this class of Riemann problems.

PROPOSITION 1. All admissible Riemann problem solutions lie on the convex side

of the outer of the two standing wave curves through UL and UR. In particular, the
convex side of each standing wave curve is an invariant region for admissible solutions

of the Riemann problem.

4. The generalized Godunov method. Let Uzxx(x, t) denote an approximate
solution of the Cauchy problem (2), (8) generated by the Godunov scheme, for initial
data Uo(x) taking values in a neighborhood B of U, where the solution of the Riemann
problem has been constructed in the previous sections. (We use the notation of [15],
and [16].) To construct the approximate solutions, first discretize R x [0, cx) by spacial
mesh length Ax and time mesh length At such that

/X

/xt

where

(26) ,k----2 sup
(a,u)EB

We let x nAx, tj =jAt so that (xn, tj) denote the mesh points of the approximate
solution. Define

S {(x,t): ti _< t < ti+l}.

The approximate solution Ux generated by the Godunov scheme is defined as follows
[15]: to initiate the scheme at n 0, define

1 fxj+l < x <U x(x, O)
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n-1Assuming that Uzxx(z, t) has been constructed for (x, t) E [-Ji=0 Si, then we define
U/xx in Sn as the solution of (2) with the initial values

1 fXj -]_

Ix UA(, tn-)d, zj < X < Xj+I.(2s)

In other words, at each time try, a piecewise constant approximation Uzxx(X, tn) is
obtained by taking the arithmetic averages of Uzx(x,t-) at each interval of the
mesh, so that the solution in Sr can be constructed by solving the Riemann prob-
lems [U._I, U.] posed at each point of discontinuity (xj,t),j Z. The Courant-
Freidrichs-Levy restriction (25) ensures that the Riemann problem solutions in each
S do not interact before time t+l [22], [15], [16].

THEOREM l. If the neighborhood B containing U. is chosen to be small enough,
then the Godunov approximate solutions Uzxx(x, t) are defined for all time. Moreover,

_<

for each n > O, where Jn denotes the sequence of elementary waves appearing in the
approximate solution Uzxx in the strip Sn, and F is defined in (24).

Proof. The supnorm bound on solutions follows from Proposition 1, which asserts
the existence of convex invariant regions for Riemann problems in a neighborhood of
U.. For (29), note that the solutions of the Riemann problems used in the construc-
tion of the Godunov approximate solutions are admissible solutions of the Riemann
problem, and so were selected to minimize the F-value of the elementary waves among
all possible solutions of the Riemann problem. Using this, estimate (29) follows by
the argument given in Theorem 1 of [15]. []

Theorem 1 leads directly to the following compactness result for approximate
solutions generated by the Godunov method.

THEOREM 2. Assume that the initial data Uo(z) B satisfies the condition
Varz{U0(.)} Vz < oc and. Var{a(.)} Va < oo. Then Uzxx(X,t) B for all
x,t >_ O, Varz{Uzxx(.,t)} < 4Vz for’ all t >_ 0, and a subsequence of {Uzxx} converges
boundedly, almost everywhere, to a bounded measurable function U(x, t) as Ax tends
to zero.

Proof. See Theorem 2 of [15].
Thus assume that U/x(x, t) is a sequence of Godunov approximate solutions that

converges boundedly, pointwise almost everywhere to a function U(x, t), and satisfies
the estimate

(30) Varz{Uzx(.,t)} < 4Vz.

In the next section we conclude by showing that the limit function U(z, t) is a classical
weak solution of (2) when a has no delta function singularities.

5. Convergence of the residual for the generalized Godunov method.
The residual R for system (2) is defined by

{u99t + f99 + a’g99} dx dt+ f_/ o) dx.

Then (a, u) is a weak solution of (2) if and only if R(a, u, 99) 0 for all compactly
supported smooth functions V) 99(x, t). We prove the following result.
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THEOREM 3. Assume that U/xx(Z, t) (ax(z), ux(z, t)) -+ U(z, t) (a(z),
u(x,t)) and satisfies (30) and the conditions of Theorems 1 and 2. Assume further
that a(z) satisfies

(31) la(x) a(y)] <_ Mix- yl,

(32) fff a’(x) ax(X)] dx CAx,

where aAx is the piecewise linear interpolant of a on the Ax-mesh. Then R(a, u, )
limAxo R(aAx, UAx, ) 0 for all test functions . That is, U(x, t) is a weak solution

of (1).
We use the following lemma.
LEMMA 2. Assume that f,g are smooth, u and a are bounded, and a satisfies

(31)-(32). Then for each test function ,
]R(a, u, ) R(ax, u, ) O(1)Ax,

where the constant 0(1) depends only on the bounds for a, u, and the test function .
Proof of Lemma 2. First note that

(33) ]a’(x)] M,

(34) ax(X) M,

(35) ]a(x)- ax(X) Co,

follow directly from (31) and the definition of ax.
For any test function ,
,(a, , ) (ax, ,) f/{,f(a, U) f(aax, U)]]x + a’(x)g(a, U)

a(x)g(ax, u)l} dxdt

+ f f ]a’-aXx]g(a,u)] dxdt

I + II + III.

(Here, Of/Oa is evMuated at a point between (a(x), u(x)) and (ax(X), u(x)).) The
hypotheses imply that

IIIII M N oz I111 ISupp{}l O(z).

Thus, the lemma is proven.
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We show that R(a, uxx, ) -+ 0 as Ax -- 0, where u/xx is the approximate
solution generated by the 2 x 2 Godunov method. By Lemma 2, it suffices to show
that R(azxx, UzXx, P) --+ O.

Let 7-jn denote the rectangle xj < x < Xj+l, tn < t _< tn+l; let

and set

Rj --//r {UzXxt + f(a/xx, UzXx)qOx + akx(X)g(a/xx, u/x)} dx dt;
jn

jn ]]_ {UzXxt + f(aj, U/Xx)9Ox + akx(X)g(aj,U/Xx)} dxdt.

Then, integrating by prts, we obtain

Rj- (z,t+l-)(z,t+) dz
zj

(x, t+)(, t) d
xj

+ f(aj, UAx(Xj+l-, t))(Xj+l, t)dt

I(,(+,t))(, t) t

{fn+lxj+I

(x,t))p(x,t)dxdt+ aAx(X)g(aj,Ux
J tn xj

Ij,n + IIj,n + IIIy,n.

Then

Ij,n +/+_ uo(x)(x, O)dx
,n>_o

.xj+l

[](x)(x,t)x,
j,n>_ xj

where

[](x) a(, t+) (x, t-),

and we take uzxx(x, 0-) uo(x). Similarly,

IIj,n [f]j(t)9(xj, t) dr,
j,n j,n J tn

where

[f]j(t) f(aj, uzx(xj+, t)) f(aj-1, UZXx(Xj-, t)).

Then

(36)
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(37)

t+l
[f]j(t)(Xj, t) dt

[f]j(t)(xj,tn) dt + O(1)(Ax)2Varxj_<x<xj+u/xx(.,tn+),
Jtn

and

n+ll
xj+

ax(X)g(aj, uzxx(x, t))(x, t) dx dt
xj

=ltn+lfxj+l

J tn J Xj

ax(X)g(aj, UAx(X, t))(xj, tn) dx dt Jr- IIllc1MIIglloo(/x)3.

(We used that supxj<x<xj+l I[tt]nl <_ Varx:<x<xj+l(., n-Jr-); cf. [221.
Suppose now that there is a single standing wave at (xj, tn). (The argument when

there are two standing waves separated by a 0-speed shock is similar.) Denote the
standing wave that connects (aj-1, uzxx(xj-, tn+)) on the left to (aj, U/Xx(Xj+, t+))
on the right by (aj(x), uj(x)). Since a standing wave can be given any parameteri-
zation and the standing wave at (xj, tn) takes aj_l to aj, and since a/x, is monotone
from xj-1 to xj, we can take aj(x) a/xx(X). Then

(38)
ltn+l ftn+l llXj d

[fly(t) dt -xf(azxx(X), uj(x)) dxdt
J tn a tn Xj

xXJ ak=(x)g(ax(X), uj(x)) dx dt.
Jtn j-

(Note that the presence of a 0-speed shock wave at (xj,tn) does not affect this
formula since Ill 0 across such a wave. In this case, the "spread out" stand-
ing wave (alex, u) would consist of two standing waves, separated by a 0-speed
shock wave, and the concatenation again connects (aj_, u/x(xj-, tn+)) on the left
to (aj, U/Xx(Xj+,t+)) on the right.) Thus,

(39)
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Therefore,

R(a/xx, UzXx, ) E Rj,n (azx., uzxx, ) + [+ uo(x)(x, O) dx
j,n

[f]j(t)(40) {/t:+ dr}
+ akxg(aj,u) dxgt + O(1)Ax

xj

+ IH + o(1)Ax.

But by the definition of the Godunov method,

o,

and thus by (36),

I E O(1)(Ax)2Varxj<-x<-xJ+1U/x(., tn+).
j,n

Also, we have already shown that

II +III E O(1)(Ax)2Varxj<x<-x+ UzXx(’, tn+),
j,n

and thus we have

(41) I(aAx, tAx, ) O(1)mX2 E Varxj<-x<-xJ+1 ltAx(’, tnnu) -- O(1)AXj,n

where the sum is over those (j, n) with (xj, tn) in the support of .
The estimate (41), together with Varzuzxx(.,t) < K, is all that is required to

apply the argument in Theorem 3 of [15] (in the case p- 2) and conclude that

Ax2 VarzU/Xx(., tn-t-) O((Ax)l/3).
j,n

This gives a rate of convergence on the residual and completes the proof of the
theorem. []
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