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1. Introduction

Fluid flow in pipelines is usually modeled by the quasilinear hyperbolic
system

p,+ G, =0, (x,0) €(0,1) X (0, ),

(1.1)
G, +(G*/p),+ p(p),= —f1G|G/2Dp,

where p is mass density, G is momentum density, p = p(p) is pressure, f= fqaGh
is the Moody friction factor, and D is pipe diameter, cf. [12]. In this paper, we
construct global weak solutions to (1.1) satisfying given initial conditions

(1.2) p(x,0) =po(x),  G(x,0) = Go(x), x €[0,1],
and given boundary cohditions .

(1.32) p(0,1) = py(?), t € (0, 0),
(1.3b) G(1,t)=0.

This poses the classical “waterhammer problem” since the waterhammer
phenomena in hydraulics can be created by a sudden valve closure downstream
(modeled by the boundary condition G = 0) or by a rapid change in the pressure
upstream (modeled by a discontinuity in pg). These events create pressure waves
which are reflected at the boundaries.

The term — f|G|G/2Dp accounts for the momentum loss due to viscous |
friction between the fluid and the pipe wall. Since the flow changes from laminar '
to turbulent at a flow rate near G,=2000p/D (where p is the dynamic
viscosity), the properties of f also change at G = G,. In the laminar region ‘

(14) f(GI) = 64/1GID, Gl<G.,
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but the friction factor is determined experimentally for turbulent flow (|Gl > G)
and depends on the pipe roughness (which we assume to be constant in space
and time) as well as on the flow rate. In particular, it can be observed from
experimental data that there exists a constant fi > 0 such that

) dim_fAGD =1

Thus, the friction term fIGIG/2Dp is nearly quadratic in G for turbulent flow.
(See [12] for a discussion of the theoretical and experimental basis for the Moody
friction factor.) Our analysis will assume only the following properties for
¥(G) = f|G|G/2D:

(1.6) I (0) =0,
) %,z L=z0,
G
(1.8) 9 is locally Lipschitz continuous.

Property (1.6) states that there should be no friction when there is no flow.
Property (1.7) states that the relative change in the friction (assuming that p is
fixed) is greater than the relative change in the flow rate. This is obviously valid
in the laminar regime (3C(G) = 64G /uD) and in the completely turbulent regime
((G) = filG|G)- Our study of the Moody diagram (cf. [12}, p- 297) has led us to
assume its validity in general. We note that (1.7) is equivalent to the condition
(fG)g 0. Property (1.8) is justified for all flow rates, G, except possibly at the
transition flow rate |G| = G.. (See [7] where. f is allowed to be multi-valued at
|G| = G.)
We also assume that the sound speed, ¢ > 0, is constant, i.e.,

(1.9) p(p) =

This is valid for an ideal gas which is maintained at a constant temperature by
heat exchange between the gas, the pipe wall, and the surrounding environment.
For many physical problems property (1.9) is also a good approximation for
modelling the flow of liquids. We believe that the perturbation techniques used in
[13] can be utilized to obtain results for more general equations of state, but it is
our view that the additional technical complications would obscure the ideas
presented here.

In [7), Luskin has shown for the initial value problem (1.1)-(1.2) that a
unique, global smooth solution exists if the initial data are in an appropriate
invariant region and if the first derivatives of the initial data are sufficiently
small. However, if the first derivatives of the initial data are too large, then
discontinuities can be shown to occur even when the data is smooth. (This can be
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done using a variant of Lax’s ideas for the frictionless case, cf. [4].) To allow for
more general data here, we need to consider weak solutions of (1.1). We call
p, G € L™() a weak solution of (1.1) if )

ff[mw Go, | dxdt=0,
(1.10) ? . |
fﬂf[qu, + (%3 +P(p))¢x - (fIG|G/2Dp)p | dxdt=0, |

for all ¢ € CZP(Q), where & = (0,1) X (0, ).
The principal result of this paper is the following theorem.

TueoreM 1. Assume that properties (1.6)—(1.9) hold and that

G, 3445
1.11 Varl + Varlnp,+ Var — <1 ~.96.
( ) ‘a;roan xea[ro,?]po xe[a({l] CPo < 2

Then there exists a weak solution p,G € L*(8) to (1.1). The initial values are
satisfied in the sense that

(1.12) o(+,1), G(+, 1) € Lip([0, 00), L'(0, 1))

and

1 . = i . = 1 1
}1_{1(1);)( 1) =po> }LI;I(I)G(,I) G, in L'(0,1).

The boundary values are satisfied in the sense that, for any T > 0,
(1.13) p(x,+), G(x, ) €Lip([0,1],L'(0,T)),
and

lim p(x, *) = p5 » limlG(x,-)=0 in L'0,T).
x> . x>

(Here, e.g., p(+, 1) € Lip({0, o], L'(0, 1)) means that there exists a constant, C,
such that

lo(=, 1)) — (> )| Loy = Clt, — tyf,

for all ¢,,¢, € [0, 0).) Without loss of generality we assume that po(0) = pg(0) and
that G,(1) =0 by redefining p,(0) and Gy(1) if necessary. In this way the
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incompatibility of initial and boundary data is accounted for in the left-hand side
of (1.11) by allowing

lim po(x) # po(0) and  lim Go(x) # 0.
x—0 x—>1

The only purpose of (1.11) is to guarantee a priori that the flow remains
subsonic; i.e., ]

(1.14) o< e for (x,0)€E Q,

where v = G/p is the velocity of the flow. Note that (1.11) is independent of
units, and is a satisfactory bound for subsonic flow since |o] < ¢ is sustained by a
bound of as much as .96¢ on the variation in o and ¢ In p of the data. The a priori
bound (1.14) is required to guarantee that the boundary conditions (1.3) can be
imposed. In general, boundary value problems for (1.1) in which either the
density or the flow rate is assigned at each boundary can be solved uniquely only
when the characteristic speeds A, Ay satisfy A, < 0, A, > 0. Our problem is posed
in Eulerian coordinates where the characteristic speeds are A, =0~ A=
o + c; so (1.14) is required for A <0,A,>0. Earlier work on the construction of
solutions to initial boundary value problems has been done by Nishida and
Smoller [11] and Liu [5] for the “piston problem”, but a priori bounds similar to
(1.14) were not required there. This is because the piston problem is posed in
Lagrangian coordinates where the boundaries move with the fluid. Thus, for the
piston problem, A\, = — ¢, A, = c; hence A} <0, A2 > 0is already guaranteed a
priori.

Note also that boundary condition (1.3b) is a “natural” or “flux” boundary condition
and could have been imposed weakly by requiring that

ff[qu, + G, ]dxdt=0
Q

for all ¢ € C&((0,1] X (0, ). However, the boundary condition (1.3a) is not a

_natural boundary condition and it is necessary for us to give new results on the
regularity of the solution at the boundary in order to make sense of boundary
condition (1.3a). This problem, as well, did not arise in {5] or [11] since the
boundary conditions for the piston problem are “natural” boundary conditions
and could be imposed weakly.

Our method is to obtain a solution to (1.1)=(1.3) as the limit of approximate
solutions which are constructed by a fractional step procedure. In the first part of
each step we use Glimm’s method, cf. [1], to approximate the solution of the
system of conservation laws for frictionless flow. The second part of each step
accounts for the effect of friction on the flow, and involves solving an ordinary
differential equation that is determined by the zero order term. Liu (6] and Ying
and Wang [14] have also proven the existence of global solutions for some
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systems of convervation laws with zero order terms; and the latter used a
fractional step method similar to ours. However, their analyses only took account
of the magnitude and not the orientation of the vector field given by the zero
order terms. These methods are inadequate for our purposes because the physical
friction term f|G|G/2Dp is quadratic in G at infinity; and solutions to systems
of conservation laws with quadratic zero order terms will “blow up” in finite time
if the associated vector field is allowed to have an arbitrary orientation. More-
over, the methods in [6] and [14] will not imply the a priori bound (1.14) unless
the orientation of the vector field is considered. Thus, because our friction term is
quadratic in G and because our boundary value problem requires an a priori
bound for the solution, it is crucial that we have found a nonlinear functional
which is equivalent to the variation norm and which is nonincreasing on both of
the fractional steps. Although the functional introduced by Nishida [9] is nonin-
creasing for the system of conservation laws, it is inadequate for our purposes
since it can increase on the friction step. However, we show that if the zero order
term satisfies certain monotonicity conditions, then the functional given by Liu
[5] is nonincreasing for both fractional steps. These monotonicity conditions are
satisfied by the physical friction term in (1.1) when the flow is subsonic. The
fractional step procedure that we have analyzed has recently been developed by
Marchesin and Paes-Leme [8] to obtain numerical results for system (1.1).

In Section 2, we discuss the solution of Riemann problems. The fractional
step scheme is defined in Section 3 and the basic stability result is given there. In
Section 4, the structure of Riemann problem solutions is further analyzed to
obtain bounds on the “non-linear interaction”; these bounds are used in Section
5 to prove regularity results for the approximate solutions. Section 6 contains the
analysis of the convergence of the approximate solutions.

2. Solution of the Riemann Problem

The Riemann problem is the initial value problem for data which is constant
to the left and right of x = 0. We study the Riemann problem for the non-linear
hyperbolic system

.1 u, + F(u) =0, (x,)ERXR",

where u = (p, G)", F(u) = (G,G?*/p + p(p))*, and p'(p) = c2. The eigenvalues of
dF are

2.2) A(wy=v~¢c, MNu)=v+eg,
with corresponding right eigenvectors

(2.3) Ry(u)=(L,v—c), Ryu)=(l,0+c)"
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The main existence result is that, for initial data

w, if x<0,
ug if x>0,

u(x,0) = uy(x) = {

(we always assume p;,pg > 0) there exists a unique solution u(x,?) = u(x/1)
such that u(x/t) consists of constant states separated by “shock wave” and
«rarefaction wave” solutions, cf. [9].

We first discuss the rarefaction wave solutions. We note that a smooth
solution u(), £ = x /¢, must satisfy

[dF - ¢u(€) =0.
Hence, a smooth solution u(§) must satisfy u#(§) € span{®, (u(£))} and §
=Nu®) for I=1 or I =2. An I-rarefaction wave is a continuous solution
u(x,t) whose values lie on an integral curve of the eigenvector @,. The functions
24 s=L(v+clnp), r=4(v—clnp)
are Riemann invariants; i.e.,
VR, =0, V,r-®,=0,

and s (respectively r) is constant on an integral curve of @, (respectively K,).
Thus, the l-rarefaction curves can be defined by

Ry(up) = {ug|r(ug) Z r(u), s(ug) = s(4)};

= {ug|v, —vg= —cz for z =lnp, — Inp, =0},

(2.5a)

Ry(uy) = {“R|’(“R) = r(u.), s(ug) = s(u)}
(2.5b)

= {ug|v, —vg= —czforz =lInp, —Inp, =0}.

It is important to note that
¥ :(p,G)—)(r,s)

isa 1 — 1 regular map of R* XR onto R XR.
A 1-shock wave (respectively 2-shock wave) of speed o is a weak solution

u, if x/t<eo,

29 u(x.n= { Uug if x/t>a,
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which satisfies the Lax entropy condition, cf. [3],

(2.7a) A(uy) > 0 > A(ug)
respectively,
(2.7b) Ay(u) > 6 > Ay(ug).

Since u is a weak solution, it must satisfy the Rankine~Hugoniot jump condition
(2.8) o[uy, — ug] = F(uy) — F(ug).

By eliminating o in (2.8) and applying the Lax entropy condition we obtain the
following /-shock wave curves:

(292)  §,(u) = {ug|o, —vg=c(e /2~ e*/?) forz=1Inp, — Inp, =0},
(2.9b)  Sy(u) = {ug|v, — vg = c(e™*/* — e*/*)forz = Inpy — Inp, =0}.
Substituting in (2.8) we obtain
(2.10) o=v, —ce P=vz—ce’’l, z=Inp, —Inp, =0,
for a 1-shock and

o=10v,+ce /2= p, + ce’/? z=Inpg —Inp, =0,

for a 2-shock.

It now easily follows from (2.5) and (2.9) that z =In p. — Inpg (respectively
z=Inp, —Inp,) is a regular parametrization of the C?2 curve Ty(u)= R(u) U
S(u,) (respectively To(u;) = Ry(u;) U S,(4,)). We call z the “signed strength” of
a given wave (so that the signed strength of a rarefaction wave is positive and the
signed strength of a shock wave is negative), and we call |z| the strength of~a
wave. The existence theorem for Riemann problems follows directly from the
fact that, given any two states u, and ug, there exists a unique state u,, such that
Uy € T\(u;) and ug € Ty(uy,), cf. [9]; ie., the Riemann problem for (2.1) can
always be solved uniquely by a 1-wave that connects u, to u,, and a 2-wave that
connects u,, to ug.

It is useful to view the rarefaction and shock curves in the r, s-plane. Since r
(respectively s) is a Riemann invariant, the I-rarefaction curves (respectively
2-rarefaction curves) are parallel to the r-axis (respectively s-axis). Also, the
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1-shock curve (2.9a) is easily shown to be

r,—rg= %f:(e“/2 —e*/*~2z), z=Inp, —Inpg =0,
(2.11a3)

s, — Sg=1he(e™ =P+ z)

and the 2-shock curve (2.9b) is easily shown to be

— g =%c(e“/2— e+ 2z), z=Inpg —Inp, =0,

ry
@.11b)
s, — sg=1c(e*? = e/ —z).

From (2.11) we can obtain the following theorem concerning the geometry of
shock curves in the r,s-plane.

THEOREM 2.1. (See [9).) Al I-shock curves of equal strength are translates of
one another. The 2-shock curve Sy(u,) is the reflection of the 1-shock curve S(u,)
with respect to the line Inp = Inp,. Moreover, if ug = up(2), z =0, denotes the
parameterization of S(u,) given above, then

d d
0< y s(ug(2)) < o r(ug(2))
and
d d
L s(un(2))/ Lr(un()
is monotone decreasing from 1 — at —oo to 0 + at 0.

Finally, we shall need to construct the solutions to certain initial boundary
value problems. When the boundary is x = 0, we consider the problem

u, + F(u) =0, (x,t) ER* XR™,
(2.12) u(x,0) = ug(x) = ug, x €RY,
p(0,1) =p, teR*.

It can be checked that there exists G, such that ug € T,(u,). But the 2-wave
connecting u, to u, will take the value u; at x = 0 only if it has positive speed. If
ug € Ry(u;), then one must have A,(u,)= v, + ¢ >0 to guarantee that the
2-wave has positive speed. If ug € Sy(u.), then the corresponding 2-wave has




GLOBAL WEAK SOLUTION 705
positive speed if v, > — ¢ since
0> Ay(ug) =vg+ ¢ >0.

When the boundary is x = 1, we consider the problem

u,+ F(u) =0, (x,1) € (— o0,1) X R*,
(2.13) u(x,0)=u,, x €(— o00,1),
G(0,1) =0, tER*.

In this case there exists p, such that ug = (pg,0)" € T\(u,), but the l-wave
connecting u, to up will take the value u, at x = 1 only if it has negative speed.
This is true if v, < c. Thus, the initial boundary value problems (2.12) and (2.13)
can be solved by simple waves if all the velocities occurring in the solution are
subsonic.

3. Definition and Stability of the Fractional Step Scheme

In this section, we construct approximate solutions to (1.D—(1.3). Let A
=1/N, N a positive integer, x; = ih, §;, =[x;_,,x], § =[0,1], and let k >0,
L=jk, & =[4_,, 8] Also, let a = (a,,ciz, -++), o, €(0, 1), be a sequence. We
define approximate solutions &, = (3,, G,)* and u, = (p,,G,)" inductively. As-
sume that 4, and u, are defined for r = t;,. Then,on 9 X §,,,, 4, is the solution to

fh, + F(,) =0, (L)EIXY,,,

P (1,0) = pp(441/2), 1€,

3.1y Ga(1,1) =0, L€y,
ah(x,tj+)=u,,(x,_,+ajh,tj—), x €4, ifj>0,

Gy (x,0 +) = ug(x;_, 12), x€4;ifj=0,

where F(u) = (G,G*/p + p(e))" and uy(x) = (po(x), Go(x))"-
Next define the functions a(z, %) = (p(¢, 5, G), G(1,p, G )) by

(3.2)
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where H(u) = (0, — f|G|G/2Dp)" = (0 —9C(G)/p)". Then we set
(3.3) uy(x, 1) = 4(t = 4,4y (X, 1)) t€%,-

Note that (3.1) poses an initial value Riemann problem at each mesh point
(%, 1), 0<i < N, and a boundary Riemann problem of type (2.12) and (2.13) at
;=0 and i = N, respectively. Therefore, we can use the Riemann problem
solutions of Section 2 to solve (3.1) in §;,,, as long as the waves in these
solutions do not intersect in §;,, and as long as |v| remains less than ¢ in the
boundary problems. Given these two conditions, &, and u, are defined for all
time. Choose h/k fixed with

W

% 4c.

We guarantee the two conditions above by showing that if (1.11) holds, then

|o| < ¢ for the approximate solutions i, and u,. It then follows from (2.2) that

the wave speeds are bounded by 2c, and so the waves cannot interact in §;,,.
We shall use “I-curves” in our proof of the stability of the scheme, cf. [1}. We

call the points

(x, + @b, 1), 0Si=N-1,jZ0,

(Xis4+1/2) 0=i=N,j=0,
vertex points. An I-curve, J, is a curve in x, f-space which successively connects
vertex points on ¢ to adjacent vertex points on 4. 1/,2 such that the index i is a
non-decreasing function of x on J, and such that J is linear between adjacent
vertex points (see Figure 3.1). It is important to note that the unique I-curve,
J(j), which connects the vertex points on # to the vertex points on £ /, Crosses

all the waves in the Riemann problem solutions of i, in §;,,. We partially order

W N
t =k
Jd
t=0
x=0 x=1 *

Figure 3.1
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the /-curves by saying that larger curves lie toward larger time, and we call J, an
immediate successor of J, if J, connect the same vertex points except one and if
Jy > J,. We also let t(J) denote the value of ¢ where J intersects the line x =0,
For any I-curve, J, define

L(J)'—‘;lnl,

Ly(J)= 2 )|lnpa(’j+|/2) —Inpg(4_,,2)l,

5>

where Y, is the sum over all waves which cross J and where y, denotes the
strength of a wave in the solution .
LemMa 3.1.  Suppose that
(34) L) + Ly(J(j)) = V;<Ini(3+5).
Then
b (X, ¢
@3.5) sup ln—--—-—p"( ) =V,
(DEI XG0y Poo

and

B,(x, ¢ v e
(3.6) sup Ad)) <€ = 21 <1, S

(xnesxs | € eV’

where
3.7 P = 11_1210 ps ().

Proof: The proof of (3.5) is an immediate consequence of our definition of
wave strength. To prove (3.6) note that 6,(1,7) = 0 and that 4,(1,¢) is connected
to d,(x,t), t €4,,,, by a curve which is composed of a sequence of shock and
rarefaction curves the sum of whose strengths is bounded by V,. By viewing
I-waves in the r,s-plane, it is evident from Theorem 2.1 that |8,(x, )] must be
smaller than the change in v across an /-shock which starts at u, = (p,,0)" and
has strength V;. For such a shock wave, we can use (2.11a) to calculate that 1

eli—1
V2

Or
c

<L

We next prove
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TueOREM 3.1.  Suppose that (1.11) holds. Then
— Vo
(3.8) Vo=V =Var Inps+ x!{zgl]lnpo+ xzﬁ)ﬂ] =< Ini(3+5)

and

39) Ly(J(+ D)+ LU+ DELI D)+ LYY for j=01---.

The inequality (3.8) follows easily from Theorem 2.1, so that it remains to
verify (3.9). We shall show that

(3.10) Ly(Jy) + L) = Ls(J)) + L)

whenever J, is an immediate successor of J,. To verify (3.10), it suffices to study
the “interaction” that occurs in the region A that lies between J, and J,; ie, it
suffices to compare the strength of the waves that cross J,/J, to the strength of
the waves that cross J,/J,. If A does not contain a mesh point (x;, ), then

Ly(J5) + L(Jy) = Lg(J)) + L(J)).

Thus, we need only consider the case when A is a “diamond” centered at (x;, ;)
for 1=i= N — 1 or a “half-diamond” centered at (xo,?;) or (xns ) We denote
these diamonds by 4;. We let -y,.} denote the signed strength of the /-wave in the
solution of the Riemann problem which is posed at (x;, ). Here, y,.; denotes both
the name as well as the signed strength of a wave. It is convenient to introduce
the I-curve, J,, whicb is identical to J, as a curve in the x, t-plane, but where the
waves which cross J,\J, are taken to be the waves which solve the Riemann
problem with constant states u; and ug , instead of u; and ug (defined in
Figure 3.2). Thus, for example, L(J 2) = 27,174l is the sum over all waves which
cross J, N J, plus the sum of the waves which solve the Riemann problem with
constant states u; and u; . We also define L, (J) = Lg(Jy.

LEMMA 3.2 (See Liu [5].) IfJ,is an immediate successor of J,, then
Ly () + L(J2) = Lg(J)) + L(J)-

The next lemma says that the functional Ly + L is also nonincreasing for the
friction step.

LeMMA 3.3. If J, is an immediate successor of J,, then

@3.11) Ly(Jy) + L) = Ly(J2) + L(2)-
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Yiel
a P 4 t:‘
uh(xi_' + th-'j!)=“L ug : uh(xi +¢’h,!j 1)
LI
i-%
X, ,te.h x. +e.h
i-! i ]
ajjNainz=¢
_ 1
tl<l>'/2 ’l('j+'/z)= - R
- =4 +
uy -uh(cjh,'j—)
t-k
g =0 X *a ]h
Ali Nix=0)# ¢
1, Gt
i °

a ;3
Uzt cjh,t‘.t)iuL
'j-'/z
x~+ -ih Xy =
85 Nix=|| # ¢

Figure 3.2

The proof of Lemma 3.3 is given in Appendix A. Now (3.10) follows from
Lemma 3.2 and Lemma 3.3. Relation (3.10) implies that if J, > J,, then

(3.12) Ly(Jy) + L(Jy) S Lg(Jy) + L(J))-

The stability result (3.9) is a special case of (3.12) since J(j + 1) > J (). Finally,
we note that the stability results in this section did not require any continuity
properties for 3(G). In Appendix A, it is shown that the properties (1.6) and
(1.7) are sufficient when 9( is extended so as to be a maximal monotone function.
However, the proof of convergence for our scheme will require the further
assumption that 3C be locally Lipschitz continuous.
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4. Bounds for the Total Non-Linearity

In this section, we shall give bounds for the total non-linearity. These bounds
are required for the regularity results in the next section. We assume that
V<Ini@3+ V5), so that by Lemma 3.1 and Theorem 3.1 we have

6" < eV—' 1
and
42) nP =

Hence, there exists a compact set K C (0, c0) X R, independent of 4, k, and a,
such that

4.3) dy(x,1) EK for (x,f) € (0,1)X (0, c0).

In the following, let C denote a generic constant (dependent on ¢, K, and V)
which is independent of A, k, and a.

Recall that y,.J’. is the signed strength of the /-wave in the solution of the
Riemann problem for i, at (x;,1) and let ?,.J’- denote the sum of the signed
strengths of /-waves which enter A;. We define the non-linearity of the interac-
tion at (x;, ), Ny, to be

t_ =t ' , .
N;=v— %, 0<i<N,j>0,
N = 0 for I=1,
Y3 — ¥ + ¥y for 1=2,
/ y'-—-?'~—72- for /=1
NNj= Nj Nj Nj ’
0 for I=2.

Similarly, if ?,J’- is the signed strength of the /-wave that crosses J>/J,, we denote
the non-linearity N,»j'» that occurs in the conservation law step by

N~i,"=7yl"7yl" 0<i<N,
N'é.= O2 , | for I=1,
Y Yo — Yo + Yo for =2,

1\74:{7/5/‘7151_751 for =1,
7 o for I=2.
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Finally, we set
N, =|NY+|N}
i i iyl
N, = |N!| + [N}
i i i

We shall prove the following theorem.

THEOREM 4.1. For any T > 0, there exists C = C(T) such that

“4.4) _ NTY= N;= C(T),
4=T
where the sum is over (i, j) such that L =T

Two waves y, and y, that cross J are said to approach if they are both of the
same family and if v, or vy, is a shock wave. Define

(4.5) W)= X Ivallvah

App(J)

where the sum is over all pairs of approaching waves that cross J. Also, let

(4.6) Dij = 2 1Yl 178l
App(41/J2)

be the sum of the products of approaching waves that enter 4;. For a simple
wave v, we define the shock wave strength and rarefaction wave strength of y by

0 if yzo0,
S =
={}y it 720
if y=0
Rivy= (Yl if Y=0,
) {0 if y=0.
Then we decompose D, into
— 1 2
D;=D}+ D},

where

D;j'l = E S(v4)R(vs)
App(J1\J3)
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and

Dy2= 2 S(Y4)S(¥s)-
App(J\\J2)

We shall need the following lemmas in the proof of Theorem 4.1.

LeMMA 4.1. There exists a constant C, such that

@.7 N; = CDy, 0<i<N,
(4.8) Ny = |ALg|,
4.9) Ny = |AL,

where AL = L(J,) — L(J)) and ALy = Lg(J,) — Ly(J)).

Proof: Note that if a single 1-wave and a single 2-wave enter A, then
N~,.j = 0. Thus, (4.7) follows from the results in [10], [13]. The estimates (4.8)-(4.9)
are easily verified by checking all possible boundary interactions for the conser-
vation law step, cf. [5].

Now let v, = (v}, 7) and 7, = (7}, 73) (Where vo; = (0, v3) and yy; = (v}, 0)).

LEMMA 4.2. There exists a constant, C, such that
|Yij - ..Y-yl = Ckli,l
Proof: First, let 0 < i < N. It follows from the results in Section 2 that there

exists a regular C? diffeomorphism 8:R?*— R? such that for constant states u,
and u; we have

(4.10) Y = 0(¥(u.) — ¥(uz)),
where vy = (y',y?) is the vector of signed strengths of waves in the Riemann

problem [u,,ug] and where ¥((p, G)) = (r,s). Now, since ¥(&), = d¥(it) H(i1),
we obtain

(¥ ur)) - w(a(hug )] - [¥(ug) - ¥(ug)]|
= ¥ (ur) = ¥(ug )l

@.11)

Thus, since u;" = #(k,u; ) and u; = u(k,ug ) we have

@12) |[¥(uf) = ¥(ui)] - [¥(u7) — ¥(ug )| = Chl¥(ug ) - ¥(uz ).
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Hence, (4.10) and (4.12) yield the estimate
vy = 7 = C|[ ¥y = ¥ )] = [0 ) = (uz)]|
(4.13) = Ck|¥(ug ) ~ ¥(ug )|
= Ckl|l-
This is the result for 0 < i < N. An easy check establishes the result for / = 0, N.
We now define two non-linear functionals F(J) and F,(J) such that F,,(J)

decreases by C, N ; between successors J, and 12 whenever A; does not intersect
the boundary whlch lies opposite x = m. First, define

L) =l
4.19)
La(J) = Zlvals

i.e., L,(J) is the sum of the strengths of all /-waves that cross J, cf. [5]. Next,

define

Fy(J)=L(J)+2Lg(J) + M,L\(J) + M,Q(J),
(4.15) ,
F(J)=L(J)+ M\LJ )+ M, Q(J),

where M, and M, are positive constants which will be chosen later. We note that
by Theorem 3.1

(4.16) F,(J)SC.
We adopt the notation
AL = L,(J3) — Li(J}), I= B,1,2, or absent,
80 = Q(J) = (1),
S'=5(3;) - S(3). =12

AR'= R(3]) - R(3). =12,

where S(y,’) (respectively R(y,')) denotes the sum of /-shock wave strengths
(respectlvely I-rarefaction wave strengths) which enter A;. The following three
lemmas give bounds for the above quantities.

e T
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LeMMA 4.3. There is a positive constant, 8 = 8(K)>0, such that, for
0<i<N,

4.17) AL = —8AS/, =12
Proof: See [13].

LemMa 44. If0<i< N, then

(4.18) |AR!|=4D2, I=1,2.

Proof: See Appendix B.
LemMA 4.5. The following estimates hold:

l"igj - 7%/" = lA'YZ| =|AL |+ |ALg|,
4.19)
198, — Tl = 18y S 1AL

Proof: These estimates are easily checked by using Theorem 2.1 of [51.
The following is the crucial lemma in our proof of Theorem 4.1.

LemMMA 4.6. Set

(4.20) M\/My=£, M= 1,

and
M,=8/9V+1),
for & satisfying V < ¢ < 1. Then there exists a positive constant C, such that
421 Fo(Jy) = Fu(J)) S - C\N;,
whenever A; does not intersect the boundary that lies opposite x = m.

Proof: We treat case m =0 (the argument for m =1 is similar). First,
assume that i >0 (4; N 3Q = @). In this case, we have

AL, =0,
AL, =AR'+AS',

AQ= 3 [ViIAS'+ S(r)AR!

J\NJ,

(4.22)

+ S Y2182+ S(vi)AR? - D} - D}.
JinJ;
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Since |AR'| é%D,-f and 3, o, |14 =V <],

(4.23) AQ= 3 |vidast+ X |yj|AS2—D,j‘—%D,f.

Ji0J; Ji0J,

Thus,

AF, <AL+ {M, +M, S 17,'|}As'
Iin,

+ {Mz > |y,:|}As2 - MZD,.} + MAR'~ MZJZLD’-
JiNJ,

Now since M, = §/2(V + 1), Lemma 4.3 implies that

2M,
MZ

1

AR‘].
But M,/ M, =£{ < 1; hence, we see from Lemma 4.4 that
(424) A= ~M,Dj —[My}(1 - §]Dj = — [ Ma4(1 - §)]D;

The result (4.21) now follows immediately from Lemma 4.1,
Next, we consider the case i = 0 (when 4;; N 9Q = @). Then, by Lemma 4 5,

AL+2AL, <AL, =0, AL =0,
(4.25)
A0= 3 Ivillavi= X [YAI(IALg| + |AL\) = VIALy| + V|AL|.

JiNJ, JinJ,
Hence,
AFy= (1= MyV)ALy + (M,V — M)IAL,|.
Now M,V — M, = M(V —§) <0and 1 — M,V > 0; thus
AFy=(1- M,V)AL,.
Therefore, by Lemma 4.1,
(4.26) AFy= —(1— MyV)N,, .

The arguments for F,(J) are similar.

LR i
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LEMMA 4.7. Under the conditions of Lemma 4.6,
4.27) F.(J))— F.(J))=E —C\N; + Ckl?,«j|,
whenever A,-j does not intersect the boundary that lies opposite x = m.

Proof: It follows from Lemma 4.2 that
(4.28) IN,; — Nyl = CkI¥,l.
Thus, Lemma 4.6 implies that
(4.29) F,(Jy) — F.(J,) = — C,N, + CK|¥l.
Note also that, by Appendix A,
ng = *73,- 5
and
lragl = 1wl

Thus, if A; N {x =0} # O, then

Fo(J2) — Fo(Jy) = Fo(J2) = Fo(J1) = = C\Ny; + Ckl ),
an_d if 4;N{x=1)} #* @, then

Fy(J))—- F(J)= F(J)) - F(J)= - C\Ny; + Cklinl-

Next, let m =0 and 0 < i < N. (The argument for m = 1 is similar.) Since
L(J) = C for all I-curves J, it follows from Lemma 4.2 that

(4.30) | Fo(J5) — Fo(Jy)l = Ck|F,-
The result (4.6) follows from (4.29) and (4.30).

Proof of Theorem 4.1: Let J(O)=J,=J,=--- =J, be a maximal se-
quence of immediate successors such that A; N {x =1} =@ (respectively
A; N {x=0}= @), and let Y, (respectively Y,) be the set of diamonds 4,
crossed by the above sequence. Note that tjé(k/ h)(1 — x;) if and only if
A; € Y. It follows from Lemma 4.7 that

'8
C\ 2 N= I [Foldo0) = FolJ)] + Ck X 19
A;E Y, j=1 A;EY,

4.31)
=[Fy(Jo) = FoJ,)] + CkAgy 19,1
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By the results of Section 3, 27_0|7y| = V and Fy(J) = C for all I-curves J. Thus,

= k
kS sk,
8;€ Yy

and hence, in view of (4.31),

(4.32) S N,=C

(43) S NsC

Thus, we have

(4.34) NS 3 N+ 3 NsC

Similarly, since V; =EVy=V forj=12,---, there exists, for every ¢=0,1,
2,- -, aconstant C, independent of 4, k, a, and ¢, such that

(4.35) D N;=C.
A gk/2h < 4<(q+ D)k/2h

Thus, the estimate of Theorem 4.1 follows since

> N,;=qC=C(T),

L=
4=T

for any ¢q € N satisfying gk /2h = T. This completes the proof of Theorem 4.1.

5. Regularity of the Approximate Solutions

In this section, we show that the approximate solutions u, are L' continuous
in time and space to within an error dominated by the mesh length. These results,
stated in Lemmas 5.1 and 5.2, are needed for the proof of the fact that the
constructed solution to (1.1)-(1.3) actually takes on its boundary values in the L!
sense.

LEMMA 5.1. There exists a constant C, such that

¢.1) j(;l|u,,(x,'r2) — wy(x, )| dx = C[ |7, — | + k]
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Proof: Suppose that
(5.2) 0=, =7 <, < - <1, <1 =ty -

Then
1 <!
L |ty (x,73) — w,(x,7,)|dx =](; [ (X, 2, =) — w,(x,7,)|dx

M-1
1
+ 3 [ lu(xten =) = wy(xg + )l dx
j=mv0

(5.3) |
+j(; |y, (x,73) — uy(x, by + )| dx

M
+ 2 j(;lluh(x’tj + ) - “h(x’tj - )Idx

J=m

Fors,t €[1,1,,] we have
J(;l|u,,(x,s) = w,(x,1)|dx
1 R 1 R
(54) éj(; |4y, (x,5) — @ (x,5)|ds +f0 |, (x,8) ~ fy(x,1)|dx

+J(;l|ﬁ,,(x,t) - u,,(x,~t)|dx.

But

S Ni(x5) = (xldx S Ch(IvE | + ).
Thus
.5 k |8(x,5) = @,(x, )| dx = CRL(J(})).

Moreover, in view of (3.3) it follows that

(5.6) max|u,(x,5) = d4,(x,5)| S Cls — ¢ for s€§;,,,
so that, by (5.4),

N fo Ny (x,5) = wy(x, 1) dx = CRL(J (j)) + Ck.

P
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Furthermore, from (5.6),

ffllu,,(x,tj +) = (x4 — )| dx =f:fl|uh(x,._, + ah,t; = ) = w,(x, 4~ )| dx

Xi i

§ Ch(lyl'z—-l,j—ll + IY[:[—I') + Chk’

so that
1 ;
(58) fo |up(x,8 + ) = w(x,8;, = ) dx = ChL(J (j — 1)) + Ck.
Now putting (5.7) and (5.8) into (5.3) and summing, we obtain
fl|u,,(x,'rz) ~ uy(x,1)| dx = CR(M — m + 1)V + Ck(M — m + 1)
0

SC[n -7l + k7,

where we have applied Theorem 3.1 to estimate L(J(j)). This completes the
proof of Lemma 5.1.

Next, we prove a similar but more difficult estimate involving L' continuity
in space.

LEMMA 5.2. Assume that a = (a,,0,ay, -, ) is equidistributed, T < o,
and y,, y, €0, 1). Then there exists a constant C = C(T) such that

T,
(59) Ji ln2200) = w5 0)lde = Clyz = i,
for K sufficiently small.

We shall need the concept of approximate characteristics to prove Lemma
5.2. It is convenient for us to modify the definitions given by Glimm and Lax [2]
and by Liu [6]. We shall define the set of approximate characteristics {Fi}.p e®,
by induction on J, J € N. An approximate characteristic I‘i is a map

T :[1,,4,]>[0.1] X {1,2) XR,

where I‘i(t) = (x4(2),1,(1), 7,(1)) indicates that the characteristic at time ¢ is at
position x,(¢), is travelling on the /(¢) characteristic, and has signed strength
Y,(#)- Here x (¢) is a continuous, piecewise linear function, and /,(¢) and v(¢) are
piecewise constant functions with respect to the partition (¢ ,4 .y, -, 4}

v

M
PSR AR
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At fixed J, ¢ € 9, indexes the characteristics in [0, 7], and 9, depends on J
due to both the creation and the splitting of characteristics at 1 > ¢;. To begin the
definition, let at first J = 0. In this case set
Mo={0,---, N} x {12},
and, for ¢ = (i,/) € M, set j, = 0 and define
1‘2(0) = (x,. A Yi{O)‘
Next, suppose OM,_, and {Ty ™'}, cex,_, are defined, and define
My = {dp|$EMy_,,0 € (LRY) U {{0 -, N} X {1,2}},
with
Jau=Js for ¢EMy_y,
jo=7J for ¢={(il}.
We first define Ty (#) and T3 () for t €[1; 1] and ¢ € M. Thus, assume
Ty (=) = (%5 7)-

We define I‘j,.(t). Let p,v)y_, (respectively 125 1) denote the signed strength of
the 1-wave (respectively 2-wave) that lies to the left of the point (x;_, + a;h,t;)

(respectively (x; + ajh,t;)) in the solution of the Riemann problem which is

posed at (x;,t;_,) in the approximate solution #,, so that (1 — p))v/}y_, (respec-
tively (1 — p,)v%-,) is the signed strength of the 1-wave (respectively 2-wave)
that lies to the right of (x,_, + a;h, ;) (respectively (x; + a sh,1;)) in this Riemann
problem solution, 0 = p,, p, = 1. Now if /=1, define

(X o1 1(1)s 1Yo(1))5 t<t;_,,0=i=N,
IWOES (x,. - %(’ — )l P'lYep(tJ—l))’ t€$;,0<i=N,
L(O’Z’ = taYo(ti= 1)) t€Y4;,i=0,

(5.10a)
(X1, 11, (1 = 1) Y4(D))s 1<t;_;,0Si=N,
I‘ik(t)=<(x"’l’(l*”‘)74’(”"‘))’ te$;,0<i=N,
L(%(" ti)2 —(1 —""2)7¢(t1—l))’ 1€%,i=0,

AR Ve gy
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and if I = 2, define

(x(1)s 16(D)s taYe(1))s 1<t;_,,0=i=N,
T ()= (%022 pa¥e(ts-0) 1€4,0=i<N,

(l—%(t—tj_l),l, I“'lY¢(tJ—l))’ t63fj,i=N,

(5.10b)

(x6(1): 1a(1)> (1 = 12)Y6(1)): t<t,_,,0Si=N,

Tl ()= (x,. + !IE(I — )2 (1 - ,12)74,(:,_‘)), t€4,,0=i<N,
(1, 1,(1_”1)Y¢(11_‘)), tEng,i-_—'N.

The fact that I%(t) changes value at ¢ = f;_; when i = 0 or i = N accounts for the
reflection of characteristics at the boundaries x =0 or 1. Moreover, when
1-characteristics are reflected at the boundary x = 0, the sign of y,(f) changes
due to the way in which waves reflect but, for ¢ € Iy, v,(1) has a constant
magnitude which we denote by 1Yol

Finally, when ¢ = (i,[), we have ¢, = t;, and we define

¢.11) Tyt = (x5 4, N;)-

This completes the definition of the approximate characteristics. For conve-
nience, we let I‘i refer to both the function defined above as well as the piecewise
linear curve in x, t-space given by the graph of x,.

The following three lemmas give the important properties of the approximate
characteristics. :

LeMMA 5.3. Let T=1;. Then

(5.12) S v d= S+ 2 INI= C(T),
$EM, il j<J
il
and, for j <1J,
(5.13) 5= 2Ye(4)

the latter sum being over all ¢ such that t,= t;, x () = Xi and 1,(t;) = l

Proof: Statement (5.13) follows from the method of partitioning wave
strengths in (5.10) and (5.11), and can be proven by a simple induction argu-
ment. For example, assume by induction that the sum of the strengths of the

e s
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characteristics that enter a diamond 4 and have /(1) = [ is equal to the sum of
the strengths of the /-waves that enter A;. Then the sum of the strength of the
characteristics that leave A,-j and have l¢(tj) = / must be equal to the sum of the
strengths of the associated characteristics that enter A, plus N,.}, the strength of
the characteristic that is created at (x;, ). By the definition of N,.J’., this latter sum
equals y,-J’., verifying (5.13). Similarly, (5.12) follows by an easy induction argu-
ment. '

The next lemma follows immediately by our choice of p, in the definition of
I}, once we note that, by (4.1),

A = min|\(f)| > 0.

LEMMA 5.4. Let ¢ €My, j, =j =T — 1, and assume lvel # 0. If 1(5) = 1 and
o, >1 — Mk /h, then x(t) = —h/k for t €4 If 1(1) =2 and o\ < Ak /h,
then x(t)=h/k for t €;...

The following theorem is an easy consequence of the definition of equidistri-

buted sequence. A sequence a = (&, 0, &3, * * * ), &; €(0,1), 18 equidistributed if,
forany0=Sa<b=l,

where N(J,[a,b]) = Card{j =J|q; € [a,b}}.

THEOREM 5.1. Let a be any equidistributed sequence, a; € (0,1). For natural
numbers m < n, and forany 0= a<b=1, let A(mn)={m,m+1,---,m+n},
and define

N(n, [a,b],m)= Card{j € A(m,n)|o E[a,b]},

N(n[a,b],))= Min {N(n[a,b].m)}.

m+n=]

Then, for any w € ©, 1),

NI [2)9)
J-0 w

=bh—a,

where [x] denotes the integer part of x.
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Now let T > 0 be arbitrary, and let J = J(k) satisfy t; | =T <1,.

LEMMA 5.5. Let a be a given equidistributed sequence. Let 0=y, <y, =L
Then there exists a ko such that, if k = ko, then

t —
r,=(2+ k)2 252 = 02

where T, denotes the total amount of time that an approximate characteristic T,
with non-zero strength lies in [y, — h, y, + h] X [0, ¢,].

Proof: Let

- 4(y2— )

AT
and without loss of generality assume T large so that w < 1. Since #;_, =T<t I
we have J =[T/k + 1], so that we can make J arbitrarily large by choosing k

sufficiently small. Thus, by Theorem 5.1, we can choose k; so that if kK = kg, then
h <1(y,— y,) (recall that h/k is fixed),

N([wI),[0.Nk/R),J)

=
wl]

A
h

[T

and

N([wI],[1 = Ne/h,10,0)

>
wl -

[T
=

This implies that, if k = k,, then in any [wJ] consecutive time steps in [0,1,],
we must have a SAk/h (respectively o; = 1 — Ak/h) in at least [(Ak/2h)w]]
of those time steps. Thus by Lemma 5.4, during any [wJ] consecutive time steps
in [0,1,}, an approximate characteristic with non-zero strength has a speed
of magnitude h/k in at least [(Ak/2h)w)]=[2(y, — y\)/h] of those time
steps. Therefore, if k = k,, a characteristic with non-zero strength must pass
between y, — h and y, + h through [y, — A, y, + h] X[0,1,] in a maximum of
[4(y, — 1)/ Ak] = [w]] time steps. But since an approximate characteristic has a
maximum speed of 4 /k, it can reflect off a boundary at most 1 + 1,k / k times, so
it can pass through [y, — h, y, + h] X [0,2,] at most 2 + t;h/k times. Thus the
total time T, that an approximate characteristic with non-zero strength spends in

[SC
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[y1 — h, y, + A] X [0,¢;] must satisfy
h Ry 5\ 22")
T,=(2+ t,;)[w]]k§(2+ :JE)4(_T.)_}_\__' < C(TY(32 - y).
Note that k, depends only on a and w = 4(y, — y,)/AT.

We now turn to the estimate of Lemma 5.2. We first estimate

T
J(; luy(y2,1) = wp(1-0)lat éj;“|“h()’2vt) — w,(yy,t)|at

3
=2 J;‘j [y (y2>t) — w(yy, Dl dt

J=1%5-1

and

f’t’ [un(p2:) = wn(p1> 0l dt
b-1
= [9la(2,0) = B 1)l
G-

+J;li||{uh(y2,t) = up(y1>0)} — {@(r2, 1) = &(p1, )} dr.

However, for 1 € 3,]- s
Hun(ya:t) — w(yi>st)} — {(y2t) — a,(1-0)}

= Cle = gollin(y2,t) — dy(¥1> )l

and
M MEl
|8 (y2:1) = @(p1- DI = C( > v+ X |7ij|)’
i=m+1 i=m
where x,, = y, < X, < * - - <3 = x,. Hence we see that

J-1 M M-1
(5.14) gwuwrwmwwéﬁz(zjm+§wﬂ

j=0\i=m+
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Now by substituting (5.13) into the right-hand side of (5.14), we obtain

J—1 M M1
(5.15) kZ( > I+ X |Y(,2'l)§ > Tlvl,

Jj=0\i=m+1 i=m ¢EM,

Where T, is the amount of time that a characteristic I‘i with non-zero strength is
in [x,,,xp] X [0,], and |v,| is the strength of that characteristic. But, by Lemma
5.5, we can estimate T,= C(TXy,—y) if k=k, and by Lemma 5.3,
Secm,|Yel = C(T); thus we can estimate (5.15) by

J—1 M M-1
(5.16) kz( > Iyl+ 2 lv,-f-l)éC(T)lyz—y.!-
J i=m

i=0\i=m+1

Therefore, substituting (5.16) into (5.14) verifies Lemma 5.2.

6. Convergence of Approximate Solutions

For ¢ € C2((0, 1) X (0, c0)), we define
(6.1) D(a,h,¢) = —ff[u,,q;, + F(u,), + H(u,)9] dx dr.
From (3.3) it follows that
(6.2) up(x, 1) = i, (X,1) +£’H(a(s — 4, iy (x, 1)) ds, L€,

Thus,

“f,"”J:”"‘p’dXd[: —J;””J;]ﬁ,,cp,dxdt

(6.3)
L ! ! Y, 7]
_f,// J(; lftlH(u(s— tj,uh(x,t)))ds ¢, dx dt.
Now
IA +1 ! 4
_.f’l’ﬂ'j(; u,,q>,dxdt=j;'l fOF(u,,)qudxdt
(6.4)

+ [T +)0(0.8) = d(x0800 = Jo(x084) ] dx
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and from integration by parts and (6.2) we get
| t . .
_flllmfo [J;’ H(u(s— t_,,u,,(x,t)))dsj\q),dxdt

= —fol[f:,w”(a(s — tj,ﬁh(X,tj+,)))ds]qb(x,;i+l)dx

+L‘Lt,+|§;[ﬁlﬂ(ﬁ(s— t_/’ﬁh(x»t)))ds}(bdtdx
6.5) |
= —J(; [uh(x,tj+| -)- ﬁ(x,tl.+| — )]¢(X,tj+|)dx

+ ‘folj;'/*'H(uh(x, 1))pdt dx

o s (td < ”
+f0 f,,’ f,, 4 (a(s = 1, (x,0))o(x. 1) ds de dx.

Hence, substituting (6.4) and (6.5) into (6.3), we obtain

t; ! t; ! N
— | dedi= | 7! F + H dx dt
f [ lutax f [ TF e, + Hue]dx
1 ;
(6.6) +J; [w (x4 +)9(x:4) — Uy (X, 440 — )d)(X,th)] dx

+J;["Hfolf’l’g;H(ﬁ(s — tj_’,jh(x,t)))zb(.\‘.t)dsdxdt.

Thus, after summing over j, we have

6.7) D(a,h,¢) = 2 Di(a.h,0) + zl E/(a,h,$),
/=

j=1

where

(6.8) Dj+,(a,h,¢)=f0|[u,,(x,tj+, £ = (% by = ) J6(X 1 41)
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and
‘ A
EjH(a,h,¢)=fl’/*'J; [ F(d) — F(u)gdxdr
(6.9)
o (el . N
+J;’ J(; J’: %H(u(s - tj,u,,(x,t)))tpdsdxdt.
Now

N
D y(ah )= 2 Lx_ [p (%m0 + bty =) = un(X b = ) Jo(xs 44 1) dx

i=1

so that, by (4.16),

(6.10) 1Dy (s )| S C( S il ol = CVRISL
Hence,

S D(ah¢)| = C LRl = Cléle,

Jj=1

(6.11)

where the support of ¢ is in (0,1) X (0, T). We also have

612 |['Dyur(ooh#)da

= O Shil)ieds = CVRIbIn = It

Consequently, for 0 < j; < i,

UDI-|(a,h,¢)Dj2(a,h,¢)da|=U[ij2(a,h,¢) dajl]Dj|(a,h,¢) da;,

(6.13)
é Ch“‘(fl)‘/:\‘:)\,‘/. N

where &, denotes the sequence obtained from a by deleting the j,-th element. By
(6.10),

(6.14) [ Dy(@h,¢)"daz CHIol:

Thus,

f(z Dj(a,h,¢))2da= ijj ijthda+ szjzda
1<Jj2 J

(6.15)
2
= (LY cvimtietatod + (  JCVinteho = Ch(ioh +18.4)
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Therefore, for each ¢ € C°((0, 1) X (0, 00)) there exists a sequence 4, — 0 and a
set A C[[72,[0, 1] with measure one such that, if a € 4, then

(6.16) S\ D,(ah,,6)=0 as k>0,
J ;

Next, let {¢,},cn be a countable dense set in C57((0, 1) X (0, 00)) with respect to
the norm | |,,. Then, after refining 4, above by a diagonal argument and after
taking the appropriate countable intersection of sets A, of measure one, we can
conclude that there exists a sequence 4, —>0 and a set 4 C I172,[0,1] with |
measure one such that, if « € 4, n €N, then :

(6.17) 2 D(ah,,0,)>0 as m-> co. !
J

It follows by (6.11) that, if a € 4, ¢ € Co2((0, 1) X (0, 0)), then

(6.18) 2 Dy(a,h,, ,9)—>0.

Now by (4.10)

(6.19) ff/ufol[F(ﬁh) ~ F(w,) |odxdt= Ck|¢)|,, .

4

Also, for x € 9,,

o (td s N
f,,’j 'f,, < H(E(s — 1, 8,(x, 1)) ds dt

=U’i9+-£9+'1{uaua,,,¢dtds

(6.20) = Cklol, f’ Sorld, | dt

= Cklolo(1v2 1, + 1Y)

Hence.

L ! ’i 21(s — 1]
f'/ foj’:d’H(u(s 4 dy(x, 1)))b ds dx dt ,
(6.21)
= C( S v khlel.. = CVihlal., = Chl...
il

Thus, it follows from (6.19) and (6.21) that

(6.22)

> E(a,h,¢)| = CTk|¢|,, + CTh|g),, .
Jj=1
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Consequently, from (6.17) and (6.22) we can conclude that, if «a € 4 and
¢ € C5°((0, 1) X (0, 0)), then

(6.23) D(a,h, ,$)>0 as m—> oo.

Next, choose T > 0. Let {14} g s € (0,T) be countable and dense and let « € 4
be fixed. Since

\% SHEC
xe[%f‘l]uh( )

for + € (0, 0), Helly’s theorem implies that there exists a function u(-,0): (g}
— L'(0, 1) such that (after further refining {4,,}), for 8 € B, uy, (s 15) > u(+, 1)
in L'(0,1) as m —> oo. It follows from Lemma 5.1 that w, (-, 1) converges to u(+, 1)
in L'(0, 1) for each ¢ € (0, T) and

(6.24) [u(-, 7)) — u(+ ) pony = Clry — 7
for 7,7, €(0, T). Hence,
oo 1
- fo fo (48, + F(uy )b, + H(u, o] dx dt

(6.25) l
- —fo j(; [u¢, + F(u)¢, + H(u)4>] dx dt

as m—0.
Since D(a,h,,,$)—>0, u is a weak solution to (1.1). Furthermore, since
#,(0) > uy in L'(0, 1), (6.24) implies that

(6.26) limu(-,r)=u,.

t—0

To obtain (1.13) note that the equidistributed sequences have measure one in
[T72, [0, 1], so that we can further assume that a is equidistributed. Since

Uy, > uin LY((0,1) X (0,T)),

we also have

(6.27) (%, *)>u(x,+) in LY0,T)

for almost all x. An application of Lemma 5.2 now implies that
Uy, (%, ) u(x,+) in L'(0,T)

for all x and

(6.28) lu(py,+) - (2 MNevory = Cly, =yl
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But
p1, (0, ) >py in L'(0,T)
so that we can finally conclude from (6.28) that
(6.29) lim p(x, +) = o5 , lim G(x,-)=0 in L0, T).

This completes the proof of Theorem 1.

Appendix A

In this appendix, we give the proof of Lemma 3.3. We relax the assumption
that 9C is locally Lipschitz at |G| = G, so that we can better model the transition
from laminar flow to turbulent flow. We replace property (1.8) by:

9 is Lipschitz continuous on [ — G, , G, ] and I( is locally
D Lipschitz continuous on (— 0, = G, U[ G, , ).
Since (1.7) is to remain valid at |G| = G. in the sense of distributions, we have
N~ G.—)= lim (G)= lim H(G)=(~G,+),
(A2)
(G, —) =Jim H(G) S lim H(G) =H(G, +).

For the remainder of this appendix, we shall consider 3 to be multi-valued at
* @G, so that

jq_Gc)=[9q—Gc_)’3((_Gc+)]
and

FK(GC) =[3ch - )’I(Gn + )]

For G# £ G,., 3 remains single-valued. Note that since 3 is a maximal
monotone function, the differential equation

i, € H(it), t>0,

A3 (0) = &,

(where H(u) = (0, = ¥(G)/p)" is now a multi-valued map) always has a unique
solution, cf. [7]. Therefore, the friction step (3.2), (3.3) is still well defined.
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Now let 5(r,s) = —3(G)/p. Only the following monotonicity property of &
shall be used in the proof of Lemma 3.3:

(A4) H(ri,s)=9(ry,s) when r > r,, o] <ec,
(A.S) (r,s) = 9(r,5,) when s, >s,,|0]<ec.

When ¥ is multi-valued at (r,s), we take this to mean that (A.4) and (A.5) are
valid for every element of F(r,s). The monotonicity assumptions (A.4) and (A.5)
are consequences of (1.7) since

F__1 Y4+ X v)<
ar p[ﬂCG(l c)+G c]_o’
F__1 oy_X . v]l<
Fo p[%6(1+c) G c]_o’

for o] < c. Given these assumptions, we now state and prove:

Lemma 3.3, If J, is an immediate successor of J,, then

(A.6) Lg(J3) + L(J,) = Lg(J3) + L(J5).

Proof: First consider the boundary cases i=0 and i = N. It is easy to see
that

'ng = 7(2)1'
and
"Y/I\'j, = W/lv/l’

hence (A.6) follows for these cases. Now let Llu, ,ug] denote the sum of the
strengths of the waves in the Riemann problem solution [u,,ug). Also, let
u (1) = u(t,u;) and ugp(1) = a(t,uz). To verify (A.6) it suffices to show that

(A7) L{uy (1), ug(1)] = L{uy ,ug), 1Z0.

Thus, consider the case sign v, 5 sign vg. Note that since 3(0) = 0, we know that
sign vg(§) # signv, ({) from some { € [0, o0) if and only if sign vg (1) # signv, (1)
for all r €[0, 00). In this case, (A.7) follows since In p, (1) — Inpg(?) is constant
and since |vg(#) — v, (1)] is decreasing for ¢ € [0, c0).

For the other case, assume signo, (1) = signvg(¢) > 0 for all 1 €[0, c0) (the
case v, (1), vg(¢) <O is similar). Refer to Figure A.l1 to see that if uy (1) lies in
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r
S

cin
NP
r I I

u (1)

o v

Figure A.l

quadrant II or quadrant IV with respect to u, (), then
L[“L(‘)’ “R(t)] =|lnp (1) — In pr (D)
=|lnp, —Inpg| = L{ug,ug)-

Finally, suppose that ug(1) lies in quadrant | (respectively quadrant D) with
respect to u, (f). By (A4) and (A.5) it follows that if u; (respectively uy) is in
quadrant I (respectively ITI) with respect 10 u,, then

(A.8) |H ()| Z |1 H (u)| 2 |H (up)}-

Thus, we conclude that ug({) is in quadrant I (respectively III) for all earlier
times ¢ €[0,7]. But, by (A.8), v(§) — v, (§) = 0 (respectively v, (§) — vg(§) = 0)
for all times ¢ € [0,]. This implies that Llu, ($), ug($)] is decreasing throughout
[0, 1], so that (A.7) follows for this final case.

Appendix B

In this appendix, we give the proof of Lemma 4.4.
LemMa 44. If0<i <N, then

(B.1) AR = 4D, =12
Proof: We treat the case [ =2. It suffices to consider the case when only

two l-shocks, S| and S, enter 4, cf. [13]. In this case, 2 1-shock, Sg.., and
2-rarefaction, R2,, leave 4. Without loss of generality, assume |S/| ZS3]. In

order to obtain (B.1), we must first esumate derivatives on l-shock curves. So, if
v = v(z) is the velocity along the 1-shock curve that starts at u, , then, by (2.9),

p—v, =c(e?= e’’?),

z=1Inp, —Inp, =0.
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Thus,

—d—g — _1—
(B.2) pE ¢ cosh > z.

We estimate dv/dz using the following technical lemma:

Lemma B.l. Ifw=0, then

(B.3) iwz1- sechw.

Proof: Let P(w)=3iw—{1— sechw}. If P'(w) is non-negative, then P is
increasing; and since P(0) = 0, this would imply that P(w)Z 0 for w Z 0. Now

P'(w) =1 — sechwtanhw.

But it is easily verified that the maximum of sechw tanhw is }, so that P'(w)Z0.
Now consider the interaction of two 1-shocks diagrammed in Figure B.1.
Here

A= cR‘fu‘,
(B.4) C=cS,=D= Iu(S;m) - v(Sl')|,
B=c|Sk.— Sl|=C—4,

(recall that we use the same notation to denote both a wave and its strength). By
(B.2),

B _ -1 dz n—
(B.5) Z=n z‘c 12 (280 )\ =sech S/,
where |(dz/dv)(28))| denotes the derivative dz /dc of the l-shock curve starting

cin v

Figure B.1
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at u,, evaluated at z =2S/. But

A

A_1-B<1_B_,_
f=l-Z=s1-Z=1-4

Thus, by (B.4) and (B.5),

(B.6) RO =(1-m)S; = {1-sech §/}S).
In view of Lemma B.1,

(B.7) {1 —sechS!} =4S/,

so that substituting (B.7) into (B.5) one obtains

out — 2

R, =18/St=1D}.
This completes the proof of Lemma 4.4.
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