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SUPPRESSION OF OSCILLATIONS IN GODUNOV’S METHOD FOR
A RESONANT NON-STRICTLY HYPERBOLIC SYSTEM*

LIN LONGWEIt, BLAKE TEMPLEt, AND WANG JINGHUA

Abstract. We prove the stability of the 2 x 2 Godunov numerical method in a resonant nonlinear
system of conservation laws. The system we study provides one of the simplest settings in which
wave speeds can coincide in a nonlinear problem, namely, an inhomogeneous equation in which the
inhomogeneity is treated as an unknown variable: ut + f(a,u)x O, at O. This is a model for
resonance in more complicated systems, such as transonic flow in a variable area duct, and certain
resonant problems in multiphase flow and elasticity. We show that the total variation of the conserved
quantities can grow at most linearly in weak solutions generated by the 2 2 Godunov method, under
the assumption that a(x) satisfies the "threshold" smoothness condition that the total variation of
a(x) is finite. We show by counterexample that the condition is sharp in the sense that there is
no bound on the growth rate based on the C norm of this variable. This is the most complicated
setting in which the stability of the 2 2 Godunov method has been demonstrated, and our results
provide the first such result for a numerical method that is (essentially) based on the solution of the
Riemann problem for a resonant non-strictly hyperbolic system.

The solution of the Riemann problem is more interesting when wave speeds coincide because the
coordinate system of Riemann invariants is singular, and there exists a multiplicity of possible time
asymptotic wave patterns for solutions. As a consequence, numerical methods that are based on the
solution of the Riemann problem can introduce spurious oscillations in the approximate solutions.
Indeed, counterexamples show that the total variation in u of the waves in the Riemann problem step
of the 2 x 2 Godunov method can tend to infinity as Ax 0, even when the initial total variation
in u is zero. Thus our results verify that the averaging step in the Godunov method "wipes out"
the numerical oscillations that can occur in the Riemann problem solution step of the method. We
interpret this as demonstrating that numerical methods based on the Riemann problem are viable
in this non-strictly hyperbolic setting.
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1. Introduction. We discuss the issue of "blowup" (we use the term loosely)
in the total variation norm for solutions of the 2 x 2 resonant nonlinear system of
conservation laws

(1)
at O,

ut + f (a, U)x 0;
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a(z, O) ao(z) =-- a(z),

0)

where u E R, a E R; and we let U (a, u), F(U) (0, f(U)). System (1) is a system
with the two wave speeds 0(U) 0 and l(V) Of and is resonant at a state
where the two wave speeds coincide, which makes (1) a nonstrictly hyperbolic system.
This is the special case of an n x n resonant nonlinear system as introduced in [10],
[11]. (Motivations for this point of view can be found in the work of Marchesin and
Paes-Leme; see for example [18].) Note that for fixed a, system (1) is equivalent to the
inhomogeneous scalar conservation law ut + f(a(z), u)x 0. Examples of resonant
systems of this general form have been used to model problems in multiphase flow
and are related to problems involving transonic flow in a variable area duct [10], [11].
In this context, the canonical type of behavior occurs in a neighborhood of a state
U, (a,, u,) where the nonlinear wave family is genuinely nonlinear, the nonlinear
wave speed is zero at U,, and the flux function f is monotone in a at u, [10], [11].
Thus we assume

(a) =0,

0
(4) 0--/1 (U,) 0,

0
(5) Oaf(U, 7 O.

These are generic conditions that generalize to the case when u is a vector as well,
and they imply that solutions of the linearized equations blow up as t tends to infinity
(cf. [10], [11]). Here we prove the stability of the 2 x 2 Godunov numerical method by
demonstrating that the total variation in u of the approximate solutions generated by
this method can grow at only a linear rate under the condition that the function a(x)
satisfies the threshold smoothness condition Var{a’ (.) } < oc. (We let Var{f (.) } _=

f If’(x)ldx denote the total variation of the function f, a measure of the size of the
derivative of f.) This condition was first identified by Tveito and Winther in [23]. As
far as we know, the linear growth rate of Var{u(., t)} is a new result for the solutions
of systen (1) as well.

Our analysis relies on the previous work of the authors [15] where we showed
that for the nonlinear problem, Var{z(-, t)} remains bounded for all time in solutions
generated by the 2 x 2 Godunov method, where z z(a, u) is the variable that defines
the singular transformation first introduced by Temple in [22]. Since z is related to u
by a singular transformation, bounds on Vat{z(-, t) } do not imply bounds on the total
variation of the conserved quantity u. Examples show that in the nonlinear problem,
Vat{u(., t)} can initially grow at an arbitrary rate when a is taken to be of bounded
variation [22]. Our result is that when Var{a’(.)} < oc, the quantity Var{u(.,t)}

In the strictly hyperbolic regime, Var{u(., t)} can be bounded by a constant times Var{U(-, 0)};
but since this fails in the resonant regime (cf. [22]), it is natural to look for a bound on the growth
rate for Var{u(.,t)} in the resonant regime.
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can grow at only a linear rate, the rate depending only on Var(a’(.)}, Var{a(.)}, and
Var{z0(.)}. The above example shows that there does not exist a growth rate for
Var{,t(.,t)} that depends only on Var{a} even when u0(z) 0 [22]. In the next
section we also show by counterexample that there does not exist a rate depending
only on the Var{a(.)} and the Cl-norm of a(z). We understand this as follows" the
2 2 Gliinm and Godunov methods are based on approximating solutions locally by
time asymptotic states, and the total variation of u in the time asymptotic states is
not bounded by the total variation of the initial data. Thus, the total variation in
u can initially "blow up" in the total variation norm due to the possible formation
of oscillations. Such oscillations can appear after finite time due to the formation of
intermediate wave patterns that will later interact and decay, and correspondingly,
they can also appear as numerical oscillations in any numerical method based on time
asymptotic wave patterns (for example, the Glimm and Godunov methods). There-
fore, in terms of the numerical method, our results verify that the averaging step in
the Godunov method wipes out the numerical oscillations that can occur in the Rie-
mann problem solution step of the method. We interpret this as demonstrating that
numerical methods based on the Riemann problem are viable in this non-strictly hy-
perbolic setting. Moreover, this is the most complicated setting in which the stability
of the 2 x 2 Godunov method has been demonstrated, and our results provide the first
such stability result for a numerical method based on the solution of the Riemann
problem for a resonant non-strictly hyperbolic system.

In terms of the nonlinear problem itself, we interpret our results (as well as the
earlier result in [23])as showing that when a(.)is sumciently smooth, i.e., Var{a’(.)} <, the rate at which the time asymptotic states are taken on in a solution is controlled.
This effect is quantified by the statement that Var{u(., t)} grows at no more than a
linear rate when Var{a’ (.) } < .

Note that the system obtained by linearizing the flux function F(U) (0, f(a, ))
about a state U,, where U, (a,, u,) satisfies (3)-(5). In this case, letting U U, +U,
we write F(U) F(U,)+ dF(U,) + h.o.t., where h.o.t, are higher order in I 1, and
by (3)-(5),

(6) dF-
0

where - (Of/Oa)(U,) O. Thus the linearized equations for U are

[0 0(7) u + o Ux O,

which have the solution g g0(x) -g’(x)t. Thus in the linearized system, and all
x-derivatives of g also blow up at a linear rate as t tends to infinity.

In g l, we state our main result on the stability of the Godunov method, we
establish notation and review the results in [15], and we show by counterexample that
for solutions of (1), Var{u(., t)} does not grow at a rate depending only on the Var{a}
and the Cl-norm of a(x). The proof of Theorem 2.1 is given in 3.

2. Preliminaries. In this section we state Theorem 2.1, our main result on
linear growth for (1),(2), and then we establish notation and review the results in [15]
that are required for the subsequent proof, which is developed in the next section. At
the end of the section we show by counterexample that for solutions of (1), Var{u(., t)}
does not grow at a rate depending only on the Var{a} and the Cl-norm of a(x); in
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particular, the counterexample indicates that condition Var{a’(.)} is sharp for linear
growth. The proof of Theorem 2.1 is postponed until 3. We first state the main
theorem of this paper.

Let U(z,t) be a solution of (1), (2) enerated from Godunov’s method (to be
discussed below) for arbitrary initial data Uo(x) C B of compact support, where B is
a neighborhood of U, to be determined below. Assume that U(z, t) is generated from
initial data satisfying

(8) Var{a’} _= V

(9) Var{a} Va <

and

(10) Wr{o(.)} V <

In particular, this implies that (see [22])

(11) Varz{Uo(.)} Vz <

Let CI denote the constant

(12) Cf
B

Our purpose is to prove the following theorem:
TH.OREM 2.1. Let U(z,t) be a solution of(l), (2) generated by the 2x2 ao&nov

method for arbitrary initial data U0(z), satisfying (8), (9), and (10). Then there ezists
a constant C depending only on V’, Va, Vz, and CI such that

(13) Var{u(., t)} _< Var{uo(.)} + Ct.

The proof of Theorem 2.1 follows from an analysis of the 2 x 2 Godunov numerical
method as applied to (1), which we rewrite as the 2 x 2 nonstrictly hyperbolic system

(14) Ut + F(U)x =O,

where U (a,u) and F(U) (O,f(u)). The Godunov scheme is based on the
construction of the Riemann problem for (14). We briefly describe tile solution of tile
Riemann problem as outlined in [15]. The Riemann problem, denoted [UL, UR], is the
initial value problem for initial data given by a jump discontinuity

UL ifx < 0,(15) Uo(x) U,t if x > 0.

Let Ai and Ri denote the eigenvalues and corresponding unit right eigenvectors of the
2 2 matrix dF, 0, 1. The eigenvalues are given by A0(g) 0 and ,1 (g) Of/Ot.
In [11] it is shown that the assumptions (3)-(5) imply that/1 (g) 0 defines a smooth
curve P (named the transition curve) in U-space passing through the state U U,
in a direction transverse to the u-axis, and thus F is described by a smooth function
u T(a) in a neighborhood of U,. The curve P is the set of states where .system (14)
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is non-strictly hyperbolic in a neighborhood of U,. By substituting n- T(a) for u in
system (14), we obtain an equivalent system in which F is given by 0; so without
loss of generality we assume that in a neighborhood of U,, AI(U) 0 if and only if

0. The assumptions (3)-(5) imply that the matrix dF has the Jordan normal
form

(16) dF= [ 01 010
at each state U E F.

Because (14) is nonstrictly hyperbolic at U U,, there are in general three
waves that solve the Riemann problem [15]. The wave curves for (14) are the integral
curves of the eigenvector fields R0 and R1 associated with 0 and . The l-wave
curves are given by a g, g constant, and 1-waves are determined by solutions of
the scalar conservation law ut + f(g, n)x 0. The 0-wave curves are given by f
const. Because of (3)-(5), in a neighborhood of U,, f =const defines a smooth curve
of nonzero curvature that is tangent to the curves a =const only at the states U E F
in the an-plane; and the transition curve F intersects the 0-wave and l-wave curves
transversally at U,. To be consistent with [22], [11], [15], we assume without loss
of generality that f(U,) < 0 and fa(U,) < 0, so that the curves f =const are
convex down in a neighborhood of U, (see Lemma 3.1 in [11] and Figure 1 of [15]).
We restrict attention to solutions of (14) that take values in a neighborhood B of
U,. Thus let B denote a neighborhood of U, bounded above by an integral curve
of R0 and below by an integral curve of R1, such that the integral curves of R0 are
convex down in B, and such that each integral curve intersects the transition curve
F transversally at a unique point in B. Assume further that Of/Oa 0 in B. Our
assumptions (3)-(5) imply that such an open set B exists in a neighborhood of U,.
Under these assumptions, the set B is an invariant region for Riemann problems for
system (1)(cf. [11], [22], [15]):

PROPOSITION 2.2. Let B denote a neighborhood of U, bounded above by an

integral curve of Ro and below by an integral curve of R1, such that the integral curves

of Ro are convex down in B, and such that each integral curve cuts the transition
curve F transversally in B. Then B is an invariant region for Riernann problems
in the sense that if UL, UR B, then all intermediate states in the solution of the
Riernann problem [UL, UR] are also in B.

We recall also the definition of the singular variable z defined in [22]: for our

purpose it suffices to define z by

(17) u)- +lf(a’u)- f(a’z(a, -If(a, u) f(a,
if U lies to the right of F,
if U lies to the left of F.

(This is slightly different than the definition given in [22], [15], but since f is constant
along integral curves of R0 and F is given by u 0, the two definitions are essentially
equivalent.) Since the curves given by f coast are convex down in a neighborhood
of U,, we conclude that the mapping

t ---+ Z

is 1-1 and onto in a neighborhood of U, and is regular except at F where the Ja-
cobian vanishes. We let VarzU0 denote the total variation of U0 in the variable z,
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etc. Although for convenience we restrict attention to solutions that take values in a
neighborhood B of U,, the results extend globally under straightforward assumptions
on jr.

Now we indicate by counterexample that for solutions of (1), Var{u(.,t)} does
not grow at a rate depending only on the Vat{a} and the Cl-norm of a(x) even
when n0(x) 0; the counterexample indicates that condition Var{a’(.)} is sharp for
linear growth. The counterexample given in [22] shows that for solutions of (14),
Var{u(., t)} does not grow at a rate depending only on a through the Var{a}. For
this counterexample it suffices to take a(x) aj for xj X < Xj+l, no(X) O, where

a,

2
if j_< 0,

(18) a a, + j/N if0<j_N,
a, + if j >_ N,

for some > 0 and N G Z. In this case, Var{u(., 0+)} O() in the exact solution
because the wave curves a coast and f const have a quadratic tangency at 0
(cf. [22]), and thus the growth rate for Var{u(., 0+)} is not bounded as N .

Now consider the initial data Uff (aN(x), u(a)} where () 0 and a(.) G
C is defined by

1
sin(Nx),(9) x() , +

where 0 a(x) 1 is smooth and satisfies a(x) 1 for 0 1, () 0 for

Il 2, d I’()l 1. It is sy uo vrify uh

lav(’)l 2

Var{av(x)} _< 7.

But when u- O, f,(a, 0)- 0; so at t-0, (1) reads

aut + f(a, U)x -ut / fa N,

SO

ut(x, O) aN(x

(where we assume without loss of generality that f(a., 0) -1). Thus for 0 <_ x <_ 1,

(2nq--1)r
(20) utN(x, 0) +1 if x N

2nr.-1 if x- N,

so on the interval x E [0, 1], the solution u(x, t) satisfies

We conclude that

Var{u(.,dt)} (N/2)dt.

tVar{uN(., 0)} -- o
as N --* c, thus verifying that the rate of growth of Vat{u(-, t)} is not bounded by a
constant depending on a(x) through Vat{a(-)} and the Cl-norm of a(.).
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3. Godunov scheme. In this section we give the proof of Theorem 2.1. We
state seven technical lemmas that are required for the proof. The proofs of the first
six lemmas are given here, and then we give the proof of Theorem 2.1 as a consequence
of the seven lemmas. The proof of Lemma 3.11 is technical and is postponed until
after the proof of Theorem 2.1. Now we state and prove the first six lemmas that will
be used in the subsequent analysis. To start, let U1 and U2 be arbitrary states in B,
and define the following second-order difference:

(21) A2f(U2, U1) A2fl,2 f(a2,u2) f(a2,ul)- f(al,u2) + f(al,Ul).

LEMMA 3.1. The following estimate holds:

(22) I/X2f(g2, U1)I O(1){(Aa)2 +

where Aa a2-al, Az -Iz(a2, u2)- z(al, tl)l and O(1) denotes a generic constant
that depends only on f and B.

Proof. By (17),

(23) A2f1,2 -sign{u2}(z(a2, u2) z(al, u2)) + sign{ul}(z(a2, 1) z(al, tl)).

Now it suffices to verify (22) in the case that both tl, U2 0 or both ul, u2 > 0. To
see this, note that

A2fl,2 f(a2, u2) f(a2, O) f(al, u2) + f(al, 0)
+f(a2, O) f(a2, ul f(al, O) + f(al, ul

=_ A2f(U2, U) / Af(U, U1),

where Ug (al, 0) and U (a2, 0). Thus, assuming that we have verified (22) in
the above two cases, if sign{u2} -sign{ul }, then

[A2fl,21 <_ IA2f(U2, U)I + IA2f(Uo1,
_< O(1){(Aa)2 + [z./Xal} + {(Aa)2 +
_< O(1){(Aa) 2 + [AaAz[},

where we use the fact that IAzl Izll + Iz21 in this case. Thus we verify (22) in
the case that sign{u1} -sign{u2}. We do the case ul,ue _< 0. To this end, let
9(a, Ul, u2) be the function defined for Ul, u2 <_ 0 by the formula

(24) z(a, u2) z(a, tl) g(a, ul, u.){u u}.

We claim that in some neighborhood of (a,,u,,u,) (we assume this neighborhood
consists of the set of all (a, ul, u2) such that U, U1, U2 all lie in B), g is smooth and
nonzero and g-1 1 exists and is smooth in this neighborhood, which intersect theg

set Ul, U2 0. First we show that there exists an e such that [g(a, Ul, u )l > e in this
set. To see this, note that since z(a, u) z(a, ul) f(a, u2) f(a, ul), we know that

Ofif ul u2, then f(a, ul) =/= f(a, u2) if we choose B small enough so that O- 0 when
u 0. Thus when U u2,

g(a, Ul, u2) f(a, u2) f(a, t1)
# o.
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Moreover, fixing ul - 0, we obtain

of(25)
Ou2

g(a, ul, u2)2u + g. (u2 u),

which implies that when u Ul 0, we have

1 Ofg(a, 1, t2) 2t--- (it----(a’ tx 0,

where we assume B is small enough so that Of/Ou 0 in B. Finally, for u 0,
differentiate (25) to obtain

O2f (a u) 2g(a, O, u) + O(u)
Clt2

which implies that

10f (a, O) 0y(a, O, o) - OuThus we have that Ig(a, u, u2)l > e > 0 on compact subsets of B, and hence choosing
B small enough, inside B itself. The smoothness of g and g-1 follow at once from the
assumed smoothness of f, thus establishing the claim.

To complete the proof of Lemma 3.1, note that

z(a2, u2) z(a2, u) g(a2, tl, t2){t t21}

z(al, u2) z(al, Ul) g(al, Ul, u2)(u22
thus

(26) I/Xef,. I{g(ae, u, u.) g(al, tl, t2)}{lt22 t12}1 O(1)l/Xall{u 1}1.

Moreover, by (24),

u u g-l(a2, Ul, u2){z(a2, u2) z(a2, u)}
g-(a, Ul, u){z(a2, u2) z(al, Ul)}

+ g-l(a2, Ul, u2){z(al, Ul) z(a2, Ul)}
=O(1)Az+O(1)Aa,

where we use the fact that z is smooth. Substituting this last line into (26) gives

IA2fl,2l O(1)lAal{lAa + IAzl} O(1){Aa2 + IAaAzl},

which establishes Lemma 3.1.
Let U (a, u) E B, and let a and a correspond to entries of states in B. Define

the following second-order difference:

(27) A2f(a, a2, U) f(a2, u) 2f (a, u) + f(al, u).

(28)

LEMMA 3.2. The following estimate holds:

IA2f(al, a2, U)I _< O(1){IAal
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where Aal a- al and Aa2 a2 a.

Proof. By Taylor’s theorem,

(a2 a) fa(a2 + a(1 ), u) d

01+ (al a) fa(al + a(1 ), u) d

{ (a2 al) + (al a) } fa(a + a(1 ), u) d

+ (al a) {fa(al + a(1 ), u)d fa(a

<_ O(1)lAa2 Aall + sup faal(al a)(al
B

IA2f(al,a2, U)[

and the proof is complete. 1
Our analysis is based on solutions of (14) constructed by the Godunov scheme

following the work in [15]. Thus let Uzxx(Z, t) denote an approximate solution of the
Cauchy problem (1), (2) generated by the Godunov scheme, for initial data Uo(z)
taking values in the neighborhood B of U.. Specifically, we discretize R x [0, oc) by
spatial mesh length Ax and time mesh length At such that

At
(29) A-- g’

where 5 coast(A)- 1, and

(30) , Slip
(a,u)EB

(It suffices to take 5 < 1/(2A), but for convenience in the proof of Lemma 3.11, we
take 5 1/(4A).) We let xn nAx, tj jAt so that (xn, tj) denote the mesh points
of the approximate solution. Define

Si {(x, t) t <_ t < ti+ }.

The approximate solution Uzxx generated by the Godunov scheme is defined as follows
[3], [4]" to initiate the scheme at n 0, define

1 fX
xj+I

Uo(x)dx,(31) U2 UAx(X, O) Xj < X < Xj+I.

n--1Assuming that Uzxx(X, t) has been constructed for (x, t) E [-J=0 S, we define UAx in

S as the solution of (1) with the initial values

1 fxj+, UAx(x,t-)dx, xj < x < xj+l.a u? =_ x

In other words, at each time tn, a piecewise constant approximation UAx(z,t) is
obtained by taking the arithmetic averages of Uzxx(z, tn-) at each interval of the
mesh so that the solution in S can be constructed by solving the Riemann prob-
lems [U_I,U] posed at each point of discontinuity (zj,tn),j Z. The Courant-
Freidrichs-Levy (CFL) restriction (29) ensures that the Riemann problem solutions in
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each Sn do not interact before time tn+l [22], [15]. Our results rely on the following
theorem, which was proved in [15]:

THEOREM 3.3. Assume that the initial data Uo(x) E B satisfies the condition
Varz{U0(.)} Vz < c andVar{a(.)} Va < c. ThenU/xx(X,t) B for allz, t >_ 0,
Var{U/xx(.,t)} < 4V, and a subsequence of {UAx(’,t)} converges boundedly, almost
everywhere, to a weak solution of (1), (2) as Ax tends to zero.

We use the notation U_ =_ UAx(Xj+, t+) and U+ UAx(zj+I--, tn+), and we
let f f(U/xx(Xj,tn+)), f_ f(UAx(Xj+,t+)), and f+ f(UAx(Xj+l--,tn+)).
Here, the symbol + refers to the right side and the left side of the mesh rectangle R,
which we define by R {(x,t) :xj <_ x < Xj+l,t <_ t < t+l}. Using integration
by parts it is not difficult to verify that UAx satisfies the difference equation

(33) t?+l 6[f+ fjn_]tj

nLet Au uj Uj_I, SO that by (33) we can write

(34) AuT+I Au -6[ j+ fj_ fj-l+ d- fj-1-]"

Our procedure is to estimate the right-hand side of (34), the idea being to add and
subtract terms in such a way so as to construct second-order differences of the form
(21) and (27), together with a remainder term that forms a collapsing sum in the
estimate for Varu{UAx} given by yj=_ IAu+ll. Since we will be estimating terms
at a fixed time level tn, we will suppress the index n whenever states are assumed
to lie at level t in an approximate solution UAx. Thus we use the notation f(j
f(a, uj_), f,+j f(a, uj+) and define the first-order differences

(35) /f/ f;j f;j--1,

(36)

together with the following second-order differences (cf. (21) and (27))

(37) A2fi(u) f(ai+, u) 2f(ai, u) + f(ai-1, u),

(3s) A2fi(u, v) f(a, u) f(a-l, u) f(ai, v) + f(ai-1, v).

For convenience, we use the following notation for special cases of these second-order
differences:

(39) A2f Af(u_),

(40) A f+ A f(u+),

and

(41) fi,i-1 fi(?’ti-’

(42) 2 + A2A fi,i-1 fi(ui+, ti-l+).
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Note that the estimates of either Lemna 3.1 or Lemma 3.2 can be applied to
all of the second-order differences above. Our proof of Theorem 2.1 on the stability
of Godunov’s method and the linear growth of solutions for system (1) proceeds as

follows.
DEFINITION 3.4. We say that the types of Riemann problems near mesh point

(xi, tj) fall into case one (we write T? E C1) if

and

<_ o.

If either of these fails, then we say T CI.
DEFINITION 3.5. We say that the types of Riemann problems near mesh point

(xi, tj) fall into case two (we write T C2) if

I L/I <_ (26)-llAul
and

A’u’Al+ _> 0.

If either of these fails, then we say T .
Note that the type Tj depends on the wave structures in the Riemann problems

posed at (zj-1, tn) and (Zj+l, tn) as well as (zj, t). Theorem 2.1 is a consequence of
the following lemmas.

LEMMA 3.6. If T; C, then the following estimate holds:

(43)

where

(44)

Iau’+ll < I/Xl- 61Afffl + 51Af+ll + l(j),

Proof. By adding and subtracting the appropriate terms to (34) and using the
fact that f+ f-+, we obtain the identity

%t7+1 ’aJ-1
n+l (%tj %tj_l) (ff+l,j+l ff+l,j) + 5(f,j f,j_i)

--((fj-+l,j fff,j) + 5(fff,j-1 fj--1,j-1)
+6(f,j-- f--1,j)-5(f,j f--1,j),

and this is equivalent to the identity

(45) AuT+l Au. 5Af/+l +

Statement (43) follows from (45) by using the inequalities AuTAfj- < 0 and IAf-I <_
(25)-llAujl of Definition 3.4.

LEMMA 3.7. If T C2, then the following estimate holds:

(46) IA’u+ll < IAul + 5IA/+_I- 61Af-I + E2(j),
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where

(47)

Proof. By adding and subtracting the appropriate terms to (34) and using the
fact that f+ f+l, we obtain the identity

lt7-[’1 n+l (uj uj_ 5(f,j +
’aj-1 D,j-1) -t- 5(f?-l,j-1 f?-l,j-2)

--(’(fj,-t-j-1- f?-l,j-1) -[- ((f?-l,j-2- fj-+-2,j-2)
-]-((f?--1,j--1 f?-2,j--1 (f;-1,j--1 f?--2,j--1),

which is equivalent to the identity

(48) Au]+1 A%tj tJAf+ + 77Af?_ 5A2f?_1 5A2f;_l,j_2
Thus (46) follows from (48) by using the inequalities Au]Aff >_ 0 and IAffl <_
(25)-llAujl of Definition 3.5. rG

LEMMA 3.8. IfT C1 N C2, then the following estimate holds:

(n) I+11 _< I1- alAL-I- alaL+l + (Y),

(0) Ea(y) alAf(_l_, -1+)1.

Proof. Statement (34) implies the identity

/1
/5(f,j- fj--1,j-1)- 5(fj,- f?-l,j-1),

which is equivalent to the identity

(51) Au+l Auj 6Af+ + 5Aft- + 5A2fj(uj_l_, %tj-x+).

Thus (49) follows from (51) by using the inequalities given in Definitions 3.4 and
3.5.

LEMMA 3.9. For any type T, the following estimate holds:

(52) IAu+ll _< IAI + IAf+_ + 51Af-+ll + E4(j),

where

(3) 4(j)

Proof. Statement (34) implies the identity

tT+l ’uJ-1
n+l (tj tj_ 1) (’(fjWl,j+l fj-+l,j) + (f?-l,jil

-5(fj-+l,j f,j)+ 5"(f?+l,j-2
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which is equivalent to the identity

(54)
mt+1 Atj (}’mf;+l / (’/f;--1 A2fj+l(ltj-’J-2+)

-6zxf_(_/) xf(_/).

Thus (52) follows from (54)directly. ]

COROLLARY 3.10. The following estimate holds for 1,..., 4:

E(j) <_ O(1){IAaj+ Aajl + IAay Aaj-ll
-t-lAayllaj+ aj-l + IAaj-xllaj aj-21}

(55) +O(1){(IAaj_l / IAajl / [Aaj+xl)(Varf / VarzUjn_l + VarzUjn_2)},

where VarzU denotes the total variation in z of the approximate solution U/xx (x, tj /)
in the interval xj- <_ x <_ xj+l+, Aaj aj- aj-1, and O(1) denotes a generic
constant depending only on f and the supnorm bounds on the solution. Note that by
Theorem 3.3,

(56) VarzU 12Vz.

Proof. By Lemmas 3.1 and 3.2 of the previous section, it follows that

(57) IZX2fj(u)l O(1){IAaj+l -/Xajl + I/Xajllaj+ -ay-l}

and

(58) IA2 fj(u, v)l < O(1)(IAajl + IAaj]lz(aj, u) z(aj_, v)l ).

Thus, in particular we have

(59) IAif-I O(1){IAaj+l Aajl / ]Aajllaj+l -aj-ll}

and

(60) Im2 f2j_ll O(1){IAajl + IAajl(VrzU + VarzVjn_l)}.

By the same argument analogous estimates also hold for A2fj,+j 1, fJ(ltj--l--,itj-l+)’
and the remaining second-order differences appearing in E1 (j) E4(j). Putting these
estimates together and collecting like terms gives (55). l

LEMMA 3.11. If T_ E 2 and T , then the following estimate holds:

(61) IAfj+_l[ / IAfj-I Es(j- 1),

where

E5(j 1) O(1){Inay+ Aajl + IAaj
/lAajllaj+l aj-ll / IAaj-llay

(62) / O(1) {(IAaj-11 / IAajl + IAaj+ll)(VarzU + VarzUjn-1 + Varz Unj-9.) }
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The proof of Lemma 3.11 requires the analysis of each admissible Riemann prob-
lem type T?_t T? when the conditions of Definitions 3.4 and 3.5 simultaneously
fail. These conditions depend only on the structure of the waves at the mesh points
(Xi-1, tn) and (xi, tn), and there can be up to three nontrivial waves in the Riemann
problems posed at each mesh point. The proof is technical and is postponed until
after the proof of Theorem 2.1. As a motivation we comment that one can verify case-
by-case that Tj_I C2 and Tj C1 cannot simultaneously hold in any admissible
solution of the Riemann problem under the special assumptions that Aaj_l Aaj
and that the curves f const are symmetric about the line u 0 and invariant
under vertical translations in the au-plane. Thus estimate (61) can be viewed as a

perturbation of this case.
It is interesting to note that in the proof of Theorem 2.1 to follow, the entropy

condition and the choice of admissible solutions of the Riemann problem enter only
through estimate (61) together with the results of Theorem 3.3. Thus we can view
inequality (61) as giving a nontrivial characterization of the admissibility condition
for Riemann problems in this non-strictly hyperbolic setting.

We use (43)--(61) in the proof of the following proposition:
PROPOSITION 3.12. The following estimate holds:

(63)
J J

k=i k=i

where F and F] are defined by

-1/1(64) F/1 +6lz/it
if (i, t) C1,
if (i, n) C1;

-1[I I(,) c,
(65) FJ +61Afj-+l if (j, n) (22

and E(k), defined as E(k) E-----1 ]El(k), satisfies

I]E(/c)l _< O(1){IZXaj+l ZXal + I/Xa ZXaj_ll

(66) + O(1)([/kaj_ll + /kaj[ + [/kaj+l[)(VarzU? + VarzUjn_l + VarzUjn_2)}.

Proof. The estimate (66) follows directly from (55) and (62). We prove (63) by
induction. To start the induction, note that when j 0, (63) reduces to

4

(67) IAu+ll <_ IAuI + F + F + E E(i).
/-1

But estimate (67) follows directly from (43), (46), (49), and (52) (depending on the
possible values for F{ +Fff), and thus (63) holds for i-j 0. Now suppose that (63)
holds for and j. We show that it holds for i- 1 and j as well, thus verifying (63) by
induction. In fact, by (67),

4

(68) IAu+111 -< I/t 11 nL- /5"?--1 nu /7/11 nu E Ek(i- 1).
k=l
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Putting this in (63), we obtain

j j j 4

(69) E n+l

k--i-1 k=i-1 k=i /=1

Therefore, in order to prove the proposition, it is sufficient to show that

(70) F + F}_ Eh(i- 1).

By definition, F] + -1 0 if either T , T-I C, or T C, T_ 2; and
F+F_ 0ifT C,T_ C2. But by (61) ofLemma 3.11, ifT ,T_ ,
then [f-I + [f[ gh( 1). Thos (63) is established.

Proof of Theorem 2.1. Let Uax be an approximate solution generated by the
Godunov scheme from compactly supported initial data U0 (.) satisfying (8), (9), and
(10) and taking values in B. Since Var{ZAx}(-, t) is uniformly bounded, f(UAx)(X,t)
tends to a constant state as x tends to plus or minus infinity; and thus F] nd F]
tend to zero as j] tends to infinity. Thus taking - and j + in (63) and
using (66), we obtain

Au+] ]Au] +O(1) {Aaj+ Aaj + [Aaj Aaj_
k=- k=- k=-

(71) +Aaj[aj+l aj_] + Aaj_]aj a_2}

+O(1) ([Aaj-l[ + [Aaj[ + ]Aaj+l])(VarzU + VarzU_ + VarzUj2).

But

(72) E IAa- Aa-l < VAx,

(73)

and

IAakllak+l- a-xl
_

2V’a/XX ]ak+l- ak-ll

_
2VaVAx,

k=-cx k=-x

(74)

E {(IAaj-ll + lAdY / IAaj+ll)(VarzU / VarzU?-1 - VarzUjn-2)} 36VzVAx,

where we use the inequality

la’(x)l Var{a’},

which applies because Var{a(-)} < and Var{a’(.)} < imply that a’(z) 0 as

Izl . Putting these in (71) and using CFL yields

k=-
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where C depends only on Va, V’, Vz, (5, and Cf. Moreover, (75) applies to any weak
solution obtained as a limit of approximate solutions U/x,, so this completes the proof
of Theorem 2.1. []

It remains only to give the following proof.
Proof of Lernrna 3.11. Lemma 3.11 is proved by a case-by-case study of the

possible wave patterns that can occur in any two consecutive Riemann problems
[U_., U_l], [U_I, U]. Each case depends on the number of waves at each mesh
point, on whether they are positive or negative speed, and on whether Aaj_l and Aaj
are positive or negative. Recall that there can be at most three waves in each Riemann
problem and that these waves alone determine the types T_l and T. Here we will
first state and prove a number of estimates (which we reference as Observations) from
which estimate (61) can be deduced in each case. We will then verify (61) in three
representative cases, the remaining cases being analagous. Since we are at a fixed
time level tn, we suppress the index n, and we let Es(j 1) O(1)E5 where

Ea {IAa+l Aal + [Aa3 Aa_l + IAajl aj+l a-ll + IAa-llla aj-21}
(76) +{(IAa3_ll + IAajl + IAaj+ll)(VarzU + VarzUjn__l + VarzU3n__2)}

and O(1) denotes a generic constant depending only on f, 5, and the supnorm bounds
for the solution. For convenience, we allow the constant O(1) to be adjusted upward
as we go along.

OBSEIVATON 1. If (Af+_l)(Af-) < 0, then we have both

(77) IAfj+_l <_ O(1)E and IAfj-I < O(1)E.

Pro@ If (Af+_)(Af-) _< 0, then IAZ_ll + IAI- -IAf_l
write Af+_ /J;-- aS a second-order difference as follows"

Aft- and we can

--(f2J &--l)- (f;--1,j--1- f?--l,j--2)
--(f-,j--1 f2--1,j--1) - (fj-+--l,j--2- fj+--2,j--2)
{--(f2j--1 fT--l,j--1) -It- (f2--1,j--1 f2--2,j--1)}
--{--(fT--l,j--1 fT--2,j--1) -1-- (f?--l,j--2 fj-t---2,j--2)}
-A2fj-I(Uj-1-) /k2fj-l(Vj-1 Vj-2+),

where we have used the fact that f f0+_l,j_l. But by Lemma 3.2,

IA2fj_l (gj_l_)l O(1)E,

and by Lemma 3.1,

I/k2f._, I(Uj 1-- Uj-2+)I < 0(1)5,

so (77) is verified. S
As an immediate consequence of (77) we have the following corollary.
COaOLLAaY 3.13. If either IAI]-_ll or Izx/71 i bo&d b o(1/5, then so is

the other one.
The next two observations give cases in which Lemma 3.11 is easily verified.
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a.
U U

2 U

A%_ or

Aa. Aa.
d.

U U U

FIG. 1.

a
j_2

a
j_

(78)

OBSERVATION :2. If (Aaj_l)(Aaj) < 0, then

IAaj_l Aajl [Aaj_l[ + ]Aaj] O(1)E5.

Proof. Equation (78) follows directly from the definition of Es.
Observation 2 shows that in the case (Aaj_l)(Aaj) <_ O, whenever Afj+_l or Afj-

are bounded by the first-order differences (Aaj_l) or (Aaj), they are also bounded
by the second-order difference E5. This makes it easy to verify Lemma 3.11 in the
case that the sign of Aaj_l is not equal to the sign of Aaj, so we will omit these cases
here.

OBSERVATION 3. [f (Auj_l)(Auj) >_ O, then when we restrict to the case (Afff_l).
(Afj-) >_ 0 (the only interesting case by Observation 1), we must have that either

O7

<_ 0.

In this case, to verify Lemma 3.11, it suffices to show that either

Proof. This follows because the latter estimates verify that either Tj_I E C2

or Tj E C according to Definitions 3.4 and 3.5, either one being contrary to the
assumption of Lemma 3.1 i.

The following observations are more technical.
OBSERVATION 4. Consider any three states ft, 2tl, and u2 in the configuration

diagrammed in Fig. 1. Then the following estimate holds:

]f(aj,u2) f(aj,u)l <_ O(1){IAaj Aaj-ll + IAajllaj+ -aj-ll
(79) /lAallz(aj, t) z(aj_l,

Proof. Since f(aj, u2) f(aj-1, ft) and f(aj-1, u) f(aj-2, t), we can write

f(aj, ug.) f(aj, Ul) f(aj, t) f(aj, u) f(aj_, t) + f(aj_, u)
+{--f(aj, z) + 2f(aj_, t) f(aj_e, )}

O(1)lAay ay-l + [aajliaj+ -aj_
+O(1)Aajlz(aj_l u) z(aj, )1,
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a

FIG. 2.

where we have applied Lemmas 3.1 and 3.2 in the last line.
OBSERVATION 5. Consider any three states t, Ul, and u2 in the configuration

diagrammed in Fig. 2, and let Aa =_ a2 -al. Then the following estimate holds:

(80) If(a2, u2) f(a2, )1 -< O(1){IAa[lz(a2,

Proof. Since we are assuming that the curves f const are smooth curves that
have a quadratic tangency with the curves a const at each point on the curve u 0,
for each a and each state u_ < 0 we can define the state

u+ h(a, u_

by the condition that u+ _> 0 and f(a, u_) f(a, u+). By our assumptions on f, h
is smooth and is a 1-1 mapping for each a and

(81) h(a, 0)=0

in our domain. But (81) implies that

(82)
0

h(a, O) 0
Oa

thus we must have

(83)
0
-ah(a, u) <_ o(1)lul.

Now referring back to Fig. 2, we have Ul h(al, t) and u2 h(a2, ); thus we can
write

(84)

f(a2,u2)- f(a2,ul) f(a2, h(a.,t))- f(a2, h(a,t))
Of (a2, u,)[h(a2, t) h(a, )]Ou
Of Oh

(a,, t)AaO---(a2, u,)--a
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a
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a

u=O
FIG. 3.

But by (83) and the fact that - (a, 0)= 0, we can estimate

of (a2, u,) _< O(1)1

and

0a

and substituting these into (84), we obtain (80).
The following two corollaries of Observation 5 are useful.
COROLLARY 3.14. Consider any three states t, Ul, and u2 in the configuration

diagrammed in Fig. 3, and let u be an arbitrary state. Then either

(85) If(a1, u) f(al, u2)l <_ (25)-11u
o?

(86) If(a, u) f(a, u2)l

_
O(1)E,

where

(87) E IAal + IAallz(a, u) z(a2, u2)[.

Proof. In Fig. 3, Ul h(al, ) and u. h(a2, t), and we could have u _< u or

u2 <_ u (the latter is drawn) and u could be on either side of these. In this case we
can estimate

(88)

where

]f(a,u)- f(a,u)l

_
If(a,u)- f(al,Ul)l + If(a,ul)-

(89)

and

(90)
If(a,u)- f(al,u)l

_
If(a2,ul)- f(a2,u2)l

+ {If(a,u)- f(a,u2)- f(a2,u)+ f(a2,u2)l }.
<_ O()E.
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a

a

FG. 4.

j-I j

n+l

a

a.

2

FIG. 5.

In the latter estimate we applied (80) and Lemma 3.1. Thus,

(91) If(a1, u) f(al, u2)l _</lu Ul] + O(1)E.

Therefore, if/lu- ul O(1)E, then we obtain (85) by taking 6 (4A) -1, and if

Alu- Ull _< O(1)E, then we obtain (86). This completes the proof of the first corol-
lary.

COaOLLAaV 3.15. Consider any four states u, v, ul h(al, t) and u2 h(a2, t)
in the configuration diagrammed in Fig. 4. Then the following estimate holds:

(92) If(a2, ) f(a2, )1 If(a2, Ul) f(a2, )1 / O(1)l/Xallz(a2, )l.

Pro@ By Observation 5 we have that

(93) If(ag., u) f(a, ul)l _< O(1)l/Xallz(a’2, )1,

and since f(a2, ft) f(a2, f) f(a2, u2) f(a2, v), we can conclude (94) from the
triangle inequality.
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j-t

n+l

a

u_ D u.
j-l+

FIG. 6.

Now we verify Lemma 3.11 in three representative cases.
Case (i). We consider the case diagrammed in Fig. 5. In this case there are only

positive nonlinear waves at (xj-1, tn) and (xj, tn), so uj_+ uj-1 and uj-2+ uj_2.
Therefore,

Thus the inequality

f(aj-1, j-1) f(aj-1, uj-2)
Of
)U (aj-1, U.)AUj--1.

is evident. In this case it is also straightforward to verify the inequality

Af-_lnlt]_ 0,

so we can conclude that by Definition 3.5, when this wave configuration occurs, Tj_i E
C. This contradicts the assumptions of Lemma 3.11, thus verifying Lemma 3.11 in
this case. Note that when both of the nonlinear waves have strictly negative speeds,
a similar argument shows that Tj C, again verifying Lemma 3.11.

Case (ii). We consider the case diagrammed in Figs. 6 and 7. In this case there
is a nonlinear wave of positive speed at (xj_, tn) and a nonlinear wave of negative
speed at (xj, tn), and the waves cross over from the region of positive sound speeds
(u < 0) to the negative sound speed regime (u > 0). We assume here that Aaj_l and
Aaj are both positive. Most of the complications that can occur do occur in this case.
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j-1

E

A

K

C M N D F G

c = (%1,
D = h(a_,, U_l_)
A (a: U_l_)
B = h(a: U_l_)

FIG. 7.

(In particular note that in three-wave Riemann problems, the standing wave always
ends at u 0; this limits the analysis a bit.) Observe first that in order for the left
nonlinear wave to be positive, the intermediate state Uj-1 (aj-1, uj_) must lie to
the left of the point labeled D in Figs. 6 and 7. (Recall that the zero speed shocks
must jump between equal values of the function f.) Here we do the case when Uj_
lies between the points labeled C and D in Fig. 7, the other case being similar. By
Observation 1, it suffices to consider the two cases

(94) Afj- _< 0 and /fj+-I 0

or

(95) Afj- > 0 and Aff_ > O.

In case (94), it suffices to verify that either Tj E C or else both IAffl
_

O(1)E5
and IAff-_ll O(1)g5. But in order for Afj- f(aj, uj)- f(A) < O, we must have
uj > u(B). (See Fig. 7.) In this case, still referring to Fig. 7, it is clear that Corollary
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n/l

j-I

FG. 8.

3.14 of Observation 5 applies, and we must have that either Uj-1 Uj and

(96)

or else

(97)

_
O(1)E.

But if uj_l <_ uj and (96) holds, then Tj E CI, and we are done; and if (97) holds,
then we can apply Corollary 3.13 of Observation 1 to conclude that IAfj+_ 1[ -< O(1)E5
as well. This verifies Lemma 3.11 under the alternative (94).

Now assume the second alternative, (95), holds. In this case it suffices to show
that

(98) I/X fff_ 
since then Tj-1 E C2. Consider first when uj_ <_ O. (For example, take M to be Uy-1
in Fig. 7.) Then, since the nonlinear wave at xj has negative speed, we must also
have that uj_+ <_ u(N) in Fig. 7, so

[Af-_l[ <_ ]f(E)- f(N)[ If(E)- f(M)]
(99) (2)-11j_ll,

as required. The inequality (99) is also readily apparent when uj_ > O. This com-
pletes the proof of Lemma 3.11 in case (ii).

Case (iii). We consider the case diagrammed in Fig. 8. In this case there are two
consecutive three-wave Riemann problems at the mesh points (xj_, tn) and (xj, tn).
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We assume again that /kaj_l and /kaj are both positive. In this case, referring to
Fig. 8, we see that both uj_ 0 and uj-l- 0. Thus,

(x00) Af f aj uj f aj uj-1- O,

and thus Tj E C1, contradicting the assumption of Lemma 3.11. Thus Lemma
3.11 holds in this case as well. Note that in this case, Aft+_1 f(a_l,U_l+)-
f(aj-1, tj-2+) O(1)E5 by Corollary 3.13. This is useful in verifying the cases when
only one of the Riemann problem solutions at z-i and z have three waves. The
remaining cases are omitted. []
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