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THE LARGE TIME EXISTENCE OF PERIODIC
SOLUTIONS FOR THE COMPRESSIBLE EULER
EQUATIONS
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Abstract

We demonstrate the existence of solutions to the full 3 X 3 system of
compressible Euler equations in one space dimension, up to an arbitrary
time T > 0, in the case when the initial data has arbitrarily large total
variation, and sufficiently small supnorm. The result applies to periodic
solutions of the Euler equations, a nonlinear model for sound wave prop-
agation in gas dynamics. Our result extends Glimm’s celebrated 1965
theorem to the case of large total variation, and our analysis establishes
a growth rate for the total variation that depends on a new length scale
d that we identify in the problem. This length scale plays no role in 2 x 2
systems, (or any system possessing a full set of Riemann coordinates),
nor in the small total variation problem for n X n systems, the cases
originally addressed by Glimm. Recent work by a number of authors has
demonstrated that when the total variation is sufficiently large, solutions
of 3 x 3 systems of conservation laws can in general blow up in finite
time, (independent of the supnorm), due to amplifying instabilities cre-
ated by the nonvanishing “Lie brackets” of the vector fields that define
the elementary waves. For the large total variation problem, there is an
interaction between large scale effects that amplify and small scale effects
that are stable, and we show that for the class of systems possessing the
same (unsigned) non-zero Lie bracket components as the Euler system,
the length scale on which this interaction occurs is d. In the limit d — oo,
we recover Glimm’s theorem, and we show there exist linearly degenerate
systems within the class considered for which the growth rate we obtain
is sharp.
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1. Introduction

We coﬁsider the initial value problem for the system of compressible Euler
equations in one space dimension,
pi+ (pu): = 0,
(pu)e + (pu +p). = 0, (1.1)
E: + ((E +p)u)x - Oa
where p is the density, u the velocity, p the pressure, and E the energy of the
fluid. This is the special case of the general initial value problem for a system

of conservation laws,

U+ FU), =0, (1.2)
U(z,0) = Uy(z), (1.3)

where for (1.1), U = (p, pu, E). System (1.1) represents the zero dissipation limit
of the compressible Navier-Stokes equations. It is well known that shock-waves
form in solutions of (1.1) even in the presence of smooth data, and shock-waves
introduce time-irreversibility, increase of entropy (in a generalized sense), and
loss of information, and this leads to the decay of solutions, c.f. [5,12].

In the case when the equation of state is of the form p = p(p), (the case
of isothermal and isentropic flow, [12]), the first two equations uncouple from
the third, and system (1.1) reduces to the 2 x 2 system known as the p-system;
this includes the isothermal and isentropic equations of state. There is a well
developed existence theory for 2 x 2 systems of conservation laws, but for three
equations, the only general existence theorems that apply to the full nonlinear
system (1.1) are based primarily on methods of analysis first introduced by
Glimm in 1965. Other methods apply only to systems of conservation laws
possessing a full set of Riemann coordinates®, (e.g. 2 x 2 systems), or under
the assumption that the initial total variation is sufficiently small. A full set
of Riemann coordinates is a coordinate system in which the the coordinate

vectorfields are eigenvectors of the flux, and thus have pairwise vanishing Lie

3See Serre [11] for an extensive analysis of such systemns which he refers to as “rich”.
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brackets, c.f. [12]. (See e.g., [10], where large total variation is allowed among

components that are almost planar.) Glimm’s theorem can be stated as follows:

Theorem 1. (Glimm 1965) If the total variation of the initial data Up(x) is

smaller than a threshold value V.,
Vo = TV{Uo(")} < Viris, (1.4)
then a global weak solution with shocks exists for all time and
TV{U(-,t)} < CVg, (1.5)

where Viryy and C depend only on the fluz function F in the neighborhood of the
solution.

In 1970, Glimm and Lax went on to prove that for 2 x 2 systems vlike the
p—system, periodic solutions decay at a rate O(1/t) in the total variation, so
long as the oscillation of the initial data is sufficiently small®. (The oscillation
is equivalent to the supnorm once an origin U is chosen.) This was a triumph
for the mathematical theory of shock-waves because it provides a quantitative
estimate of the dissipation present in the zero dissipation limit of gas dynam-
ics. However, the methods of Glimm and Lax give only a short {ime existence
theorem for periodic solutions of the 3 x 3 system (1.1), the case when the true
physical entropy effects the time-irreversibility. The long time existence problem
for periodic solutions of (1.1) has remained open since that time.

The difficulty when the total variation is large and the system does not
possess a full set of Riemann coordinates, (e.g., periodic solutions of (1.1)), is
that when TV{Uo(-)} > Verit, there exists a de-stabilizing, amplification effect
due to the non-vanishing Lie brackets in the eigenfields ()\;, R;) of the Jacobian
matrix dF :

dF -R; = NRi, i=1,2,3.

For 2 x 2 systems, the effect vanishes because vector fields in the plane can

always be rescaled to have pairwise vanishing Lie brackets. For system (1.1),

4The result was extended by Zumbrun to n x n systems which possess a full set of Riemann
coordinates, [18].
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the Lie brackets play a dominant role. Indeed, recent well known work based on
the geometrical optics approximations of system (1.2) have demonstrated that
certain 3x 3 systems of type (1.2) are resonant in the sense that solutions blow up
in a finite time, independent of the initial supnorm bound, when TV{Uo(-)} >
Vrit, [4, 7, 8].

In 1991, Young ([15]) introduced a new method of analysis called the method
of re-orderings, that essentially accounts for a cancelation that occurs in the
waves that are created by multiple interactions of waves with a single wave
when the supnorm is small. The leading order effect of interactions is quadratic
because the generation of waves at interaction is based on the lack of com-
mutivity of the vector fields R; that determine the left and right states of the
elementary waves. The failure to commute is measured by the Lie brackets of
the vector fields, an inherently quadratic quantity. By accounting for the can-
celation, the method of re-orderings demonstrates that the Lie bracket errors
actually contribute only third order to the supnorm estimate of the solution
at time ¢, and based on this improved estimate, Young proved that for n x n
systems, solutions generated by the Glimm scheme satisfy the following more

refined estimates:

Theorem 2. (Young 1991) Let U(z,t) denote any solutions to which the orig-

inal assumptions of Glimm apply, so that
TV{Us()} < Viriz. (1.6)

Then
sup [U(-,1) — U] < Csup [Un(-) — T, (L.7)

where C' depends only on values of the fluz F in a neighborhood of the solution.
While Theorem 2 requires V < Verit, it gives the stability of solutions in the
supnorm. Thus the method of re-orderings provides an analytical approach to
estimating a cancelation (due to oscillation) that occurs in the amplification

effects of the Lie brackets, and this stabilizes the supnorm.
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2. Our New Result

We now discuss recent work of the authors in which we address the large total
variation, small oscillation problem for the 3 x 3 Euler problem (1.1). For
convenience, we study the Lagrangian version of the Euler equation, [12],

nw—u; = 0,
uy + Pr = O, (21)
Et + (pu):z: = 07

where v = 1/p. For smooth solutions, (2.1) implies
St - 0,

where S is the entropy, [12]. In this case the second eigenvalue satisfies A, = 0,
and S is also a Riemann coordinate for the second eigenvector field, VyS = L,
the corresponding left eigenvector. The 2-waves are thus the contact discon-
tinuities. More generally, and with the goal in mind of isolating a particular
nonlinear aspect of the Euler equations, we consider any 3 x 3 system within the
class of conservation laws that have a Riemann coordinate for the second family.
It is not difficult to show that any such system will have the same (unsigned)
non-zero Lie bracket components at the base state U as does the Euler system
(2.1), (under a suitable normalization of the eigenvector fields, c.f. [17]). For
any system in this class, we prove the following theorem that applies to solutions

defined in a small enough neighborhood of the state U = U :

Theorem 3. (Temple, Young) For any Vo > 0, d > 0 and time T > 0, there
exists an € = €(Vo,d, T), such that, if the initial data Uo(-) of the Cauchy problemn
(1.2) satisfies

sup [Uo(-) = Ul < ¢, TV(Uo()) < Va, (2:2)
and

Uo(}la < Verit, (2.3)

then the conservation law admits a weak solution up to time I' with bounded

supnorm and bounded total variation, and

TV{U(-, 1)} < Voexp(KT/d), (2.4)
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where K is a constant depending on the equations, and ||Uo(-)||a denotes the
magimum total variation of the function Uy(-) over intervals of length d.
Theorem 4 gives the existence of solutions up to an arbitrary time T in the case
when the initial data has arbitrarily large total variation and sufficiently small
supnorm. As a corollary, we obtain the large time existence of periodic solutions
of the Euler equations, a setting which can be described as the nonlinear theory
of sound waves. Our proof is based on new functionals and new estimates for
the Glimm scheme, the identification of a new length scale in the problem, and
the introduction of a new norm, ||-||4, which we call the d-norm, that is natural
for the estimates on the nonlinearities required for our proof.

The length scale d is defined to be the largest interval over which the total
variation of the initial data is smaller than the critical total variation V.,
required for Glimm’s method. (We refine this to require only the total variation
of the entropy be less than V,,;; over intervals of length d.) The d-norm of a
function of bounded variation is the sup of the total variation over intervals of
length d. It is not difficult to show that for any € > 0, and any function f of

bounded variation over z € R, there is a length d such that

I7lla < e

The length scale d is a new length scale in the problem that plays no role in
2 x 2 systems, or in n X n systems possessing a full set of Riemann coordinates,
or when the initial total variation is less than V... Indeed, exp (KT/d) — 1
as d — oo, and our growth rate estimate reduces to the time independent
estimate obtained by Glimm in this limit, (see also [10]). For Ia.rge initial total
variation, our methods show that there is an interaction between large scale
effects (that amplify) and small scale effects (that are stable), and the length
scale on which this interaction occurs in the Euler problem is d. The growth
rate O(1) exp (K'T/d) is obtained for all systems within the class of systems that
have the same nonzero Lie bracket components as that of the Euler system, and
such that one of the fields has a Riemann invariant, just as Euler. In the limit

d — 0o, we recover Glimm’s theorem, and our results are sharp in the sense
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that there exist linear degenerate systems within the class considered for which

the growth rate O(1)exp (KT/d) is sharp.

On a mathematical level, the fundamental problem is that, in contrast to
the small variation problem, in the large total variation problem the total wave
strength generated by a wave at time ¢ = 0 cannot be estimated by a small
perturbation of the initial wave strength. Thus our analysis introduces the idea
of measuring wave strengths as they occur in the solution, instead of by per-
turbation of their values initially, as was done in Glimm’s original paper. To
accomplish this, we estimate future wave strengths in terms of Glimm type func-
tionals that account for only the leading order linear and quadratic effects of
interactions. More specifically, the Glimm type functionals are defined at each
time step as sups over all possible wave configurations that can be generated
up to time T assuming that wave strengths are given exactly by the leading
order linear and quadratic effects at interaction, these effects being determined
by the Lie bracket structure constants at the state U alone. Thus, estimating
the difference between the full nonlinear problem and the quadratic problem at
each interaction diamond of Glimm’s method is reduced to the problem of the
continuity of the functionals defined at the quadratic level; and the finiteness
of the functionals at each time step of the full nonlinear problem is reduced
to the problem of the boundedness of the functionals defined at the quadratic
level. To succeed with this strategy, we must obtain supnorm estimates similar
to those obtained by Glimm in the case when there exists a full set of Riemann
coordinates, (and hence when all Lie bracket terms vanish), [13, 10]. For this
we extend the method of re-orderings introduced by Young in [15] by defining
functionals for the total variation and the supnorm, as well as a Glimm poten-
tial interaction functional @), that account for linear and quadratic effects, so
that the change in the functionals at interaction diamonds are at most third
order in the full nonlinear problem. This is accomplished by incorporating into
the functional, all possible “future” (Lie bracket) quadratic errors that could
accumulate between the given time ¢ and the final time T. In this way, the

leading quadratic errors are accounted for by the functionals defined in terms
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of the “quadratic” system that corresponds to the Euler equations — and the
decrease in the potential interaction functional is enough to compensate for the
third order errors due to higher order nonlinearity. The d-norm works perfectly
for this method of analysis because it is stable under perturbation by a set of
waves which sum to an arbitrarily small total variation. The third order errors
introduce such waves into the scheme at each interaction diamond of Glimm’s
method. We conclude that the generation of wave strengths in the full nonlin-
ear problem is a small perturbation of the strengths computed at the quadratic
level alone, thus the quadratic “system” plays the same role in our argument
that the linear system plays in Glimm’s original argument.

Although we address the problem of 3 x 3 systems that have the same
unsigned Lie bracket structure as Euler, our method of reducing the nonlinear
problem to the problem of obtaining estimates at the linear and quadratic levels
alone, applies to the large total variation small oscillation problem for systems
of conservation laws in general. In general, the behavior of our quadratic model

determines the qualitative behavior of the solution to the fully nonlinear system.

3. Some Detalils

Let (Ai, R;), i = 1,2,3, denote the eigenfamilies for a 3 x 3 system of type (1.2)
that has the same Lie bracket structure constants as (2.1) at a fixed state T , and
assume that the first and third eigenfamilies are genuinely nonlinear and the

second is linearly degenerate, c.f. [12]. Let the components of the Lie brackets
of the vector fields R; be denoted by

[R:, B;] = Al Ry, (3.1)

where we assume summation on repeated up-down indices. For the Euler equa-
tions (2.1), A\; = ¢ = —)3 and A, = 0 where o is the sound speed, and one can
show that there exists a coordinate system in a neighborhood of U in which the

components take the canonical form

[R,‘,Rj] =0 for i,j = 1,3, (32)
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and at U = U,
[R1, R2] = ARs, (3.3)

and

{Rz, R3] = —ARl (34)

For simplicity we take A=1,0=1at U =0.

Our proof has two main parts:

(I) Use the method of re-orderings to reduce the full nonlinear problem to the

problem of obtaining estimates at the quadratic level.

(II) Obtain the estimates at the quadratic level.

We first discuss (II). The problem here is to obtain estimates for wave inter-
actions to quadratic order, assuming constant Lie bracket factors. When two
waves interact, the result of the interaction is to transmit waves in the same
family and to scatter waves into different families. Because the shock and
rarefaction curves have third order tangency in a general n x n system, (c.f.
Figure 1, [12]), it follows that the leading order changes in wave strength at
interaction are the quadratic changes due to nonvanishing Lie bracket compo-
nents (3.0), see Figure 2. In this case, if an i-wave 7* interacts with a wave 7,

then the out-going waves will have strength 4* given to quadratic order by
F* = 4F + I’yill’yjIAfj, (no implied summation), (3.5)

with a third order error of order |y*[|y?] (sup |Uo(-) — UI) , and A% can be as-
sumed to take on its (constant) value at U = U. A point of clarification is in
order here. The Lie bracket coefficients depend on our choice of normaliza-
tion for the eigenvector fields R;. A natural choice, that is independent of the

coordinates of the state space, is to normalize the length of R; by the condition
VA -R;=1. (3.6)

However, this choice need not be optimal for the problem of relating wave

strength changes to Lie bracket components. It is shown in [17] that by choosing
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Figure 1: The third order contact between rarefaction and shock curves means
that the leading order contribution to reflected waves is due to the nonvanishing

Lie brackets.

the normalization of the eigenvector fields to be of unit length in a coordinate
system that is as close as possible to a full set of Riemann coordinates at the
point U, we can arrange that, for the Euler system (2.1), the structure constants

are given at U by

A:132 = "Aés =1,
Ay = =A% =1, (3.7)
Afj = 0, otherwise.

In our argument we will not be accounting for (a further) cancelation that can

occur in solutions due to the relative signs of the coefficients A}, and A3,. For
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Figure 2: The interaction of the waves v; and +; scatter waves «; in other

families.

this reason, we consider the broader class of systems for which, at the state U,

IAé'ZI = IA:li2l = 17 (3.8)

Afj = 0, otherwise,
which clearly includes the Euler system (3.7). Our restriction essentially in-
cludes all 3 x 3 systems for which any one of the coefficients Al,, A3, or A%
vanishes at the point U.

Our restricting to this class of systems means effectively that we will es-
timate the total wave strength generated by a single wave by summing the
absolute value of all‘the Lie bracket terms that appear at each interaction with
a contact discontinuity. Thus, the cancelation due to oscillating signs of Lie
bracket terms due to interaction of a single wave with consecutive waves of dif-
ferent families will be accounted for in our estimate for the supnorm, (i.e., we
use the antisymmetry of the bracket), but cancelation will not be accounted for

in our estimate for the the total variation of the solution. (This would require
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using more exact information about the positions of the reflected waves. )

In [16], Young constructed examples of linearly degenerate systems in con-
servation form in which the structure constants Af-‘j agree with the structure
constants for Euler problem (3.1) at a base state . We now discuss an example
from [16] demonstrating that there exists periodic data for solutions of linearly
degenerate systems satisfying (3.7a) for which the growth rate O(1) exp (Kt/d)
is sharp. To this end, fix d > 0, and define a grid in the plane —oo < z < + 00,
t > 0, by z; = id, t; = jd. We construct an exact, weak, periodic solution which
takes constant values Uj; on z; < = < zi41, ¢t = ¢;, in the (worst) case of a

system in which
Ay = Agl =1,
AE = 0, otherwise,

X=-1,0,1, i=1,2,3. (3.10)

(3.9)

The following system of conservation laws satisfying (3.7), (3.8) was constructed

in [16]:
ur + (w+ 2uwv), = 0,
Uy = 0, (3.11)
wy + (u(l — 4v?) - 2vw), = 0.

To construct the periodic solution, let the initial data U, = Uy consist of
the four states {Us, Uy, Uz, Us} repeated every four mesh spaces in the pattern
Uo, U, U, Us; ie., U; = Up if i = k mod 4,k = 0,...,3. To define U,,...,Us,
choose any 2-wave with left state Uy and call it 3. Let

1Bl =46 > 0.

Let Ut denote the right state of 3, and let y denote any 3-wave with left state U;.
Let U; be the right state of 4. Then let U, denote the state reached after starting
at U and following a 2-wave of strength —f3, and to the right of that, a 3-wave
of strength —+; and let Us; denote the state reached after starting at U, and
following a 2-wave of strength 3, and to the right of that, a 3-wave of strength
7. 1t is not difficult to see, then, that to within errors that are order dly|, the
state Us = U;; and to within errors that are order |7/, the state U; connects

to Up on the right by a 2-wave of strength —3 followed by a 3-wave of strength
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—7- Thus, to within errors that are order 4|y|, the periodic initial data in the
first time step consists of 2-waves of strength 18, speed zero, alternating in sign
at every mesh point d units apart in z, superimposed with 3-waves of strength
17, alternating in sign every two mesh points. (See Figure 3.) Now, in the
limit of small oscillation, § — 0, [7| = 0, the leading order effects dominate,
and since we are addressing the small supnorm problem, we are justified in
neglecting these quadratic errors in calculating the total variation at time 7.
Thus, wlog, assume that the waves at time zero consist of 2-waves and 3-waves
of strength § and v, respectively. Since 2-waves move at speed 0 and 3-waves
at speed +1, the waves propagate as discontinuities that interact only at the
mesh points (z;,1). Moreover, when the 3-waves interact with 2-waves at the
first time step, to leading order, they transmit 3-waves of equal strength and
reflect 1-waves of strength +4|y|, where the sign is determined by the sign of
the 2-wave times the sign of the 3-wave, according to (3.4) and (3.7). These
reflected 1-waves then interact with 2-waves at mesh points located at future
times, and the total variation of the solution at time T = Nd > 0 is the sum
of the strengths of the waves generated at x, based on this procedure. (This
procedure, when we include the higher order waves required to complete the
Riemann problems in the data, generates an exact, periodic solution of the
system (3.8a) of period 4d.) To determine this sum, (neglecting higher order
terms), let P denote a continuous time-like path in the xt-plane taking slopes
+1 as it connects successive mesh points, c.f. Figure 3. Then it is not difficult
to see that each path starting at (z,,,0) and ending at (zi,,T) will contribute,
(at leading order), to the strength of the waves at (z:,,T) by an amount +&*|y],
where k denotes the number of reflections (changes of sign) of P between ¢ = 0
and ¢ = T. Although the sign is determined by a complicated formula involving
the positions of the reflection points, one can verify that this periodic problem
has been set up so that there is no cancelation, and (to leading order) it suffices
to take absolute values in summing over all paths that end at the same wave
at time ¢ = 7' (See Figure 3.) Thus, to leading order, the total strength S, (T

at time ¢ = T generated by a wave v at time ¢ = 0 can be expressed in a “path
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integral” form as follows:

S,(T) = , (312

228
k Px

where P denotes any path starting at the mesh position of 4 at time ¢t = 0, and

having k reflections up to time ¢t = T'. The total variation of the solution up to

time T is therefore given, to leading order, by
S(T) =Y S,(T). (3.13)
2

To estimate (3.9a), we first count the number of paths Pi. First note that
T = Nd implieé that there are at most N = T'/d possible reflection points.
Moreover, each choice of k times between ¢t = 0 and ¢t = T' determines a unique
k-path starting at some fixed initial wave 5. Thus, (iv ) gives the number of
k-paths up to time T, starting at 4. Thus we obtain

o
= (1+8)Ny
= (14 6)/9Ny ~ exp (édz)'y.

1

(3.14)

We are now justified in neglecting the quadratically weak waves when the sup-
norm is small, because, by (3.9b), they can only contribute a negligible amount

to the wave strength at +, and thus we conclude that in this example,
8T T
TV{U(,T)} ~ 3 exp (5ol = Voexp (), (3.15)

gives a sharp estimate of the total variation of the solution over intervals whose
domain of dependence at ¢ = 0 has total variation V5.

We now discuss the problem of general initial data for the linearly degenerate
systems having structure (3.7)-(3.8). For the limit of small supnorm, it suffices

to assume that A{-‘j are equal to their values at U. In this case we prove that if
TV{Up()} =W <YV, (3.16)

we can obtain

TV{U(, 1)} < Voexp (C1), (3.17)
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Figure 3: A periodic solution with paths contributing constructively (neglecting
higher order terms)

where d is the largest interval such that the total variation of the initial data
Us(:) over intervals of length d is less than V. Here we can allow the total
variation bound V to be arbitrarily large. Let I; = (Id,(l 4+ 1)d), | € Z, denote
the intervals in the d-mesh on zt-space, so that each interval has length d.
Let B; denote the contact discontinuity at position z; that remains stationary
for all time, and maintains a constant strength in the linearly degenerate field
when we assume (3.5) is exact. The idea is to estimate clusters of consecutive
waves in the intervals I; as above, bbunding the generation of waves due to
interactions within each cluster by the small total variation methods of Glimm.
Thus, consider a wave v reflecting any number of times among waves 3; € 3, =

Ii_yU LU L4y, chosen such that Zﬁ; < Virit < 1. Then the total strength S(T')
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of waves generated up to time T is given by

S(T) = 323 By By

k i€P;

k
< 2(28) v

k 3

Here i = (41,...,1x) denotes the reflection positions for a k-path P, and note
that our normalizations have made V,.;; = 1. Consider further all paths in the d-
mesh. Any one is an equivalence class of paths on the Az < d mesh. If ¢,,..., %
denote the times at which the d-path passes through one complete interval I,
then the total variation increase due to interactions in [t;,t;] amplifies by no
more than a factor of ;—— V . Thus we can argue as follows:
Sy(T) = Z E Ag,-- 5 Ay,
k i€Py

where the second sum is over all d-grid characteristics having k interaction
points, and A;, denotes the amplification factor for all Az-characteristics asso-
ciated with a given d-characteristics due to interactions in 3I,. The A;, then

can be estimated by
1

AiPSZ Zﬂjl-"ﬂjlg ]-—’Vcrit,

I jepf

where P} denotes the I-paths inside 31;,. Thus

ST <Y T 2 ( th)k'y. (3.18)

k i€P;

The factor 2% is due to the fact that on the d-grid, paths need not reflect,
(i.e., change slope) at interaction points, thus there exist 2% more k-paths than

the estimate for the case when there is reflection at the interaction points.

crtt )

(21 mt) (3.19)

= (1 + Vcnt) : -
< O(1)exp (KT/d).

Therefore,

S(T) < (2
k lG'Pk 1 -

IA
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Thus we conclude that
TV{U(-,T)} < O(1)S(T) < O(1)exp (KT/d)V. (3.20)

This outlines the idea in obtaining (3.11) for the linearly degenerate model (3.7),
(3.8) when arbitrary initial data of total variation V is given.

For the general nonlinear problem, we can reduce the problemb to the ar-
gument above because the linearly degenerate problem, in which we estimate
the total variation by taking absolute values of wave strengths at interaction,
represents the worst case. The nonlinear functionals maximize over all possible
future positions of waves based on an absolute bound on wave speeds, taking
into account only quadratic effects. Thus, we get the worst case when we allow
the largest set of re-orderings over which to maximize, this largest set represent-
ing possible wave positions up to time T : thus the worst case for the functionals
is when we assume the largest possible wave speed. Estimating with the largest
possible wave speed reduces the analysis, (at the quadratic level), to essentially
the linearly degenerate case considered above.

We now indicate the idea in reducing the full nonlinear problem to estimates
for the quadratic wave interaction problem. To this end, let ¢;, B;,~; denote the
1,2, 3-waves located at z; at some timet = t; < T in the full nonlinear problem.
Let a = {a;}, etc. We define three functionals, L, P and @ which evaluate a

given sequence of waves, so, e.g. we write L[a, 3,7], etc. Specifically,

Lla, B,4] = the total possible wave strength generated at time T starting with
a, 3,7 at time t, obtained by maximizing over all possible re-orderings of

waves up to time 7', and quadratic effects are included.

i i
Pla,B,4] = sup Za:- + sup |Y_i|, where the sup is over all possible re-

iz 12
orderings of waves up to time T, and only quadratic effects are included.

The sup of the sum of signed strengths of consecutive waves in the same
family is equivalent to the supnorm, and increases only 3rd order at in-

teractions.
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Qla, B8,7] = sup Z €i€;, where the sup is over all possible approaching waves
A

PP
that can be created by re-orderings of waves up to time T', when quadratic

effects alone are included.

Here L measures the total variation, P the supnorm, and () decreases at in-
teraction by third order terms that bound the increase in L and P in the full
nonlinear system. It is important that the functionals are defined entirely in
terms of the quadratic model; and since we are maximizing over all possible
re-orderings of waves consistent with a bounded wave speed, the nonlinearity
of the wave speeds does not affect this analysis — from the point of view of the
analysis of the functionals, we might as well assume all wave speeds are con-
stant at the maximum possible actual value. If the functionals are finite on a
finite sequence of waves then we say that the functionals are bounded; and if the
functionals evaluated on nearby sequences of waves are bounded by the total
variation of the difference between the wave sequences, then we say that the
functionals are continuous. We prove that all of these functionals are bounded
and continuous for the class of Euler type systems studied here. We then prove
that, across an interaction diamond in the full nonlinear problem, the following

estimates hold, c.f. [2]:

L(Jy) - L(J-) < K.SD, (3.21)
P(Jy)—- P(J-) < KpSD, (3.22)
QL) - Q) < —(1 — KoS)D, (3.23)
and
F(Ju)-F(J) < KpSD, (3.24)

where F(J) = L(J) + KQ(J) for K sufficiently large. These estimates enable
us to follow the proof strategy outlined in [13] to obtain the exponential growth
in L when the supnorm is sufficiently small.

As a final comment, see [1] for an interesting new regularity result for so-
lutions generated by Glimm’s method that is related to the problem of the

stability of solutions in the d-norm.
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