SOLUTIONS TO THE EULER EQUATIONS WITH LARGE DATA

BLAKE TEMPLE! AND ROBIN YOUNG?

ABSTRACT. We consider the large time existence problem for 3 x 3 systems
of conservation laws with large total variation and small oscillation. Under
these conditions it is known that general solutions can blow up in finite time
due to destabilizing geometric wave interaction effects. We discuss a general
framework for rigorously addressing this problem, and provide a sufficient
condition for existence of solutions. We then restrict to a class of systems
which includes the Euler equations, having simplified wave interactions.
We obtain an explicit path integral formula for approximate solutions. We
then find time-dependent bounds for the total variation. The variation
grows exponentially in time, and known examples show that our estimates
are sharp.

1. INTRODUCTION

We consider the behavior of solutions to 3 x 3 systems of strictly hyperbolic
censervation laws

(1) | w+ f(w)e =0,  u(z,0) = u(z),

in one space dimension z, with initial data having total variation V, and sup-norm
€ > 0. We address the problem of long time existence for small € and large V4. In
general the time of existence of solutions is highly dependent on geometric features of
the conservation law, determined by the Lie brackets of eigenvectors of the Jacobian
matrix D f. For gas dynamics, symmetries arise as a consequence of the Second Law
of Thermodynamics, and our primary interest here is to explore the role that such
symmetries play in the large-time existence problem for the Euler equations.

Our analysis uses Glimm’s method, for which compactness is based on a bound
for the total variation of approximate solutions [1]. Glimm obtained this bound as
long as V; is small, or if €V} is small when there is a full set of Riemann coordinates
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(so that Lie brackets vanish identically.) In either of these cases, solutions decay
due to shock formation and interaction [2, 4], but new methods are required when
the total variation is large and the Lie brackets are non-zero.

There are two different types of nonlinearity in systems of three or more conserva-
tion laws. The first is the well-known dependence of wave-speed on the solution at
each point, known as genuine nonlinearity [3]. This leads to the formation of shock
waves and the subsequent decay of solutions in each family. Weak solutions must be
introduced to continue the solution beyond the time of shock' wave formation. The
other nonlinearity is the geometric nonlinear coupling of different wave families [7].
In systems of 3 equations, this coupling is quadratic, and leads to the generation
of new waves of quadratic strength when waves of different families interact. We
emphasize that genuine nonlinearity is stabilizing, while geometric nonlinearity is
destabilizing.

In recent years some progress has been made in understanding the nature of
the geometric nonlinearity, both through the method of weakly nonlinear geometric
optics, and directly through Glimm’s method. The most dramatic results show the
resonant blow-up of solutions to general 3 X 3 systems. This clearly indicates that
extra assumptions must be made to ensure nonlinear stability of solutions.

The method of reorderings was developed in [7] to account for quadratic effects
of wave interactions, which arise due to geometric coupling between wave fields.
Using this framework, a potential for the oscillation was built by including quadratic
terms which correspond to future interactions. After interaction, the class of future
interactions is smaller, so that the potential decreases, up to errors which are cubic.
This led to a separation of the total variation and sup-norms, but those results still
required that the total variation lie below some threshold. In order to remove this
restriction, we must account for cumulative quadratic effects. Here we describe an
extension of the method and derive an algebraic condition which is sufficient to

guarantee existence of solutions.

The crucial modification is the definition of a new error potential, analogous to
Glimm’s, but including all cumulative quadratic effects. The defining property of
this functional expresses the fact that the error in a series of interactions should
be a sum of individual errors. This is a statement of ‘conservation of interaction
errors.” We then isolate a continuity property, needed to take higher order errors
into account. The important difference between our error potential and Glimm’s
is that we include the contribution of each interacting pair using wave strengths at
the time of interaction rather than initially, thus including all quadratic effects of
earlier interactions.

Since our error functional takes quadratic terms into account, continuity implies
that the error potential decreases if the sup-norm e is small enough, rather than
the total variation. Indeed, we show that continuity of the error potential is a
sufficient condition for existence of solutions. We remark that boundedness of the
functional is a consequence of continuity. Since solutions to general systems may
be unbounded, the error potential cannot be continuous in general.
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of systems that includes the 3 x 3 Euler equations. We assume that the second
(entropy) field possesses a Riemann coordinate, and for convenience assume that it
has constant wave-speed. This assumption greatly simplifies reordered sequences by
simplifying pairwise wave interactions, and allows us to model entropy fluctuations
as a background source for scattering sound waves, which does not change across
reorderings.

In our quadratic model, sound waves add linearly, so that each sound wave can be
treated separately. We thus examine the scattering pattern of a single sound wave
passing through the fluctuating entropy field. We describe the scattering process in
terms of paths of scattered waves, each given an appropriate strength. Combining
these linearly, we get a path integral formula for reordered sequences. We thus have
an algebraic expression for the piecewise constant approximate solutions in Glimm’s
scheme which includes all quadratic effects of wave interactions.

Our final task is to use the path integral formula to find bounds for the reordered
sequences, and thus show that the functionals are continuous. By bounding the
strengths of scattered waves and carefully counting paths, we find time-dependent
bounds, with exponential growth for the total variation. We do not expect solutions
of gas dynamics to have exponential growth, as the fact that the entropy is convex
(which we have not used) introduces extra symmetries, leading to extra cancellation
due to different paths, see [6]. On the other hand. there are known examples which
satisfy our hypotheses and exhibit exponential growth [8], so that our estimates are
sharp.

To find the bounds, we assume a bound for 2-wave strengths, and count the
number of paths. In this paper, we present a simplified argument which yields
the bound as long as the entropy remains Lipschitz. A more sophisticated path
count allows this condition to be dropped, and vields new physics. This paper is
a summary of results in [5], and the interested reader is referred to that paper for
details.

2. REORDERINGS

We briefly recall the method of reorderings in Glimm’s scheme, and describe the
strengths of reordered waves [7]. The Glimm approximations consist of piecewise
constant states separated by clementary waves, which are shocks, rarefactions or
contact discontinuities. Our notation is as follows. For a fixed mesh size Az, we
consider the sequence of constant states {ug, ..., u, } separated by the wave sequence
Y =(71,--.,7) of index (¢1,...,¢,). This means that the wave separating constant
states u,;_; and wu; is a wave of strength ; from the ¢;-th family. Here a positive
strength means that the wave is a rarefaction, while a negative strength indicates
a shock, and we do not distinguish between a wave and its strength. The total
variation and sup-norm of the solution can then be measured by

(2) V(r)=2_lnl and S(3)=max| Y 7,

Ci=r
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One of the main ideas in Glimm’s scheme is to use induction to reduce complicated
large-time wave interaction patterns to the interaction of two Riemann solutions.
If o; and §;, j = 1...3, represent the two Riemann solutions, then the resulting
Riemann solution is represented by
(3) € = a’i+ﬂi+ Zkaj /Bk A.ZK_*_O(I)SD(QMJ)»

3>k

where the AZ* are (constant) interaction coefficients measuring the strength of ge-
ometric nonlinearity, defined by the Lie bracket of eigenvector fields. The local
interaction error D is defined by
(4.) D(Q'vﬁ) = Z laj /Bk‘v

App
the sum being over all approaching pairs of waves. Our main concern is the appro-
priate global extension of this error potential.

The method of reorderings is a tool for accounting for the quadratic effects of
interactions in Glimm’s scheme. through changes in wave sequences. Each pairwise
interaction of waves is modeled by transposing the wave pair (in case they are from
different families), or combining them into one (if they are of the same family). The
only quadratic effect occurs when waves of different families cross, in which case
new waves are generated. Instead of introducing a new wave into the model, we
adjust the strength of the nearest wave of that family by the appropriate amount;
this exactly models Glimm’s scheme, in which the number of waves is conserved.

A surjective map 7 : {1,...,n} — {1,.. .ym} defines an action on sequences of
n waves through permutation of subscripts. That is. 7 acts on the wave sequence
and its index by shifting the wave 7: from position 7 to position 7(1). As long as
domains and ranges match up correctly, we can define compositions of maps, and
so we can factor maps (non-uniquely) into products of elementary maps. These are
the transposition or merge of a single adjacent pair of waves.

To extract more information from the map 7, we define the crossing set C, by

(5) CT:{(j.k)lj<ka.ndr(j)>T(/c)},

which identifics those pairs of waves which cross under the action of 7, and similarly
define the merge set

(6) M. = {(j,k)|j < kand 7(j) = 7(k) }.

and the union of these as the interaction set /, . Using thesc sets, we characterize
the set of ‘physical’ admissible reorderings, as follows. In order for a pair of waves
to cross. that is to pass through each other, the wave on the left should travel faster
than that on the right, so we require that ¢; > ¢, for all pairs (j, k) € C,. Similarly,
only waves in the same family may merge to form one wave, so we require that if
(J:k) € M, then ¢; = ¢,. In particular, this condition implies that the reordered
index of a sequence is single-valued. Note that the class of admissible reorderings
depends only on the index of the wave sequence, so that perturbing wave strengths
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In factoring reorderings into interactions of adjacent wave pairs, we allow only
admissible factors, and treat different factorizations as different reorderings. Each
factorization of 7 = A,...A; determines a time-like ordering on the set I, of in-
teractions which make up the reordering, by ordering pairs corresponding to each
factor from right to left. Similarly, to each interacting pair we can associate a ‘sub-
ordering’, namely the largest ordering u = A, ...A; under which that pair does not
interact.

To accurately model the evolution of the approximate solutions, we must consider
changes in the strengths of waves as well as their relative positions. We define the
action of a reordering on wave strengths inductively, so we need only describe the
action of a single join or transposition of waves. Since our estimates for local
interactions are exact to second order, we treat all cubic terms as errors, and ignore
them in the model. Interacting waves of the same family add linearly with cubic
errors, so if the join ¢ maps p and p+ 1 onto p, then the new wave 7, has strength
Yp = Yp+7p+1, While no other strengths change (although their positions may shift).

It remains to mode] the effect of a single transposition, which is to produce a
wave of the third family whose strength is the weighted product of incident wave
strengths. We do not allow a new wave to be created, but rather adjust the strength
of the nearest wave of the appropriate family. This is analogous to sampling in
the Glimm scheme, since only 3 waves leave each interaction diamond. The wave
whose strength is to be adjusted when a particular pair interacts is determined by
an interaction map. These maps are inductively defined on the set C, of crossing
pairs, and the image 17 (7, k) of a crossing pair is that wave of the third family whose
strength is to be changed. We thus describe the effect of the transposition & of 7,
and 7;4, on the wave v;, where 7 = 1*(k,k + 1), as

(7) 7:/ =% + Ac.‘7k7k+l7

while other strengths are unchanged.

Having described the effect of elementary interactions, we use the factorization
to inductively define the reordered wave sequence, so that 7y = A,(...A;(7)). We
have thus modeled the evolution of approximate solutions, including cumulative
quadratic effects.

For the class of solutions we consider, quadratic terms dominate higher order
effects, so that control of these terms allows us to deduce existence of solutions.
Each space-like curve in Glimm’s scheme has an associated reordering, so that the
waves crossing a curve can be approximated by a reordered sequence. We use these
sequences to estimate norms of the solution at large times. In particular, we define
the functional F" for the (future) total variation to be

(8) F(y) = sup Viry),

where 7 is the sequence of waves initially, 7+ is the reordered sequence, and the
supremum Is over admissible reorderings. This functional is analogous to the func-
tional P for the sup-norm, introduced in [7]. Since our bounds are time—dependent,
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we further restrict the class of reorderings to those whose interactions take place
within (some large) time T.

3. ERROR POTENTIAL

Glimm’s scheme is based on the construction of a decreasing global error poten-
tial. This is a measure of interaction errors for future wave interactions, and is

defined by

(9) G=)_lallgl,

App

where o and (3 are wave strengths, and the sum is over all approaching wave pairs.
The key idea is that after an interaction, the local interaction error D is balanced
by the removal of terms from G, as fewer waves approach. Thus although the total
variation (and other norms) may grow, some combination V + ¢G is decreasing, so
that the total variation is bounded. The change in G across a diamond is

(10) AG < -D+0(1)VD,

where D is the local error (removed from G), and the second term is due to higher
order errors. Thus in order for G' to decrease, we require the variation V to be
small.

Our goal is to write down a similar error potential which takes into account
quadratic effects, and thus allow larger total variation. The functional G includes
all future interactions, but with first order accuracy in wave strengths. We define
a functional ¢ which includes all quadratic terms by means of reorderings. That
is, we consider approaching wave pairs, but instead of using initial wave strengths,
we use the wave strengths at the time of interaction. Suppose we are given a wave
sequence v and reordering T, together with an interacting pair (j,k). If u is the
subordering associated to this pair, then we let v/ be the wave in uy corresponding
to 7y,; this is the strength of 4; when that wave interacts with ;. We define the
error potential by

(11) QUy,7) =Y Wllvtl, and Q =supQ(y,7),
I, T

where p is different for each interacting pair (j,k) € I,. We have the functional
relation

(12) Q(y,07) = Q(17,0)+ Q(7,7)

for the composition of reorderings, which is the statement that the error potential
decreases by the local error after interaction. This functional relation thus expresses
the ‘conservation of interaction error.” Again, since our bounds are time-dependent,
we restrict ourselves to those reorderings spanning time 7.
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To deal with higher order effects, we consider continuity of the functional. Sup-
pose we are given sequences y and ¥’ with the same index (and reorderings), but
which differ in a single wave strength, say v, # 7,- We say that @ is continuous, if

(13) QUMY 7)—Q(Y,7) < Koly, — 71l

where K does not depend on the reordering 7 or mesh-dependent parameters,
although it may depend on time and the initial data.
Across a diamond, the local interaction error is O(1)SD, so that continuity gives

(14) AQ < -D +0(1)SKoD,

Thus for a decreasing error potential, we require SKg to be small. The following
theorem holds for general systems, and says that the large-time behavior of solutions
can be determined by the quadratic model.

Theorem 1. Suppose that the functional () is continuous, with K¢ depending on
time T and norms of the initial data. Then gwen Vy, there is an € > 0 such that if
the initial data satisfies

(15) |[to]les < € and TV (up) < Vg,

then a weak solution with bounded oscillation and total variation ezists up to time
T. Moreover, the initial bound for the functional F yields a bound for the total
variation of the solution.

Here € is defined in terms of K’y and V;, so any restrictions made in finding K,
apply to the solution. Continuity and boundedness of the functionals are essentially
equivalent, so only one of these needs to be checked. Since there are known counter-
examples, the functionals F and Q will not have time-independent bounds. Since
F and @ are defined in similar ways, () & F? we make the following conjecture.

Conjecture. For general systems, boundedness of the functional F independent of
mesh parameters is necessary and sufficient for existence of solutions. Any assump-
tions on the initial data and time of existence used in bounding F translate into
conditions on solutions to the Cauchy problem.

4. PATH INTEGRAL FORMULA

Although we have found an algebraic criterion for existence of solutions, this
is difficult to analyze without extra assumptions. In general, reordered sequences
become unmanageable, and we know that the functionals are unbounded. Motivated
by gas dynamics, we make the assumption that our system possesses a Riemann
coordinate w. This means that Vuw is a left eigenvector,

(16) £-Df =X, where {=Vu,

so that w does not change across rarefactions of other wave families. We also
assume that the family corresponding to w has constant wave-speed A. This is true
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for gas dynamics if the Lagrange formalism is used, and allows us to derive a scalar
transport equation for smooth solutions, namely

(17) wy + A(u)w, = 0.

Note that this is not the same as assuming the existence of an entropy-flux pair.

As a consequence of our assumptions, the second (entropy) field is degenerate in
two ways : first, since we have a Riemann coordinate, the coefficient A, vanishes,
so that (at the quadratic level) no new wave is generated when two sound waves
interact. Also, since the wave-speed is constant, 2-waves do not interact, as only
one 2-wave enters or leaves each diamond. These observations allow us to treat the
entropy as a constant background source at the quadratic level.

With these assumptions, we can now describe the effects of a reordering on a wave
sequence precisely. We know that 2-waves do not change, so we need only consider
changes in sound waves due to interactions. Moreover, sound waves of different
families produce no quadratic effects, and waves of the same family add linearly,
so that we can consider each sound wave separately. We thus consider the effect
of passing a single sound wave through a static pattern of entropy fluctuations.
If a sound wave ¢ crosses an entropy jump 7;,, a sound wave of strength €!) =
Aeyy, of the opposite family is reflected. This new wave then interacts with other
entropy waves, say 7vx,, to produce a wave €?) = A’e'?)y,  in the same family as e.
This process continues inductively, and after » interactions, say r even, the wave
generated by this series of interactions has strength

(18) €)= AL A = ey, e (AN

This scattering process occurs for each distinct pattern of reflections of the wave as
it passes through the field of entropy fluctuations. We shall refer to one of these
interaction patterns as a path.

FIGURE 1. A single path

Formally, a path is a set of crossing wave pairs {(j,,k,)} C C,, where each &,
represents a 2-wave, and satisfying j,+1 = ¢"(J,, k). We say that it begins at j; and
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ends at 727 (74, ky), where (74, kq) is the last interacting pair in the path. The position
Jp+1 Tepresents the position of the scattered wave after the first p interactions, and
that scattered wave has strength given as above. Since all sound waves combine
linearly, we can add up each of these contributions to get a discretized path integral
formula.

Theorem 2. Given the wave sequence y and reordering T, let § = 7(y) be the
reordered wave sequence. Then the wave 0; is given by

(19) 5i=Z“/jZA(iad) Z Ty oo Vha
J d Ma(j,i,7)

where I14(7,1,7) is the collection of all d-paths in T beginning at j and ending at
=10 (Ja, ka), the v ’s are 2-waves, and A is the appropriate weight.

5. FuncTiONAL BOUNDS

Having found a formula describing reordered sequences, we look for bounds which
will allow us to conclude existence of solutions. It is evident from the path inte-
gral formula that the large-time behavior of the solution is highly dependent on
the entropy of the solution. Our approach is to bound the 2-wave strengths by
some number 5, and then count the number of possible paths. This leads to time-
dependent bounds for the reordered sequence, and we have the following theorem.

Theorem 3. If the system of conservation laws admils ¢ 2-Riemann coordinate,
and T is a reordering corresponding to a set of diamonds spanning time T, then the
error potential is continuous,

(20) QUY:7)= QY1) < vy — IV(7)0(T),

when the sequences differ in the single wave strength Yq- Moreover, the total varia-
tion of the reordered sequence TY grows at most ezponentially in time,

(21) VI(Ty) < V(y)er,
where k depends on the fluz and the entropy of the initial data.

Since our bounds are independent of mesh parameters, we can now invoke The-
orem 1 to obtain existence of solutions, with total variation growing exponentially
in time.

We briefly describe the idea of proof of the total variation bound, which in turn
yields a bound for Q. Using the path integral formula, we have

(22) V() = 161 < V(y) max| SAG, ), .. 7,

where the sum is over d. ¢ and 14(j, 2, 7). We now suppose that each [7%,] < 6, and
use the bound |A(7, d)| < A9, to get

(23) V(ty) < V(v) ;(ﬁA)d#Hd(‘]’ 5T),
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where #114(J,-,7) = max; ¥, #114(7,7,7) is the maximum number of d-paths start-
ing at a fixed point.

We now count the number of paths as follows : a path is determined by its
starting position, together with the 2-waves ki,..., ks with which the scattered
wave interacts. Now only one 2-wave passes through each diamond, and each sound
wave passes through only one diamond per time step. Therefore the path can be
determined by a knowledge of its starting position and a list of (discrete) interaction
times. That is, k, is determined by position Jp and the time ¢, at which the p-th
interaction occurs, see Figure 1. In particular, the number of paths starting at a
fixed point is bounded by the number of lists of interaction times ¢, < --- < t,.
Since the path spans a time 7', we must have tg < T/At, so that the number of
paths is

(2’1) #Hd(.], ~,T) S (T/dAZ)'
Substituting this path count in and using the binomial theorem, gives
(25) "(T’)) —<— V'("/)(l 4 “BA)T/A! S I/(ﬁ'/)eﬁAT/At.

As stated here, this bound explodes as the mesh size A¢ decreases to 0, unless the
entropy remains Lipschitz continuous, which is a major assumption. However, a
more sophisticated estimate based on these ideas yields a time-dependent bound
with no extra assumptions on the solution. For details of the estimate together with
a physical interpretation. the reader is referred to [5].
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