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Abstract: We demonstrate the existence of solutions to the full 3 x 3 system of com- 
pressible Euler equations in one space dimension, up to an arbitrary time T > 0, 
in the case when the initial data has arbitrarily large total variation, and sufficiently 
small supnorm. The result applies to periodic solutions of the Euler equations, a 
nonlinear model for sound wave propagation in gas dynamics. Our analysis estab- 
lishes a growth rate for the total variation that depends on a new length scale d 
that we identify in the problem. This length scale plays no role in 2 x 2 systems, 
(or any system possessing a full set of  Riemann coordinates), nor in the small total 
variation problem for n x n systems, the cases originally addressed by Glimm in 
1965. Recent work by a number of authors has demonstrated that when the total 
variation is sufficiently large, solutions of 3 x 3 systems of  conservation laws can 
in general blow up in finite time, (independent of the supnorm), due to amplifying 
instabilities created by the non-trivial Lie algebra of the vector fields that define 
the elementary waves. For the large total variation problem, there is an interaction 
between large scale effects that amplify and small scale effects that are stable, and 
we show that the length scale on which this interaction occurs is d. In the limit 
d ~ cx~, we recover Glimm's theorem, and we observe that there exist linearly de- 
generate systems within the class considered for which the growth rate we obtain 
is sharp. 

1. Introduction 

We consider the initial value problem for the system of compressible Euler equations 
in one space dimension, 
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pt + (pV)x = O, 

(pv)t + (pv 2 + p)x = O, (1.1) 

Et + ((E + p)V)x = O, 

where p is the density, v the velocity, p the pressure, and E the energy of the 
fluid. This is the special case of the general initial value problem for a system of 
conservation laws, 

ut + f (U)x  = O, u(x,O) = uo(x) ,  (1.2) 

where for (1.1), u = (p, pv, E) .  We let r i denote the i th (normalized) right eigen- 
vector and )-i the i th eigenvalue of the Jacobian matrix D f ,  

D f  �9 r i = ,~i ri, i = 1, 2, 3 ,  

and refer to the eigenpair (.~i, ri) as the i th characteristic field, or i th wave family. 
When discussing the general system (1.2), we always assume, as is the case for 
(1.1), that the system is strictly hyperbolic ().i 4 J-j) and either genuinely nonlinear 
(r i �9 ~7 ,~  i :~= 0) or linearly degenerate (r i �9 x~J, i =--- O) in each characteristic field, and 
that solutions take values in a small neighborhood q / o f  a reference state ~7, cf. [13]. 

System (1.1) represents the zero dissipation limit of the compressible Navier- 
Stokes equations. It is well known that shock-waves form in solutions of (1.1) even 
in the presence of smooth data, and the shock waves encode the dissipation that 
carries over to the zero dissipation limit. Shock waves introduce time-irreversibility, 
loss of information, and the increase of entropy (in a generalized sense), and this 
leads to the decay of solutions for general systems of type (1.2), cf. [2, 13]. 

For convenience, we study the Lagrangian version of the Euler system [13], 

( l / p ) ,  - vx = o ,  

vt + p~ = O, (1.3) 

JEt -4- (pV)x = O, 

where the conserved quantities are (1 /p ,v ,E) .  For smooth solutions, (1.3) implies 

S t = 0 ,  

where S is the entropy, [13]. This "entropy equation" implies that the entropy 
decouples from the solution in smooth regions, which is characteristic of a Riemann 
coordinate. A wave (or eigen-) family has a Riemann coordinate w : q/--+ R if the 
left eigenvector of the flux matrix can be written as the gradient of that function, 

f . D f = 2 Y ,  where Y = V u w .  

For system (1.3), the second eigenvalue (corresponding to the entropy) satisfies 
22 - 0. We thus refer to 2-waves as contact discontinuities or entropy jumps. 

More generally, and with the goal in mind of isolating a particular nonlinear 
aspect of the Euler equations, we consider in this paper any 3 x 3 system within the 
class of conservation laws that possess a Riemann coordinate for one of the families. 
In analogy with (1.1), we assume for convenience that the second family has a 
Riemann coordinate, and is also linearly degenerate. After a suitable normalization, 
this class has the same (unsigned) Lie bracket components as the Euler system. For 
any system in this class, we obtain a large time existence theorem for initial data 
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of  arbitrarily large total variation and sufficiently small supnorm. The main estimate 
involves a new length scale that must be accounted for, and to motivate this, we 
first recall the earlier work of  Glimm. 

Note that when the equation of  state is o f  the form p = p(p), (the case 
of  isothermal and isentropic flow, [13]), the first two equations in (1.3) un- 
couple from the third, and system (1.1) reduces to the 2 x 2 system that we refer 
to as the p-system. There is a well developed existence theory for 2 x 2 systems of  
conservation laws, but for three equations, the only general existence theorems that 
apply to the full nonlinear system (1.3) are based essentially on methods of  analysis 
first introduced by Glimm in 1965: methods that only apply when the initial total 
variation is sufficiently small, or when the system possesses a full set o f  Riemann 
coordinates (like 2 • 2 systems), cf. [13]. A full set of  Riemann coordinates deter- 
mines a coordinate system in which the coordinate vector-fields are eigenvectors of  
the flux, and thus have pairwise vanishing Lie brackets [r i, r j] ~ O. These systems 
are referred to as rich systems by Serre, who has shown the applicability of  the 
methods of  compensated compactness to these systems, cf. [11, 12]. In the small 
variation case for general systems, Gl imm's  theorem can be stated as follows, [3]: 

Theorem (Gl imm 1965). I f  the total variation o f  the initial data uo(x) is smaller 
than a threshoM value Vcrit, 

rV{uo(.)} < yen,, 

then a 9lobal weak solution with shocks exists for all time and 

VV{u(.,t)} < cvv{uo( . )} ,  

where Verit and C depend only on the flux function f in the neighborhood of  the 
solution. 

In [17], it was shown that 

Vcrit = O(1/A) ,  (1.4) 

where A is a measure of  the strength of  the geometric coupling of  the wave families, 
which is determined by the flux: 

a = max{lAJk]}, (1.5) 
where 

�9 " j k i  [r',rq = ~ A  i , . (1.6) 
i 

In 1970, Gl imm and Lax went on to prove that for 2 • 2 systems like the p-  
system, periodic solutions decay at a rate O(1/t) in the total variation, so long as 
the oscillation of  the initial data is sufficiently small, see [4]. (The oscillation is 
equivalent to the supnorm Suplu(. ) - u l ,  once an origin t~ is chosen.) This was a 
triumph for the mathematical theory of  shock-waves because it provides a quantita- 
tive estimate of  the dissipation present in the zero dissipation limit of  gas dynamics. 
However,  the methods of  Gl imm and Lax give only a short time existence theo- 
rem for periodic solutions of  the 3 x 3 system (1.1). Little is known about the 

1 See e.g., [10], where large total variation is allowed among components that are almost 
planar. 

2 The result was extended by Zumbrun to n x n systems which possess a full set of Riemann 
coordinates, [20]. 
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3 • 3 case, the simplest setting in which the true physical entropy effects the time- 
irreversibility. The long time existence problem for periodic solutions of  the full  
Euler system (1.1)-(1.2) has remained open since that time. 

In this paper we prove the following theorem which demonstrates the large time 
stability of  solutions for systems which possess a Riemann coordinate in one of the 
characteristic families, as does the Euler system. The theorem applies to solutions 
defined in a small enough neighborhood q / o f  a reference state u = ~: 

Theorem 1. Consider any 3 • 3 strictly hyperbolic system (1.2) that has a Riemann 
coordinate for one wave family in a neighborhood ql. Let Vo > O, d > 0 and 
T > 0 be given arbitrarily. Then there exists an e =-e(Vo, d, T), such that, i f  the 
initial data uo(') of  the Cauchy problem (1.2) satisfies 

and 

Suplu0(') - if] < e ,  (1.7) 

TV(u0('))  < Vo, (1.8) 

Ilu0(')lld < Vcrit , (1.9) 
then the conservation law admits a weak solution up to time T with bounded 
supnorm and bounded total variation, and 

TV{u(., t ))  < Vo exp(KT/d),  (1.10) 

where K is a constant depending on the equations, and ]]u0(')]]d denotes the 
maximum total variation of  the function u over intervals of  length d. 

Theorem 1 identifies a new length scale d in the Cauchy problem, and deter- 
mines a corresponding growth rate for the total variation of the solution, cf. [6]. It 
gives the existence of solutions up to an arbitrary time T in the case when the initial 
data has arbitrarily large total variation and sufficiently small supnorm. Indeed, the 
theorem really is a large total variation result for the Euler equations, because by 
taking the initial sup-norm sufficiently small, it allows for the case in which waves 
of arbitrarily large total variation all interact before time T. Using finite speed of 
propagation, Theorem 1 directly implies the large time existence of periodic solu- 
tions of the Euler equations, a nonlinear model for sound wave propagation in gas 
dynamics. 

Our proof is based on new functionals and new estimates for the Glimm scheme, 
the identification of a new length scale in the problem, and the introduction of a 
new norm ]]. lid, which we call the "d-norm," that is natural for estimating the 
nonlinearities in the problem. There is no corresponding finite length scale that 
plays a similar role in 2 • 2 systems, or in n • n systems when the total variation 
of the initial data is sufficiently small. 

The difficulty when the total variation is large and the system does not possess 
a full set of  Riemann coordinates, (e.g., periodic solutions of (1.1) or (1.3)), is that 
when TV{uo(.)} > Vcnt, there is a de-stabilizing, amplification effect due to the 
non-trivial Lie algebra of  eigenvector fields {ri}. For 2 • 2 systems, this geometric 
effect is not present because vector fields in the plane can always be rescaled to 
have pairwise vanishing Lie brackets. For 3 • 3 systems like (1.1), the Lie brackets 
play a dominant role, and recent studies of  the geometrical optics approximation of 
(1.2) have demonstrated that certain 3 • 3 systems are resonant, and solutions can 
blow up in a finite time, independent of  the supnorm, when the Lie algebra structure 
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of {r i} has a special form. (See [5, 9, 6].) Thus Theorem 1 demonstrates the large 
time stability o f  periodic solutions of(1.3) ,  thus rulin 9 out resonant blowup in the 
Euler equations. 

To understand this de-stabilizing effect when the Lie algebra of {r  i} is nontrivial, 
consider that for general systems, the nonlinear coupling of characteristic fields is 
determined by the nonlinear geometry of the eigen-fields (2i, ri). The nonlinear 
coupling of different fields is manifested in the scattering of new waves when two 
waves from different families interact, and the Lie algebra of  the eigenvector fields 
r i encodes the description of the scattering process to leading (quadratic) order. 
The effect of interaction on a particular wave family is given by components of 
the Lie bracket of the eigenvector fields associated with the incident waves, times 
the product of the strengths of the incident waves, (an inherently quadratic effect), 
with an error that is at most cubic in incident wave strengths, [17]. The quadratic 
interaction effects become destabilizing when the total variation is large, even when 
the supnorm of the solution stays small, due to the new waves that are generated 
as a result of interactions. Indeed, when the supnorm is small, the waves in the 
solution are weak, and in this case the combined quadratic effects of a small number 
of interactions are dominated by the incident waves. For example, if the incident 
waves have strength O(e), then the cumulative effect of O(1) interactions is O(e2), 
which is small. This corresponds to a total variation of O(e), namely O(1) waves of 
strength e. Increasing the total variation to O(1 ) while wave strengths remain small 
requires O(1/e) waves, so that there will be O(1/e 2) interactions. The cumulative 
effect of these interactions is then O(1), and this drives the growth of the total 
variation of the solution when the initial total variation exceeds a critical value. 
This explains, in principle, why the large total variation, small oscillation problem 
is inherently different from the small total variation problem originally addressed 
by Glimm: as long as the total variation remains small, the quadratic effects can be 
estimated by the strengths of the initial waves. However, as the initial total variation 
increases, cumulative quadratic effects become dominant. These quadratic effects 
cause solutions to grow in amplitude, and in some cases this leads to resonance, 
and to the finite time blow-up of solutions. 

This growth of solutions for general systems leads us to look for time-dependent 
bounds for the total variation of the solution, when the initial total variation is 
large. Thus, suppose that the total variation at time t in a solution of (1.2) is given 
by V(t), and suppose that V(t) ---+ oc as t increases. The observation that system 
(1.2) is invariant under the scaling (x, t)--+ (c~x, c~t) means that by scaling, we can 
construct a solution that grows without bound in arbitrarily short finite times. This 
leads us to conclude that the norm on the initial data that controls the growth of the 
solution cannot be invariant under the scaling (x, t) ~ (ex, et), as are the supnorm 
and the total variation norm. Said differently, by this argument there must be another 
length scale in the problem, call it d, which should determine the rate of growth 
of solutions when the total variation of  the initial data is large and the supnorm is 
small. 

With this in mind, we define the length scale d, which appears in the growth 
rate estimate exp(KT/d) in Theorem 1, as the length of  the largest interval 
over which the total variation of the initial data is smaller than the critical total 
variation Vent required for Glimm's method. For 3 x 3 systems with a Riemann 
coordinate, we relax this to require only the total variation in the Riemann 
coordinate be less than Veri t o v e r  intervals of length d. We define the d-norm 
of a function of bounded variation to be the supremum of the total variation over 
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intervals of  length d, 
Ilu0[Id = Sup TV[a,a+d](uo). 

a 

The d-norm scales like a length under rescalings (x, t) ~ (~x, at). Thus Theorem 1 
states that, for systems with the same (unsigned) Lie bracket components as the 
Euler system (1.3), the total variation grows no worse than O(1 )exp(KT/d), so long 
as Ilu0f.)lld < Vcrit. Thus the d-norm controls the growth rate of solutions in the 
class of  systems considered here. Moreover, the examples given in [18, 15] show 
that this growth rate is sharp for the system 

ut + (w + 2UV)x = O, 

vt = O, (1.11) 

wt + (u(1 - 4v 2) - 2VW)x = O, 

a linearly degenerate system contained within the class of  systems to which 
Theorem 1 applies. 

The length scale d plays no role in 2 • 2 systems, nor in n x n systems possess- 
ing a full set of  Riemann coordinates, nor when the initial total variation is less than 
Vcdt. Indeed, exp(KT/d) -~ 1 as d --* oo, and our growth rate estimate reduces to 
the time independent estimate obtained by Glimm in the limit V0 < Vcrit. Moreover, 
in the limit d -~ c~, the d-norm and total variation coincide, and so our restriction 
on the initial data reduces to Glimm's. Thus we conclude that d represents a new 
length scale that is relevant to the Euler system (1.3) when the initial total variation 
is large. 

In Sect. 2 we show that for any e > 0, and any function f of  bounded variation 
over x E R, there is a length d such that 

llflld < ~" 

Thus, for fixed initial data of  bounded total variation and small supnorm, the length 
scale d is determined by the data. Our new length scale d is the small scale on 
which interaction effects do not accumulate, so that the growth of the solution is 
apparent only on the larger scale of the support of  the initial data. Because there 
are O(1) waves on this small length scale, the heuristic argument above indicates 
that interactions on this scale do not drive the growth of the solution. Rather, the 
growth of the solution is driven by the long-range effects of  multiple interactions 
which occur over the longer scale of  the support of  the solution, which is the 
larger length scale. This heuristic point of  view motivates our method of analysis, 
and clarifies the principles used in obtaining the equations of  weakly nonlinear 
geometric optics, [5, 9, 6]. 

To prove Theorem 1, we use an extension of the method o f  re-orderinos which 
was introduced by Young in 1991 [17]. The idea in the method of re-orderings is to 
sup the value of functionals over all possible "future" re-orderings of  waves, each 
re-ordering representing a possible order in which waves could interact in the actual 
solution. By sup'ing over all possible re-orderings, one can obtain sharp estimates 
for functionals without having to determine the true ordering of interactions in an 
actual solution, a determination that would require refined estimates for the wave 
speeds as they evolve (nonlinearly) in the problem. In [17], Young used the method 
of re-orderings to account for a cancellation in the quadratic effects arising from 
the Lie brackets of  the eigenvector fields - a cancellation that is based on the 
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bilinearity of  the bracket. The idea is that, when one computes the sup, over se- 
quences of  consecutive waves of  the same family at a given time t > 0, of  the sums 
of the (signed) strengths of  the waves in the sequence, one has an estimate for the 
supnorm of the solution at time t. Then, if one estimates this value by sup'ing 
over all possible reorderings of  the initial waves with cumulative quadratic effects 
included, one obtains an estimate for the supnorm that increases only third order, 
instead of second order, at each interaction. The point is that this measure of the sup- 
norm accounts for a cancellation in quadratic effects based on the bilinearity of  the 
bracket - and by accounting for the cancellation, the improved third order estimate 
for the increase in the supnorm at interactions leads to an improvement in Glimm's 
original estimate of the supnorm at t > 0. Based on this better estimate, Young 
used a strategy of proof set out in [14] to show that any Glimm solution satisfying 
TV{uo(')} < Vcrit is stable in the supnorm, while Glimm's original argument only 
demonstrated bounds in the total variation norm: 

Theorem (Young 1991). Let u(x,t) denote any Glimm solution to which Glimm's 
original assumptions apply, so that 

Then TV{uo(.)} < Vcrit . (1.12) 

Suplu(.,t) - ~7] < C Suplu0(.) - ~7], (1.13) 

where C depends only on values of the flux f in a neighborhood of  the solution. 

In this paper, we use the method of re-orderings to define a functional V* 
to bound the total variation, a functional Q* to account for potential interac- 
tions (analogous to Glimm's original Q), as well as the functional P from [17] 
to bound the supnorm. The functionals V* and Q* are evaluated on a sequence 
of waves by sup'ing over all possible re-orderings of  the waves up to time T, 
while accounting for all cumulative quadratic effects of  interactions. (Our nota- 
tion is that a * on the functional indicates that it is analogous to Glimm's, but 
includes all cumulative quadratic effects. The functional P is not starred as it is 
defined only slightly differently than in [17], where quadratic effects were counted 
but did not accumulate.) More specifically, these Glimm type functionals are de- 
fined at each time step of an approximate Glimm scheme solution as sups over 
all possible wave configurations that can be generated up to time T assuming 
that wave strengths are given exactly by the leading order linear and quadratic 
effects at interaction, these effects being determined by the Lie bracket structure 
constants at the state t7 alone. In this way, V* is defined so that the change in 
V* between the incoming and the outgoing waves of an interaction diamond is 
non-positive except for third order errors; while the functional Q* decreases by 
order D, the sum of the products of  approaching waves entering the diamond, when 
the supnorm is small. The method of reorderings thus allows us to use analogous 
definitions of  the functionals to Glimm's, only now they are exact at the quadratic 
level, whereas Glimm's were exact only at the linear level. In this way, the errors 
in our quadratic model (compared to the fully nonlinear problem) are third order. 
We demonstrate that the error between the change in the functionals recorded at the 
quadratic level and the change recorded in the full nonlinear problem is bounded 
by a third order error equal to the supnorm of the solution times D. Specifically, 
(we use the same notation as [17]), 

P(J+ ) - P(J_ ) <= KpSD , (1.14) 

V*(J+)-  V*(J_) <= KvSD,  (1.15) 
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and 

Q*(J+ ) - Q*(J_ ) < - D  § KQSD , (1.16) 

where Kp, Kv and KQ are positive constants that can be fixed apriori. We reiterate 
that in the large variation problem we must incorporate all future quadratic effects 
of interactions up to time T into the definitions of  the functionals V* and Q*; and 
moreover, the quadratic effects represent the dominant contribution to the magnitude 
of these functionals. The functionals are constructed to satisfy the estimates (1.15)-  
(1.16) so that we can apply the proof strategy set out in [14]. (See also Glimm's 
original paper.) 

I f  we let the "quadratic model" refer to the model for wave interactions in which 
the scattered waves are determined exactly by the Lie bracket structure constants at 
the state if, then the value of the fimctionals V*, P and Q* on a given sequence of 
waves is determined entirely at the quadratic level; and the problem of estimating the 
"third order errors" between the quadratic model and the full nonlinear problem, is 
equivalent to the problem of the continuity of the functionals defined at the quadratic 
level alone. The d-norm works perfectly for this method of analysis because it is 
stable under perturbation by a set of  waves which sum to an arbitrarily small total 
variation. The third order errors introduce such waves into the scheme that are 
not accounted for at the quadratic level. In fact, the generation of wave strengths 
in the full nonlinear problem is a small perturbation of the strengths computed at 
the quadratic level alone, so that the quadratic system plays the same role in our 
argument that the linear system plays in Glimm's original argument. 

Although we address the problem of 3 x 3 systems that have the same Lie 
bracket structure as Euler, our method of reducing the nonlinear problem to the 
problem of obtaining estimates up to the quadratic level, applies in principle to the 
large total variation small oscillation problem for systems of conservation laws in 
general. In order to state the general results that our methods can establish, we now 
discuss the mathematical issues in more detail. 

The key to getting botmds in Glimm's method lies with the quadratic error po- 
tential Q, which is the global extension of the local interaction error. The potential 
Q is constructed by a priori inserting an error term for each pair of approaching 
waves, so that this term may be removed from Q when those waves interact. To 
motivate the definition of Q*, note that the errors due to two consecutive groups 
of interactions (reorderings of  waves) should be the sum of the errors due to the 
reorderings taken separately. We then need a continuity property to account for 
higher-order errors. This is the statement that the potential is stable under small 
perturbations of  wave strengths. We extend the method of reorderings to include 
in Q* all of  the additional approaching waves generated by cumulative quadratic 
effects, so that Q* is exact at the quadratic level. The new feature in our potential is 
that the interaction terms are given by wave strengths at the time o f  interactions (as 
estimated by projecting forward the quadratic effects of  earlier interactions), rather 
than the initial wave strengths. We then show that continuity of the functional Q*, 
uniform in mesh length Ax, is sufficient for the existence of solutions to general 
systems. In general, our bounds will depend on time and other factors, and restric- 
tions used in bounding Q* represent restrictions on the solution. Our methods are 
sufficient to prove the following theorem that applies to any system of conserva- 
tion laws (1.2) that is strictly hyperbolic, and either genuinely nonlinear or linearly 
degenerate in each characteristic field: (We let Iluollo~ - S u p l u o (  �9 ) - ~71, which is 
equivalent to the oscillation since ~7 = uo(-C~).) 
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Theorem 2. Suppose that the nonlinear functional Q* is bounded and continuous 
with time-dependent bounds. Then given any T and Vo, there is an e = e(V0, T) > 0 
such that i f  the initial data uo of  the Cauchy problem (1.2) satisfies 

I lu0l l~ < ~ and TV(uo) < Vo, 

then the conservation law admits a weak solution up to time T with bounded 
oscillation and total variation. Moreover, the total variation of  the solution is 
bounded by V*(t = O) + 0(~). 

Note that for resonant systems, Theorem 2 is vacuous after the blowup time, 
because Q* will not be bounded. 

We now discuss the class of  systems considered in this paper. Motivated by gas 
dynamics, we restrict ourselves to the class of  3 • 3 conservation laws possessing a 
Riemann coordinate w. We show in the next section that after normalization, such 
systems have the same (unsigned) Lie bracket structure constants as does (1.3). 
The existence of the Riemann coordinate means that for smooth solutions, we can 
derive a transport equation 

wt + 2k(U)Wx = 0 

for the Riemann coordinate. This represents a weak decoupling of that family from 
the system, in that w is constant along k-characteristics 

dx 
- -  = , ~ k ( u )  , 

dt 

and so no growth in w occurs in smooth regions. Although the formation and inter- 
action of weak shocks generates "entropy" w, this is a higher order effect which 
does not change the qualitative behavior of  solutions. Indeed, the change in en- 
tropy upon shock formation and interaction is cubic in incident wave strength, so 
is neglected in our quadratic model. This allows us to treat the degenerate field 
as a static background source for the generation of sound waves. Moreover, the 
assumption means that all sound waves interact linearly up to cubic errors, which 
can again be ignored. 

With these assumptions, we can describe the scattering of sound waves in our 
quadratic model, as follows. A single interaction of a sound wave with a contact 
causes a sound wave of the opposite family to be reflected, whose strength is the 
(weighted) product of the incident wave strengths. This reflected sound wave then 
interacts with other contacts, so that a pattem of multiply reflected and transmitted 
waves emerges. Our assumption implies that we can treat each scattered sound wave 
separately, and combine these linearly. We refer to a single scattered wave and its 
trajectory as a path. 

A path is thus given by an initial wave, together with a list of  interactions, 
where after interaction the path follows the reflected wave. We need only consider 
interactions between sound waves and entropy jumps. The strength of the wave con- 
tributed by an interaction is then the product of  the incident sound wave strength 
with the corresponding entropy jump, and this entropy jump is determined by the 
initial configuration. The contribution due to a single path, which is a series of inter- 
actions, can then be calculated, and adding up contributions due to each path yields 
the following path integral formula. The solution is represented in the quadratic 
model by a sequence of individual waves y = (Yl . . . . .  7n), and the interactions up 
to a certain time are represented by a reordering z. 
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Theorem 3. Suppose that the initial approximation is represented by 7 and the 
approximation after reordering is 6 = zT. Then the reordered sound wave (~i at 
position i, (which represents the relative position of a wave in an approximate 
Glimm scheme solution), is given by 

~i = ~ Yj ~ A(i,r)  ~ ])kl' '" ~kr, 
j r Flr(j,i ) 

where IIr(j, i) is the collection of paths starting at j and ending at i and consisting 
of  r interactions. Here 7j is the sound wave initially at position j,  and the 7k's 
are the strengths of the contacts which determine a particular path (the indices 
j and k refer to relative wave positions); A is a weight which is independent of  
wave strengths. 

Once we have found this formula, we look for bounds for the functionals. Our 
approach is as follows: first suppose that each entropy jump is bounded by/3. The 
contribution of a single path with r interactions is then (flA) r. We are then left 
with the task of counting the number of  paths which connect j to i through r in- 
teractions. To count the paths, we observe that a path starting at a fixed point 
can be determined by a sequence of interaction times tl < . . .  < tr. Thus the 
number of  paths is bounded by the number of choices of  times tq -= qAt, that is 
(r/r~t). Combining these and using the binomial theorem then gives an exponen- 
tial bound for the total variation generated by a single sound wave. Although this 
bound depends on the mesh length Ax, a similar argument is used to get bounds 
independent of  Ax. For this, instead of considering each entropy jump separately, 
we group paths into "blocks" contained in x-intervals of  length d, each of which 
generates only a small amount of  growth. We overestimate the contribution due to 
each block by adjusting the length scale d downward, and count the number of  
decompositions into blocks as above. In this way, we get bounds for the Glimm 
approximation, uniform in the mesh length Ax. 

Theorem 4. I f  the sequence 7 is such that its d-norm 6 satisfies 

6A6 < 1/2, for some fixed d > O, 

then the total variation of  the reordered sequence z7 is bounded, and satisfies 

V(~7) =< V(7) + V(7)exp (8A6T2/d). 

In particular, this bound is uniform as the mesh size Ax -* O. Here 2 and A are 
eonstants determined by the flux. 

As a corollary, we get the following (precise) re-statement of  Theorem i which 
gives a large time large variation existence theorem for the Euler equations. This in- 
cludes the important case of  space-periodic solutions. In particular, we have shown 
that the Euler equations are non-resonant, so that solutions do not blow up in finite 
time. 

Corollary. Suppose that system (1.2)possesses a Riemann coordinate w. Suppose 
also that we are given large numbers Vo and T, and positive d. Then there exists 
an e > O, such that i f  the initial data satisfies 

TV(uo) < Vo, Ilu011~ < e and Ilu011d = ~ < 1/12A, 
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then a weak solution u(x, t) E ~ exists up to time T. Moreover, this solution has 
exponentially bounded total variation, 

TV(u( . ,  t)) < TV(uo) exp (82Art/d) + 0(~) , 

with similar bounds for the other norms. The finite speed of  propagation then 
9ires the same result for periodic initial data uo, in which case the initial bounds 
apply on an interval of  dependence up to time T. 

Note that V0 and T can be arbitrarily specified, as long as the sup-norm of the 
data is small enough. The constants 2 and A are bounds for the wave-speed and 
interaction coefficients, respectively, and are determined by the flux. The requirement 
that ~ < 1/12A serves to identify the appropriate length scale d. 

Our theorem includes the case of  initial data having Lipschitz continuous en- 
tropy. I f  the entropy w(uo) is Lipschitz, the ratio 6/d is bounded by the Lips- 
chitz constant, and the theorem holds, where now the length-scale d is determined 
by the Lipschitz constant K, namely d < 1/12AK, and the corresponding growth 
rate is exp(82AKt). The Lipschitz norm has a length scale built in, but unlike the 
d-norm, is not stable under perturbation by weak waves, and so is not suitable 
for our analysis. 

As a final comment, we note that one does not expect solutions to the equations 
of  gas dynamics to grow exponentially, since the thermo-dynamic entropy is convex. 
In this case, the extra requirement that the total entropy f S be non-increasing 
seems to proscribe growth of the Lz-norm of solutions. This convexity of entropy 
is an extra symmetry, forcing the non-zero interaction coefficients to have opposite 
sign, which in turn leads to cancellation among newly generated waves, see [16]. 
In contrast, the system (1.11) is constructed to have constant wave-speeds and to 
possess a 2-Riemann coordinate, so that the nonlinearity is entirely manifested in the 
geometric coupling of different wave families. Moreover, although system (1.11 ) has 
the same nonzero Lie bracket components as the Euler system (1.3), the interaction 
coefficients in this example have the same sign, not altemating signs like Euler, and 
this is essential for the argument in [18] demonstrating that periodic solutions of 
(1.11) exhibit exponential growth, with growth rate given exactly by O(KT/d), as in 
the theorem above. This example indicates that the length-scale d and corresponding 
d-norm are the correct quantities needed to describe the mechanism for growth of 
solutions identified here and it means that, in the absence of  extra assumptions, 
our theorem is sharp. 3 

The paper is organized as follows. In Sect. 2, we recall Glimm's method and 
show that norms can be measured in terms of wave strengths. In Sect. 3, we re- 
call and extend the method of reorderings and interaction maps, and describe the 
effects of the interactions represented by a reordering. In Sect. 4 we define the 
functionals and describe their properties. In Sect. 5 we carry out the induction for 
Glimm's method and prove Theorem 2. These results can be extended to general 
systems at the cost of  clumsy notation. We then restrict ourselves to systems with 
a Riemann coordinate, and in Sect. 6 we define paths and derive the path integral 
formula. In Sect. 7, we count paths and show that the functionals are bounded and 
continuous. 

3 See [1] for an interesting new regularity result for solutions generated by Glimm's method 
that is related to the problem of the stability of solutions in the d-norm. 
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2.1. The Glimm Scheme. The proof of  Theorem 1 is based on an analysis of ap- 
proximate solutions generated by the Glimm scheme [3, 13]. Our procedure is to 
obtain bounds for Glimm-type functionals that take account of  interactions up to 
the quadratic level, and then to apply a general method of analysis that estimates 
norms for solutions in the fully nonlinear problem by these functionals. The gen- 
eral method for reducing the problem to the quadratic level applies in principle 
to an arbitrary N • N system - and we really need only restrict to 3 • 3 systems 
possessing a Riemann coordinate in order to demonstrate that our Glimm-type func- 
tionals are bounded and continuous. (The presence of resonance demonstrates that 
boundedness and continuity of  the functionals will fail in general without special 
assumptions that restrict the Lie algebra of  the eigenvector fields ri.) Thus we now 
develop the theory for N • N systems and we do not restrict to 3 • 3 systems until 
Sect. 6. However, to keep notation as simple as possible, in Sect. 3.2 we describe 
the interaction maps in detail only for 3 x 3 systems. 

We begin by recalling Glimm's approximation ff of  the Cauchy problem (1.2), 
and establish notation. We also describe Glimm's space-like/-curves, and define the 
functionals which will be used to show that the oscillation and total variation of the 
approximation are bounded for all times t. The bound on the oscillation allows us 
to define the approximation for all times, and the bound on total variation is used 
to extract a subsequence of  approximations which converges to an exact (weak) 
solution of (1.2) as the grid size tends to zero. 

We partition R x R + by setting xj = jAx and tk = kAt, where j and k > 0 are 
integers. The Glimm approximation consists of  Riemann solutions pieced together in 
such a way that ff is an exact weak solution in each of the strips tk < t < tk+l. Let 
a = (al,ae, . . . )  be an infinite equidistributed sequence, with each ak taking values 
in the interval ( - 1 ,  +1); see [3, 8, 13]. This is the random sampling sequence, which 
is used to choose the approximation ff on the line t = tk. We use a staggered grid 
with sampling points 03 E R • R +, where j + k is odd, defined by 

o 3 = (xj + akAx, tk). (2.1) 

We define ff as follows: for each j an odd integer, define constants u ~ E 0// 
by u ~ = uo(xj). Supposing that we have defined ~(x,t) for all x E R and t < tk, 
together with constant states u~., for all integers j and i < k with j + i odd, we 
show how to define the approximation ~7(x, t) for times t < tk+l. For each integer 
j such that j + k is odd, define the constant u 3 by 

u 3 = ff(0~-) = l im u(xj -q- akAx, t ) ,  (2.2) 
t---*t k 

and define ff on the line t = tk by 

ff(x, tk) = u~, for X j - 1  < X < X j+ l  �9 (2.3) 

Now define the approximation ff in the strip tk < t < tk+l by solving a Rie- 
mann problem at each grid point (xj+l, tk). The Riemann problem is the initial value 
problem for a jump discontinuity between constant states. We let <ULIlUR> denote 
the solution of the Riemann problem for left state uL and right state uR, which 
consists of  a sequence of admissible elementary waves (shock waves, rarefaction 
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waves, or contact discontinuities), one from each eigenfamily, as first constructed 
by Lax, cf. [2, 13]. Thus, in Gl imm's  scheme, for each i ( - - j  + 1) with i + k even, 
we solve the Riemann problem (u~ a llu,k+l>, centered at the point (xi, tk). Therefore, 
we have N waves leaving each p J n t  (xi, tk), with the constant states u/k_l and u~+ 1 
to the left and right, respectively. These "local" Riemann solutions can be pieced 
together to give an exact solution along the vertical segments x = xj, tk < t < tk+l, 
for those j for which j § k is odd, since the adjacent Riemann solutions share the 
states u~. 

This construction is valid as long as the individual waves do not meet: we thus 
impose a Courant-Friedrichs-Lewy (CFL) condition. This asserts that the mesh 
sizes in the grid are chosen so that 

Ax > A t .  sup{12;(u)l : u ~ ~ } .  (2.4) 
i 

We now describe G l i m m ' s / - c u r v e s  and establish notation for the sequel. We wish 
to bound the sup- and T.V.- norms of  the approximation t7(.,  t) as a function of  x 
for each time t. Notice, that for all times t between the lines t = tk and t = tk+l, the 
approximation tT(., t) consists of  exactly the same constant states and intermediate 
waves. It is therefore necessary only to keep track of  the waves occurring in the 
scheme. We define the functionals on the class o f / - c u r v e s  in terms of  those waves 
which cross each / -curve .  

A n / - c u r v e  is a continuous space-like curve made up of  line segments joining 
sampling points 0k and either O k  1 or Oki+~ (but not both). In other words, an / - cu rve  
. . . .  J . . J . . J 
is given by the assigning to each integer j a positive l ( j) ,  with j + l ( j )  odd, 
satisfying l ( j  + 1) = l(j)-4- 1, and t h e / - c u r v e  consists o f  the segments connecting 

/ ~ / ( j + l )  all p o i n t s  O~ (j) and v j+ 1 . For each integer k > 0, there is a unique /-curve Jk 

connecting all points 0~and 0~,+I. Thus all waves appearing in the scheme between 
times tk and tk+l cross the curve Jk. In particular, J0 is the un ique / -cu rve  which 
meets all mesh points on the line t = 0. 

T h e / - c u r v e s  admit a partial ordering given as follows: curve .,Jr precedes curve 
J "  if  the curve J "  lies towards later time; that is, i f  0~ (j) and 0~ (j) lie on J~ and 
J " ,  respectively, then l ( j )  < lJ(j) for each j .  Clearly J0 is the minimal curve. I f  
J+ is an immediate successor of  J_ ,  then there is a single integer f ,  such that 
l _ ( j )  = l+(j)  for j # j ' ,  and l+(j ')  = l_ ( j ' )  + 2. 

The difference between these curves J+ and J _  forms the diamond A~ centered 
at the point (xj, tk), where k = l _ ( f ) +  1. That is, the diamond A~ consists o f  the 
segments joining the points k k+l kJ:l k 0~_ 1 to 0~ and 0~ to 0~+ 1. Thus for each j and 
k > 0 with j § k even, there is unique diamond A~ enclosing the mesh point (x j, tk). 
We can compare diamonds to / - cu rves ,  by saying that a diamond A precedes J i f  
it lies below J ,  or simply if the point (x j, tk) enclosed in the diamond lies below 
t h e / - c u r v e  J .  Figure 1 is a schematic o f  the Gl imm approximations together with 
/ -curves and a single diamond. 

We shall be considering those waves which cross a par t icu la r / -curve  J ,  and 
we shall write 7j E J if  the wave 7j crosses J .  By a sequence o f  waves we mean 
a collection 7 = (71 . . . . .  7 ,)  o f  consecutive single waves 7j separated by constant 
states, which are usually suppressed. Thus there is a single constant state uj between 
the waves 7j and 7j+1, and uj is connected to uj-1 by a wave strength 7j. We write 
7 = (Tt . . . . .  7 ,)  C J for a sequence of  waves crossing J .  Similarly, we refer to 
waves and sequences thereof entering or leaving a diamond A. I f  the single wave 
7j is a k-wave, we shall say that it is in the k ttl family. 
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t=tk+ 1 

xl_ 1 xi+ 1 0/.k+2 

Fig. 1. The difference scheme 

2.2. Norms. Glimm's  original analysis uses the oscillation and total variation norms, 
given for a function u(x) by 

IluLI = sup lu(x) - u (x ' ) l ,  (2.5) 

and 

TV(u) = sup ~ lu(xi+l ) - u(xi)[ , (2.6) 

respectively, the sum being taken over increasing finite partitions {xi}. Note that the 
oscillation is equivalent to the sup-norm if an origin g is specified, but the former 
is more convenient for our purposes, and we shall use both terms to mean the 
oscillation. We always assume that solutions take values in a small neighborhood 
q/ o f ~ .  

In this paper, we shall also require an estimate of  the local variation of  the 
solution over intervals o f  length d. We thus define the d-norm 

Ilulld = sup TV[a,a+d ] (U(" )) a 

to be the maximum variation of  a function u(x) over intervals o f  length d. Note 
that the d-norm increases at most linearly with d, [[ulla+ d, <= ]lUrid + HuHd,. In the 
sequel, we shall require that the d-norm be small for some positive d, and the 
largest d for which this is small enough will determine the lengthscale on which 
wave interactions produce no significant growth effect. Any growth in solutions is 
driven by cumulative wave interactions on the larger lengthscale of  the support o f  
the solution. Our requirement that the d-norm be small represents no real restriction, 
according to the following lemma. 

L e m m a  2.1. Suppose that the total variation of  u(.  ) is finite. Then, given any 
> O, there is a positive d (depending on the function u) such that 

Ilulld _--__ [lull + ~ ,  (2.7) 
where Ilull is the oscillation. 
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Since we are restricting ourselves to solutions with small oscillation, we can 
always arrange that some d-norm is small by choosing e small enough in the lemma. 
Our lengthscale is then determined by finding the largest d such that the d-norm of  
the solution is smaller than some constant which depends on the conservation law. 
In the lemma, our choice of  d depends on the function u, so that the lengthscale 
is determined by the initial data. We shall see that this lengthscale in turn affects 
the rate of  growth of  solutions. 

Proof Suppose that the total variation o f  u( �9 ) is given by V, and let r /be  given. 
Choose some partition x0 < xl < . . .  < Xn such that the total variation calculated 
by summing over all indices but one is near V, that is 

v <  ~ lu(xi+~)-u(xi)l+lu(xj+x)-u(xj_~)l+~, 
ieFj-- l , j  

for each j .  Now let 

d = min IXi - -  Xi--1] , 
i 

and let any interval [a, b] with b - a < d be given. Then there is a j such that 
xj-1 < a < b < Xj+l, and so we have 

lu(x i+l )  - u(x~)l + TVta, bj(U) <- V .  
i ~ j - l , j  

Thus we obtain 

TV[a,b](U) < lu(xj+~) - u(xj-1) I +/3, 

and the lemma is proved. [] 

Our approximations are built up from Riemann solutions, so that they are piece- 
wise constant with interpolations between (some of  the) constant states, and can be 
treated as piecewise constant when considering oscillation and variation norms. It is 
convenient to consider functionals which are equivalent to these norms, but which 
are defined in terms of  wave strengths without explicit reference to the intermedi- 
ate states. Our notation is as follows. We consider the sequence o f  constant states 
{u0 . . . . .  Un} separated by the wave sequence 7 = (71 . . . .  ,Yn) o f  index ( e l , . . . , c , ) ,  
cf. [17]. This means that the wave separating constant states ui-1 and ui is a wave of  
(signed) strength 7i from the e~ h family, where ei lies between 1 and N. (Although 
we can consider any wave sequence ~ = (71 . . . .  ,Tn), we have in mind sequences o f  
consecutive waves along an / - cu rve  o f  the Glimm scheme.) We define the strength 
o f  a wave 7~ of  the e~ h family with left state uL and right state uR by 

7i = lc~(a) .  (uR - u L ) ,  (2.8) 

where lci(~) is the c~ left eigenvector o f  D f  evaluated at the origin t~. (We let 
7i refer to both the wave as well as the signed strength o f  the wave.) Note that a 
given normalization o f  the eigenvectors {r J} determines the wave strength measure 
(2.8) through the normalization 

l i ( u ) . r J ( u ) = O q .  

For genuinely nonlinear fields, a positive strength means that the wave is a rare- 
faction, while a negative strength indicates a shock. For any wave sequence 
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J2 ~i 
V(7) = I?il and S ( y ) =  max ~ , (2.9) 

i=1 Jl<J2 i=jl,ci=r 

where the latter denotes the largest sum of  signed strengths o f  consecutive waves 
in the same family that occurs among ?b. . . ,Tn.  This measure o f  the sup-norm 
accotmts for cancellation between shock and rarefaction waves, cf. [17]. Similarly, 
we define a functional for the local variation o f  the entropy, 

1 
n ( ? )  = sup ~ I~kl, 

i k=i 

where the sum is over 2-waves (ck = 2), and the distance between the 2-waves ?i 
and 7l is less than d. Note that the limits of  the sum in the definition o f  H will 
depend on the mesh size Ax << d. It is convenient to define the strength o f  a 2-wave 
by the difference in the Riemann coordinate (entropy jump) across the wave. 

These functionals are exact forms of  the corresponding norms for linear equa- 
tions, and the following lemma shows that they can be used for the nonlinear case 
as long as the oscillation is small enough. 

Lemma 2.2. I f  the total variation of  the approximation ff is bounded and the oscil- 
lation is small enough, these quantities are equivalent as norms to the functionals 
V and S defined in (2.9), respectively. For each k, we have 

Uk = UO + ~ 7 j r  cj + O(1)S ,  (2.10) 
j<=k 

where O(1) is a constant depending on f and V. Here r i denotes the i th right 
eigenvector of  the matrix D f ,  evaluated at the extreme left state uo. In the sequel 
we assume that uo = uo(-C~ ) = ~ is fixed. 

The advantage gained by using the functionals S and V comes in being able 
to evaluate these quantities in terms of  the wave strengths only, without having to 
know the intermediate constant states ui explicitly. 

Proof Here and later, unless explicitly shown, all vector quantities are evaluated at 
the state u0 = ~, which we treat as the origin. Let O1 denote a constant depending 
only on f .  According to Lax 's  solution o f  the Riemann problem [2], we have 

which we rewrite as 

We immediately obtain 

S ( y )  = sup 

uk = u k - ,  § ~k rCk(Uk--l) § 01(l~'k12), 

Uk -- Uk-1 = ~k rck § 01]~k] I1~11 ' 

~j~=rTj = sup ~ f~ . (Tjrcj ) 
J 

_-< sup I E + r .  (us - uj-1)l + O1 E Iwjl Ilall 

(2.11) 

o~11~1l(1 § v ) .  
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Similarly, 
V(7) = ~ [7~l = 01TV(f f ) (1  + [[~7[[), (2.12) 

so that V(7 ) and TV(ft) are equivalent. We now show that some multiple o f  S 
bounds the oscillation I[zTll. 

Define 
vk= ~1~1--<- v ,  

i<k 

and 

Ek = (uo+ E 
j<=k I]' 

Ak = m__<a~ IEjl, 

so that we must find a bound for each Ak. From (2.11) we get 

Uk+l = uk + 7k+1 rCk+l + I ~ + l l O l ( S  + luk - uol ) ,  

where r ~k+l is evaluated at uo. Then 

I~k-uol = E k -  j__<k ~ ~Jr~j 

N 
IEk[ '~ ~ ~ ~)jl "q < Ak + 0 1 ( S ) ,  

q=l j<k, cj=q 

so that 
Ak+l -- Ak ~ IEk+l --  Ek] 

= [uk+l - uk - 7k+1 r ck+l ] 

< [yk+l t(O1S + 01Ak). 

Taking A0 = 0 and summing, we get 

k+l 
Ak+l _-< ~ I~jl(O1S+ O~Aj_I) 

j= l  

k+l 
= 01Vk+lS + 01 ~ t~,,jlAj-1. 

j= l  

We now write ]7k+1] = Vk+l - Vk, and view Ak as a function of  Vk, so that we 
have a discrete Gronwall inequality, 

k+l 
Ak+~ < 01SV +O~ ~Aj_1(Vj -  Vj_~). 

j= l  

Thus, 
Ak+l < 01SV  exp(O1Vk+l ) < 01SV exp(O1 V) = S O ( l ) ,  

where O(1) depends on f and V, and the lemma is proved. [] 

We note that by extending this expansion to include exact second order terms, 
a similar result holds, namely 

1 
Uk = UO AV ~ ~ iEci -[- 2 E 7 2rci " VrCi + ~ 7i7j rci " VrCj + O($2) �9 

i<=k i<k i<j 
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Note that for large V, the quadratic terms in this expansion are of  size O(SV), and 
so are comparable to the linear terms. 

2.3. Riemann Coordinates. We recall the definition of a Riemann coordinate, and 
note the difference between Riemann coordinates and Riemann invariants as defined 
by Lax. In this paper, we shall exclusively deal with Riemann coordinates. 

Definition 2.3. A k-Riemann coordinate for system (1.2) is a function w : ql ~ R 
whose gradient ~TuW = lk(u) is a k th left eigenvector o f  the f lux matrix D f ,  so that 

VuW . D f = 2k(U)VuW 

for  the corresponding eigenvalue 2k(u). 

The definition implies that for smooth solutions, we can derive a transport 
equation 

w, + 2k(U)Wx = 0 

for the Riemann coordinate, although we cannot in general rewrite this in conserva- 
tion form. This represents a weak decoupling of the Riemann coordinate from the 
system, in that w is constant along k-characteristics 

dx 
dt 2k(u), 

and so no growth in w occurs in smooth regions. Although the formation and 
interaction of weak shocks generates "entropy" w, we shall see that this is a higher 
order effect which does not change the qualitative behavior of solutions. 

We remark that this definition is more restrictive than Lax's definition of a 
Riemann invariant, namely a function v satisfying r k �9 ~Tv = 0. Riemann invariants 
always exist for each family, but the existence of a Riemann coordinate implies 
the presence of certain symmetries. Indeed, a k-Riemann coordinate is a j-Riemann 
invariant for each j # k, and these are equivalent for 2 • 2 systems, but Riemann 
coordinates do not exist for general systems of three or more equations. 

In the equations of gas dynamics, a consequence of the Law of Thermodynamics 
is that the entropy S is a Riemann coordinate. We interpret the entropy equation 
(for smooth solutions) as saying that changes in entropy are advected, but as there 
is no source term in the equation, no entropy is generated to leading order. Indeed, 
we shall see that all changes in entropy due to interactions of  weak shocks are 
cubic in wave strength. 

In the sequel we restrict our attention to 3 • 3 systems that possess a 2-Riemann 
coordinate, and we will refer to this as the entropy. For systems with a Riemann 
coordinate, the corresponding Lie algebra structure constant, or "interaction coef- 
ficient," vanishes. The following two lemmas provide a canonical form for the 
structure constants, cf. [19]. We include the proofs for completeness. 

Lemma 2.4. Let the Lie algebra structure constants A jk be defined by 

~ j k  i [rJ ,  r k] = 2 .~J l  i r , (2.13) 
i 

and assume there exists a p-Riemann coordinate. Then we have 

A~  = 0 for all j ,  k .  (2.14) 
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Moreover, for general hyperbolic systems (1.2), a judicious choice of  normal- 
ization of  the eigenvector fields { r  i}  c a n  further simplify the structure constants at 
the state t~: 

L e m m a  2.5. A s s u m e  (1.2) is hyperbolic.  There  ex i s t s  a normal i za t ion  o f  r i such 
that  

A J i k ( 5 ) = O  f o r i = j  o r i = k .  (2.15) 

P r o o f  To establish (2.14), assume first that 

X7W = l i ( u ) ,  

SO that 
(F j .  ~ ) w  = t~ij . (2.16) 

Now differentiate (2.16) along r k to obtain 

(r  k �9 V r J ) .  XYw + D2 w (rk ,  r j )  = 0 .  (2.17) 

But since D 2w(rk ,  r j )  is symmetric in (rk ,  rJ) ,  we conclude from (2.17) that 

li . ( r  k " V r  j - r j " ~7r k)  = li " [rk, r j] ~- 0 ,  

from which (2.14) follows directly. 
To establish (2.15), we must normalize the vector fields in such a way that all 

the coefficients A jk vanish at the point ff E q/, unless i, j ,  and k are distinct. 
To this end, suppose that for each p,  we are given a function Zp, with 

Zp(/~) = 0 and VuZp = Y] apj ~j 
J 

for some functions apj. We form the vectors 

eP = rP a n d  ?p = e- p , 

so that ~Pla = rPla, and calculate directly that 

r j .  Vu  yk = eZk(akjr k + r j .  ~7rk ) .  (2.18) 

Now, if ,~k  are the interaction coefficients corresponding to the FP's, 

we have 
/~{k -~ eZJ+Zk--Zi(akj(~ik q_ Ajk  _ ajkOji ) . (2.19) 

We now choose the functions zk, which determine akj, in a convenient way. We -~j 
would like to set akj = A~ j ,  so that A k --- 0, for each k 4:j. To do this throughout 
the neighborhood Y/ i s  not generally possible, but we can do it at the origin ft. 

For example, we m a y  choose 

app = --~p " (r  p . ~ r P )  , 

SO that throughout ~ ,  

Zp " ( rP  " ~ r P )  • eZP(app -~- ~p . (r  p . X7rP) ) = O . 
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Y P~ ~ e p 

Fig. 2. Interactions 

This choice o f  the function ape amounts to finding a solution zp o f  the first order 
equation 

r p .  VZp = --~p, (r p .  ~ r  p) 

in q/, where the right-hand side is known. This equation can be solved for prescribed 
Cauchy data on any non-characteristic hypersurface. We choose this surface and data 
so that the interaction coefficients vanish at the point ~. For example, we choose a 
hyperplane whose tangent space at ~ is the span of  the vectors dj, where j 4: p,  and 
take Cauchy data zp which satisfies 

VZp[a = ~ APpJ[adj, so that  rJ .Vzpla  = aPpJ(~), f o r j 4 : p .  
j4=p 

Now, since apj = rJ.  ~TZp, we conclude from (2.19) that 

Ajk(~) = Ajk(~) for i, j and k distinct, and 

AJik(~) = 0 otherwise.  [] 

In Sect. 6 we restrict to 3 • 3 systems in which the eigenvector fields {r i} are 

normalized so that (2.14) (with p = 2) and (2.15) hold, in which case the only 

nonzero coefficients A j~ at the state ~ are 

A1 - a~2(~) ,  (2.20) 
and 

A3 - Azi(~) �9 (2.21) 

2.4. Interactions. The Riemann problem is the initial value problem in which the 
data consists of  two constant states, whose solution consists o f  N § 1 constant 
states separated by elementary waves. Suppose we are given two adjacent Riemann 
solutions, ~ separating uL from UM, and fl separating uM from uR. The Riemann 
interaction problem is to resolve the Riemann problem with constant states uL and 
uR, and to express the resuking waves in terms of  the strengths a and ft. I f  the 
resulting waves are given by ek, then we have 

I~i = ~i § fli § ~ O~jflk hjk § O(llu - u 0 1 l ) o ( ~ , f l ) ,  (2.22) 
j>k 

where A jk jk = Ai la are the interaction coefficients, given by  the Lie brackets o f  
eigenvector fields (2.13). Estimate (2.22) is a refinement of  Gl imm's  original es- 
timate, cf. [17]. Here D is a quadratic functional measuring the amount of  wave 
interaction, and is defined as follows: we say two waves are approaching if  they 
would eventually interact in the absence of  all other waves; this is the case when 
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the wave starting on the left is in the faster family, or both waves are in the 
same family and one of them is a shock. The amount of  interaction D is then 
defined by 

D(a, fl) = ~ ICtpI3ql , (2.23) 
App 

the sum being over all approaching pairs of  waves. Note that all second order terms 
in the estimate (2.22) appear in D, so that 

ei = ~i + fli + O ( D )  , (2.24) 

and moreover the coefficients A jk in (2.22) can be evaluated at the origin ~ rather 
than at the specific states UL, etc. 

Restricting to 3 • 3 systems possessing a Riemaun coordinate, we assume that 
A1 and A3 given by (2.20) and (2.21) are the only nonzero interaction coefficients 
at the state ~. With these simplifying assumptions, we can represent the interactions 
which occur schematically, with all strengths of  outgoing waves given to within 
a third order error, as in Fig. 2. We again mention the fact that no new entropy 
waves are generated to leading order. This observation will be crucial in Sects. 6 
and 7, and indeed it is known that without some assumption being made, solutions 
can explode in amplitude in finite time, [5, 18]. 

3. The Method of Reorderings 

We recall the method of reorderings and define the nonlinear functionals which will 
be used to bound the oscillation and total variation of the Glimm approximants. The 
main idea in Glimm's analysis is to build a decreasing potential which measures 
the errors produced from future interactions. For initial data having small total 
variation, this potential was constructed by Glimm, and was shown to be bounded 
by the square of  the total variation. Similarly, in case there is a coordinate system 
of Riemann invariants, a quadratic functional is sufficient. 

However, in general systems of three or more equations, when the initial total 
variation is large, the quadratic effects of  interactions become important and lead to 
a variety of destabilizing phenomena. In this case we must update the potential for 
interaction effects as new waves are scattered by earlier interactions. 

It is enough to consider only quadratic effects, as these control higher order 
effects. It is important to note, however, that for general systems, it is not possi- 
ble to bound the quadratic effects, and the solution may grow unboundedly unless 
restrictions are placed on the Lie algebra of  eigenvector fields. Our discussion is 
general, but the notation for the interaction maps is developed in Sect. 3.2 only for 
3 • 3 systems possessing a Riemann coordinate. 

3.1. Reorderings.  We briefly recall the theory of reorderings introduced in [17], and 
use these to build the nonlinear functionals. Our notation is as follows: we suppose 
that the mesh-size Ax  is fixed, and consider the Glimm approximation corresponding 
to this mesh-size on a given spacelike/-curve. By finite speed of propagation we 
assume without loss of  generality that the approximation is compactly supported. 
The approximation then consists of  a sequence of constant states {u0,...,  u , } ,  each 
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pair o f  states being separated by a single wave. We shall refer to the wave sequence 
7 = (71,. . . ,  Vn), where the wave Yi separates the states ui-1 and ui. I f  7i is a ci-wave, 
we say that (Cl . . . . .  Cn) is the index o f  the wave sequence. The index ci identifies 
the family o f  Yi, so that the wave strength determines the wave completely; for this 
reason we do not distinguish between the wave and its strength. 

We shall model the evolution o f  the Glimm approximation through changes in 
this wave sequence, as follows. The propagation and interaction o f  waves corre- 
spond to changes in the order of  the wave sequence, and consequent changes in the 
strengths o f  the individual waves. We shall model these phenomena in an abstract 
setting, thus reducing the problem to an algebraic one. The symmetric group S, acts 
on the waves by permuting them, and we shall also allow waves to merge. This 
allows us to more accurately capture interaction errors and nonlinear decay, while 
requiring more care in definitions. We shall first consider a large class of  maps, 
and then restrict to those which are admissible, both from a physical point of  view, 
and as determined by Glimm's  scheme. 

A surjective map ~:  {1 . . . . .  n} ~ {1 . . . . .  m} defines an action on sequences of  
n waves through permutation of  subscripts. That is, the map z acts on the wave 
sequence ~ = (71 . . . . .  7,) by shifting the wave 7i from position i to position z(i). 
I f  the new sequence is 5 = ~(7), we have 6~(i) ~ 7i, these being equal at the linear 
level. We say the map z reorders, or is a reordering of, the sequence 7. We similarly 
define the action o f  z on the index c = c(7) by permutation o f  subscripts. In order 
for the reordered index to be single-valued, we shall require that if  z(i) = -c(j), 
then ci = cj. This corresponds to the collapse of  two waves o f  the same family into 
a single wave. Note that an abstract reordering keeps track o f  the possible future 
relative positions o f  the original waves, but does not tell us actual positions, nor 
how the strengths o f  these waves change. 

We can define a composition of  maps as long as we take care that domains and 
ranges match up correctly, for example, if  z maps n numbers to m and a maps m 
numbers to p,  then the composition a r  is a well-defined map of  n numbers to p.  In 
the sequel we shall implicitly regard all compositions as consistent, without further 
regard for the domains o f  maps. 

The permutation z identifies the positions o f  the reordered waves, but also carries 
information about the interactions that must have occurred in reordering the waves. 
In order to get at this structure, we define the crossing set C, by 

C~ = {( j ,k )  I J < k and z ( j )  > ~(k)},  

so that C~ identifies the initial positions o f  those pairs of  waves which will cross 
under the action o f  v. Similarly, since our maps are not necessarily injective, we 
identify the merge set 

M~ = {( j ,k)  I J < k and ~(j)  = ~ (k ) ) ,  

consisting o f  those pairs of  waves which are joined under the action of  ~. It is 
convenient to define the interaction set I~ as the union of  crossing and merge sets. 
We extend the action o f  a, and refer to the pre-image under a of  C, as 

a'C~ = { ( j , k )  l ( a j , ~ k )  E C~}, 

with similar notation for other sets. 
We now isolate those maps which give rise to "physical" reorderings of  waves. 

Due to hyperbolicity, in order for a pair o f  waves to cross, that is to pass through 
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each other, the wave on the left should travel faster than that on the right. Physically, 
waves in the same family may  merge to form one wave, but never cross. Thus for 
a reordering z of  the wave sequence Y, we require that in order for the waves 7j 
and 7k to cross (where j < k), the wave 7j should be in the faster family, while 
waves which merge should be in the same family. We express this symbolically as 

Condition R: For every pair ( j ,  k)  C C~, we must have cj > ck, (R) while i f  
( j , k  ) c M~, then cj : C k .  

We say that the reordering ~ of  7 is admissible if  it satisfies (R), and we write 
E A(y), where A(7) is the set o f  all admissible reorderings of  the sequence 7. We 

note that the set A(7) is determined only by the index c = c(7) of  the sequence, 
and does not depend on the strengths (or actual speeds) of  the individual waves, 
so that any reordering admissible for the sequence Y is admissible for all sequences 
with the same index as Y. We now enumerate some of  the properties of  admissible 
reorderings, which can be derived directly from Condition (R) cf. [17]. 

The product o f  admissible reorderings is admissible. Physically, once a pair 
of  waves has crossed, these waves will diverge from each other, and any pair o f  
waves can cross or merge at most once. Given a composition of  two admissible 
reorderings, we express the composite crossing and merge sets as 

C,~ = C~ U v'C~, (3.1) 

and 
g ~  = Ms U z 'M~,  (3.2) 

where U denotes a disjoint union. 
According to Condition (R), even though the inverse z~(j) o f  j is not well- 

defined, its index G'(j) is. This enables us to check admissibility of  a map a of  the 
reordered sequence z(7), by verifying that i f  ( j , k )  c I~, then either c.d(j) > c.ct(k ) 
or ee(j) = ce(k), as appropriate. 

In order for a pair o f  waves to cross or merge, all waves between them initially 
must cross or merge with one of  them before they can interact. That is, only adjacent 
pairs o f  waves may cross or merge, and any admissible reordering consists of  a 
series of  pairwise interactions of  adjacent pairs o f  single waves. This observation 
allows us to factor reorderings into admissible pairwise interactions. 

We have two types of  pairwise interactions, namely transpositions and joins. 
The transposition K = (k : k + 1) flips k and k + 1 while leaving all other places 
fixed, while the join ~b p maps positions p and p + 1 back to p,  and adjusts the 
other positions accordingly. Thus ~P(i) = i - 1 for i > p ,  and other places are left 
fixed. In order for these pairwise interactions to be admissible, we require ek > ek+l 
or ep = Cp+l, respectively. Note that each join contributes to the merge set only, 
while each transposition contributes to the crossing set only, that is 

I o = M o  and I x = C ~ ,  

while C~ = M~ = (~. In particular, joins do not contribute to crossing sets, although 
they may cause the labels o f  crossing waves to change. 

We shall factor our reorderings into products o f  these pairwise interactions, and 
will make heavy use of  induction when considering arbitrary reorderings. Note that 
this factorization is not unique, and indeed we shall consider maps with different 
(admissible) factorizations to be distinct as reorderings. Thus each reordering has 
an implicitly given factorization. 
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Each factorization of the reordering tr = 2 s " "  21, where each 2r is a join or 
transposition, determines a time-like ordering on the interaction set Io, as follows. 
We say the pair ( i , j )  interacts before the pair (k, l), and write ( i , j )  ~ (k, l), if  there 
is a reordering p, defined by # = 2m.. .  21 for some m, under which the pair ( i , j )  
interacts, but under which the pair (k, l) does not interact. That is, ( i , j ) ~  (k, l) 
if ( i , j )  C 1~, while (k, l) @ 1~. The factorization may be recovered by specifying 
an order relation on the set I~. We cannot, however, arbitrarily order the crossing 
set I~, for Condition (R) implies that certain wave pairs will always cross before 
others. 

Corresponding to each crossing pair ( i , j ) E  I~ of the factored reordering 
o" = 2 s �9 " -  21, we associate a "subordering" # of  a, as follows. We set # to be the 
largest reordering # -- 2m""  21, under which the pair ( i , j )  does not interact. Thus 
if/~ is associated to (i , j) ,  and we set 2 = 2re+l, then the pair ( i , j )  interacts under 
the product 2#, and in fact we must have #(i) + 1 = #( j ) ,  and I~ -- {#(i,j)}. With 
this notation, we see that (k, l ) ~  ( i , j )  if  and only if (k, l ) E  I t. For the product 
n = az of factored reorderings, it is clear that ( i , j )  ~ zP(k, l), for each (i , j)  E I~ and 
(k, 1) E I~, and the relation ,~ extends the order relations defined by the factoriza- 
tions of  a and z, respectively. We note that not all interacting pairs are comparable: 
indeed, if  ( j , k )  c Me, and (zi, z j )  c Ca, then both ( i , j )  and (i ,k) E C~,  but these 
cannot be compared under %~. 

As was noted in [17], reorderings respect consecutive subsequences, so that there 
is a space-like ordering principle for waves generated by interactions with a fixed 
wave, namely the order is preserved or reversed. Other properties of  reorderings 
mentioned in [17] are also valid here. Although the present definition of a reorder- 
ing is slightly more general than was used in [17], our claims are straightforward 
applications of Condition (R), and more details can be found there. 

3.2. Interaction Maps. We now recall the definition of interaction maps, making 
some changes for our particular assumptions. When two waves of  different families 
interact, they generate waves of  other families. This effect is accounted for by 
changing the strength of  a nearby wave in the corresponding family. Interaction 
maps keep track of the waves whose strengths change as a result of  the interaction. 
Thus given a factored reordering tr, an interaction map z~ acts on the crossing set 
C~ as follows: the integer z~ refers to the wave whose strength is changed due 
to the interaction of the waves 7j and 7k. We are using reorderings and interaction 
maps to model quadratic effects only, and so at this stage will ignore all cubic and 
higher-order effects, and treat quadratic effects as exact. 

To simplify the notation, we describe the interaction maps for the class of 3 • 3 
systems possessing a Riemann coordinate. We refer to this field as the entropy 
field, and to the others as acoustic fields. With this assumption, the only quadratic 
effects of  interactions that arise come from the interaction of sound waves (i.e. 1- 
and 3-waves) with entropy changes (2-waves): in this case the affected wave is 
simply the nearest sound wave of  the third family. We remark that although this 
assumption simplifies our notation and definitions somewhat, it is not necessary for 
the construction: see [17] for the general construction for systems of N equations. 

Before defining interaction maps, we consider in detail what happens inside a 
diamond. Here we assume that our sampling is random in time, but uniform in 
space. Suppose for definiteness that a 3-wave enters the diamond from the left, and 
this is about to interact with a 2-wave entering the same diamond, see Fig. 3. Then 
the 2-wave must enter the diamond from the right, and moreover there must be a 
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Fig. 3. A Single Diamond 

1-wave (possibly of zero strength) entering the diamond between these two waves, 
also from the right. Thus the 3-wave first crosses the 1-wave, with no quadratic 
effects, and then interacts with the 2-wave, reflecting a quadratic 1-wave to the 
right of the original 1-wave. Up to third order, the effect of random sampling is to 
combine these waves linearly into a single Riemann solution emanating from the 
center of the diamond. For our purposes, we note that the newly generated 1-wave 
is combined with the first 1-wave to the left of the interacting pair at the time of 
interaction. Similar remarks hold for other interactions. 

Using the intuition from the argument above, we now define the interaction 
maps. Suppose that we are given a factored reordering o, which in turn determines 
an ordering 4o on the interaction set I~. Corresponding to each pair ( i , j )  E 1,~, we 
associate a subordering #. We note that quadratic effects are generated only by pairs 
of waves that cross, and moreover, interactions between pairs of sound waves (i.e. 
3-waves with 1-waves) generate only cubic effects, and can thus be ignored. We 
therefore define the interaction map ~~ action on those wave pairs in the crossing 
set Co which include a 2-wave only. 

In contrast to [17], we shall define interaction maps explicitly, and check that 
they satisfy the desired conditions. Thus, given a crossing pair (j,  k) E C~, we let 
# be its associated reordering, and define 

max{/I  ci = ~, # ( i )  < # ( j ) } ,  
zz (J ' k )  = m i n { i l c i  = C,,u(k) < #(i)}, 

i f ~ =  1, 
(3.3) 

i f ~ = 3 ,  

where ~ E {1,3} is the index of  the third (acoustic) family, which is affected by 
but is not part of the interaction. This defines the interaction map for those pairs 
of interacting waves which generate quadratic effects. We note that since our def- 
inition is explicit, a factored reordering has a uniquely defined interaction map, in 
contrast to the general case described in [17], where several interaction maps may 
be associated to a single factorization. 

We now check that interaction maps as defined here satisfy the conditions stated 
in [17]. It is evident from our definition that the interaction maps defined here 
satisfy conditions (i) to (iv) stated in [17], when appropriately interpreted. These 
conditions imply that interaction maps respect the order of waves, so that those 
waves generated by the interaction of consecutive waves of one family with a fixed 
wave are also consecutive. The other condition concerned interaction maps for those 
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reorderings which are compositions: in this case the condition is not identical, since 
our reorderings are not invertible. The correct condition in this context is as follows. 
Recall that C~ = C~ U z'C~, and suppose that interaction maps ~,  z ~ and ~ have 
been defined according to the above definition. Then we have 

~~ = z~ on C~, (3.4) 
and 

"cz ~z = zG'c on z'CG, (3.5) 

which holds because our definition of z~(j ,  k) relies only on the associated reorder- 
ing #, which is well-defined for each interacting pair. Of  course, these statements 
make sense only for those wave pairs on which the interaction maps are defined. 

We remark that instead of defining the interaction maps explicitly as we have 
done, we could have defined them by (backwards) induction, as in [17]. An in- 
ductive definition requires a choice, because reorderings are no longer invertible. 
However, if we require (3.3) to hold for transpositions, then Condition (R) and (3.5) 
fully determine the composite interaction map, leading to the above definition. 

3.3. Changes in Wave Strengths. Now that we have defined interaction maps, which 
identify those waves whose strengths are affected by the interaction of nearby waves, 
it remains to give a detailed description of the changes in wave strengths due to 
specific reorderings. We shall describe these changes inductively, and later derive a 
compact formula for general reorderings. We are interested only in quadratic effects, 
and so shall ignore anything that is cubic or higher order in wave strengths. 

Our notation is as follows: we start with a sequence 7 -- (71, . . . ,7,)  of waves, 
with index c = (c l , . . . ,  On). Then the class A(7 ) of  admissible (factored) reorderings 
is determined by e, and we suppose we are given some admissible reordering, say 
z. This has the interaction map ~ associated to it, as described above. We shall now 
describe the reordered sequence 6 = z(?) consisting of the waves in new positions 
and with strengths adjusted appropriately. We remark that the index d = z(c) is 
already known, namely dk = G'k, which is well-defined by (R). 

Recall that we are implicitly assuming that each reordering is factored, and 
indeed~ different factorizations lead to different results. In order to proceed with the 
induction, we first describe the effects of a single pairwise interaction. 

Consider the single join q5 = qSP. As described earlier, this models the merging 
of two waves from the same family into one wave. The effect o f  two nonlinear 
waves from the same family interacting is to add their strengths linearly, with 
errors of  third order. Thus, since we are ignoring cubic effects, we shall simply 
add the wave strengths. The two waves to be merged are 7p and 7p+1. I f  6 = q5(7 ) 
is the reordered sequence, we have 

6p = "~p --~ ])p+l, (3.6) 
and 

6O(j) = ?j, for j =~ p, p + 1. (3.7) 

We now consider a transposition, which models the interaction of two waves 
from different families. According to our normalization, the incident waves them- 
selves are not affected (except for cubic errors). The effect of  the interaction is 
to generate a new wave in the third family, whose strength is the product of  inci- 
dent wave strengths, appropriately weighted. Since we are assuming that the second 
family has a Riemann coordinate, there are no new 2-waves generated. This was 
anticipated in our definition of interaction maps, and simplifies the notation. For 
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the definitions in full generality, see [17]. For other families, we do not allow new 
waves to be created, but instead adjust the strength of the nearest wave of the correct 
family, as described by the interaction map. This is exactly the effect of sampling 
in Glimm's scheme, as can be seen in Fig. 3, and corresponds to "conservation of 
the number of  waves." 

We again start with the sequence 7, and let the transposition be given by 
~c = ( k : k +  1), and we shall describe the reordered sequence ~ = x(7). Let i = 
z~(k, k + 1) refer to the wave whose strength is affected by the interaction, noting 
that ci is that family distinct from those of the interacting waves, namely ck and 
ck+l. Then, since we are modelling only quadratic terms, we have 

~)tr = ~)i "~ AciTk~k+l, (3.8) 
and 

6,~(j) = ~j, for j # i .  (3.9) 

Note that apart from adjusting the strength of 7i by the Lie bracket term, we have 
also switched the relative positions of  ?k and 7k+l, as required. In particular, if  we 
assume the existence of a 2-Riemann coordinate, we have A2 = 0, so the transpo- 
sition of a 3- and 1-wave pair has no effect on wave strengths. 

We now inductively define the reordered wave sequence a(7) for an arbitrary 
reordering a. Since a is a factored reordering, we may write a = 2s . . .  21, where 
each 2j is either a join or transposition. We simply define 

o(~) = ~ ( . . .  (,~1(~))), 

where each successive step has been described above. 
Although this definition is unwieldly for reorderings in general systems, we shall 

see that in our case it leads to a manageable expression in terms of path integrals. 
The advantage in this definition is that it yields an exact expression at the quadratic 
level, in the sense that if  local interactions were exact at second order, then this 
formula would be exact. By contrast, in [17], by considering second order terms 
in initial waves only, we get an approximation after two interactions (dropping 
brackets of  brackets), and the errors so generated become significant when the total 
variation is large. 

Again, we emphasize that although we have defined the reordered wave se- 
quence for special systems, our definitions hold for general systems of N equations. 
However, without some assumptions on the interaction coefficients Ai, the reordered 
sequences become difficult to work with. Knowing that some solutions blow up, we 
must make some assumptions on the interaction coefficients to obtain bounds. 

4. The Functionals 

In this section we define the nonlinear Glimm functionals and describe the problems 
of continuity and boundedness of these functionals. Our aim is to describe the total 
variation and sup-norm of the Glimm approximation at large times. Recall that these 
approximations are represented at any time step, or, more generally, on any space- 
like 1-curve, as a sequence of waves. We shall define the nonlinear functionals in 
terms of these wave sequences and their reorderings. To obtain bounds on norms 
at large times, we must bound the functionals. The functionals include quadratic 
effects, and in order to get estimates which include all other nonlinear effects, we 
will need a continuity property for the functionals. 
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4.1. The Classical Induction. Before describing the functionals and their properties 
in detail, we briefly recall Glimm's original argument for bounding the total variation 
of the approximate solutions. Given a spacelike curve J, we define the total variation 
and error potential by 

V(J) = ~ l ~ j l ,  and O(J) = y~ I~j[l~kl, 
App 

respectively. Here the ~j 's  range over waves crossing the curve J ,  and the 
second sum is over approaching wave pairs, that is those which will interact at 
some later time. The local error Q(A)= D(A) for waves entering a diamond is 
described similarly. 

Since wave pairs interact once only, for any space-like curve J ,  we have 

Q(J) <= V(J)  2 , 

which we refer to as boundedness of the functional Q (in terms of V). 
For the induction step, we argue as follows, referring to Fig. 1 for notation. The 

waves entering the diamond A combine linearly in each family, up to a quadratic 
error which is bounded by D(A). Thus we have 

V(J+) <= V(J_) -I- OlD(A), (4.1) 

where c is some generic constant depending only on the conservation law. We view 
this as a statement of the continuity of V. The corresponding statement for Q is 
more interesting. First, there are fewer approaching waves crossing J+, as some 
waves have crossed inside the diamond. This means that there are fewer terms in 
Q(J+), and indeed the missing terms appear in Q(A). Thus we would like to write 

"O(J+) + Q(A) = Q(J_ ) ." (4.2) 

However, this relation is not exact, as some of the waves have changed due to 
the interactions in the diamond, so that Q(J+) is defined using waves of  different 
strengths. We are thus led to a question of continuity: namely, if  we change wave 
strengths locally (at a single diamond), what is the change in the global functional 
Q ? Glimm argued that since each wave approaches a subset of  all other waves, and 
those waves leaving a single diamond may not interact, the total error in Q is the 
difference in wave strength multiplied by V, and so obtained the inequality 

Q(J+) <= Q(J_) - Q(A) + czD(A)V(J_), (4.3) 

where D(A) = Q(A) bounds the difference in wave strength. We combine (4.1) and 
(4.3) by induction: if  V(J_) is small enough, say V(J_) < 1/2cz, then 

V(J+ ) + 2Cl Q(J+ ) < V(J_ ) + 2Cl G(J_ ),  

so this functional is decreasing. Thus we have the bound 

V(J+) < V(J+)+ ZcaQ(J+) < V(Jo)+ ZclQ(Jo) < V0(1 +2ClV0),  

and if V0 is small enough, then the inductive hypothesis is satisfied and we get total 
variation bounds, as required. In the sequel we will define Q* to be an extension 
of Q which includes cumulative quadratic effects in such a way that (4.2) holds 
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exactly at the quadratic level, and the higher order errors due to interaction will be 
estimated by the continuity properties of  the fimctional Q*. 

4.2. Definition of the Functionals. The above argument required V0 to be small 
to get bounds on the total variation for large times. To get results for large total 
variation, we must more accurately describe the effects of  interactions by taking 
quadratic effects into account. We will use the method of reorderings to do so. 
In [17], we constructed a potential P for the sup-norm, which included (some) 
quadratic effects. In that paper, the boundedness and continuity of this functional P 
were discussed, without identifying them as such. Here we shall describe analogous 
functionals V* and Q* for the total variation and the quadratic error potential, 
respectively. Our notation will be that the * indicates that the functional is the 
usual functional with cumulative quadratic effects included. For convenience we 
will assume the existence of a 2-Riemann coordinate, although the functionals can 
be defined for general systems. 

In Sect. 2.2 we described the total variation, sup-norm and local d-variation of 
a sequence of constant states separated by waves. We shall similarly define all 
other ftmctionals in terms of these wave sequences, and the extension to space- 
like curves is then clear, namely taking the supremum over all (consecutive) wave 
sequences crossing that curve. Thus we suppose that we are given a wave sequence 

= (71 . . . . .  Vn), together with the associated machinery of reorderings described 
earlier. 

Since we know that time-independent bounds are not available, we shall implic- 
itly fix a time T of existence, and restrict the class of  reorderings appropriately. 
That is, we admit only those reorderings corresponding to interactions taking place 
up to time T. Thus, because the system is hyperbolic, certain pairs of  waves (ini- 
tially very far apart) will not cross in time T, even though they are approaching. 
Note that the number of  interacting pairs still depends on the mesh size. Henceforth 
the class of  reorderings will be restricted to interactions taking place before time 
T, and we shall make the dependence on T explicit only when convenient. 

In [17], we defined the action of a reordering on a wave sequence, and then 
defined the potential P as the supremum of the sup-norm of reordered sequences, 
over all reorderings. That is, we defined a new wave sequence z~, and defined 

P(7) = sup S(z*7), 
"C 

the sup being taken over all admissible reorderings and interaction maps. Note that 
the sequence zz7 is not the same as the sequence z7 described in this paper, as the 
present treatment includes cumulative quadratic effects (brackets of  brackets). 

Our potential for the total variation is analogously defined as the supremum over 
reorderings of  the variation of the reordered sequence, 

v*(7) = sup v(~7) ,  

Note that our construction included quadratic effects, and so the functional V* should 
describe the total variation at large times, except for (accumulated) cubic errors. 
We know that local cubic errors are controlled by quadratic terms, and continuity 
of  the functional V* will allow us to control the cumulative cubic errors. 

We will use the local variation of the entropy of the solution in our estimates, 
and so we need a functional that measures this quantity. Since entropy jumps 
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are represented by 2-waves, we define a functional H which measures the local 
d-variation by 

H(7) = sup ~ I~il, (4.4) 
io,i d Ci=2 

where the sum is over 2-waves between i0 and id, and the supremum is over in- 
dices chosen such that 7i0 and 7id are at most distance d apart in the approximation. 
This quantity is bounded by Ilwlld, if we define the strengths of  each 2-wave as the 
entropy jump across that wave. Moreover, the fact that entropy is a Riemann coordi- 
nate implies that 2-waves undergo only cubic errors in wave interactions. In terms of 
reorderings, this means that the only elementary interactions resulting in changes in 
2-wave strengths are merges of  2-waves, which do not increase the local 2-variation. 
Thus for any reordering z, we have H(zT) < H(7). We emphasize that this func- 
tional has this special property only for systems possessing a Riemann coordinate. 

Finally, we must define the quadratic error potential. As in Glimm's original 
construction, we wish to define a functional that decreases across a diamond, so 
that this decrease balances the increase in norms due to interaction error. The local 
interaction error is given by O(1)D at quadratic level and O(1 )SD when quadratic 
terms are included (see (2.22)). Moreover, our error potential Q* should reduce to 
D for local interactions, as does Q. We know that when considering the Glimm error 
potential Q, the error term involving V (and forcing V to be small) appeared when 
we were considering continuity of  Q. We thus look for a functional Q* satisfying 
a similar functional equation (4.2), but with better continuity properties. 

The contribution to the error potential due to a pair of  waves interacting is 
the product of their strengths. This product of strengths appears as a term in Q. 
However, the error appears only when the pair actually interacts, and at the time of 
interaction, these strengths will have been changed by earlier interactions. We thus 
build the functional Q* by again taking products of  wave strengths, but measuring 
them at the time of interaction, rather than initially. This is accomplished via the 
method of reorderings, as follows. 

Suppose we are given a reordering z of  the sequence 7. Then the set I~ deter- 
mines which wave pairs interact, and thus which terms should appear in Q*. We 
now find the strength of the waves at the time of interaction. To each interact- 
ing pair (j ,  k) E L, we associated the "sub-ordering" # of  z. The strengths of  the 
waves 7j and 7k when this pair interacts, are just the corresponding strengths in 
the partially reordered sequence/~(7). Note that this is consistent with our inductive 
definition of the reordered wave sequence. 

We are now in a position to define the functional Q*. With notation as above, 
we denote by 7~ and 72 the reordered waves 7j and ?k before they interact, that is 

7~ = q jr and ?~ = r/k,, 

where j l  = p( j ) ,  U = #(k) and q = p(?) is the partially reordered sequence. Note 
that the partial reordering/~ is defined for all interacting wave pairs, and is different 
for each interacting pair. We now define 

Q*(?,r)  = E j k - - - -E j k + 17)117kl 
App C~ M~ 

where the ~ on the second sum indicates that the sum is over approaching waves 
only, that is those for which one of ?~'. and 7~ (with c] = ck) is negative. This is the 
usual property that rarefaction waves of  the same family produce no error. We also 
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impose the restriction that each interacting pair appear only once in the sum: thus if 
(k, I) E M s, so that both (j, k) E I~ and (j ,  1) E 1~, and 7~ = 7~, the corresponding 
term t7~1t7~1 should not appear twice. Finally, define the quadratic error potential 
Q*(J) ~y 

Q*(J) = sup Q*(7, z ) ,  

where the sup is over all finite consecutive wave sequences 7 in J ,  and admissible 
factored reorderings z E A(7). 

4.3. Properties of the Functionals. We now describe the algebraic relations for V* 
and Q* which will be used in the sequel, and describe in detail what we mean by 
continuity and boundedness. We wish to bound the functionals at later times by 
the initial functionals, if  possible. In order to do this, we shall describe the change 
in functionals under a reordering, which corresponds to one or more diamonds. In 
describing the change in functionals, we shall see that our inductive definition of re- 
ordered wave sequences leads to exact functional relations, thus explicitly separating 
the continuity properties as described above. 

To describe the change in functionals, we consider the composition of reorder- 
ings. Thus suppose that z E A(7), and let 6 = z(7) be the reordered sequence. Now 
if o-E A(6), the composition tTz is admissible for 7- According to our inductive 
description of reordered wave sequences, we have exactly 

~(~) = G~(~),  

and we use this to compare the functionals at different times. Since this relation 
holds for any ~ E A(6), we immediately find 

v * ( ~ )  = v*(~7)  _-< v * ( ~ ) ,  

which says that the functional for the total variation does not increase with time. 
Note that here we are considering only quadratic terms, and so cubic errors have 
not yet been taken into account. We will need continuity of  the functionals in order 
to deal with these cubic effects. 

We now write down an algebraic relation for the quadratic error potential Q*. 
Using the same notation, we wish to compare Q*(6, ~) and Q*(7, o'z). Note that if/~ 
is associated to the interacting pair (zj, zk) E I~, then the sub-ordering associated to 
the corresponding pair (j ,  k) E C~ is #z, and indeed we have 6~j = 7~ ~, etc. Thus 
each term in Q*(6,tT) appears in Q*(7, tTz). Conversely, those terms in Q*(7,o-z) 
which do not appear in Q*(6, a) are exactly those which interact under z. Also, since 
the reordering associated to an interacting pair does not depend on later interactions, 
these terms are exactly those in Q*(7, z), and we have 

Q*(7, t~z) = Q*(zT, iT) + Q*(7, ~). (4.5) 

I f  z is the reordering associated with a single diamond A between J_  and J+, and 
~- is the reordering associated with changes between J+ and some later time T, 
we interpret this relation as Q*(J_) ,~ Q*(J+)+ Q*(A), so that the quadratic error 
potential does indeed decrease by the right amount. A more precise estimate can 
be stated once we have established continuity of  the functionals. 

Now that we have found the appropriate functional relations, which are exact at 
the quadratic level, we shall investigate what is needed to complete our induction 
argument. Since we will be bounding the fimctionals by their initial values, it is 
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clear that they must be bounded initially. Since the functional V* is a potential for 
the total variation, we require that it be bounded initially in terms of the variation 
V, whereas the functional P which bounds the sup-norm at later times, must be 
bounded by S. 

Our induction is on diamonds (or reorderings) in the Glimm scheme, that is on 
series of interactions, each of which produces quadratic effects plus errors which 
are cubic. As we have noted, our functional relations are exact only at the quadratic 
level. Thus when applying our formalism to the Glimm approximations, we must 
account for these errors. We first informally describe how this is accomplished. 

We model the interaction of waves inside a diamond by a reordering which 
adjusts the wave strengths to account for the quadratic effects. From our interaction 
estimate (2.22), we know that the cubic errors are bounded by O(SD), where the 
sup-norm S is small and we have control over D(A) ~ Q*(A). Thus suppose that 7 
represents the waves entering a diamond, and a represents those leaving. We have 
that for some reordering p, 

a = P(7) + O(1)S(7)D(A). 

We have seen that we can compare the functionals defined on the sequences 7 and 
P(7), and would like to compare these to those defined on 6. Since P(7) and 5 are 
close, this is a problem of continuity of the functionals. 

The continuity property of  functionals can be described as follows: suppose that 
the wave sequences 6 and 6' have the same index, but the wave strengths differ in 
a single position, say p. We shall say that some functional B is continuous, if  

We require that K~ be independent of the number of waves and mesh-size, while 
it may depend on norms of the solution or time. The requirement is that our esti- 
mates be uniform in mesh parameters, so that we can pass to the limit of Glimm 
approximations. Supposing that the sequences differ in one wave only is convenient 
and represents no restriction. 

A similar remark holds for boundedncss: we would like to know that the func- 
tionals, which represent norms at future times, can be bounded in terms of initial 
quantities. Thus we would like to know that 

B(a) < Bo(Vo, So, T, . . . ) ,  

where the arguments of B0 are known initially, V0 = V(6), etc. Of course, these 
bounds should be appropriate, so a bound for the sup-norm potential P in terms of 
110 alone would not be useful. We remark that in most circumstances, boundedness 
and continuity of  fimctionals are equivalent, although they are conceptually different. 
In particular, if  the bounds are smooth functions of norms, then the functionals are 
also continuous. This is just the statement that differentiable functions are Lipschitz 
continuous. 

5. Existence of Solutions 

We are now in a position to fill in the details of the existence theorem. We will 
make assumptions on the boundedness and continuity of  the functionals, and then 
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derive our result. This means that the problem is essentially reduced to an alge- 
braic one, namely finding bounds for the functionals which are described by finite 
sequences of  waves. In the following sections, we find time-dependent bounds for 
the fimctionals, so that we get existence for arbitrarily large finite times. In general, 
any assumptions made in bounding the functionals translate to restrictions on the 
solution to the Cauchy problem. Throughout we assume implicitly that the sup-norm 
is small enough that all our estimates are uniform. 

The bounds for the nonlinear functionals V* and Q* will depend on the time 
T of  existence of solutions, as well as the total variation of the solution, and the 
local d-variation of the entropy. This local variation is measured in terms of the 
functional H defined earlier. For completeness, we shall make the time dependence 
explicit in the induction. 

We use the notation developed earlier and state our assumptions in terms of the 
functionals. First, we assume the nonlinear functionals are bounded, 

V*(7 ) < V~(V,T) and 0*(7) < * = = Qo(V,T), (5.1) 

where Vo "~ and Q~) are increasing functions of  their arguments, and V = V(7 ) is 
the total variation of the sequence 7. We note that in general these bounds also 
depend on other quantities, although we will not make them explicit here. Indeed, 
our bounds will depend on the lengthscale d, and corresponding sup- and d-norms. 
Next, we assume that these functionals are continuous, 

V*(7) - V*(7') < Kv(V, T)I7 - 7'1 (5.2) 
and 

Q*(7) - Q*(7') < KQ(V, T)I 7 - 7 '[ ,  (5.3) 

for sequences 7 and 7' differing in one wave in each family, and having the same 
index. Again Kv and KQ are increasing functions of their arguments, and may 
depend on other quantities. We remark that these assumptions are equivalent when 
the bounds are smooth functions. 

In [17] it was shown that the functional P for the supnorm is both continuous 
and bounded with explicit bounds, namely 

P(7) <= S(7) + AS(7)V(7), and P(7) - P(Y') < Kp[~ - 7'1, 

where Ke = O(1)V, and O(1) and A depend only on the conservation law. We 
shall also make use of  Glimm's estimate 

V(J+) <= V(J_) + AD(A). (5.4) 

Theorem 1. Suppose that the nonlinear functionals satisfy boundedness and con- 
tinuity properties (5.1)-(5.3). Then 9iven any T and Vo, there is an ~ > 0 such 
that if the initial data uo of the Cauchy problem (1.2) satisfies 

Iluoll~ < ~ and TV(uo) < Vo, 

then the conservation law admits a weak solution with bounded oscillation and 
total variation. Moreover, the total variation of the solution is bounded up to time 
T, with bound V~ + 0(~), and analo#ous bounds are available for other norms. 

We remark that e is defined in terms of V0 and KQ, so that ~ --* 0 as V0 ~ ~ .  
In our analysis, KQ depends on time, so that we get solutions for arbitrarily large 
but finite times. That is, given any time T, we have e = e(Vo, T) and we have 
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existence up to time T. Similarly, any other assumptions which are made in finding 
KQ must be imposed on the initial data. In our case, we require that the entropy of 
the initial data has local variation. 

Hw(uo)lld < ~ < 1/3A, for some d > 0 .  

Here A = max{A jk} is the maximum of the nonzero interaction coefficients, and is 
determined by the flux. For clarity in the proof, we shall make the dependence on 
the local variation H ,~ [[w(u)lld of the entropy explicit. 

Although our main application is to 3 x 3 systems having a Riemann coor- 
dinate, this theorem holds for general N x N systems, with appropriate modifica- 
tions. The functionals V* and Q* are again defined inductively on reorderings, and 
any restrictions made in finding bounds for V* and Q* must hold for the initial 
data. 

Corollary 5.1. Boundedness and continuity of the functionals V* and Q* are suf- 
ficient conditions for existence of solutions to general N x N systems. That is, 
we can choose ~ > O, depending on the bounds, such that the conclusions of the 
theorem follow. 

In general, such bounds are not available for large times when the total variation 
is large, and solutions are known to grow without bound, [5, 18]. Any restrictions 
used in finding the bounds for V* and Q* must again be imposed on the initial 
data and the solution. 

Proof As usual, we proceed by induction on space-like /-curves. There are two 
steps, first comparing the functionals evaluated at successive /-curves, and then 
carrying out the induction. We use the notation of Sect. 2.1, so that curves J_  and 
J+ differ by a single diamond A, and J0 is the initial/-curve. Again, since we are 
anticipating time-dependent bounds, we restrict the class of admissible reorderings 
to those spanning the finite time T. 

Referring to Fig. 1, we  suppose that the waves crossing curve J_ form the se- 
quence 7, and those crossing J+ are given by the sequence 6. Also, let the reordering 

represent the interactions inside the diamond A. According to (2.22), the local 
error is O(1)SD(A), and we have 

6 = ~(y) + O(1)S(?)D(A). 

By this we mean that the sequences 6 and z(7 ) have the same index, and the wave 
strengths differ only in those waves leaving A, and in particular no pair of these 
waves approach, see [17]. 

Since the reordering ~ models the diamond A, we expect that the quadratic 
errors Q*(?, ~) and D(A) are comparable. In fact, the only difference between these 
is that in Q* we measure each quadratic term at the time of interaction. Since z is 
a local reordering modeling only a single diamond, there are a limited number of 
interactions, so that the difference between these is cubic, and we have 

Q*(7,~) = D(A) + O(1)S(J_ )D(A) . 

We wish to compare the functionals for the sequences 6 and ?, respectively. 
This in turn reduces to the continuity of  the functionals, as follows. Consider the 
functional V*, which satisfies V*(~7) < V*(7). We know that the sequences v(7) 
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and 6 have the same index, and that a few of  the individual wave strengths differ 
by O(SD). Then by continuity of  V* in (5.2), we have 

V*(6) - V*(vT) < K v ~  16p - (~7)pl 

< Kv 0(1 )S(J_ )D(A), 

where O(1) is uniform in a neighborhood and depends only on the flux. Now 
V*(J+) = V*(6) for some sequence 6, and since the corresponding sequence 7 lies 
on J_,  we have 

V*(J+) < V*(~) + KvO(1)SD 

< V*(J_) +KvO(1)SD,  (5.5) 

which is the desired comparison of V*(J+) and V*(J_). As similar relation holds 
for the sup-norm functional P, namely 

P(J+ ) < P(7) + KeO(1)SD 

< P(J_)(1 +KeO(1)D(A)) ,  (5.6) 

for some sequence 3 and corresponding ~ C J_ ,  see [17]. We obtain a similar 
estimate for the change in the local variation H of the entropy. Since H is defined 
in terms of the 2-waves only, and wave interactions have no quadratic effects on 
2-waves, we have 

H(J+) <= H(J_)  + KHSD , (5.7) 

where KH depends only on the conservation law. We have implicitly used alge- 
braic relations for V*,P and H, saying that these decrease at quadratic level after 
interaction. 

We treat the quadratic error potential similarly: the error potential for J+ is given 
by Q*(6, a), where a is an arbitrary reordering of  6, representing wave interactions 
up to some later time. Given the corresponding sequence ~ C J - ,  we shall compare 
this to Q*(v7, a)  by invoking the continuity (5.3) of  Q*. We then use the functional 
relation (4.5) for Q* to compare that with Q*(~, av), which is in turn smaller than 
Q*(J_). Carrying out the details, we have: 

Q*(b,a) < Q*(w,a )+  KQO(1)S(7)D(A) 

< Q*(7, a~) - Q*(7, 3) + KQO(1 )S (JD(A) ,  

which, when maximizing over a, leads to 

Q*(J+ ) < Q*(J_ ) - D ( A ) ( 1 -  O(1)KQS) , (5.8) 

where we have used the local estimate Q*(%r). .~D(A).  Thus we see that as long 
as S is small enough, the functional Q* decreases by some fraction of D. 

We now proceed with the induction. The new feature of  the induction is that 
the constants K depend on the solution, so we must choose the initial sup-norm 

small enough that we get a uniform decrease in Q*. Our separation of the sup- 
and total variation norms, together with the small error in Q*, allows us to carry 
out the induction for large variation, as in [14]. In the local estimates above, we 
evaluated the K ' s  at J_:  as these are increasing functions of  their arguments, we 
shall overestimate them in the induction. In order to simplify notation, we include 
all O(1) terms depending on the flux into the K's .  



452 B. Temple, R. Young 

Given an initial total variation Vo, we set 

O~ = Q~(Vo,2q; T) , 

where 2r/ is an upper bound for the local variation H,  and define 

W = Vo + 2AQ~ (5.9) 
and 

M = (1 + AVo)e2Xeg-~, (5.10) 

where we have set 

Kp = Kp(W, Zt/; T) and KQ = KQ(W, Zrl; T ) .  

We will show that 

S(J)  < MSo and V(J)  < W 

and H(J )  ~ 2q, as long as So is small enough and H0 < q. 
Choose the bound e > 0 for So small enough that 

eMKQ < 1/2 and 2eMKI4Q~ < rl, 

and suppose for the induction that 

V ( J _ ) +  ZAQ*(J_) < W ,  (5.11) 

P(J_)  < P(Jo)e 2KP(Q~-Q*(J-)) (5.12) 
and 

H(J_ ) + 2SoMK~IQ*(J_ ) < 2q.  (5.13) 

These assumptions imply that S(J_ ) < P(Jo)e2Keg-~ < MSo. By (5.8) we have 

Q*(J+ ) - Q*(J_ ) < - D ( A ) ( 1 - K Q M S o )  <= -D/Z  , (5.14) 

and so also D < 2(Q*(J_) - Q*(J+)). Then by (5.4), we have 

V(J+)+ZAQ*(J+)  < V ( J _ ) + Z A Q * ( J _ )  < W ,  

and by (5.7), 

H(J+ ) § 2SoMKHQ*(J+ ) < H(J_ ) § 2SoMKI4Q*(J_ ) < 2rl . 

Similarly, by (5.6) and (5.14), 

P(J+) <= P(J_)(1 + KpD) 

< P(Jo)e2Ke(Q~-Q*(J- ))e2Kp(Q*(J_ ) - Q * ( J + ) )  , 

where we have used 1 + x < e x. This completes the inductive step, and we have 
the bounds 

V(J+) < W and S(J+) < MSo, 

and H(J+) < 2~l. 
We have not made use of  the functional V* in proving existence of  solutions. 

Instead, V* gives us an estimate of  the growth of the total variation of the solution. 
In particular, the dependence on time T of V* gives an upper bound for the growth 
of total variation, which in turn drives the growth in the other norms. To see this, 
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observe that we are overestimating V by adding the factor 2AQ*, which controls 
the local error AD in V. As we have seen, however, the local error in V* is KvSD, 
which is much smaller. Thus we can control the growth of V* by adding a smaller 
multiple of  Q*. Indeed, letting c = 2Kv(W,2q; T)MSo and using the bounds found 
above, we have 

V*(J+ ) + cQ*(J+ ) <= V*(J_ ) + KvSD + c(O*(J_ ) - 19/2) 

< r*(J_)+cQ*(J_) ,  

so that V(J+) < V~ + cQ~, where c contains the small factor So. Now we see that 
for small values of  e, the total variation at later times is approximately given by the 
functional V*. Furthermore, a knowledge of the initial wave configuration and the 
(non-local) reordering corresponding to the union of all diamonds below J+ should 
give an accurate approximation for the actual variation along J+. It appears that 
one should be able describe the pointwise large-time behaviour of  the solution in 
this way. [] 

6. The Path Integral 

In order to apply the general theorems of Sect. 5 to a given system, one must 
obtain the boundedness and continuity properties (5.1)-(5.3) for the functionals in 
this case. In particular, these conditions must hold for special reasons because they 
fail when T is larger than the blowup time in a resonant system of type (1.2). 
We now obtain the estimates (5.1)-(5.3) for 3 x 3 systems possessing a Riemann 
coordinate. In this case, our growth rate bounds will be determined by the d-norm, 
supnorm and total variation norms of the initial data. Thus we assume the existence 
of a Riemann coordinate, and use this to express reordered sequences in terms of 
a path integral formula. Given a wave sequence and set of  reorderings, we have 
seen how the strengths of  these waves change under the interactions represented 
by that reordering. However, our description is thus far inductive, and the resulting 
quantities are difficult to analyze. Our assumption means that the entropy field 
decouples, and can be treated as static at the quadratic level. This simplification 
allows us to describe reordered sequences in terms of a path integral formula. 

6.1. Paths in Reorderings. Our first task is to describe paths in the framework 
of reorderings. The cause of instability in our systems is the generation of new 
waves due to interactions, which is compounded when these new waves themselves 
interact and generate more waves. In our construction, the generation of new waves 
is avoided by adjusting the strengths of  nearby waves, thus conserving the number of  
waves. We now address the question of  how these changes of  strength accumulate. 

When a pair (j, k) of  waves interact, we identify the wave Ti whose strength 
is to be adjusted via an interaction map, namely i = z~(j, k). The new (scattered) 
wave may now go on and interact with other waves, each time generating yet 
another wave. In our model we are merely adding each scattered wave strength 
to an existing wave: this means that those waves with which the scattered wave 
will interact are already known, namely they are those waves which interact with 
i = z~(j, k) after the pair ( j ,k)  has interacted. We can now inductively describe a 
series of interactions, keeping track of  the accumulated strength due to quadratic 
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Fig. 4. Scattering pattern with a single path 

effects of these interactions. Figure 4 illustrates the scattering of a single sound 
wave, and a single path which is part of  that pattern. 

Given a wave sequence and (factored) reordering ~, which determines the inter- 
action map z ~, we make the following definition of a scattering path, which describes 
the changing position of a sound wave or a (multiply) scattered sound wave as it 
interacts with contact discontinuities. 

Definition 6.1. An r-path in ~ is' a set {(jp, kp) I 1 < p < r} C C~, satisfying 

(jp-l,kp-1)<~z(jp, kp) and l ~ ( j p _ l , k p _ l ) = j p ,  

for each p < r. We shall say that the path begins at j l  and ends at z(j~+l) =-- 
~t~(jr, kr). We analogously define a O-path to be any index i, and say that it starts 
at i and ends at r(i). 

A path is thus a means of tracking the position at which an accumulation of 
interaction effects is concentrated. In this definition, the kp's represent the contact 
discontinuities (2-waves) which scatter the sound waves, while jp represents the 
sound wave which has been generated as the result of the previous p -  1 inter- 
actions. The kp's can be viewed as the relative positions of  the contact waves 
which scatter the sound waves, although the actual position of the contact changes 
due to sampling shifts. We shall see that we can also extract the accumulated wave 
strength associated to the interactions represented by that path. 

As usual, we have defined paths independent of  the actual strengths of waves 
appearing in the sequence, so that only the index of the wave sequence is needed to 
determine the possible paths in any reordering. We remark that paths feature only 
members of  the crossing set C~, as these are the only interactions which generate 
quadratic effects by generating reflected waves. 

According to our assumptions and our definition of interaction maps, images 
under t ~ are 1- and 3-waves only. Thus in the above definition it is implicit that 
each kp (for p > 1 ) refers to a 2-wave, while jp refers to a 1- or 3-wave, altemating 
between these as p changes. We extend this convention to ( j l ,  kl ), so that all non- 
trivial paths start at the 1- or 3-waves YJl" We denote the set of  all r-paths in 
beginning at p = j t  and ending at q = z(j~+l) by H~(p, q, z). 

As we have done previously, we now consider compositions of reorderings, and 
the paths associated to these. We would like to know that paths can be constructed 
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inductively, and that all paths can be obtained by a suitable local construction. The 
compound structure of paths is described in the following lemma. We shall use the 
symbol n~ to refer to an arbitrary path in T, so n~ C C~. Our notation is that used 
earlier, so r reorders the sequence 7, and a reorders T(7), and the composition aT 
makes sense. 

Lemma 6.2. A path rc~ in az determines unique paths n~ and na in �9 and a, 
respectively, via the definitions 

rc~ = na~ N C~, (6.1) 
and 

na = Tna~ n Ca,  (6.2) 

respectively. We say that rca~ projects to rc~ and ~ca. Conversely, given paths rc~ 
and rca in T and a, respectively, such that rc~ starts at the end of rc~, we can always 
find a path rc~ in aT which projects to ~c~ and ~ .  

We note that different paths in aT may project to the same paths in a and ~, in 
case ~ is not one-to-one. When convenient, we shall denote a path which projects 
to ~r~ and 7z~ by ~a o ~ .  

Proof Suppose that the path ~ consists of  {(jp, kp)ll <= p < s}. Since these pairs 
are ordered by %~, and all pairs in C~ cross before those in TtCa, there is a unique 
r such that ((jp, kp)ll < p < r} c C~, and this is the path n~. To get a path in 
o-, we must advance the other crossing pairs by T: thus {(Tjp, rkp)lr + 1 <= p < s} 
is a subset of  Co, and that it forms a path follows immediately from the fact that 
Tt a~ = tat on r That these paths can be described in the above set notation is 
clear. 

For the converse, we must be more careful, as the path rca~ is not uniquely 
defined in general. Suppose that 7z~ is given by ((jp, kp)]l < p < r}, and ~a C Ca 
is {(lq, mq)[ 1 ~ q < s}, with Tt~(jr, kr) = ll. We wish to construct a path na~ which 
projects to these paths. It is clear that we should just copy n~ initially, so it remains 
to extend na~ in a way that projects to 7ta. Since T is not necessarily one-to-one, there 
will be some choice involved, although the choice is restricted by the requirements 
for a path. For each q, choose k~+q E Tt(mq). These are the only choices we have, 
as each jp+l is determined inductively by jp+l = ta~(jp, kp). It remains to check 
that the path n~  = {(jp, kp)]l < p < r + s }  projects back to ha. To see this, note 
that "c(kr+q)= mq and, by induction, 

T( jp+ l )  = TlaZ(jp, kp ) = la('~jp, Tkp ) = la( lp-r, kp-r  ) = lp-r+l . 

This completes the proof of  the lemma. [] 

In view of this lemma, we can describe the paths in a particular reordering by 
induction, after describing the paths for the elementary interactions, namely joins 
and transpositions. For a join q~ ---- q~p, there are no non-trivial paths: however, there 
are two 0-paths which end at the same point, namely {p} and {p + 1}. There is 
a single 1-path for the transposition tc = (k : k + 1), namely the path {(k, k + 1)) 
which coincides with the entire crossing set. 

We emphasize the fact used in the above proof that any path is uniquely de- 
termined by the starting sound wave j l  and the contact waves kp, for a given 
interaction map. Also note that the only choice in the path na~ came in the choice 
of  the kr+q'S. In particular, if  T is one-to-one on the k ' s  (which are contacts), the 
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path rc~ = rc~ o rc~ is uniquely determined, and a knowledge of all paths in z and 
o-, respectively, gives a full description of the set of  paths in az. In fact, by con- 
sidering the gas dynamics equations in the Lagrangian formalism, (so 22 = 0), and 
sampling randomly in time only, we can ensure that this is always the case. 

The results of  the lemma can be interpreted in terms of the sets Hr as 

Hr(j,i,~r'c) C_ UI-lr_s(k,i,~r) o Hs(j ,k, 'c) ,  (6.3) 
s,k 

with equality when r is one-to-one on contacts (2-waves). This abstract statement 
says that all paths of length r in a t  are built up of paths of  length s in ~ concatenated 
with paths of length r - s in a. Note that the only restriction on the shorter paths 
is that the end of the first be the beginning of the second, but this could be in a 
number of  different positions. Comparing (6.3) to the arithmetical relation 

leads to a bound on the number of  paths. 

Corollary 6.3. I f  the reordering z is one-to-one on contacts and spans N time-steps, 
then 

where # I I r ( j , . ,  ~) denotes the number of  r-paths in z, starting at any given j. 

Proof  According to our construction, there is only one 2-wave entering or leaving 
each diamond. Also, each sound wave passes through a single diamond at each time 
step, so that it interacts with at most one contact at that time step. This means that 
any contact with which a particular sound wave interacts can be tmiquely identified 
by the time of interaction. We extend this idea to count the total number of  paths 
starting at a fixed point. Figure 4 illustrates this "projection" of interactions of a 
single sound wave and a path onto interaction times. 

We wish to count the number of  paths in �9 which begin at position j .  Thus 
suppose {(jq, kq)} is a path, with j l  = j .  We know that the path is uniquely deter- 
mined by the sound wave j l ,  which is given, and the positions kq of the 2-waves 
appearing in the path. Now, for each jq, we can uniquely identify a time step tq 
at which the crossing pair (jq, kq) interacts. We thus have a projection of the path 
onto an increasing sequence of time-steps tl < t2 < " ' '  < t~. Moreover, since only 
one contact enters each diamond, different paths lead to different projections. This 
means that the number of paths starting at j is bounded by the number of increas- 
ing interaction times 0 < tl < t2 < . . .  < t~. Since each tq = qAt corresponds to 
an integer (counting time-steps), and there are at most N time-steps, we have 

[] 

We will later use a similar path-counting technique in obtaining bounds for the 
nonlinear functionals. Although we require that 2-waves do not merge in this proof, 
in finding bounds we will not require a one-to-one map from paths to sequences of 
interaction times. 
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6.2. Path Integral Formula. We now use the abstract paths to get a useful for- 
mulation of  the wave strengths in the reordered sequence r(7). Recall that we are 
assuming the existence of  a 2-Riemann coordinate, so that all images under in- 
teraction maps are either 1- or 3-waves. We now make the further simplifying 
assumption that 2-waves do not merge. This is true for gas dynamics as long as 
we use the Lagrangian formalism, for which the entropy has zero wave-speed. This 
assunaption for 2-waves allows us to treat perturbations in that family (i.e. entropy 
fluctuations) as a static background source for changes in sound waves, which is 
fixed in time. 

We can make the statement that no 2-waves merge more precise by adding an 
extra requirement to Condition (R), namely that if  the pair ( j , k ) E  M~, then we 
must have cj = ck =~ 2. This extra condition further restricts the set o f  admissible 
reorderings, but does not change any of  our previous assertions in any way. Hence- 
forth we shall assume that this extra condition is satisfied implicitly. We remark 
THAT THIS assumption is merely technical, as allowing two 2-waves to remain 
adjacent in the scheme instead of  merging merely increases the set of  reorderings 
and paths, but this increase does not affect the functional bounds at all, as the 
variation o f  the sequence never increases after a merge. A more formal analysis o f  
this idea can be found in [17]. 

Since our definition uses only the index of  a wave sequence, a path tracks 
only the position of  the scattered wave we are tracing. In order to fully describe 
interaction effects, we must also take the actual wave strengths into account. Before 
writing down the path integral formula, we consider the strength associated to a 
single path. Thus suppose we are given a path rc~ = { ( j p ,  kp ) } .  This represents the 
wave generated as a result of  the multiple interactions occurring in ~z~. We wish to 
find the strength contributed by this scattering path. As before, we assume that each 
ekp = 2, and take cjl = 3, say. We shall trace the strength of  the scattered wave 
as the path is traversed, as in Fig. 4. Thus the original strength is ~Jl, and when 
this wave interacts with 7kl, the reflected wave has strength e (1) = 7j lTklA 1 . This 
reflected wave then interacts with wave 7k2, to produce e(2) = e(1)7k2A3. This process 
continues inductively, and after r interactions, say r even, the wave generated by 
this series o f  interactions has strength 

e(r) = g(r-1)7krA3 = 7jl 7kl "'" 7kr(A1A3 )r/2 . 

This then is the amount of  wave strength generated as a result o f  the interactions 
represented by the path n~. In this calculation, we have used the fact that 2-waves 7kp 
do not change at all across interactions. This observation allows us to use the initial 
2-wave strength at later times. Moreover, because there is a 2-Riemann invariant, 
interactions between 3- and 1-waves have no (quadratic) effect, which means that 
different scattering patterns combine linearly, leading to the path integral formula, 
stated in the following theorem. 

Theorem 2. Given the wave sequence 7 = (71 . . . . .  7n) and factored reordering ~, let 
6 = ~(7) be the reordered wave sequence. Then for  any i, the reordered wave c~i 
is given by the path integral formula 

r =- ~ 7j ~ A( i , r )  ~ 7 k l  " " " ~)kr " 

j r>=O H r ( j , i , ' c )  
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Here 11~(j, i, ~) is the collection o f  all r-paths in ~ starting ja = j and ending at 
i = zz~(j~,k~), and the weight A( i , r )  is given by 

A( i , r )  = A[(~+U/2]A[r/2] where c = cz,i and c' = 4 - c 
c c /  , 

We remark that this formula is applicable for all waves, although it is highly 
redundant for 2-waves. Indeed, no non-trivial paths end at 2-waves, and these do 
not merge, so that 8-ri = ~i for 2-waves. Merges of  sound waves are also implicit in 
the formula, as paths corresponding to merged waves end at the same place. The 
weight A(i, r) consists of  r = [(r + 1)/2] § [r/2] factors A, each corresponding to 
one reflection, and does not depend on the particular choice of  path. 

Proof  The proof  is by induction on the factors of  the reordering z -- )].t" �9 �9 )q. I f  
is a single join q5 = qSq, then there are no non-trivial paths, and the 0-paths {q} and 
{q + 1 } end at q, while other 0-paths {j} end at ~b(j). The formula then reduces to 
the definition o f  the sequence ~b(y). Similarly, i f  ~ is a transposition tc = (k : k + 1), 
all 0-paths {j} end at to(j), and the 1-path {(k ,k  + 1)} ends at tci = i = tX(k,k + 1). 
Thus the formula reduces to 8k(j) = 7j for j + i ,  and 8i = T~c,i § YkYk+lAci, which is 
again the definition of  the sequence x(~). 

Now suppose that the path integral formula holds for z. We consider the com- 
positions ~bq27 and xr separately. First consider the join ~b = q~q. Recall that ~b q maps 
q and q § 1 to q, and changes the positions of  all other waves appropriately. I f  
a = r(y) is given by the path integral formula, we must describe the new sequence 
8~=  ~b(8)= ~br(?). First, for j # q ,  we have simply 8~. = 66,j, which is the sum 
over the sets H ( . ,  ~b~j,v). For the merged wave, we have 6q = 6q + 8q+1, which is 
the sum over both sets / 7 ( . , q , z )  and 1I( . , q  + 1,~). In the set notation of  (6.3), 
we can express the set o f  paths in ~br as 

H r ( p , j ,  dpz) = 11r(p,q~9, Z), for j # q ,  (6.4) 
and 

11r (p , j ,  (~z) = 11r(p,q, z) U lIr (p ,q  + 1 , r ) ,  (6.5) 

for each starting position p. These are exactly the sets over which we sum to get 
the 8j.'s. Moreover, the terms which are being summed are not changed, so that the 
path integral formula holds for qSz. 

We now consider the reordering ~c,, where tr = (k : k + 1). Again we suppose 
that 8 = z(y) is given by the path integral formula, and we wish to show that the 
same is true for 8' = to8 = ~cz(?). For j =t= l~(k, k + 1 ), we have 8 5. = 8n, j ,  while by 
(6.3), r-paths in ~cr ending at j are exactly those in ~ which end at x ' j ,  that is 
Hr(p, j ,  ~:r)= Hr(p, ~:'j,z). Again we sum the same terms, so the formula holds 
for those j # tX(k, k + 1). 

It remains to check the path integral formula for the wave 8~, where ~c'i = i = 
z~(k, k + 1). According to the definition, we have 

6~ = 8 i § 8 k 8 k + l A E  , 

where ? = c~,i, and we must express this in terms of  the ~'s. According to our 
assumptions, either 6k or 6k+1 must be a 2-wave, and the other a sound wave from 
the ?t family, where ~t = 4 - E. For definiteness, we suppose that 8k is the 2-wave, 
the other case being similar. Then 8k = ?r by  induction. Also, the w a v e s  ~i mad 



Large Time Stability of Sound Waves 459 

6k+1 are given inductively by the path integral formula. Thus we have 

6~ = 6i § ~)k+lYr, kAg 

= E ~ Yjl~)kl ""TkrA(i,  r)  
r>=O Hr( ~ ,i,'c) 

+ 7~,kAe ~ ~ 7A 7k, "'" 7kr A(k  + 1, r ) .  
r Hr (" , k+l , z )  

(6.6) 

(6.7) 

(6.8) 

By the remark following Lemma 6.2, any r-path in z which ends at position k + 1 
extends to a unique (r + 1)-path in tcz. Since z is one-to-one on 2-waves, the 
(r + 1) st pair of  this path must be the pair (t~(j,.,k,.),z'k) E C,~, and the extended 
path ends at i. Moreover, since 6k+1 is a 6'-wave and 6i is a Y-wave, we have 

AeA(k  + 1, r)  = AcA [(~+l)/21Ae[r/2] = A(i, r + 1 ) .  

Thus the second sum above is exactly the sum over paths in Kz which include the 
pair "d(k, k + 1) and end at i, while the first sum is over paths ending at i but not 
including the pair z'(k, k § 1). Since these are exactly all paths in ~cz which ends 
at i, the path integral formula holds for 6~, and the theorem is proved. [] 

7. The Functional Bounds 

We now find time-dependent bounds for the nonlinear functionals for systems with 
a Riemann coordinate. By the results of Sect. 5, these bounds are all that are needed 
to deduce large-time existence of solutions. We shall derive the bounds in steps, 
first bounding the functional V*, and obtaining the bound for Q* and continuity of  
the functional as corollaries. 

Before proceeding, we recall our assumptions in detail. We are assuming that 
the second (entropy) family possesses a Riemann coordinate, so that the second in- 
teraction coefficient A 31 vanishes. Denoting the Riemann coordinate by w �9 ~ / ~  R, 
the strength of a 2-wave (which is a contact discontinuity) is defined by 

7 = w(uR) - w(uL),  (7.1) 

where UL and uR are the states on either side of the wave. In particular, given a 
sequence of constant states separated by waves, the strength of all 2-waves can 
be found through the Riemann coordinate w. For convenience, we also assume 
that the second family is linearly degenerate, so that no 2-waves merge. We shall 
see that our bounds, and hence conditions for existence, depend on the entropy 
of the initial data. This is not surprising, because the (degenerate) entropy field 
does not grow or decay to leading order, so that entropy jumps in the solution 
persist. 

Our estimates will depend on the local variation of the entropy of the data, 
quantified by the d-norm defined earlier, 

IIw(uo )lld = supTVix, x+a](uo ) , 
x 

which we require to be small for some d > O. This is a weak assumption which 
simply says that the variation of the entropy is spread out over intervals of length d, 
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and so does not accumulate at any point. Since we are dealing with wave sequences 
only, we shall use the functional for the local d-variation of the sequence, 

H(7 ) = sup ~ 17il, 
ci=2 

where the sum (and sup) are over 2-waves positioned in an interval of length d. It 
is clear that H is bounded by [[w(u)[la. Throughout this section, we assume that d 
is a fixed positive number, and the local d-variation H is smaller than a constant 
determined only by the conservation law. 

We begin by considering the functional V* for the total variation. Recall that V* 
is defined as the supremum of quantities V(W), where y is a wave sequence and z is 
an admissible reordering. We shall find a bound for V* by expressing the reordered 
sequence z7 in terms of the path integral formula, and bounding the total variation 
of this reordered sequence. Since our bounds are time-dependent, we further restrict 
the class of reorderings to those which correspond to wave configurations up to 
time T, which we fix for the rest of this section. 

The idea of the proof is as follows: according to the path integral formula, the 
amount of scattered wave strength generated by a single wave is 

7kl "'" 7krA( " , r) , 
fir 

where we sum over all r-paths emanating from that wave. Now if each 7kr were 
bounded by/3, then this is bounded by 

~(flA)r#Ilrr <= ~ ( N T  ) (flA)r ' 

according to Corollary 6.3. Now using the binomial theorem, we get the bound 
(1 + t~A) Nr < exp(/~ANr). Although this bound depends on the mesh size through 
the number Nr  of  time-steps, we modify the method to obtain uniform bounds by 
accounting for the d-norm of the initial data. We know that when the variation is 
small, it does not grow. In particular, on the local lengthscale d, the local variation 
is small and growth will not occur. We therefore overestimate the amplification 
due to interactions on the small lengthscale d, and then combine these into the 
full lengthscale of the support of  the solution, to bound the growth of the solution 
as above. Thus, instead of considering each 2-wave separately, we group them 
into "blocks" of  size d, and u s e / / a s  an estimate for the amount of  wave strength 
generated by each block. The number of blocks is then Nr = O(T/d), and we obtain 
uniform bounds by the above argument. 

We proceed with the details. Fix the total variation V = V(7), time of existence 
T, mesh size Ax = 2At, as well as the local total d-variation of entropy 6 = H(7 ). 
We restrict the class of  reorderings to those corresponding to a set of  diamonds 
lying below the curve t = T. We prove the following theorem which gives the 
growth bound for V*, and thus establishes the growth rate bound in Theorem 1 at 
the quadratic level. 

Theorem 3. I f  the sequence 7 is such that r / =  H(7)  satisfies 

6Aq < 1/2, for  some fixed d > 0 ,  



Large Time Stability of Sound Waves 461 

then the functional  V* is bounded, 

V*(7) < V(y) + V(7)exp(8ArIT2/d ) . 

In particular, this bound is uniform as the mesh size Ax ~ O. 

Proo f  Since V* is defined by V* = sup~ V(W), we choose a reordering z and look 
for a bound for the variation of the reordered sequence. 

According to the path integral formula in Theorem 2, the reordered sequence 
6 = z7 is given by 

6i = ~ 7j ~ A( i , r )  ~ 7k~' ' 'Ykr,  (7.2) 
j r~O Hr(j,i,z) 

where Hr( j ,  i, z)  is the collection of r-paths in z from j = j l  to i =  zl~(jr, kr), and 
A(i, r) = A[(r+I)/Z]A[r/2] We have V(zT) = V(6) = Y'~il6il, and rearranging the sum 

C C ! �9 

gives 
V(z~,) __< ~ I~jl ~ ~ 17k," Tkr]A r , (7.3) 

j r>=O FIr(j, . ,z) 

where now the sum is over all paths in r beginning at j ,  and we have set 
A = max{[Al 1, [A3I}. We shall find bound for each amplification fac tor  

Aj  = ~ ~ [Tk, " 7kr[ ar  , (7.4) 
r > 1 17r(j, �9 ,T) 

which measures the amount of total variation generated by multiple scattering of 
the sound wave 7j. The functional V* is then clearly bounded, 

V*(T) < V(y)(1 + A ) ,  

where A is the bound for the amplification factor. 
We first estimate the amplification factor due to a group of 2-waves having 

small total variation: this will be used to estimate the contribution due to blocks 
of  size 3d. 

Claim. I f  the total variation o f  2-waves appearing in Aj  is small, that is 
~klYklA < e < 1, then so is Aj, 

8 
Aj  < 

= 1 - e  

To see this, we simply write 

AS =< E (EITk, I A ) ' " ( E I ? k r I A )  
r > l  

8 

r~l - -  1 - e 

We will use this to over-estimate the contribution due to each block. 
We now partition paths into blocks, as follows. For a fixed sound wave ?j 

located at some point xj of space, we partition the real line into (non-overlapping) 
intervals 

I m = (xj + md, xj + (m + 1)d] 
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of length d. We also define the extended intervals 
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1fro = (xj + (m - 1)d, xj + (m + 2)d], (7.5) 

= Im-1U lm U Im+l (7.6) 

of length 3d. We shall say that 7~ (or simply ki) lies in the interval Ira, if the 
spatial position of the wave 7ki is in I,n initially (i.e. before any wave interact). 

Suppose we are given a single path starting at j ,  and determined by the set 
{kl, . . . ,  kr}, each ki referring to the corresponding 2-wave 7ki- We partition the path 
into blocks as follows. Let ml be such that kl lies in the interval lml. Define the 
first block B1 to be the maximal set of ki's such that kl , . . .  ,kbl lie in the extended 
interval [ml. Now let m2 refer to the interval 1,,2 containing the first wave not in 
[,nl, that is kbx+l, see Fig. 5. Now define b2 and the block B2 to be the largest set 

of ki's such that kbl+l . . . . .  kbl+b z lie in [m2. 
Continuing this process, we partition the path into blocks Bl , . . .  ,Bt, with the 

following useful properties. All 2-waves in a single block lie in an interval of length 
3d, and therefore have maximum total variation 36. We will thus be able to apply 
the above claim to each block, regardless of the number of waves in that block. 
Moreover, according to our construction, the distance between consecutive blocks 
is at least d. This will allow us to bound the number of blocks. 

With these definitions in hand, we now reconsider the amplification factor Aj.  
By partitioning each path into blocks, we can rewrite 

(7.7) 

where ~ b i  = r and each group of waves comes from block Bi. According to our 
construction, each block Bi comes from a set of waves occupying a spatial interval 

r i 

| | 

Fig. 5. Decomposition into blocks 
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of length 3d, and so having local 3d-variation given by 36. We can thus apply the 
claim above and bound each of these terms, 

ITkl "'" 7k~ Abel < _ _ 3 A 6  < 4A6 
bl = 1 -- 3A3 = ' 

etc., since 3A6 < 1/4. Using this bound in (7.7) then gives 

Aj < ~(4Af )e#Me,  

where #Me is the number of ways of choosing ~ blocks B1 . . . .  ,Be. 
Finally, we count the number of ways of choosing E blocks, using the method of 

Corollary 6.3. Since block are separated in space by distance d, and wave-speeds 
are finite, it takes at least d/2 units of time to move between blocks. We again 
track the block by projecting to corresponding times of first interaction inside each 
block. Thus we must choose times tl < . . .  < t~ < T, where each ti+l - ti > d/2. 
In Corollary 6.3, because each scattered wave had a known direction, the interaction 
times were enough to uniquely determine the path. In the present case, however, an 
even number of interactions in one block will not effect a direction change, so that 
there is a corresponding choice of direction for each interaction time (i.e. the next 
block could be either to the left or right of the present block). Thus the choices 
of E times together with d directions determine all possible ways of  choosing 
blocks, and we have 

#~e < ( T 2 / d ) 2  ~ 
=" ~ " 

Thus we finally obtain a bound for the amplification factor, 

< (1 + 8A6) rz/a (7.9) 

< exp(8AfT2/d), (7.10) 

where we have again used the binomial theorem. We note that this amplification 
factor is uniform in the mesh size. Finally, inserting this bound for the amplification 
factor into (7.3) yields the total variation bound, thus completing the proof. [] 

We remark that in bounding the amplification by partitioning paths into blocks, 
we have made heavy use of Lemma 6.2, which says that complex paths project to 
and are built up from smaller paths. 

It is remarkable that the bound reduces to finding the amplification due to the 
passage of a single weak sound wave through a fluctuating entropy field, and that 
the amplification is essentially independent of the strength of the sound wave. The 
theorem shows that we have a bound for the variational potential V*. We shall use 
this to show that the quadratic error potential Q* is bounded, and the functionals 
V* and Q* are continuous. 

Corollary 7.1. Under the assumptions of Theorem 3, the quadratic error potential 
Q* is also bounded, namely 

Q*(7,z) < V 2 exp(16AfT2/d). 
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Note that this can be viewed as analogous to the bound for Glimm's quadratic 
error potential, Q < V 2, where we must now replace V by the potential V* for the 
variation. 

Proof Given 7 and z, by Eq. (4.2) we have 

cr Me 

where the sub-ordering p is associated to the each pair (j ,  k) �9 C~. We now expand 
each 75 by the path integral formula, and rearrange the sum to get the bound. The 
idea is that since each wave pair interacts only once, and we can bound the amount 
of  total variation generated by each wave, the total is bounded by the square of the 
variation bound. Using the path integral formula, we have 

~ = Z v / E A ( k ~ r )  E ~rat'"Vmr, 
I r H r ( t ,  k, i t )  

with the analogous formula for ~ .  Now, since paths in tt are paths in ~, we have 
Hr(l,k,#) C Hr(l,k,z),  so that we may use the amplification factor of  the theo- 
rem to bound the total variation, even though the partial reordering # changes for 
different interacting pairs. Substituting in the bounds found above, we get 

O*(7,z) < E [~11~1 (7.11) 
Ir 

< ~ ly}lAi17tlAi (7.12) 
j ,  1 

< (7.13) 

and the result follows. [] 

We now address the problem of continuity of  the functionals. Starting with two 
sequences which differ in one wave only, and a fixed reordering, we must show 
that the resulting sequences differ by an appropriately small amount. 

As above, we start with a sequence ~ and reordering z. We have seen that the 
reordered sequence 6 = v7 has bounded variation. We now wish to describe the 
effect of  perturbing a single wave in the initial sequence. Thus, suppose that 7t is a 
sequence which coincides with 7 except in one position, say p. We wish to bound 
the differences V*(7) - V*(7 I) and Q*(7,z) - Q*(7',z) by a multiple of lTp -7p ] .  

Corollary 7.2. The functionals V* and Q* are continuous: that is, there are func- 
tions Kv(V,H)  and KQ(V,H), also dependin9 on time T, such that 

IV*(y) - V*(~')[ < Kv(V,H)[~p - ~'pl, (7.14) 
and 

[Q*(Y) - Q*(7')[ < KQ(V,H)IYp - 7pl. (7.15) 

Proof Since the bound for the functional V* depends smoothly on the quantities 
H(y)  and V(y), and these norms change by at most [7p - 7p], we have 

0V* ~V* 
iV*(7) - V*(7') < --~v-]V(7) - v(v')[ + - ~ [ H ( 7  ) - H(7')[ (7.16) 

< KF(V,H)lyp - Ypl, (7.17) 
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where KV is an increasing function of its arguments, and we have set 

V = sup{V(7), V(?')} and H = sup{H(7 ) ,H(7 ' ) } .  

It is clear that Q* is also continuous. [] 

Theorems 1 and 4 now follow from the general theorems of Sect. 5, using the 
bounds established in Theorem 3 and Corollaries 7.1 and 7.2, which are applicable 
to systems possessing a Riemann coordinate, which include the systems (1.1) and 
(1.11). 
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