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Shock-Waves in General Relativity

by J. A. Smoller and J. B. Temple

ABSTRACT. In this paper we set out a general theory of shock-waves and we
apply this to explicitly construct a class of spherically symmetric shock-wave
solutions of the Einstein gravitational equations for a perfect fluid. Our
construction entails matching a Friedmann-Robertson-Walker metric to an
Oppenheimer-Tolman metric at a shock-wave interface across which the grav-
itational metric is Lipschitz continuous. In our dynamically matched solution,
we imagine the F-R-W solution as an exploding inner core, and the boundary
of this inner core is a shock surface that is driven by the expansion behind the
shock out into the static O-S solution. Our solution solves the problem first
posed by Oppenheimer and Snyder of extending their solution to the case of
non-zero pressure. In the terminology of the classical theory of shock-waves,
the interface of the O-S solution is a contact discontinuity, and this means that
their solution is time-reversible. In contrast, our shock-wave solution, in which
the pressure is non-zero, is an irreversible solution of the Einstein equations
in which the irreversibility, the loss of information, and increase of entropy in
the fluid puts time irreversibility into the dynamics of the gravitational field.

1. The Einstein gravitational field equations can be written in the form
(1) G = kT,

where G is the Einstein tensor, T is the stress-energy tensor (the source of the grav-
itational field), and k = 87 /c?, where ¢ denotes the speed of light. In Einstein’s
theory, the gravitational field is identified with a Lorentzian metric g, a symmet-
ric (0,2) tensor which at any point can be diagonalized as diag(-1,1,1, 1), and
equation (1) describes, simultaneously, the evolution of g and sources in T.

In a given coordinate system, z = (20, z!, 22, z°), on 4-dimensional space-time,
the components of G are given by G;; = R;; — %Rgij, where the Ricci tensor R;;
and the scalar curvature R are obtained from the Riemann curvature tensor R; ko>
computed from the metric 9ij- In this paper, we shall be concerned with a perfect
fluid, whereby the stress energy tensor 1' takes the form

(2) Ty = (p + pc*)uu; + pgij,
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where p is the mass-energy density of the fluid (as measured in a frame moving with
the fluid), p is the pressure, and (u') denotes the normalized unit 4-velocity vector
of the fluid. When an equation of state p = p(p) is specified, system (1) imposes 10
equations in 14 unknowns (10 metric components g;;, the density p, and 3 velocity
components). Four remaining equations can then be imposed in order to specify a
coordinate system.

Note that (1) shows that the Einstein equations couple the gravitational field
to the undifferentiated fluid variables. Now it is well known that, as a consequence
of the fundamental geometric identities called the Bianchi identities, div G = 0.
(Here div denotes the covariant divergence computed with respect to the unique
symmetric connection compatible with the metric g, [11].) The Einstein theory
thus has the remarkable property that on solutions of (1), the equation

(3) divI =0

must hold, and (3) is equivalent to the conservation of energy and momentum. If
g is the flat Minkowski metric of special relativity, “div” reduces to the ordinary
divergence, and hence (2) and (3) reduce to the relativistic Euler equations, [8],
which in turn reduce to the classical Euler equation for an inviscid fluid, in the
limit of small velocities [11]. Thus in the setting of General Relativity, the Euler
equations follow from (1) and (2), as a consequence of geometrical identities.

In the papers [8,9,10], we study shock-wave solutions of the Einstein equations
(1), (2). This is done by solving a problem first posed by Oppenheimer and Snyder
on black holes in 1939, [5], namely, how does one remove the assumption that
the pressure be identically zero in the Oppenheimer-Snyder model? That is, the
Oppenheimer-Snyder model, which is in virtually every textbook on the subject of
general relativity, is an exact solution of the Einstein equations, that models the
collapse of a star to a black hole. The simplifying assumptions that they make is
that the pressure inside the star must be identically zero and the space outside the
boundary of the star must be devoid of matter. In [8], we give a general technique
for extending the Oppenheimer-Snyder model to the case of non-zero pressure.
We then generalize these ideas and apply them to some interesting astrophysical
problems, [9)].

Our technique to obtain solutions of (1) consists of the matching of two well-
known spherically symmetric solutions of (1) across a shock-wave interface. The
inner metric is a standard model of an expanding universe, which we match to a
well-known metric which models the interior of a star. What we obtain in [9] is
a solution which models a shock-wave explosion into a singular, static isothermal
sphere. This solution is a General Relativistic version of how stars are formed. In
fact, this solution can model explosions on any scale: supernova explosions, or even
the “big-bang.” If we allow the sound speed ¢ — 0, we then get models for spherical
explosions in classical Newtonian gravity. In the paper [10], we demonstrate that
our theory generates a large class of physically meaningful outgoing shock-waves
that model blast waves in a general relativistic setting. We also obtain explicit
formulas for the physical quantities that evolve according to the equations; these
formulas are important for the numerical simulation of these solutions.
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2. Animportant issue in general relativity is the problem of how time irreversibil-
ity should enter the theory. Indeed, all of the exact solutions of the Einstein equa-
tions (1) for classical sources assume the stress tensor for a perfect fluid, or for
electro-magnetism, and it is well known that smooth solutions of the Einstein
equations with these sources are time reversible. However, it is our thesis here
that time-irreversibility has been built into the theory of general relativity from the
very start by way of the stress tensor for a perfect fluid, and that the irreversibility,
loss of information and increase of entropy in the solutions of (1) is encoded in the
structure of the shock-waves.

The idea is that, in the case of a perfect fluid (2), the relativistic compressible
Euler equations appear as a subsystem of the Einstein gravitational field equations
(1) through the identity (3), and the relativistic Euler equations form a system of
nonlinear hyperbolic conservation laws, the setting for the modern theory of shock-
waves. Therefore, like the classical compressible Euler equations, solutions of the
Einstein equations should be time reversible only up until the formation of shock-
waves. For the classical Euler equations, the dissipation and increase of entropy at
shock-waves can be interpreted physically as the non-negligible effects of viscosity
that must appear because the inviscid Euler equations represent a singular limit
of the Navier-Stokes equations as the viscosity is taken to zero: however small
the viscosity parameters, the dissipative effects of viscosity are not negligible in the
surface layer of a shock, and this dissipation is fully accounted for in the shock-waves
that appear in the zero viscosity limit. One of the complications in the theory of
relativity is that there is no simple model like the classical Navier-Stokes equations
that plays a similar role, because the introduction of second order parabolic terms
to model dissipation introduces an infinite speed of propagation similar to that
observed in the linear heat equation. However, it is important to emphasize that
the irreversibility, loss of information and increase of entropy at shock-waves in
a generic system of conservation laws div T = 0 is explicitly determined at the
level of the zero viscosity limit, and this applies even when the precise form of the
viscosity is not known. The conclusion one must draw from the theory of shock-
waves is that shock-waves will always form in solutions of a system of conservation
laws except in very special cases when the fluid is everywhere expansive [1,3,6]. We
believe that this result carries over to the Einstein equations for a perfect fluid as
well. Indeed, in locally Lorentzian coordinates at a point, (coordinates in which
9ij = mi; = diag(—1,1,1,1), and g;;x = O for all 4,5,k = 0,...,3), the covariant
divergence equals the classical divergence; and thus, to within higher order errors,
the perfect fluid in general relativity satisfies the relativistic Euler equations in
special coordinates at each point. Thus if shock-waves never form in T, then in
essence, the gravitational field has the effect of removing all of the compressive
action of the Euler equations, and thereby has the effect of eliminating dissipation
in fluids! This we find physically implausible, and thus we maintain that shock-
waves are as fundamental to solutions (1), (2) as they are to the classical Euler
equations. This suggests that when viscosity and heat conduction are neglected,
(as they are in the case of a perfect fluid), it is the shock-waves in the sources T that
fundamentally introduce irreversibility into the dynamics of the gravitational field.
This point of view seems to have been essentially overlooked [2,4]. In [8], we organize
the general theory of matching two metric solutions of (1) across an interface from
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the point of view of the theory of shock-waves, and we apply this theory to explicitly
construct spherically symmetric shock-waves solutions of the Einstein equations.
This construction solves the problem first posed by Oppenheimer and Snyder in
1939 of extending their model to the case of non-zero pressure.

If the fluid variables shock, the entries in the stress tensor T become discontin-
uous, and thus by the Einstein equation, the metric loses continuity in the second
derivative. In Section 3 of [8], we present a self-contained treatment of the general
theory of shock-waves for the Einstein equations by considering the general prob-
lem of allowing the metric to be only Lipschitz continuous across a hypersurface &
in space-time. This treatment reorganizes and extends previous results of Israel.
(See also [4] and references therein where this topic is referred to by the heading
Junction Conditions). The result is the following theorem:

THEOREM 1. Let ¥ denote a smooth, 3-dimensional shock surface in space-time
with space-like normal vector n. Assume that the components gi; of the gravitational
metric g are smooth on either side of X, (continuous up to the boundary on either
side separately), and Lipschitz continuous across & in some fized coordinate system.
Then the following statements are equivalent:

(i) [K] =0 at each point of L.

(ii) The curvature tensors R: ke and Gij, viewed as second order operators on
the metric components g;;, produce no delta function sources on .

(iii) For each point P € T there exists a C*! coordinate transformation defined
in a neighborhood of P, such that, in the new coordinates, (which can be
taken to be the Gaussian normal coordinates for the surface), the metric
components are C'' functions of there coordinates.

(iv) For each P € X, there ezists a coordinate frame that is locally Lorentzian at
P, and can be reached within the class of C1'! coordinate transformations.

Moreover, if any one of these equivalencies hold, then the Rankine-Hugoniot
jump conditions

[G){n, =0,

(which express the weak form of conservation of energy and momentum across &
when G = kT ), hold at each point on T.

Here [K] denotes the jump in the second fundamental form (extrinsic curva-
ture) K across X, (this being determined by the metric separately on each side
of ¥ because g;; is only Lipschitz continuous across L), and by C!! we mean
that the first derivatives are Lipschitz continuous. Theorem 1 should be credited
mostly to Israel, who obtained results (i)-(iii) in Gaussian normal coordinates.
Our contribution was to identify the covariance class of C!'! transformations, and
to thereby obtain precise coordinate independent statements for (i) and (iii), as
well as the equivalence with (iv). As a consequence of this, we obtain the result
that the Ricci scalar curvature R never has delta function sources at a Lipschitz
continuous matching of the metrics, as well as the following theorem that partially
validates the statement that shock-wave singularities in the source free Einstein
equations R;; = 0 or G;; = 0 can only appear as coordinate anomalies, and can be
transformed away by coordinate transformation:

THEOREM 2. If a smooth shock surface £ forms in weak solutions of Rop =0
or Gap = 0 posed in some given coordinate system y, such that the y-components
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9ap of the metric tensor g are Lipschitz continuous across 3, and C* functions of
y on either side of ¥ (continuous up to the boundary on either side separately),
then there exists a regular C**! coordinate transformation taking y — «, such that,
the components g;; of g in the z-coordinates are actually C* functions of  in a
neighborhood of each point on the surface T.

Note that when the metric g is only Lipschitz continuous across a surface ¥,
the Einstein tensor G, which contains second derivatives of g, can in general contain
delta function sources, and then ¥ should be interpreted as a surface layer and not
as a shock-wave. In the presence of spherical symmetry, however, the weak form of
conservation of energy and momentum, (4), implies the absence of surface layers,
so long as the areas of the spheres of symmetry match up on . This is implied in
the following theorem, proved in [8].

THEOREM 3. Let g and § be 2 spherically symmetric metrics:

g: ds* = —a(t,r)dt?> + b(t,r) dr? + c(t,r)d92?,

g: d3* = —a(t,7) di? + b(t, ) dF? + &(Z, 7) d22,

where dQ? = d6?+sin” 0 df. Assume that there exists a smooth map: ¥(t,r) — (£, 7)
defined in a neighborhood of a shock interface T, such that the metrics agree on L.
Assume too that c(t,r) = &(y(t,7)), the normal 7 to & is non-null, and that the
derivative of c in the direction i is non-zero. Then the following are equivalent:

(a) gUg is CY1 in some neighborhood of T.
(b) [Gilni =0, j =1,2.

(¢) [G¥]nin; = 0.

(d) [K]=0.

In the above theorem and in what follows, [f] denotes the jump in the quantity
[ across the shock interface and C!'! denotes the class of functions with Lipschitz
continuous first derivatives. Note that the condition c(t,r) = E(z/;(t,r)) implies
that the areas of the spheres of symmetry in the barred and unbarred coordinates
agree on X. The condition 7i(c) # O implies that the areas of the spheres of sym-
metry change monotonically in the normal direction if ¢(¢,r) = 2, e.g., and if this
condition failed, it would imply that the shock speed would exceed the speed of
light.

We conclude that in the presence of spherical symmetry one condition, (c),
1s equivalent to the jump conditions (4); i.e., to the fact that the weak form of
conservation of energy and momentum holds. This is an important fact in our
extension of the (OS) model to non-zero pressure.

3. We now discuss how we explicitly construct spherically symmetric shock-wave
solutions of the Einstein equations for a perfect fluid. To do this, we shall match
different metrics, Lipschitz-continuously across a surface of discontinuity for the
fluid variables (a shock-wave). In what follows, we shall always assume that the
fluid is comoving relative to the metric; thus for diagonal metrics, u* = 0,4 = 1,2, 3,

and u® = (—goo)_lﬂ-
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In our shock-wave model, the inner metric is the Friedmann-Robertson-Walker
(FRW) metric

dr?
1—kr?

(FRW) ds* = —dt? + R(t)? [ + 72 dQ"’] ,

where k is a constant, k = 0,1, or —1, and
dQ? = df? + sin® 6 dg?.
This metric is spherically symmetric and describes a homogeneous, isotropic uni-
verse (no preferred point and no preferred direction), [11]. The space expands or
contracts in time according to the function R(t), the cosmological scale factor. The
(FRW) metric is used to model an expanding universe, and there is, generally speak-
ing (e.g. if R(t) > 0 for some t), a singularity (R(t) = 0) in “backwards” time. The
function R(t) determines the “red-shift” factor for distant astronomical ob jects. If
we are given an equation of state of the form p = p(p), R(t) is determined by the
Einstein equations (1), (2), under the assumption that p = p(t).
The outer metric in our model is the Oppenheimer-Tolman (OT) metric:

_ —1
(OT) ds? = —B(7) di® + (1 - 3%) dr® + 72 dQ?.

7

(We use barred coordinates here to distinguish from the unbarred coordinates in the
FRW metric.) If we are given an equation of state of the form P = p(p), then using
Einstein’s equations, we get the following differential equations for the unknown
quantities p, B, and M (see [11]):

B o= . Y
(4) 5 = ﬁp—p M'(7) = 472 p(F),
and (the Oppenheimer-Volkoff equation),
o p A3 p _20M(P\
(5) 7p = GM (7)p(7) (1 + ﬁ) (1 + 7 ) (1 — )

Here M(7) denotes the “total mass” inside a ball of radius 7. The (OT) metric is a
time independent spherically symmetric solution of the Einstein equations (1), (2);
it is used to model the interior of a star, [11].

We now discuss the Oppenheimer-Snyder (OS) model, [5]. In the (OS) model,
the outer metric is the empty space Schwarzschild metric ([11]):

-1
ds? = — (1 — g_gﬂ) i’ + (1 ~ 2—9;1\1) dr® + 72 dQ?,

where M is a positive constant. This metric describes the gravitational field outside
of a ball in R3, assuming that there is no matter in the exterior of the ball; i.e.,
T;; = 0. The OS result is the following: Take p = 0 in the FRW metric. Then there
exists a coordinate transformation (¢,r) — (t,7), where Rr = 7, such that under
this identification of coordinates the (FRW) and Schwarzschild metrics agree and
are Lipschitz continuous across a 3-dimensional interface, the surface of a star. In
(r,t) coordinates, the surface of the star is r = a (fixed in the FRW metric). Then
given p(0) and M, a is determined by M = 4 p(0) and k = 249 The functions
p(t) and R(t) are determined by the Einstein equations. On the other hand, in 7-¢
coordinates the surface collapses to a black hole: 7(t) = ¥ = 2GM, and p(f) — oo
as t — oco. This (OS) result was the first example of gravitational collapse.
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The total mass inside the interface is fixed since mass does not cross the inter-
face. The (OS) solution is thus a contact discontinuity, [10] (as opposed to a true
fluid-dynamical shock-wave). The function R(t) vanishes at some finite 7’; thus,
(cf. [11]) “a fluid sphere of initial density p(0) and zero pressure will collapse from
rest to a state of infinite density in the finite time 7.”

In the shock-wave model in [8,9,10], we also take the inner metric to be the
(FRW) metric but with a non-zero pressure function p = p(p), p = p(t), and we take
the outer metric to be the (OT) metric, with non-zero pressure function 5 = p(p),
p = p(T). We show that we can define a coordinate mapping (t,r) — (£, 7), where
Rr = 7, such that under this identification of coordinates, the (FRW) and (OT)
metric match Lipschitz continuously along a 3-dimensional interface: the shock
surface. That is, the following theorem holds [8]:

THEOREM 4. Under the above procedure, there ezists a shock-wave solution for
arbitrary equation of state p = p(p) in the (FRW) space, and arbitrary equation of
state p = p(p) in the (OT) space.

It is instructive to outline the matching procedure. Thus, we first take 7 = Rr,
so that the spheres of symmetry have the same area. In order to match the di? term

in the (OT), namely (1 — @—g—(’:—)>, to the corresponding term in (the coordinate
transformation of) the (FRW) metric, we find the explicit relation

N LN
©) M(7) = S p(t),
this defines the shock surface. In order to match B, the df? term in (OT), to the
corresponding term in the (FRW) metric we find that ¢ = #(¢,r) solves a linear
partial differential equation with initial conditions on the shock surface (6) chosen

to match B on (6). The result is the following theorem, [8].

THEOREM 5. The shock surface (6) is non-characteristic for this partial differ-
ential equation away from the Schwarzschild radius.

Thus the transformation ¢ = £(¢,r) exists, but is not explicit. So the coordinate
transformation is defined; we shall not need any explicit information about £.

Now there arises the following problem: If the metrics match Lipschitz-continu-
ously across a shock surface 3, does the weak form of the conservation of energy and
momentum hold across the shock surface; i.e., does the following (jump condition)
hold:

(7) [T9]n;i=0

where 7 = (n') is the normal vector to £, cf. Figure 1.

Now in view of (1), (7) holds if and only if

(8) (6] ns = 0

That is, assume div G = 0 on each side of ¥, and g is Lipschitz continuous across

¥. Does this imply that (8) holds? The answer is no, in general. To understand
this, we consider the extrinsic curvature (second fundamental form) K

K: T, ->T,%
T — Vjﬁ,
where T, % is the tangent space to ¥ at p. Then Israel, [2], has proved the following
theorem.
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FIGURE 1

THEOREM 6. If the extrinsic curvature K is continuous across ¥, then (8)
holds.

This theorem is generalized in Theorem 3, above, where we see that in the pres-
ence of spherical symmetry the jump conditions (7) reduce to the single condition

(9) [Tij] nn; = 0.

In fact, in the presence of spherical symmetry, (9) holds if and only if the extrinsic
curvature is continuous across X.

4. In this section, we shall apply the general results discussed in §3, to obtain
explicit shock-wave solutions of the Einstein equations, which model shock-waves
exploding into the general relativistic version of a static, singular, isothermal sphere.
We shall also describe how this solution can be used in stellar dynamics to model
the birth of a star.

Before proceeding with the construction of our exact shock-wave solution, it is
instructive to see what (9) implies in the Oppenheimer-Snyder model discussed
above. Thus, in this case, we have p= 0= p, so (9) gives

(10) pe[(1-60)p+p] =0.

Thus if p > 0, then p = 0, because 6 < 1; see [10]. Thus, in the (OS) model, there
is no solution for non-zero pressure!

Now the idea in [8,9,10] is to fix the (OT) outer solution: p, p, and M (7), where
P = p(p). Then we seek equations for the unknown quantities R(t) and p(t) in the
inner (FRW) solution. These equations are (cf. [11]):

(11) R? = §’;—ng2 —k,
(12) p=—3 (pR%) /3ER

Note that if we are given an equation of state p = p(p), then the system (11), (12)
becomes a system of two equations in the two unknowns R and p, which has a unique
solution, given any initial condition. In this case, generally speaking, we cannot
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be sure that the conservation equation (9) will hold. We thus take a different
approach, allow p to be another variable, and we take the three (autonomous)
equations (10), (11), and (12) to determine the three unknowns, R, p, and p.

The procedure outlined here leaves open a few important questions; for example

1. Isp>07

2. Do p(t) and p(t) give a reasonable equation of state p = p(p); for example,

is the sound speed less than 1, the (normalized) speed of light?

3. Are p and p larger behind the shock-wave?

4. Do the Lax characteristic conditions hold (cf. [3,6])?

In general, the answer to these questions depends on the initial conditions, as
well as on the given outer (OT) equation of state p = 5(p). However, when p = 55,
and k = 0, we obtain an explicit solution, by assuming that the inner (FRW)
equation of state is of the form p = op; (cf [11]).

We now construct an explicit (OS) type shock-wave with p = 0, which satisfied
the conservation constraint (10). To do this, choose k = 0 in the (FRW) metric,
and choose the equation of state in the outer (OT) metric to be of the form

=5p, 0<&<l.
We have the following theorem, [9].

THEOREM 7. Under these assumptions, the (FRW) equation of state p = op,

where o is a constant is determined by the algebraic equation

_a(@+7)

T 31-3)"
The solution is a shock-wave which satisfies the conservation constmmt (9), and
s given explicitly by

M(F) = dnyr, B(F) = 72/0+2) pr) =L

where

1 5
"= e \1+66152)°

~ o(t) ~1/3(1+0) 3 3y
Rit) = Ro ( Po ) C A U e —w +nl

and

The shock position is given by

F(t) = 187Gy (1 + 0)(t — to) + 7o,
or
r(t) = FoRy " (F(t) /7o) 37/ B¥3)

The above solution is an outgoing shock-wave and satisfied p = 35 on the shock

surface. Note too that there is a singularity in backward time
To

V18rGy (1 + o)’
and ast — t,, ¥ — 0; p, p, p and p all tend to infinity; and R and r tends to zero.
If we take this as a cosmological model, then t = ¢, represents the initial big-bang
singularity in which a shock-wave emerges from 7 = 0. The solution describes an
expanding shock-wave, (a blast wave), as t increases; cf. Figure 2.

te =1tp ~
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FIGURE 2

Note that the outer (OT) solution, with p = &p, implies that 5(F) = v/72, so
p — oc as T — 0; this is referred to as a static, singular isothermal sphere. (For our
shock-wave solution, the density is finite after some initial time ¢ > 0, since 7 = 0
is not in the domain of the solution after this initial time.)

The outer static solution is called a static isothermal sphere because the metric
entries are time independent, and the constant sound speed models a gas at con-
stant temperature. It is singular because it has an inverse-square density profile,
and thus the density and pressure tend to oo at the center of the sphere. The New-
tonian version of a static singular isothermal sphere is well known and is important
in theories of how stars form from gaseous clouds [4]. The idea in the Newtonian
case goes as follows: a star begins as a diffuse cloud of gas, which slowly contracts
under its own gravitational force by radiating energy out through the gas cloud
as gravitational potential energy is converted into kinetic energy. This contrac-
tion continues until the gas cloud reaches the point where the mean free path for
transmission of light is small enough that light is scattered, instead of transmitted,
through the cloud. The scattering of light within the gas cloud has the effect of
equalizing the temperature within the cloud. At this point the gas begins to drift
toward the most compact configuration of the density that balances the pressure
when the equation of state is isothermal; namely, it drifts toward the configuration
of a static, singular, isothermal sphere. Since this solution of the Newtonian case
is also an inverse square in density and pressure, the density tends to infinity at
the center of the sphere, and this ignites thermonuclear reactions. The result is a
shock-wave explosion emanating from the center of the sphere, and this signifies the
birth of a star. The explicit solution, which we present here, is an exact, general
relativistic version of such a shock-wave explosion.

Finally, we have the following theorem; [9].
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THEOREM 8. There exist numbers 01 <02, 0<0;=458<.T44 =0, < 1
such that

(1) The Laz characteristic condition holds iff 0 < o < o1, and
(ii) The shock speed is less than the speed of light iff 0 < 0 < o5.

We conclude that if 07 < 0 < 09, a new type of shock-wave appears, in which
the shock speed exceeds the characteristic (sound) speeds on each side of the shock.
Note that /o7 ~ .677, and V02 = .863. Thus, a fluid with sound speed near
v/02 = .863 can drive shock waves having speeds arbitrarily close to the speed of
light.

5. Our dynamical shock-wave solution of the Einstein equation opens up intriguing
possibilities in cosmology, as well as in the classical theory of shock-waves. For
cosmology, our solution opens up the possibility, (with an explicit model), that
there is a shock-wave at the edge of the universe. Since shock-waves are time
irreversible solutions of the equations, because of the increase of entropy (in a
generalized sense, see [3,6]), we infer from the mathematical theory of shock-waves
that many solutions must decay time asymptotically to the same shock-wave. Thus,
in contrast to the pure (FRW) solution, or to the (OS) solution, in our model we
should not expect a unique time reversal of the solution all the way back to the
initial big-bang singularity.

In the recent paper [10], we extend our results and show that our theory gen-
erates a large class of physically meaningful multi-dimensional shock-waves that
model blast waves in a General Relativistic setting. In addition, we obtain for-
mulas for the physical quantities that evolve according to the equations. These
formulas are important for the numerical simulation of these solutions.

We believe that the new techniques which we have introduced have opened up
a great many exciting possibilities for obtaining multi-dimensional shock-wave solu-
tions for the relativistic Euler equations, as well as for the classical Euler equations
by taking the limit ¢ — oo. The implementation of this program is just beginning,
because we have only recently obtained explicit, closed-form solutions of the equa-
tions. In addition, the rather “clean” form of the differential equations, which we
have just recently derived, will enable us to easily implement them on a computer,
and we can track the global evolution of the solutions, as ¢ increases. This clearly
opens up the possibility of finding new shock-wave phenomena. For example, we
will be able to study such questions as: do singularities form in the equations as
t — 00? (If so, are they related to “gravitational collapse”?) Do the fluid variables
(pressure, density, sound speeds) remain well-behaved?

Finally, because no derivatives fall on the fluid variables in Einstein’s equations
(1), it suggests that the Einstein equations represent a sort of “hyperbolic regular-
ization” of the compressible Euler equations, in a manner somewhat analogous to
the role played by the Hamiliton-Jacobi equations for scalar conservation laws. In
[8], we showed that the smoothness of the metric translates over to conservation
of the sources, and we continue to investigate the possibility that there could ac-
tually be numerical advantages to computing with Einstein-like regularizations of
the Euler equations — analogous to the viscous regularizations that have played a
fundamental role to date.
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