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Abstract

We discuss the issues in our recent paper [14] in which we study
multi-dimensional shock waves via a study of the relativistic Euler
equations which appear as a subsystem of the Einstein gravitational
field equations of general relativity. In particular, we discuss the gen-
eral theory of shock waves in this setting, and we apply this theory to
explicitly construct spherically symmetric shock-wave solutions of the
Einstein equations that generalizes the famous Oppenheimer-Snyder
model for gravitational collapse in stars, thereby solving the problem
first posed by Oppenheimer and Snyder in 1939 of generalizing their
model to the case when the pressure is non-zero. This solution opens
up intriguing possibilities in cosmology, but in terms of the classical
theory of shock waves, there are remarkable simplifying features of the
Eimstein equations over the classical Euler equations that enable us to
explicitly construct shock-wave solutions within the framework of gen-
eral relativity. Our solution models an explosion which has no known
classical analog. From the point of view of the theory of general rela-
tivity, it is interesting that the O-S solution is a contact discontinuity,
and hence is time reversible, while in contrast, our shock-wave solution
in which p # 0 is an irreversible solution of the Einstein gravitational
fiel d equations in which the irreversibility, loss of information, and
Increase of entropy in the fluids puts irreversibility into the dynamics
of the gravitational field.
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1 Introduction

The modern theory of shock waves and conservation laws grew out of a
study of the classical Euler equations for 3-dimensional compressible flow in
gas dynamics. The Euler equations can be written in the form

pt + div{pu} =0, (1.1)
(pu)e + div{pu‘s’ + 6;:1)} =0,

where p denotes the density, u = (u!,-- -, 4°) the velocity, and p the pressure
of the fluid, and div denotes the divergence taken with respect to the spa-
tial coordinates x = (z!,z%,z%). We write the equations (1.1) in the simple
conservation form

DivT =0, (1.2)

where Div denotes the divergence taken (on each row of T') in the combined
variables (t,z!,z? z°), and T denotes the 4 x 4 matrix of entries in (p, u,p)
that makes (1.1) agree with (1.2); the components of T in a given coordinate
system are denoted by T;j, 1,5 = 0, ...,3. It is well known that shock waves
form in solutions of (1.1), and these model the steep fronts that propagate
in the underlying problem. Shock waves represent the fundamental physics
in solutions of (1.1), but it is well known that the presence of shocks intro-
duces many difficulties for both computing and analyzing solutions. This is
because at a shock-wave, the fluid variables in T become discontinuous, and
thus any scheme for approximating the derivatives in DivT = 0 must involve
differencing discontinuous functions, and these produce delta function singu-
larities in the derivatives. This is what leads to the well known Gibbs type
oscillations that typically appear in numerical calculations of shock waves by
finite difference schemes. Although there is a well developed (though highly
incornplete!) theory of shock waves when (1.1) is restricted to one space and
one time dimension, it is fair to say that a general mathematical theory for
shock waves in more than one space dimension is essentially non-existent.
The geometry of shock-wave propagation in several space dimensions can be
exceedingly complicated, and most of the work in this field has involved the
numerical simulation of special solutions-there being few general principles
emer ging from such studies. Our idea here is to approach the theory of shock
waves for (1.1) through the study of shock-wave propagation in the Einstein
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field equations of general relativity. At first it appears that the Einstein
equations are much more complicated than the Euler equations since they
include the effects of gravity, but in fact the Einstein equations have some
remarkable simplifying features that have for the most part been overlooked
in the subject of shock waves. One simplifying feature is that the Einstein
equations are based on the highly developed theory of Riemannian geome-
try, a theory that allows one to work in arbitrary coordinate systems (t,x).
This can be used to advantage because geometrical complications can ap-
pear sirnple in special coordinate systems that change from point to point.
Indeed, in our generalized Oppenheimer-Snyder construction, we obtain ex-
plicit formulas for the shock surface and shock speed, and we can interpret
these physically in terms of a global conservation of mass principle. However,
due to t he covariance (coordinate freedom) of the Einstein equations, we suc-
ceed in this without ever having to construct a single coordinate system in
which the solutions on each side of the shock are simultaneously expressed.
Thus the Einstein equations are a natural setting in which the powerful tech-
niques of Riemannian geometry can be brought to bear upon the problem of
constructing multi-dimensional shock waves. But there is a more subtle and
more rexnarkable simplification that occurs in the Einstein equations over the
Euler equations, and this simplification is one of the miracles that led Ein-
stein to discover the field equations in the first place. The idea here is that
to get the Einstein equations from the Euler equations, one introduces the
gravitational metric potentials gi; that give the properties of the underlying
spacetirme. The Einstein equations are then equations in the fluid variables
(p,u,p), together with the gravitational potentials g;;, and these equations
take the form

G = kT, (1.3)

where G is the Einstein curvature tensor, (the simplest 4 x 4 matrix of entries
constructed from second order derivatives of 9i; that is automatically diver-
gence free, and has the same transformation properties as T under arbitrary
(t,x) coordinate transformations), T is the relativistic version of the T in
(1.2),

Tij = (p + pc*)uiu; + pgi;, (1.4)

and k = 87 /c?, where ¢ denotes the speed of light. The great subtlety of (1.3)
is that the relativistic Euler equations DivT = 0 follow as a consequence of
(1.3), annd needn’t be imposed on solutions! This is because G is constructed
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from the Riemann curvature tensor so as to be identically divergence free as
a con sequence of the well known Bianchi identities of geometry. Said differ-
ently, since (1.3) does not involve derivatives of 7, using (1.3) one can solve
shock-wave problems without ever taking a derivative of the fluid variables
in T', the variables (p,u, p) that become discontinuous and non-differentiable
at the shock!. Now because G involves second derivatives of the metric po-
tentials g;;, it is natural to ask whether the difficulties in solving DivT = (
when T becomes discontinuous at shock waves is replaced by corresponding
difficulties in the Einstein equations due to the formation of discontinuities
in the first derivatives of the metric variables gij- The results we present on
the general theory of shock waves in Section 3 of [14] shows that this is not
the case. (These results are based on the work of Israel, [3].) Indeed, we
show that the Einstein tensor G, and hence the stress tensor T itself, are
free of delta function sources at a shock in every coordinate system if and
only if there exists some coordinate system in a neighborhood of the shock
in which the metric potentials are continuously differentiable functions of
these coordinates, with Lipschitz continuous second derivatives, (i.e., C11
functions)®.  Thus, in numerically simulating the second derivatives that
appear in the Einstein tensor G when we solve G = T, we need only dif-
ference Lipschitz continuous functions at a shock-wave, while in numerically
simulating DivT = 0, we must difference discontinuous functions, which pro-
duces delta function singularities in the derivatives of the terms that appear
in each component of T, together with the disturbing Gibbs type oscillations

1The gravitational potentials ¢i; play a role similar to the vector potential A in the
theory of electro-magnetism. In the latter, choosing F = dA has the effect of making the
Maxwell equations dF = 0 hold automatically, in the same way that choosing G = T has
the effect of making the Euler equations DivT = 0 hold automatically. More precisely,
divG = 0 is a geometric identity, independent of the Einstein equations, and holds as a
consequence of the Bianchi identities, and thus DivT = 0 holds as a consequence of the
identity divG = 0 once the Einstein equations G = kT are solved.

?The point here is that in an arbitrary coordinate system in which the metric compo-
nents g;; are Lipschitz continuous functions of the spacetime coordinates (t,x) across a
shock-wave, the terms that are differenced in G can have delta function singularities in the
second derivatives, but these cancel out in each component of G, if and only if there exists
a Cb! transformation of the spacetime coordinates such that, in the new coordinates, the
metric potentials are C!'! functions across the shock. This leads to the conclusion that
delta function singularities can never appear in the second derivatives of any of the terms
that are differenced in G when these derivatives are calculated in these special coordinates.
This is a covariant version of a result first given by Israel, (3]
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that typically destroy the accuracy of numerical computations.

The advantage of having the Euler equations DivT = 0 as identities in the
Einstein equations is also essential in our construction of the Oppenheimer-
Snyder shock-wave solutions in sections 4 and 5 of [14]. In this setting,
the presence of the metric potentials gi; allows us to solve the problem by
first matching the metric across the shock, and this gives us directly an
explicit formula for the shock position without requiring that we solve the
implici t jump conditions (the weak form of DivT = 0) for the fluids across the
shock. Moreover, after the matching is done, we have shown in (14] that the
jump conditions reduce in complexity from two to one nontrivial constraint.
This reduction of the jump conditions after the metrics are matched, also
represents a constraint on the weak solutions of DivT = 0, which follows
because DivT = 0 is an identity on solutions of G = «T.

To summarize, in {14] we use these simplifying features of (1.3) over (1.2)
to construct an explicit spherically symmetric shock-wave solution of (1.3)
that solves the longstanding open problem of generalizing the Oppenheimer-
Snyder model of gravitational collapse to the case of non-zero pressure,[9].
We know of no classsical analog of our solutions, but said in plain termns, we
have constructed a solution which models a spherically symmetric explosion
describ ed by an expanding shock-wave that is driven by the expansion behind
the shock into a fixed ambient fluid. In this construction we heavily exploit
the coordinate freedom of the Einstein equations and use the fact that it is
easier to match the metric potentials g;; across a shock than it is to satisfy
the Ramkine-Hugoniot jump conditions directly.

Our solution of the Oppenheimer-Snyder problem also opens up intriguing
possibilities in cosmology which we discuss below, but in terms of the classical
theory of shock waves, we plan to investigate whether the classical limit
¢ — 00, (c denotes the speed of light), will yield new descriptions of classical
shock wwvaves as well.

2 Statement of Results

We nowv state the results in [14], which sets out a general theory of shock
waves, (based on work of Israel, [3]), as well as a generalization of the
Oppenheimer-Snyder (O-S) solution. We refer the reader to our paper for
details. Qur work here is best introduced in the first paragraph of our paper:
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In their classic 1939 paper, Oppenheimer and Snyder [9] introduced the first
mathematical model for gravitational collapse of stars based on spherically
symmeetric solutions of the Einstein gravitational field equations. In this pi-
oneering paper, Oppenheimer and Snyder gave the first rigorous results de-
scribing gravitational collapse of stellar objects, and the remarkable conclu-
sion of this work was that “black holes” could form from gravitational collapse
in massive stars. In his comprehensive article on the history of the subject of
gravitation, ([{], page 226, paragraph {), Israel references the Oppenheimer-
Snyder paper as having “strong claims to be considered the most daring and
uncarznily prophetic paper ever published in the field”. Indeed, the paper ap-
peared a quarter of a century before the process of gravitational collapse was
widely accepted as the ezplanation for a variety of astronomical events. The
Oppenheimer-Snyder paper also provided the first ezample in which a solution
of the Einstein equations having interesting dynamics, was constructed by us-
ing the covariance of the equations to match two simpler solutions across an
interface. However, it is well known that the Oppenheimer-Snyder model re-
quires the simplifying assumption that the pressure be identically zero. In this
paper we obtain a generalization of the Oppenheimer-Snyder model describing
gravitational collapse which extends their model to the case when the pressure
is non-zero. Our idea is to treat the case p # 0 by replacing the boundary
surface of the star in the Oppenheimer-Snyder model by a shock-wave inter-
face across which mass and momentum are transported. In the limit p = 0
we obtain the Oppenheimer-Snyder solution, and in this limit we observe that
the interface reduces to what is referred to as a “contact discontinuity” in the
mathematical theory of shock waves, a degenerate discontinuous solution in
which neither mass nor momentum crosses the interface, [1, 5, 12].

Our mathematical procedure is to simultaneously find a (¢,r) coordinate
transformation and a shock surface r = r(t) such that the Robertson-Walker
(R-W) metric and the Interior Schwarzschild (I-S) metric, (two well known
exact solutions of the Einstein equations G = kT that are spherically sym-
metric in radial coordinate r, [16]), match in a Lipschitz continuous fashion
across the shock surface. The (R-W) metric describes a uniformly expanding
solution of the Einstein equations that is used in cosmology as a model for
the universe as a whole. The R-W metric is determined by one unknown
function R(t), the cosmological scale factor, and in the universe model, the
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function R(t) alone determines the redshift factor for electromagnetic radi.
ation emmision from distant stars. The I-S metric is a time independent
spherically symmetric solution of G = T, which has been used to mode] the
interior of a stable star. Both metrics are determined by a system of ordinary
differential equations that close when a particular equation of state p = p(p)
is imposed, (c.f [14), page 33). In our dynamically matched solution, we
imagine the R-W metric as an exploding inner core (of a star or the universe
as a whole), and the boundary of this inner core is a shock surface that is
driven into the static I-S solution, which we imagine as the outer layers of a
star, or the outer regions of the universe. Since the solution is time reversible
for any equation of state, we can reverse the solution and equivalently obtain
a shock-wave that collapses in on itself. We anticipate that the expanding
shock is stable, while the collapsing shock solution is actually the analog of
an unstable rarefaction shock, (in the sense of Lax [5]), except in the limit
case p = 0 treated by Oppenheimer and Snyder. In the case p = 0, the shock
interface reduces to a contact discontinuity, and in this degenerate case both
the exp anding and contracting solutions should be stable, (at least to radial
perturbation). In this case, Oppenheimer and Snyder showed that the con-
tracting shock-wave collpses to a “black hole”, and they made the now well
known paradoxical observation that the collapse to the black hole takes an
infinite time as measured by the observer at infinity, but takes only a finite
proper time as measured by the observer sitting on the shock-wave itself.

In [14] we construct a dynamical shock-wave solution of the Einstein
equatioms that consists of the R-W metric on the inside connected to the I-S
solution on the outside, with a shock-wave interface connecting the two, and
Wwe cons truct such a solution assuming arbitrary equations of state p = p(p)
and p = j(p) in the R-W and I.S solutions, respectively. Our matching pro-
cedure is complicated by the fact that the coordinate systems for the R-W
and I-S metrics must be treated differently on the inside and outside of the
shock separately, (see [14]). An explicit formula for the shock position in
terms of the jump in density emerges from the analysis, and this allows us
to ident.ify a global conservation of energy principle, despite the fact that,
in general, conservation is only locally valid in Einsteins theory due to the
effects of the curvature in the underlying metric g. For our general result
here, th e metrics match in a Lipschitz continuous fashion across the shock
interface. There then arises the interesting issue of whether the weak, local
form of conservation holds across this shock-wave. In Section 3 of our paper
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[14], we present a self-contained treatment of the general theory of shock
waves for the Einstein equations that re-organizes and extends previous re-
sults of Israel. (See also [8] and references therein where this topic is referred
to by the heading Junction Conditions). We consider the general problem of
allowing the metric to be only Lipschitz continuous across a hypersurface £
in spacetime. In this case, the metric loses continuity in the first derivative.
It turns out that the issue of conservation across an arbitrary Lipschitz con-
tinuous shock-wave is intimately related to when there exist delta function
sources in G on the surface, and also intimately related to when there ex-
ists a C'! coordinate transformation defined in a neighborhood of the shock
that removes the jump in the derivatives of the metric potentials g;; across
the shock. We present a complete resolution of these issues in Theorem 3,
Section 3 of our paper, which can be stated as follows:

Theorem 1 Let ¥ denote a smooth, 3-dimensional shock surface in space-
time with spacelike normal vector n. Assume that the components g;; of the
gravitational metric g are smooth on either side of &, (continuous up to the
boundary on either side separately), and Lipschitz continuous across ¥ in
some fized coordinate system. Then the following statements are all equiva-
lent:

(1) [K]= 0 at each point of X.

(ii) The curvature tensors R}y and G;;, viewed as second order operators on
the metric components g;;, produce no delta function sources on L.

(iii) There exist locally Lorentzian coordinate frames at each point P € .

(iv) For each point P € ¥ there ezists a C''! coordinate transformation
defined in a neighborhood of P, such that, in the new coordinates, (which can
be taken to be the Gaussian normal coordinates for the surface), the metric
components are C'! functions of these coordinates.

Moreover, if any one of these equivalencies hold, then the Rankine- Hugoniot
Jump conditions
[G){n, =0, (2.5)

(which ezpress the weak form of conservation of energy and momentum across
Y when G = «T'), hold at each point on £, a covariant statement.

Here [K] denotes the jump in the second fundamental form (extrinsic curva-
ture) K across £, (this being determined by the metric separately on each




MULTI-DIMENSIONAL SHOCK-WAVES 385

side of X because g;; is only Lipschitz continuous across X), and by C11 e
mean that the first derivatives are Lipschitz continuous. Theorem 1 should
be credited mostly to Israel, who obtained these results jn Gaussian nor-
mal coordinates. Our contribution was to identify the covariance class of
C'! transformations, and to thereby obtain precise coordinate independent
statements for (ii)-(iv). As a consequence of this, we obtain the result that
the Ricci scalar curvature R never has delta function sources at a Lipschitz
continuous matching of the metrics, as well as the following theorem that
partially validates the statement that shock wave singularities in the source
free Einstein equations Rij = 0 or Gi; = 0 can only appear as coordinate
anomalies, and can be transformed away by coordinate transformation:

Theorem 2 If a smooth shock surface ¥ forms in weak solutions of Ryp =
0 or Gap = 0 posed in some given coordinate system y, such that the Y-
components g.g of the metric tensor g are Lipschitz continuous across X, and
C* functions of y on either side of & (continuous up to the boundary on either
side separately), then there ezists a regular C'" coordinate transformation
taking y — z, such that, the components g;; of g in x-coordinates are actually
C* functions of z in a neighborhood of each point on the surface %.

Note that when there are delta function sources in G on a surface X, the
surface should be interpreted as a surface layer (because G = &T), and not a
shock wave, (3, 8]. In [14] we show that for spherically symmetric solutions,
the weak form of conservation of energy and momentum (2.5) implies the
absence of surface layers, so long as the areas of the spheres of symmetry
match smoothly at £. We use this result in our construction of the shock
waves that extend the Oppenheimer-Snyder model to the case of non-zero
pressure.,

We now discuss how we explicitly construct spherically symmetric shock-
wave solutions of the Einstein equations (1.3) for a perfect fluid (1.4) by
matching the Robertson-Walker (R-W) metric,

(R-W) ds®=—dt* + R(t) {1 —-lkr2 dr® + rzdﬂz} : (2.6)
and Interior Schwarzschild (I-S) metric,
(I -8) ds* = —B()d?* + (1 ~ 2M_(F)> di? + 7F2d0?, (2.7)
r
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at shock wave interfaces across which the metrics are Lipschitz continuous,
and the conditions (i)-(iv) of Theorem 1 above hold. Here, the quantity
dQ? = d6? + sin®0dp? denotes the standard metric on the 2-sphere. The
R-W metric is homogeneous at each fixed t, and expands or contracts in
time according to the Cosmological Scale Factor R(t). The fluid is assumed
to be co-moving with the metric, c.f. [16], and the Einstein equations (1.3)
reduce to a system of two ODE’s in two unknowns when an equation of state
p = p(p) is specified. The R-W metric has been accepted as a model for
the universe as a whole. In this interpretation, R(t) determines the red-shift
factors for far away objects, and the existence of a singularity in the R-W
metric in backwards time has been interpreted as the original big bang. The
I-5 metric is a time independent solution of (1.3) that is used to model the
interior of a star. In this case the stress tensor is again taken to be that of a
perfect fluid that is co-moving with the metric, and the functions B (7) and
M(F), (the total mass inside radius 7), are also determined by an autonomous
systern of two equations in two unknowns when an equation of state P =p(p)
is chosen, and the Einstein equations (1.3) are imposed.

Theidea in the matching is to define a coordinate transformation mapping
(t,r) — (%, 7) such that, under this identification of coordinates, the metrics
R-W and I-S agree Lipschitz continuously on a 3-dimensional shock surface.
We set ¥ = Rr in order that the sphere’s of symmetry match smoothly at
the surface, and with this it remains to define ¥ = #(¢,r). The following
general theorem states that a Lipschitz continuous matching of metrics can
be achieved for arbitrary R-W and I-S metrics,[14]

Theorem 3 Let B(7), M(7), p(7), p(F) denote any I-S solution of the Ein-
stein equations (1.8), and let R(t),p(t),p(t) denote any R-W solution of
(1.3). Then, (under non-degeneracy assumptions, [14]), there ezists a co-
ordinate mapping (t,r) — (%,7) of the form ¥ = Rr and { = i(t,r) such that,
under this identification, the metrics agree and are Lipschitz continuous at
the shock surface

M) = %’_’p(t)#. (2.8)

The equation (2.8) defines the shock surface ¥ = 7(t) implicitly so long as
P'(F) < 0.

Note that for this theorem, arbitrary equations of state p = p(p) and p = p(p)
can be assigned. The identity (2.8) can be interpreted as a global conservation
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of mass principle for such matchings: in words, (2.8) says that the total mass
that the I-S solution would see inside the shock interface 7 = 7(t) if it were
continued on into the origin 7 = 0, equals the total mass inside a sphere of
radius # = 7(t) and constant density p(t).

A further constraint on the metrics must be imposed to insure that the
Rankine- Hugoniot jump conditions (2.5) for conservation hold across a shock.
By the general theory, it suffices to match the second fundamental forms
[K] = 0 across the surface, and this alone will insure that the surface is not
a surface layer, and that conditions of Theorem 1 will then all apply at the
shock surface. In [14] we show that in the presence of spherical symmetry,
[K] = 0 is equivalent to the single condition

[Tinin' = 0. (2.9)

Using this, we derive a system of two autonomous ordinary differential equa-
tions in the shock position r(t) and the cosmological scale factor R(t) that
determine the R-W metrics that will match any given I-S metric at the shock
surface (2.8) such that energy and momentum are conserved across the shock.
In order to impose the extra constraint (2.9), we must allow the R-W pres-
sure p(t) to be determined by the equations, rather than by an equation of
state. This is summarized in the following theorem,[14]:

Theorexn 4 Let B(F), M(7), 5(F), B(F) denote any fized I-S solution of the
Einstein equations. Then, (under non-degeneracy assumptions), the R-W
metric R(t), p(t), p(t) will satisfy conservation across the shock surface (2.8),
(under the identification ¥ = Rr,f = I(t,r)), if and only if (r(t), R(t)) solve
the system of ODE’s

R*= §7;—G—pR2 — k, (2.10)
ar? + BF +4 =0, (2.11)

where all of the functions p,a, B, appearing in (2.10) and (2.11) can be
ezpressed in terms of the unknowns (r(t), R(t)) through the shock surface
equation (2.8) and the identity ¥ = Rr. The R-W pressure is then given by

d 3
=_§(PR) 212
P="3mE (212)
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T hus system (2.10), (2.11) gives the conservation constraint in terms of a
first order autonomous ODE in these unknowns, and the solutions (r(2), R(t))
of this ODE determine the R-W metrics that will match a given I-S metric
across a shock surface, such that the additional condition of conservation is
maintained across the shock. The solutions that solve this ODE reduce to
the Oppenheimer-Snyder solutions when M is constant and the I-S metric
reduces to the empty space Schwarzschild metric. In the O-S case, the so-
lution of (2.10), (2.11) reproduces p = 0. Note that for a given I-S solution,
we can in principle construct a shock wave at radius 7 = Rr with arbitrary
R-W pressure p assigned at that radius by specifying the appropriate initial
conditions for r and R. .

3 Astrophysics and Cosmology

We now discuss possible applications of our Oppenheimer-Snyder type shock
waves to astrophysics and cosmology. First of all, our solutions can be taken
as a dynamical model for an evolving star which is either collapsing or ex-
ploding within the core, but which shows no visible signs of this collapse
on the surface of the stationary I-S solution which sits on the outside. The
possibility of such a dynamical solution raises interesting questions concern-
ing limiting radii of stable stars as first discussed by Oppenheimer-Volkov
and Chandrasekhar ([10]). In particular, when the I-S solution is taken as
a model for the interior of a star, there is a theorem that states that for
essentially any possible equation of state within the star, the I-S metric must
have an infinite pressure at the center r = 0 whenever the entire mass of
the star is compressed within 9/8 of it’s Schwarzschild radius (c.f. [15], page
231). This implies that there are no stable configuations of stars that are
sufficiently compressed, as it would require an infinite pressure at the center
to hold up such a star once it falls within 9/8 of it’s Schwarzschild radius.
This has interesting cosmological consequences. In particular, a calculation
shows that the maximum redshift factor* for light emitted from the surface
of a stable star can be no more than 2, (see [15]). This becomes all the
more interesting because of the discovery of quasars, (relatively bright stellar

“The redshift factor is the ratio given by the frequency of light received by an observer
in a stationary solution, divided by the frequencey of light emitted by the source.
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objects which are point sources of electro-magnetic radiation which are red-
shifted all the way into the radio wave frequencies), which have a red shift
factor much larger than 2. Now redshifting of the light emitted by a stellar
object can arise in one of two ways: either the object is far away, so that the
expansion of the universe moves the object away at a high velocity, or else
the light is climbing out of a large gravitational potential. Since the stability
theorem. appears to rule out the latter, it has been conjectured that quasars
are far away, and this leads to the incredible conclusion that the quasars
must be fantastically large objects in order to explain their relatively bright
emissions. But our model applies to highly compressed I-S solutions; specif-
ically, to solutions whose total mass M (r) lies well within the stability limit
of 9/8 of the associated Schwarzschild radius. Since our procedure enables
us to replace the inner core of any I-S solution with a dynamical expanding
smooth solution, we can apply this to I-S solutions having a singular infinite
pressure at ¥ = 0, and thereby obtain a solution with no singularity at # = (.
Thus the conclusion we can make based upon our model is that a shock-
wave in the core can generate the enormous pressures necessary to hold up
the outer layers of the star even when the outer layers are well within 9/8 of
the Schwarzschild radius. (For comparison, the Schwarzschild radius of the
sun is about 3 kilometers.) Thus our dynamical shock-wave solution allows
for the possibility of a stellar ob ject that appears to us as a point source of
light in the heavens that is emitting highly redshifted frequencies of radia-
tion, and, according to our model, the surface of such a star would show no
signs of the dynamics within the interior. Moreover, since (if the calculation
of Oppenheimer-Snyder carries over to the case of non-zero pressure), the
collapse of the shock-wave may well take an infinite time as measured by an
observer far away from the star, our dynamical solution allows for the pos-
sibility that such an object would be stable for long periods of time. Thus
our dynamical model supports the possibility that certain objects emitting
highly red-shifted frequencies of electromagnetic radiation could really be
dynamical, quasi-stable ob Jects that are relatively nearby, thus resolving the
paradox of their brightness.

Another intriguing possibility which our Oppenheimer-Snyder type shocks
lead us t o, is the possibility of a new model for the universe at large. The
widely held view is that the universe as a whole can be described by an
expandin g solution of the Einstein equations which can be approximately
modeled by the Roberson-Walker metric. Under these assumptions, the cos-
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mol«gical scale factor R(t) in the R-W metric is the only physical parameter
to b e determined, and this is determined by the average mass-energy density
contained within the universe at large. The Hubble constant gives a. measure
of the expansion in this model, and all of the information relating stellar dis-
tances to red-shift factors is based on the assumption of this model. QOne of
the great open questions in physics involves the determination of the average
energy density of the universe, and this is complicated by an inability to de-
termiine the amount of dark matter, or un-illuminated matter in the universe.
Our shock-wave solution that connects the R-W metric on the inside to the
I-S rmetric on the outside, opens the possibility that there is a shock-wave at
the edge of the universe. It is interesting to pursue the possibility that the
2.7 degree Kelvin background radiation observed throughout the wuniverse
represents the black-body radiation from the boundary of such a shock. As-
suming this, we can guess the energy density on the I-S side of the shock,
and thereby, from our model, we should be able to determine the average en-
ergy density in the universe from certain theoretically observable parameters
in the model, such as the distance to the shock-wave and the speed of the
shock.® Even if this model is not exactly correct, these relations which are
determined by the model may have an interest that transcends the model
itself.

These possible physical applications make the problem of determining the
large time dynamics of our Oppenheimer-Snyder shocks all that much more
interesting.
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