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SYSTEMS OF CONSERVATION LAWS
WITH COINCIDING SHOCK AND RAREFACTION CURVES*

BLAKE TEMPLE

1. INTRODUCTION

Systems of conservation laws which have coinciding shock and rarefaction
curves arise in the study of oil reservoir simulation, nonlinear wave motion in
elastic strings, as well as in multicomponent chromatography [1, 4, 5, 6, 9,

11, 12]. These systems have many interesting features. The Riemann problem
for these equations can be explicitly solved in the large, and wave interac-
tions have a simplified structure, even in the presence of a nonconvex flux
function. For this reason, these systems represent some of the few examples

for which the Cauchy problem has been solved for arbitrary data of bounded
variation. Also, hyperbolic degeneracies appear in each of these systems. In
the present paper we are concerned with locating the class of equations that
exhibit the phenomenon of coinciding shock and rarefaction curves. For n xn )
systems, we give necessary and sufficient conditions for a shock curve to coin-
cide with a rarefaction curve. We use these general results to write down ex-
plicitly the class of 2 x 2 conservation laws which have shock and rarefaction
curves that coincide.

A system of conservation laws in one space dimension is a set of partial
differential equations of the form

U + F(U)x = 0. (14)

Here -» < x <o, t>0,and U and F are vector valued functions,

U= (u],...,un) z Ufx,t), F(U) = (f1(U),...,fn(U)). The Cauchy problem is the
natural problem to pose for system (1), and it is commonly known that discon-
tinuities can form in the solutions of (1). For this reason we look for weak
solutions U(x,t); i.e., solutions that satisfy the following integral equation
[7] for any smooth function u(x,t) with compact support:

” Uy, + F(U)y, + r U(x,0)¥(x,0)dx = 0. (18)
=00 X <+ -
t>0
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Two important systems of conservation laws arise in applications, and have been
studied in 01, 4, 5, 6, 9, 11, 12].
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System (2) arises in problems of 0il reservoir simulation, as well as in elas-
ticity theory [4, 6, 9, 12]1. For example, in the reservoir simulation problem
(4, 6], u is the saturation of water in the reservoir and v 1is the concentra-
tion of a polymer in the water, so that 0 <u <1, 0 <v < 1. The system is

determined by specifying the function ¢(u,v), but the structure of the solu-
tions is determined by qualitative properties of ¢ which can be verified

experimentally.

System (3) arises in the study of two component chromatography (1, 5, 11].
Here u and v are transformations of the concentrations of the two solutes,
and x and t are transformations of the actual space and time variables (see
Aris & Amundson (1], pp. 268). The domains of the variables u and v can be
taken to be u >0, v >0, and « € (0,1) is determined by adsorption proper-
ties of the stationary phase.

Systems (2) and (3) are remarkable because for both systems, the shock
curves and rarefaction curves coincide. This leads us to study the phenomenon
of coinciding shock and rarefaction curves in general. To say this precisely,
assume first that system (1) is hyperbolic; i.e., that the eigenvalues (wave
speeds) of dF (the matrix defined by F(U)x = dF . Ux) are real, but not nec-
essarily distinct. Let X denote an eigenvalue, and R a corresponding eigen-
vector of dF. We call (A,R) a “"characteristic family" or "characteristic
field" for system (1) if aA(U), R(U) are defined and ¢3 in some neighborhood
N of U-space. lLet S« N be the integral curve of R through some point
U0 € N. S is called the x-rarefaction curve of U0 in N. Rarefaction
curves are the one-dimensional sets that smooth solutions to system (1) can take
values on. For example, if the range of a smooth solution U(x,t) of system
(1) lies on a one-dimensional curve in U-space, then that curve must be a rare-
faction curve. An analagous one-dimensional curve in U-space applies to the
study of discontinuous solutions of (1). The Hugoniot locus of a point U0 is
defined to be the set of points U such that

alU] = [F(U)] (4)
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for some scalar ¢ = c(U.UO). Uy =u- Ug> [F(U)) = F(U) - F(UO). A state U
is in the Hugoniot locus of U0 if and only if the discontinuous function
Uo for x < ot

U(x,t) = (5)
U] for x > ot

satisfies the weak form (1B) of system (1) [2, 7]. Under very general condi-
tions, there corresponds to each family (A,R) a one parameter subset of the
Hugoniot locus of U0 that has C° contact with the integral curve of R at
U0 {71. This is called the A-shock curve. (Often this term is reserved for
that portion of the curve that determines the physically acceptable solutions
in (5).)

DEFINITION. We say that the X-shock curve coincides with the X-rarefac-
tion curve on S if the Hugoniot locus of each point on S, contains 8.

In [13] we prove Theorem 1 (details are omitted here) which states that
the X-shock curve and A-rarefaction curve coincide on S if and only if
either S is Tinear in U-space or A is constant on S; and this occurs if
and only if the equations reduce to a scalar conservation law on S. We call
(A\,R) a "contact" family if A is constant on each integral curve of R, and
we call (A,R) a "line" family if each integral curve of R 1is a straight line
in U-space. In the next section we derive the class of 2 x 2 equations
that have either a contact or a line family. (In this case we let U= (u,v)
and for convenience we assume that a contact family satisfies va = (%ﬁ; %%) #0
in N, and that a 1ine family satisfies vq # 0 in N, where q(u,v) 1is the
slope g% of the integral curve of R through (u,v). Weaker assumptions can
be made). A1l of the characteristic families in systems (2) and (3) are then
seen to be either line or contact families. In this way the phenomenon of
coinciding shock and rarefaction curves is observed from the explicit form of

the equations.

2. COINCIDING SHOCK AND RAREFACTION CURVES FOR 2 x 2 SYSTEMS
Consider an arbitrary system of 2 x 2 conservation laws.

u, + flu,v) =0
t X (2.1)
vi + g(uv), =0,

where we take U = (u,v), F = (f,g). We now locate the class of such 2 x 2
equations that have either a contact or a line field in a region N of U-

space. These are generically the only fields that have coinciding shock and
rarefaction curves, as indicated by Theorem 1.
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We let q = q(u,v) denote a Riemann invariant for a contact or line
field in N. A Riemann invariant for a family (A,R) is a function which is
constant on the integral cuves of R. We assume that Vg # 0, and because it
suffices to prove our results locally, we always assume that gq = const deter-
mines a unique integral curve of R 1in N, which has a finite slope EU

First assume that q(u,v) 1is the wave speed of a contact field for a
system of 2 x 2 equations, Vq # 0. The function q is thus a Riemann invari-
ant for the contact field given by X =gq, R = (-qv,qu) = Vql. Since (A,R)
is a contact field in N, we have by Theorem 1 that the A-shock curves coin-
cide with the A-rarefaction curves in N, so the curve gq = const. must be
contained within the Hugoniot locus of every point on that curve. Thus by (4),
if [a) = q(U) - q(Uy) = 0, then also -

[fl,
[q],

and in the contact case, ¢ = c(U.UO) = q(UO) (c.f. [71). Conversely, if (2.2)
holds in N when [q] = 0 for some smooth function q(u,v), Yq # 0, then
(c(UO,UO), VqL(UO)) must be a characteristic field for dF. To see this, note
that (2.2) implies that

ofu]
(2.2):

alvl

o(UgsUg) = Tim 1 fo+f dv

U_,UO {ul v dU
= 1im 491 - du
&lﬂ vl = v t9,dv e
0

where the vector (1, du) is parallel to Vq(Uo). Therefore, we can verify
that

antr o o u(, 9. (2.3)

dF- (1 AT

* du

Thus the statement that (2.2) holds with o = q when [q]l =0 in N, is equi-
valent to the statement that (A,R) = (q,Vql) is a contact field in N. But
(2.2) holds when [g]l = 0 if and only if

0,
0,

[f - uqg)

lg - val (2.4)

when [q] =0; and (2.4) holds if and only if f = uq + F(q) and g = vq + G(q)
for some smooth functions F and G. We have the following theorem:

THEOREM 2. A system of 2 x 2 conservation laws (2.1) has a contact field
in a domain N of uv-space if and only if f and g satisfy

f(u,v)
g(u,v)

uq + F(q),

vg + G(q), (2.5)
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in N, for some smooth functions q, F and 6, Vg # 0. In this case
q(u,v) = X where A 1is the wave speed of the contact family.

Next assume that (A,R) 1is a line family for a system of 2 x 2 equa-
tions defined in a region N of U-space. Let q(u,v) be the sTope %& of
the integral curve of R through the point (u,v) € N, Vg # 0. The function
q 1s a Riemann invariant of R. Moreover, q is a smooth nonconstant solution

to Burger's equation

9, *aaq,=0 (2.6)

since Vg 1is orthogonal to the vector (1,9) at every point in N. Since
(AR) is a line field, Theorem 1 again implies that a curve defined by

q = const. contains the Hugoniot locus of each point on that curve. Thus, when
[q] = 0:

oful = {f]
olvl = [g].
Dividing we obtain that, when [q]l = 0,
= vl _ (g
LI T e (2.7)
so that
[fq - g) = 0. (2.8)

By (2.3) this is equivalent to the statement that (X,R) s a line field in
N. But (2.8) holds if and only if

g = fq + H(q)

for some smooth function H. We have proven the following theorem:

THEOREM 3. A system of 2 x 2 conservation laws has a line family in
N if and only if f and g satisfy

g = fg + H(q) (2.9)

in N, for some smooth function H, where q(u,v) 1is a smooth solution to
Burger's equation (2.6) with Vg # 0. In this case q is a Riemann invariant
for the line family.

Theorem 2 applies to system (2) with F = G = 0, and thus (¢,9¢%) must
be a contact family for system (2). Since system (2) also satisfies

glu,v) = velu,v) = 5-f(u.v).

and -5 is a smooth solution to Burger's equation in u > 0, v > 0, we have by .
Theorem 3 that qlu,v) = % 1s the Riemann invariant of a Tinear family for
system (2). Moreover, we can use Theorems 2 and 3 to locate the class of

2 x 2 equations that have both a 1ine and a contact field; i.e., we say that




148 BLAKE TEMPLE

system (1) has both a contact and a line field in N 1if system (1) has two
Riemann invariants q and p that satisfy Theorem 3 and 4 respectively, such
that u and v are smooth functions of (p,q) off a closed set of measure 0
in N. By Theorems 2 and 3,

vq + G(q) = ugp + F(q)P + H(p). (2.10)
Formally differentiating (2.10) with respect to u holding p fixed yields
v+G'(q) =up+ F'(q)p (2.1)

since g%-v(u,p) = p because p 1s a smooth solution of (2.6). Differentiat-
ing (2.10) with respect to q holding p fixed gives

% V(p,q) + v + G'(q) = up + 5% u(p,qlap + F'(q)p. (2.12)

Therefore, substituting (2.11) into (2.12) we obtain

5%— vip,q) = p 5% u(p,q). (2.13)

Now differentiate (2.11) with respect to q holding p fixed and obtain

335 v(ip,q) + 6"(q) = P 535 u(p,q) + F"(q)p, (2.14)

which by (2.13) is
G"(q) = F"(q)p. (2.15)

Finally, differentiating (2.15) with respect to p holding q fixed, we con-
clude
F'(q) = 6"(q) = 0, (2.16)
or
F(q) =aq +c, G(q) =bg+d (2.17)

for some constants a, b, c, d.

The assumptions made in (2.11) to (2.17) are that v 1is a differentiable
function of u(p,q), g%-q(u,p) #0,and q# 0. But by (2.6) these must hold
off a closed set of measure 0 in N, so (2.17) must hold everywhere in N.
Moreover since the addition of a constant to the flux functions f and g in
(2.1) does not affect the solutions, we can take ¢ = d = 0. Substituting
(2.17) into (2.11) then gives

p=pluv) =454

and the constraint in (2.10) yields
H(p) = -bp. (2.18)
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We have thus proven the following corollary:
COROLLARY 1. System (2.1) has both a line and a contact field if and only
if

f=(u+a)g, (2.19)

(v + b)q,

9

for some smooth function gq = q(u,v), and some constants a and b. In this
case q is the wave speed of the contact family, and

p=tsd, (2.20)

Now consider an arbitrary 2 x 2 system that has two distinct line fami-
lies. By Theorem 3, there exist two distinct solutions p and q of Burger's
equation such that (2.9) holds; 1.e., such that

 + Ky (p), (2.21)
fa + Hyla), (2.22)

9
9

for some smooth functions H] and H,. Equating (2.10) and (2.11) gives
L) - Hyla)

qg-p )
This proves the following corollary:
COROLLARY 2. System (2.1) has two line families if and only if

H.(p) - H
;. 1(P) - Hy(q)

a-p (2.23)
gHy (p) - pH,(q)
9= q-p ’
where p and q are smooth solutions of (2.6).
For system 3 one can verify that

u___ H(p) - H(q) Kv_ _ gH(p) - pH(q) (2.24)
T+utv g-p ° T+uty q-p ’ ’
where
H(z) = 252, (2.25)
and p,q are the two solutions of Burger's equation which satisfy
uz? + {c(utl) - (vH1)}z - v =0 (2.26)

in 2z, and are smooth in u > 0, v > 0. This verifies that system (3) has a
pair of line families with integral curves given by p = const. and gq = const.




150 BLAKE TEMPLE

Finally, note that a system of 2 x 2 equations generically has two char-
acteristic families. The functions f and g given in (2.5) and (2.9) in-
volve explicitly a Riemann invariant of one family. The following result, which
is easily verified, determines both characteristic families given a Riemann
invariant of one family. This general result is simple and explains many of
the calculations in (4, 12].

THEOREM 4. Let gq = q(u,v) be a Riemann invariant for a system of 2 x 2
conservation laws (2.1), and let Ff(u,q) = f(u,v) and g(v,q) = g{u,v) be
smooth. Then (Ai,Ri), j = 1,2 are characteristic fields for the system,

where
- 1
A o= f LRy = Vq
L _ _ (2.27)
xz = fu + quu + gqu,R2 = (?ﬁ,gq).
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