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Abstract: We refine the Buchdahl/@'"* stability theorem for stars by describing quan-
titatively the behavior of solutions to the Oppenheimer—\Volkoff equations when the star
surface lies inside 8¢ of the Schwarzschild radius. For such solutions we prove that
the density and pressure always have smooth profiles that decrease to zero as the ra-
diusr — 0, and this implies that the gravitational field becomegsulsivenearr = 0
whenever the star surface lies withifigd** of its Schwarzschild radius.

1. Introduction

In General Relativity, the interior of a star is modeled by solutions of the Oppenheimer—
Volkoff (OV) equations which describe the pressure gradient inside a static fluid sphere.
In this paper we describe the global behavior of the density, pressure, and gravitational
field when the surface of the star lies withifi8** of its Schwarzschild radius. The
well-known Buchdahl stability theorem, [1], states, loosely speaking, that when the
surface of a star lies within/8!"¢ of its Schwarzschild radius, then the star is unstable

to gravitational collapse, and this result is essentially independent of the equation of
state. This places a maximum red-shift factor of 2 on the possible emission spectrum
from the surface of a spherically symmetric, static stellar object. The precise statement
of Buchdahl’s theorem is as follows, ([2], p. 332). L&t) andp(r) denote the density

and pressure, respectively, and}é&{r) denote the mass function at radius. R, where

R denotes the surface of the star. (We pélhe density so thaic? is the energy-density
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of the fluid, andc denotes the speed of light.) Assume that these functions satisfy the
Oppenheimer—\Volkoff equations, ((2.1), (2.2) below), and that the following conditions
hold:

(A) The radiusk > 0 of the star is fixed, and the densj{r) and pressurg(r)
are arbitrary bounded positive functions defined o @ < +oo, such thafp(r) = 0 =
p(r) for » > R. The metric is assumed to be attached smoothly to the empty space
Schwarzschild metric at= R.

(B) The mass functiod/(r) is given by

M(r) = /OT A1 p(s)sds,

so that the total mass of the star is given by

R
My = / 47 p(s)s2ds.
0
(C) The metric coefficienti, defined by

2G M (r)

c2r

Ar)=1-

whereG denotes Newton’s gravitational constant, satisfies
A(r) > 0.
(D) The densityp(r) does not increase outward:
p'(r) <O0.

Then, assuming (A)—(D), the conclusion of the Buchdahl theorem is the(;)if p(r)
and M (r) satisfy the OV equations, the surface R must satisfy

9
R> éRs(M0)7

whereR (M) = %Mo denotes the Schwarzschild radius of a star of total M&s$lere

G denotes Newton’s gravitational constant. The stability limit for stars is obtained from
this theorem by concluding that if the boundary surface of a star saﬂ%ﬁ@%Rs(Mo),

then one of the above assumptions must fail. However, no information is given about
exactly how (A)-(D) fail in this case. For example, cdn— 0 for somer > 07? (This
would correspond to the formation of a black-hole.) Gar» oo for somer > 0?

Can M (0) = 0 fail, or does the solution fail to exist on the entire interval D for

some other reason? In addition, what is the behavior of the solutiodg/&s — O;

i.e., as the star surface tends to its Schwarzschild radius? In this paper we describe the
global behavior of solutions of the OV equations starting from initial data satisfying
Rs(Mp) < R < gRS(Mo), and as a corollary we obtain a refinement of Buchdahl's
theorem.

We have been led to study such solutions in detail because of our earlier work, [3, 4],
in which we constructed shock-wave solutions of the Einstein equations by attaching
a Friedmann-Robertson-Walker metric to the inside of an arbitrary static metric deter-
mined by the Oppenheimer—\olkoff equations, such that the interface between them
is an outward moving shock-wave. In the forthcoming paper [7] we study shock-wave
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solutions of the Einstein equations arbitrarily close to the Schwarzschild radius by plac-
ing an outgoing shock-wave inside the static solutions that we analyze here. In such a
construction the shock-wave stabilizes the solution by supplying the pressure required
to “hold the star up”even wheR,(Mp) < R < %RS(MO).

In order to make the exposition as simple as possible, we assume throughout that
a baryotropic equation of state of the fopm= p(p) is given, where the functiop(p)
satisfies the conditions th%tandp’(p) are bounded above and below by positive con-

stants. Note that in this cagéy’ is the sound speed, which for physical reasons should
be bounded by. Our approach is to start with initial conditionsat= ro > 0, and

in terms of this data we estimate the solution fox0r < rg. This contrasts with the
standard approach which is to assume conditioms=a®.

We prove that any solution of the OV equations starting from initial data=at,
and satisfyingrg < gRS(M (r0)), will necessarily exist all the way inte = 0, and
A(r) > Oforallr > 0. Moreover, we show that the presswprand density nevertend
to oo, and actually are bounded and tend to zero smoothty-as0. (This contrasts with
the case whery > gRS(M (r0)), in which case we can haye— oo, cf. [4].) We prove
that what always happens is that the mass fungtionits zero at some; > 0, then goes
negative for < r1, andM’(r) remains positive for at > 0. Moreover,M (r) — M(0)
asr — 0, where—oo < M(0) < 0. Indeed, we show that the densjtyand pressure
p increase as decreases until they reach a critical vatue r,, 0 < r, < r1, (S0 that
M(r,) < 0), and therp andp decrease to zero as— 0. Moreover, we also prove that
lim,_op'(r) = lim,_op'(r) = O, which implies thatp andp have smooth profiles at
r = 0. Thus we conclude that in the presence of positive density and presseje)sive
gravitational effect appears, (i.@/, > 0 nearr = 0), due to a negative mass function
insider = r;.

In light of the above, our results show that hypotheses (C) and (D) are actually
consequences of the other assumptions in Buchdahl’s theorem because (B) implies that
M(r) > 0 for all » > 0. Moreover, when\ly = M (rg) < %RS(M(rO)), we show that
the region of the solution wher&/(r) > 0 accumulates in a thin layer that tends to
r = rg asrg tends to its Schwarzschild radids (M (ro)), and we obtain sharp estimates
for the width of this layer. Note finally that the hypotheses of the Buchdahl theorem do
not explicitly assume the existence of an equation of state. Although in our treatment
here we assume the equation of state is of the forp(p), we could be more general

by assuming only that(r) = % ando(r) = %: are any given positive functions that are
bounded above and below by positive constants; c.f. [6].
The main results of this paper are summarized in the following theorem which gives

a refinement of Buchdahl's result. In what follows we utilize the variatdefined by

z = i (1.2)
P
wherep(r) is the average density inside radiuslefined by
— 3 M(n)
p = E 7=3 . (1.2)

Theorem 1. Let(ry, ro], 0 < r1 < ro, be the maximal interval of existence of a positive
smooth solutionp(r) > 0, p(r) > 0, and M (r) > 0, of the OV system, (given in (2.1),
(2.2) below), starting from positive initial data at= ¢ which satisfies
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291\2/1(70) <
C°To

ThenM'(r) > 0and A(r) > 0 throughout(ry, 7], M (r1) = 0, and the following hold:

(i) If 71 = 0, thenA(ro) > %, or equivalentlyro > 3 R, (M (ro)).

(ii) If 1 > 0O, then the functiong(r), p(r) and M (r) can be continued to the interval
[0, r1] as bounded smooth solutions of the OV system, suchthatd and M’ remain
positive, butV/ (r) is negative offi0, r1). Moreover, there exists a unique poiate (0, r1)
such that the density and pressure increase on the intervdD, ;) and decrease on
the interval(rz, o], and the following equalities hold:

0< A(rg)=1- 1

lim p(r) = lim p(r) = lim p(r) = j}irjop’(r) =0, (1.3)
and
liLnoM(r) = M(0), (1.4)

whereM (0) is a finite negative number.
(iii) Assume that the initial values satisfy the further conditions that

O0<2p<1, (1.5)

1
0< A< 5. (1.6)

Thenr; > 0, and there exists a unique point, r1 < r. < ro, such thatz(r,) = 1,
z(r) < 1forr > ry, z(r) > 1for r < r,, and the following inequalities hold:

Ty 1—9A(ro)
l>%>”l—7A(ro)’ 2.7)

3 1- A
p(T) < P(T*) < 871'7% <1—9AO> R (1.8)

for all r in the intervalr, < r < rq.
(iv) For fixedrg > 0Oandzg > 0, r; — rgasAg — O.

and

Note that whenevelM (r) tends to a finite negative numbersat= 0, the metric
must have a singularity at= 0 becaused(r) = 1 — % We will show below that
such singularities in solutions of the OV equations are non-removable, and we will use
the results in [3] to show that this singularity corresponds to a delta fuction source of
negative mass at= 0.

As a consequence of this theorem, it follows that for any solution of the OV system,
the pressure can tend ¢o only at the origin- = 0; i.e., by (ii),p is uniformly bounded
if r1 > 0, sop can tend tax only atr = 0.

Note that part (i) refines the Buchdahl result because it implies that if the Miags
ever gets within 98" of the Schwarzschild radiug, (M (r)), thenr; > 0, soM must
go negative before = 0, thereby violating the definition af/ given in (B). Also, since
o' (r) > 0 forr near zero, we see that (D) is also violated. Note too that in our theorem,
the critical 98'ths limit applies at any radius interior to the star, while in Buchdahl’s
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argument the f8'ths limit applies only at- = R, the surface of the star. Moreover,
the fact thatA stays positive is gheoremin our treatment, not an assumption, and we
demonstrate the failure of (D) wheg < %RS(M(ro)), in which case (ii) and (iii) give
the global behavior of solutions that start insidé89* of the Schwarzschild radius.
Theorem 1 also rules out the possibility that> oo asr — 0 in the critical case when
ro is exactly § R,(M(rg)), because wheng = 2R, (M (ro)), Theorem 1 implies that
ry > 0. (See [2], p. 334, wherg — oo asr — 0 andrg = gRS(M(ro)), but in this case

p = const, and so this example violates our assumption thiat remains bounded.)
Note also that since; — rg as Ay — 0, andM(r1) = 0, it follows that the entire
portion of the solution in which the magd is positive, accumulates in a thin layer
that tends to- = rg as Ap tends to zero. In [7] we use our detailed description of this
layer to analyze dynamical solutions in which a shock-wave inside the layer supplies
the pressure required to hold the layer up whigrs arbitrarily close to zero.

Statement (1.3) implies that the densify) and pressurg(r) are everywhere pos-
itive and have smooth profiles that tend to zeroras> 0, and this implies that the
gravitational field becomesepulsivenearr = 0 (whenM (r) is negative). Note that
M(r) < 0 forr > 0is not ruled out in general relativity, (so long as the density and
pressure are positive), becauddr) is not an invariant quantity. This issue is discussed
in the final section of this paper.

2. Statement of Results
Theorem 1 is a consequence of the results stated in this section; in the next section we

will supply the proofs of the theorems in the order that they are presented here.
The Oppenheimer-\Volkoff (OV) system is, (cf. [2]),

dp P 47Tr3p _
_ 27— + 2 + TP 1 .
T o GMp (1 ch> <1 V2 AT (2.1)
M- _ 47 pr?, (2.2)
dr
where
G M(r)

A=A(r)=1- 2; (2.3)

T
Equations (2.1), (2.2) form a system of two ODE’s in the unknown functiong(r),
p = p(r), andM = M(r), wherep denotes the pressure;? denotes the mass-energy
density,c denotes the speed of light/ () denotes the total mass inside radiuandg
denotes Newton’s gravitational constant. The last three factors in (2.1) are the general-
relativistic corrections to the Newtonian theory, [2].

Solutions of (2.1) and (2.2) determine a Lorentzian metric tepsdithe form

ds? = —B(r)d(ct)® + A(r) tdr? + 1 (6 + sin?(0)d¢?) (2.4)
that solves the Einstein equations
8rG

A

whend is the Einstein tensor, arid is the stress-energy tensor for a perfect fluid,

G="2T, (2.5)
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T =@+ pcz)uiuj +pgij. (2.6)

Herei andj are indices that run from 0 tq 3!(r) is defined by (2.3), and the function
B satisfies the equation
B/ /
2= 2 P
B p+ pc?

2.7)

The metric (2.4) is spherically symmetric, time independent, and the fluid 4-velocity is
given byu; = vB andu, = ug = ue = 0, so that the fluid is fixed in thet (r, 6, ¢)-
coordinate system, [2].

We assume that, (cf. [6]),

p
H=— (28)
P
and
_ dp/dr
g = m, (29)
satisfy the apriori bounds
0< 1< pe < 00, (2.10)
and
O<o_<o<o0s <00 (2.11)

Note that if an equation of state of the fop= p(p) is given, then the bounds (2.10)
and (2.11) are implied by the usual physical requirements on the fungidn(cf. [6]).

Our results rely on a regularity theorem, (Theorem 2 below), for solutions of (2.1),
(2.2) that satisfy (2.10) and (2.11). The results are stated in terms of the vatiaids
A, wherez is defined above in (1.1). That is, in [6] we showed that on the maximal
interval (1, 0] over whichM (r) > 0, the OV system (2.1), (2.2) is equivalent to the
system

dz z (1—A
—=-C— 2.12
dr CA ( r > ’ ( )
% =(1-32) (1‘4) , (2.13)
dr r
where
(L+5)1+%) A
= ) 2 31— . 2.14
c T -7 (2.14)
In terms ofz and A, Eq. (2.7) becomes
B 1 uz\ (1—A
7= (1r%%) <A> ~ (2-15)

The regularity theorem that we need is the following theorem proved in [6].
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Theorem 2. Let (2(r), A(r)) denote the smooth, (i.&'), solution of (2.12), (2.13),
defined onamaximalinterval;, rg],0 < r; < rg < oo, satisfying the initial conditions
z(ro) = 20, A(rg) = Ao, Where

O<zp<oo, 0<A4p<l (2.16)

Assume that (2.10) and (2.11) hold. THe¢r), A(r)) satisfies the following inequalities
forall r € (r1, 0] :

0 < z(r) < oo, (2.17)
0< A(r) < 1, (2.18)
B(r) > 0, (2.19)
0< M(r) < M(rg), M'(r) >0, (2.20)
and
lim M(r) =0. (2.21)
r—ri+
Moreover, ifry > 0, then
lim 2z(r) = +oo, (2.22)
r—rit
Iim+A(r) =1, (2.23)
r—T1
|im+B(r) = B(r1) > 0. (2.24)
If r. =0, then
0<2(r) <1, (2.25)

for all » € (0,79], and if p(r) has a finite limit at-; = 0, then (2.23) and (2.24) also
hold.
The original variables andp of the OV system (2.1), (2.2) satisfy the inequalities
0 < p(ro) < p(r) < p(r1) < oo, p'(r) <0, (2.26)

and

0 < p(ro) < p(r) < p(r1) < oo, p'(r) <O, (2.27)

forall v, ry < r < ro.
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We remark that (2.21) and (2.22) show thatan only tend to infinity at a value
ry > 0 whereM (r1) = 0. Furthermore, it follows that wherm, > 0, the values ofp(r)
andp(r) are bounded on the closed interval < » < r¢. Thus, solutions of the OV
system (2.1),(2.2), actually exist on a larger interval containing-p], but M > 0 is
violated.

Our first result is given in the following theorem which describes the continuation
of an OV solution to values & » < ry in the case when,; > 0. We then show that;
is always positive wheng < 2 R, (M (ro)); thatis,r; > 0 if ro is within 9/8'"¢ of the
Schwarzschild radius.

Theorem 3. Let (z(r), A(r)) denote the smooth, (i.e1), solution of (2.12), (2.13),
defined onamaximalintervély, rg],0 < r; < rg < oo, satisfying the initial conditions
(2.16), and assume that (2.10) and (2.11) hold, so that the hypotheses of Theorem 2 hold.
Assume that; > 0. Then the functiong(r), p(r) and M () can be extended as a smooth
solution of the OV system (2.1), (2.2), to valuesatisfying0 < r < ro. Moreover, for
r<r,

— 00 < M(0)< M(r) <0, (2.28)
where

lim 2 (r) = M(0), (2.29)

A(r) > 0, M'(r) > 0, andp(r) and p(r) are positive and bounded for all € [0, ro].
Furthermore, there exists a unique valge 0 < r, < r1, such that the functiong(r)
and p(r) assume their maximum valuesrat r,, and

|im0p(T) = |im0p(7") = |imop/(r) = |im0p’(7") =0. (2.30)
Finally, the componenB in the metric (2.4) satisfies

B(r)=0@"Y as r — 0, (2.31)
and the tensor invariank = RijklR"j’“l of the Riemann curvature tensor determined
by the metric (2.4) satisfies

const.

R >
= 7,6

as r — 0, (2.32)

so that there is a non-removable singularity in the metric (2.4) atO whenr; > 0.

The next theorem will be used to show thattends torg as the initial condition
A(ro) = Ap tends to zero. That is, as the initial condition is taken closer and closer to
the Schwarzschild radius, the pointat whichM (r1) = 0 tends ta. Since by (2.21),

M =0 atr = r1, and M (ro) tends toczz_g0 asAp tends to zero, we conclude that all of
the mass accumulates in a surface layer nearg as Ag tends to zero. Our analysis is
based on estimating, explicitly in terms @§, the positionr = r,. of the unique point
where%ﬂ assumes its maximum. A calculation (below) shows that=at,, we also
havep(r.) = p(r.), soz(r.) = 1, and moreoverp > p for r, < r < ro, andp < p for
ry<r<ry.

3 The pointr, also plays an important role in the shock-wave matching problem set outin, [3, 4, 5]. Indeed,
we showed in [5] that outgoing shocks, modeling explosions, can be constructed from any outer OV solution
so long asp > p. We will use these results in a future paper to study shock-waves near the Schwarzschild
radius.
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Theorem 4. Let(z(r), A(r)) be a smooth solution of (2.12),(2.13) starting from initial
values(zg, Ag) and defined on a maximal intervah, 9] . Assume that the initial values
satisfy

0< 20 <1, (2.33)

0< Ag < é. (2.34)

Thenr, > 0, and there is a unique poimi., r; < r, < ro,suchthat:(r,) =1, 2(r) < 1
forr > r,, z(r) > 1for r < r,, and the following inequalities hold:

Ty [1— 9A(ro)

3 1-A
< — .
P <) S oot gn (2.36)

and

forall r, r, <r < ro.

The estimate (2.35) gives a rate at wh&oh—> 1 asAy — 0, and we will use this
to demonstrate thaﬁg — 1,asAp — 0.

Note that the hypothesis @ Ay < % implies thatrg is outside the Schwarzschild
radiusR,(Mo), but inside 98t"* of R,(Mo).

Theorem 1 of the introduction follows directly from Theorems 2-4, together with
the following corollary which generalizes the Buchdahl theorem:

Corollary 1. If r; = 0, thenAo > §, or equivalently
9
1o > g Rs(M(ro))-

To see this, note thatif, = 0, then)(0) = 0, and soM (r) = [ 4mp(s)s*ds. Now
suppose thatly < %. Then by (2.35)7, > 0. Butif r; = 0, thenp’ < 0 impliesp < p’
soz < 1 whenr; = 0. (Theorem 3). Thug; = 0 is impossible when, > 0 because
the latter implies: > 1 forr < r,, a contradiction.

The next corollary shows that — rg asAg — 0, thereby demonstrating that all of
the mass accumulates in a layer that tends &sr( tends to the Schwarzschild radius.

Corollary 2. If rg and zg are fixed, then

lim =1 (2.37)
Ao—0 To

The final theorem estimates the size of the surface layer r < ro, (Wherez < 1),
from above in terms of the initial datag, Ag). Our estimate for the width of the layer
depends on the valuB(r.), but this value depends on the initial condition B(R)
at the surface of the star= R. Thus in this case we shall assume that the solution is
defined forr; < r < R, and thatim,._,gz(r) = 0, and B(R) = A(R). (Note here that
the OV solution will not go continuously to a vacuumvat R, (2(R) = 0, p(R) = 0),
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unlesss — 0asr — R. This follows directly from (2.12) becausedifis bounded away

from zero, then the system (2.12), (2.13) is regular, and has a unique solution through
r = R, namely, the Schwarzschild solution. Allowiag— 0 asr — R, is nota problem

in the arguments to follow.)

Theorem 5. Let (2(r), A(r) be a smooth solution of (2.12),(2.13) starting from initial
values(zg, Ag) and defined on a maximal intervah, R], 0 < r1 < ro < R, where we
assume the initial values satisfy (2.33), (2.34), together with

lim,_gz(r) =0, (2.38)
and
2(r)=0 and B(r)= A(r) for r > R. (2.39)
Then the following inequality holds:
Tx 1- Ao
?/.70 -~ m. (2.40)

Moreover, ifA is sufficiently small so that' in (2.12) satisfies” > 0 for r € (r., 7o),
(for exampleA < % ando < 2 will suffice), thenB(r,.) satisfies

1 14342

B = B(R)e w0 0%, (2.41)

Note that to estimat®(r,) by using (2.41), (which by (2.40) yields an estimatei;ﬁoer
from below), we need to estimate the functiGrin (2.14) and this essentially requires
knowledge of the equation of state.

3. Proofs of Theorems

In this section we supply the proofs of Theorems 3-5 stated in Sect. 3. From here on we
always assume that the speed of liglg unity.

Proof of Theorem 3Assumer; > 0. By Theorem 2,

lim M(r) =0,

=71
and p andp have finite positive limitso(r1), p(r1), atr = r1, respectively. Thus by
defining M (r1) = 0, we have a continuous extension of the OV solution-tg ;.
Moreover,

M (r1) = drp(ry)r? > 0;

thus there is an extension of the OV solution to a neighborhepd- (¢, r1], and we
choosee sufficiently small so that, on this neighborhogdy) > 0 andp(r) > 0 but
M(r) < 0. Now let I = (r3, r1] denote the largest interval over which the solution of
the OV equations starting from initial datarat 4, exists, is smooth, and boghandp
are positive. The QV equation (2.1) can be rewritten in the form

,_ G(1+p)
20’

r

p(M + 4 pur) (3.1)

2GM *
1—29M
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Let
D(r) = M(r) + drp(r)r. (3.2)

Claim 1. p and M are bounded onr, r4].

Proof of Claim 1.Using (3.1) we have that for € I,

"< Kgpzrzi (3.3)

— ) < K. 2 (G
P = sz( TpT )Zgu\/[| = ‘M|7

for some positive constanis; andK»,. But M, = M (r—¢) < 0. Thus, sinceélf’(r) > 0
onl. = (r3,r1 — €], we have

K>

/
—p' <
| M|

P2r? < K pir?,

for some positive constaiit. Then integrating fromr > r3 tor1 — € gives

1

p(ri—€) + 513 — (r1 — ¢)*]

p(r) < < Const

and this proves Claim 1.

Using the claim we conclude th&i(r,;) = 0 for somer, € I. Indeed, if D(r) # 0
for all » € I, then sincey’ < 0 andp is bounded, it follows thap, p and M would
have finite positive limits at = r3 if r3 Z 0, so we must havez = 0 in order not to
contradict the maximality of the interval But if 3 = 0, then clearlyD(r) = M +4mpr3
is negative for sufficiently close ta- = 0.

Now letr, be any point in/ for which D(r;) = 0. Then

d
5mm=me¢mmﬁ+mmm@>a

sincep’(rz) = 0. It follows from this that there exists a uniquec I atwhichD(r,) = 0.
Forr < rp, note thaty/(r) > 0 andp/(r) > 0.
Claim2. r3 = 0.

Proof of Claim 2.Using (3.1) we can write

,_ G(1+p)
P = 2
ar

1 1 r p
3

for some positive constanfs and K. Integrating fromr < r, to r, gives

mw>pva<g>ﬁ7

so thatp(r) > 0 for all » > r3. We conclude that eithe; = O or else we contradict the
maximality of I. This proves Claim 2.

Claim 3. lim,._g p(r) = 0.
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Proof of Claim 3.Note first that
D'(r) = M'(r) + 4rp ()12 + 12xp(r)r? > 0,
for all € (0, r2]. It follows that
—D(r) > —D(r, —¢) = K,
0 < r < 1 — ¢ for some small positive number Thus from (3.1) we obtain for
O<r<ry—re,

so that
oKL
'S

whereK_ > 0. Thus for such- we have

w0 <0 ()

and this shows that(r) — 0 asr — 0, which proves Claim 3.
Next we show that

Iim0 p'(r)=0. (3.4)
To see this, note that farnearr = 0, we obtain from (3.1) that
G +p) r
/= M|+ 1+
o ==z M+ 0 g (L+OW),
which we can rewrite as (1+)
+
7)== 2L+ o).
g T
Since lim._o p(r) = lim,._o p(r) = 0, we may write this last equation as
1+
2y = EHHOL L 069) as ¢ — 0. (3.5)
20(0) r

Now integrating fromr < e tor = ¢, (Wheree is near zero), we obtain

o(r) = p(e) (g)KO K000,

where
_ 1+u(0)

07 "25(0)
But, 12(0) = lim, o %2 = p/(0) = 5(0). Thus,

_1+0(0)
Ko= 20(0)

> 1,

becauser, the sound speed squared, is less than unity. We conclude that
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lim @ =0
r—0 T ’
and hence 0
£'(0) = lim p(r) = p(0) =0.
r—0 r—0

Finally we verify (2.31) and (2.32). For (2.31) note that we have

B %

B pp (3.6)
and using an argument similar to the derivation of (3.5), we obtain thateéx
, _1+p (1 1
= S+ . 3.7
P =—3\7" 2pioy " 37
Substituting this fop’ in (3.6), we see that far near zero,
B’ p 1
— ==+ . .
Now integrating fromr < e to r = € yields
€
B()= B (%) A +0(). (3.9)

This shows thaB(r) = O () nearr = 0.

r

To verify (2.32), a calculation using MAPLE yields

o RABB— A(BY+ BABY  24%BY 24  4(1- A
- 4B4 r2B2 r2 ré

Thus ) )
R A=Al 0)
T T

— o0 as r — 0,

sinceM (0) # 0. This completes the proof of Theorem 3.

We can use the shock-wave matching techniques developed in [3] to show that the
non-removable singularity that appears in the metric at0 in the case whem > 0
really does represent a delta function source of negative density. Indeed, a Friedmann-
Robertson-Walker (FRW) metric can only be matched Lipschitz continuously to a metric
of type (2.4) if the following condition holds, (cf. [3]):

3 _
M(r) = Epr?’, (3.10)

wherep denotes the FRW density behind the interface between an FRW metric inside
radiusr and a metric of type (2.4) outside radiusThus if M (r) < 0, then only FRW
metrics with negative density can be matched to (2.4) at radlaghe limit thatr — 0,

M(r) — M(0) < 0, and thus by (3.10) FRW densitptends to a negative delta function
source of magnitud#/(0) centered at = 0. In other words, replacing the ball of radius

r = e by an FRW space at fixed time has the effect of regularizing the singularity &t

at that time. But by (3.10), the FRW solution inside radius e determines a sequence
whose density converges to a delta-function of negative &€ ase — 0.
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We now show that a solution of the OV equation starting from initial valués,) <
0 andp(ro) > 0, cannot reachy = 0 for someR > ro without havingM (R) > 0. To
see this note that ifim,._ gp(r) = 0, we must have’(r;) < 0 on a sequence, — R,
solong ap > 0 forr < R. Butif M < 0, thenA > 1, and so the OV equation (2.1)
implies that

0 < limy, . (M(rg) + 4np(ri)ry) = limy, . r M(ry),

and so in fact, sincé/’(r) > 0 whenp > 0, we must havel/(R) > 0. Thus negative

total masses wilheverbe observed at the surface of a star R, (or beyond), ifo(r) > 0

at anyr < R outside the Schwarzschild radius (i.e., the solution is not the empty space
Schwarzschild solution with negative mass).

Proof of Theorem A\Ve begin by proving the following:
Lemma 1. Let(z(r), A(r)) denote the solution of (2.12), (2.13) defined on the maximal
interval (r1, ro], starting from initial dataz(rg) = zo, A(rg) = Ag, Where

0< 20, Ap < 1,

(so that the hypotheses of Theorem 2 hold). Assumerthat 0. Then there exists a
unique pointr,, r1 < r, < ro, such that:(r,) = 1.

Proof of LemmaSincez(rp) < 1, and by Theorem 2;(r) — +oco asr — ry, we see
that there exists an, for which z(r.) = 1. On the other hand, by (2.12)(r) < 0O if
z > 1, so we see that, is unique. This completes the proof of the lemma. [

Now differentiating the average density,

—_ 3 M(r)
p= 47 13
we obtain
3 30
7=2-p="-1), (3.11)

so we see that fakes a unique maximum at= r,., and thus

p(r) <0 if ro, <r<mo, (3.12)

Pr)>04f ri<r<r,. (3.13)

We now estimatg: whenA4o < % As a first step, we prove the following lemma,
which implies (2.35) in the special case whens the boundary surface of the star, and
the Schwarzschild solution is attached to the OV solution=at. (Note here that the
QV solution will not go continuously to a vacuunvat R, namely,z(R) = 0, p(R) = 0,
unlesss — 0asr — R. This follows directly from (2.12) because difis bounded away
from zero, then the system (2.12), (2.13) is regular, and has a unique solution through
r = R, namely, the Schwarzschild solution. Allowiag— 0 asr — R, is nota problem
in the arguments to follow because, for any:."R, p(7') Z 0, o > 0, and our regularity
results Theorems 2 and 3 are valid fox 7.)
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Lemma 2. Assume the hypotheses of Theorem 4, and in addition assume that

p(r) =0=p(r),

and
B(r) = A(r),

for all » > ro. Then inequality (2.35) holds.

Proof of Lemma Z=rom Weinberg, [2], p. 333, we have the following identity that holds
on solutions of the OV system:

<1\/g(\/§y> -gB (%) 7 (3.14)
r A\r

where prime denotes differentiation with respect tiNote that by Theorem 24() and

B(r) are both positive onrg, 79].) Now from (3.11) and (3.12), ) < Oforr > r,,
(and this holds when, = 0 because in this case = 0, and thus from (3.11)y < 0
for all » > 0), so that, from (3.14),

r

1 A%
(m VE| ) <0,
holds forr, < r < rg. Integrating we obtain for such

o> [* (2vawmy) as= 1 vaga [VBGa] - 2vae [VBe)]

or

r A(ro) B'(ro) !
mro 5o 2 <[\/B(r)}. (3.15)

But note that by assumptiaBi(rg) = A(rg), and moreover,
2G M (ro)
——.

To

B'(ro) = A'(ro) = (3.16)
Indeed, for the second equality we usE(rq) = 4mp(ro)r? andp(rg) = 0. For the first
equality, we substitute the expression férgiven in the OV equation (2.1) into (2.7)
and again use the fact thatro) = p(ro) = 0, and A(ro) = B(ro).

Integrating (3.15) fromr, to 7o and using the fact thas’(rg) = A’(ro), gives

v/ B(ro) — v/ B(ry) >

gM(V“o) / QMo /
/1 2gM(r) 1 — 2,

2 _ a4t _ M
M(r) = 5 r® = 2 plro)r® =~
o

because

Now making the substitution = 1 — 293%2,2 in the last integral, gives
0
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3V/A(ro) > |1 - 29240@. (3.17)
"o

In particular, this implies that, > 0 because, = 0 would imply that4, > %, in

violation of our hypothesis. But, if, > 0, thenz(r) > 1 forr < r, by (2.12). Now
using Theorem 2, we see thatif = 0, thenz(0) < 1, and this is a contradiction. Thus
r1 > 0. Now simplifying (3.17) yields (2.35) in the case wher rg is attached to the
empty space Schwarzschild solution. This completes the proof of Lemma 21

To complete the proof of (2.35) it remains only to extend Lemma 2 to the case
when the initial conditions at = rg are the general conditions (2.33), (2.34); that is,
this is the case when we do not assume that the solution is attached to the empty space
Schwarzschild metric at = ro; i.e., we assume tha(rg) > 0. To accomplish this, we
will extend the definition of the equation of state functig(p) to values ofp smaller
than the value(ro) in such a way that the extension of the solution ts rg, (r near
ro), hits p = 0 at an arbitrarily small distance from= ry. The extension op(p) to
values ofp < p(rg) = po does not affect the solution fer € (r1, 7] because in this
range,p’(r) < 0, and hence > p(rp). Thus (2.35) will follow in full generality by
passing to the limit.

To carry out this program, let & ¢ < pg be given and leps(p) be an extension of
p(p) to values ofp < po such that the following conditions hold:

ps(p) =p(p), for p = po,
ps(p) =dp, for 0<p<po—3, (3.18)

and we letps be a smooth interpolation gfbetween the valugs= po andp = po — 9.

For this extensiom;s of p, we now show that the extension of the solution by the OV
equation to values of > rg, satisfiesy’(r) < 0, andp(r) = O for somer € (rg, 70 + €)

for e = €(0) — 0 asd — 0. To this end, note that for sufficiently close tor = ro,

it is not difficult to see that using the OV equation (2.1), we can obtain the following
estimate:

p(r)
p5(p(r))’

whereK is a constant independent &f(uniform over a fixed--interval about-y, and
depending only on values of the solution near o). Now fix e << 1; we show that
there exists & such that the solution of the OV system starting from initial data at
r = ro to valuesr > rq, (using equation of statgs), must satisfyp(r) = 0 for somer,

ro < r < 1o+ €. To this end, assumg(r) > 0 on this interval for alb << 1. We show
that this is impossible. Indeed, integrating (3.19) franto ro + € gives

p(ro+e) o rote
/ Sdp < fK/ dr = —Ke.
o P T0

p(ro+e) 7 po—0 7 p(rote) ’
/ Ps0) ) 4 / 0 s / )
PO

p Po p [)0—6 p
= 0(0) +dp(ro + ¢€).

pr) < —K (3.19)

But
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Thus we get

O@0) +dp(ro +€) < —Ke. (3.20)

Sincee is fixed, we see from (3.20) thatrg + €) cannot be positive fof sufficiently
small. This proves that for every > 0 there exists @ > 0 such thaf(r.) = O for

ro < r. < ro+¢, whenps(p) is taken as the equation of state. Thus for eaeh< 1,

we can match the (extended) OV solution determined from initial data (2.33), (2.34), to
the empty space Schwarzschild solution; atr.. Thus, by applying the last lemma we
conclude that

where

2GM(re)

€

A= A(r)=1-

SinceM (r.) — M(rg) ase — 0 because

M(re) — M(ro) = /T'e Ar p(r)rdr — 0,

To

ase — 0, we conclude that indeed estimate (2.35) must hold in full generality.
To complete the proof of Theorem 4 it remains only to prove (2.36). To this end, we
have

AT _ A
M(ry) = ?p(r*)rf = ?p(r*)rf,

so that
2G M (r
Ay=1- M g BTGy
Ty 3
and hence
&G 2 BTG (194
1- 40 = 252 > B g (T4,
where we have used (2.35). Thus
' 8rG 2 1—-94,
O0<A(ry) <1-— Tp(r*)ro ( 14 > ,

and simplifying yields (2.36) becaug&r) < 0 onr, < r < ro. This completes the
proof of Theorem 4.

We now give the proof of Corollary 2. For this, consider a solution of (2.12), (2.13)
defined on the maximal intervat4(, o), starting from initial data4y, Ag) that satisfies
0 < 29, Ag < 1. Now fix zg andrg and letdg — 0. Then we know from Theorem 4 that
ry — 10 aSAg — 0. We also show that; — rg asAg — 0. To this end, assume not.
Then (at least for some subsequencelgt), there exists an intervat{, o) such that
rp < 71 for all Ag — 0 in this subsequence. We show that this implies &t — oo
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forall r € (71, 7o) asA tends to zero along this subsequence. This would give the desired
contradiction because= p/p, and

)= o 0
3

is bounded away from zero ak — 0, S0z — oo implies thatp(r) — oo asAg — 0.
The contradiction then is that

T0 T0
M(rg) = / A7 p(ryr?dr > / A7 p(r)r?dr — oo,
T1 T1
asAp — 0, but M(rp) < co. (We use the fact that the integral of a sequence of positive
functions tends to infinity if the sequence tends to infinity pointwise.) Thus we need only
show thatz(r) — oo asAg — 0. To see this, note first that> 1 for all Ay sufficiently
small because fodg sufficiently small;-, > r and hence(r) > 1 because’ < 0 for
r < r4. Thus (2.14) implies that

c>C

for some positive constaut that is independent ofly. Moreover, solving for% in
(2.13) and substituting into (2.12), and using the fact that1 and that

z 1
> o
‘1 -3z — 3
we obtain the inequality
I < g_il
TE3a
which holds for allr € (71, r,). Integrating between andr,. yields
C [ A(r)
>1+—| . 21
0z1egn(3) &2

Notice now that

M(r,) = M(ro) — /TO 47 p(r)rdr.

But since (2.36) shows tha(r) is uniformly bounded on the intervat.(, o), we see
that this latter integral tends to zero 4 — 0 because, — 0. ThusM (r.) — M (ro)
asAg — 0 which impliesA(r,) — 0 asAg — 0. But A(r) is uniformly bounded away
from zero becausdl’ = &=321=4) is hounded above by a nonzero negative constant
whenz > 1. In light of this, (3 21) shows that(r) — oo asAg — 0 for all » € (7, o),

the condition we sought. This proves Corollary 2.

Proof of Theorem BMVe first verify (2.41). From (2.15), (2.12) and (2.14), if the function
C given in (2.14) satisfie€' > 0, thenz is a monotone function of, so we have
din(B)y _ 1dB _1dBdr _ 1+3uz)l
d2 ~Bdz Bdrdz  C =z
Thus integrating fromg to z = 1 gives (2.41).
We also shall need the following lemma:




Oppenheimer—\Volkoff Equations Inside the Schwarzschild Radius 615

Lemma 3. The metric coefficient®(r) and A(r) determined by a solution of the OV

equations satisfy
d {m <A>} - _A*g 0 <0 (3.22)

dr B A

Proof of LemmakFirst write

i]n é —é/_g/
dr B)| A B’

and use (2.13) together with the OV equation (2.1) to write

élfg_(]-*&Z)(l*A)i(lfA) 1+47Tpr3
A B - TA TA M )

from which (3.22) follows upon noticing that

47 pr3
3z = .
M

This completes the proof of the lemma. O
To prove Theorem 5, we see from (3.14) together with the last lemma, (which implies
that4 > 1 sinceB(R) = A(R)), that we may write

(Fvanweey) =g (M)

for all r € (., R). Integrating this expression frome (r., R) to R yields

1 B VAP : M(R)  M(r)
EVA(R)Z\/W_ r \/B(T)Zg< R3 - ’f'3>.

Using (3.16) and simplifying gives

e GM(r)
B(r) < Wa

so integrating fromr, to R gives

[ ) [

or

R T
VB(R) — /B(ry) < / g]\fz() - th(T)dr. (3.23)

r

Now to estimate the integral on the right hand side of (3.23), use the fact that

M(r) < M(R),
and
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1 1
< )
\/1 _ 2GM(r) \/1 _ 2GM(R)

to obtain

dr < >
[+ 20M@) LT 1 _ 20M(R)
1-— == " 1 p

Using the substitution

dr.

3

R R
/ g]\;-fz(r) 1 gM(R) 1 (3.24)

_,_ 2M@E)

r

du = 729]\42(1%) dr
T

we obtain from (3.24) the estimate

VB — VB < VAR -1 - 21,

Finally, sinceB(R) = A(R), a straightforward calculation gives (2.40). This completes
the proof of Theorem 5. O

4. Concluding Remarks

The issue of negative mass functions raises an interesting question. Recall that, for
spherically symmetric solutions, it is only the total mag¢R), which is the total mass
measured in the far field, that has an intrinsic physical meaning in general relativity. That
is, in the Newtonian theory/ (r) = for 47 p(s)sds must be interpreted as the total mass
inside radius- because the underlying space is Euclidean; but in general relativity, the
mass function enters indirectly through the metric coefficiép) —2, the coefficient of

thedr? term in the gravitational metric tensor, via the formlgr) = g—cgz(l —A(r)). In

general relativity, only the equatiavi’(r) = 4 pr? follows from the Einstein equations,
and the integration constant is not specified. Said differently, in general relativity, there
is no intrinsic physical interpretation for the functidd(r) whenr < R because the
spacetime inside radiusis not fixed apriori as in the Newtonian theory.

Since the density and pressure are everywhere positive but théif{akis negative
for 0 < r < r1 in the solutions constructed here, we pose the question as to whether a
region 0< r < 7 < rp in an OV solution can be replaced by a perfect fluid solution
that is singularity free inside radius such that the density and pressure are everywhere
positive. This introduces the following dichotomy. Namely, if such a matching is possi-
ble, then the gravitational field can have a repulsive effect, in light of the fagh'tha0
nearr = 0. If such a matching cannot be made, then the following conjecture must hold:
Conjecture: No singularity free metric that solves the Einstein equations for a perfect
fluid can be matched Lipschitz continuously to the negative mass portion of an OV metric
in such a way that the interface between the metrics describes a fluid dynamical shock-
wave, and such that the matched solution is singularity free, and has everywhere positive
density and pressure.

We showed above (before the proof of Theorem 4) that the conjecture is correct for
matching to a Friedmann-Robertson-Walker metric; cf. [3].
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In light of this dichotomy, we find it interesting that, as we proved aboventtegiant

quantity lim._, .. M(r) = M (R) must satisfyM (R) > 0 at the surface of the star= R,

even whenl/(r) is negative at some interior point< R. Therefore we conclude that
negative masd/ < 0 would never be seen by an observer beyond the surface of the
star, (consistent with the positive mass theorem, [8]).
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