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We analyze the time dilation associated with the propagation of a shock wave that moves outward into a
static fluid sphere in general relativity. In this way we investigate the possibility that a shock wave inside a star
could supply the pressure required to hold up a highly collapsed static outer layer. In such a model, one would
observe a highly redshifted. time-independent emissions spectrum during the time interval between the time
when the shock wave is formed, and the time when it reaches the star surface. Our conclusion is that the time
it takes a shock wave to pass through a surface layer and reach the surface of a star, as seen by an observer in
the far field, is on the order of the total mass of the star times a function that tends to infinity as the outer
boundary of the star tends to its Schwarzschild radius. [S0556-2821(97)04312-9]
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L. INTRODUCTION

The well-known stability limit of Buchdahl [1,2]. lends
support to the belief that large redshifts in stellar objects
must be due to large recessional velocities, as opposed to
strong gravitational fields near the surface of a star. The
Buchdahl result is derived from an analysis of the
Oppenheimer-Volkoff (OV) equations that describe the pres-
sure gradient in a static fluid sphere when the gravitational
forces are modeled by Einstein's theory of general relativity.
Buchdahl's theorem states that if the radius of a star of mass
M ever gets within 9/8ths of the Schwarzschild radius for
mass M, then no static configuration can supply a pressure at
the center of the star sufficient to support the mass M at that
radius. This result places a limit of 2 on the redshift factor
for emissions from the surface of a static star [2]. The result
applies for any equation of state of the form p=p(p) (where
p denotes the pressure, pc? the mass-energy density, and ¢
denotes the speed of light), and is based on the assumptions
that the fluid is time independent, spherically symmetric, and
that the pressure p at a given radius is exactly that required
to balance the gravitational force of the fluid outside that
radius in a general relativistic sense. In [3], we described the
global behavior of solutions of the OV equations starting
from initial data inside 9/8ths of the Schwarzschild radius.
We showed that black holes never form in solutions of the
OV equations, but rather, the entire mass of a star accumu-
lates in a thin layer that tends to the outer surface of the star
as the surface of the star tends to its Schwarzschild radius.

In this paper we use the surface layers described in [3] to
analyze shock-wave solutions of the Einstein equations in
which the shock wave is arbitrarily close to the Schwarzs-
child radius. We imagine that the shock wave represents the
outer edge of an explosion inside a star, which propagates
supersonically outward through a static outer layer modeled
by solutions of the OV system. We estimate the time Ar it
would take a shock wave starting inside such a surface layer
to reach the surface of the star, as measured by a distant
observer, when the surface of the star lies inside 9/8ths of its
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Schwarzschild radius. In this case one expects a large time
dilation due to the strong gravitational field near the star’s
surface, but since the layer width tends to zero as the surface
is compressed into its Schwarzschild radius, it is not a priori
clear, and requires estimates to determine whether At tends
to zero, or is bounded, or tends to infinity in this limit. Fur-
thermore, shock waves always travel at supersonic speed, but
as the layer width depends on the sound speed as well, it is
also not a priori clear whether or not making the shock and
sound speeds small can'significantly increase At. In this pa-
per we answer these questions definitively by giving sharp
estimates for At from above and below. Our conclusion is
that the time it takes the shock wave starting inside such a
layer to reach the surface of the star is on the order of the
total mass of the star times a function that tends to infinity as
the shock wave is started closer and closer to the Schwarzs-
child radius. Moreover, it is somewhat surprising that mak-
ing the shock and sound speeds small does not significantly
increase Af.

By placing a shock wave inside a surface layer that oth-
erwise would be unstable, we explore the idea that a shock
wave could supply the pressure required to ‘‘hold up™” a
surface layer when it is inside 9/8ths of the Schwarzschild
radius. Our analysis in this paper can thus be viewed as an
investigation into the validity of the 9/8ths stability limit in a
dvnamical setting. The results we obtain imply that the time
it takes such a shock wave to reach the surface can tend to
infinity as the shock is placed closer and closer to the
Schwarzschild radius. It follows that, in principle. this model
allows for the possibility of a star whose surface lies inside
9/8ths of the Schwarzschild radius, such that the star surface
emits a time-independent emissions spectrum for an arbi-
trarily long time, as measured by an observer in the far field.
This suggests the possibility of stellar emission spectrums
which have arbitrarily large redshifts due to gravitational
fields at their surface. In actuality, however, we show that
either the mass must be exceedingly large. or the laver ex-
ceedingly narrow, in order for As to be on the order of 1 yr.
Thus. for stars whose solar mass is on the order of one solar
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mass, one can interpret our results as a further justificaticn of
the 9/8ths stability limit in a dynamical setting, thus support-
ing the conclusion that, for such stars, observed high red-
shifts in stellar emissions are due to large recessional veloci-
ties as opposed to strong gravitational fields. On the other
hand, for masses much larger than the mass of a typical
galaxy, this interpretation is not clear. Qur results in this
paper are quite general in the sense that they apply whenever
it is reasonable to model the outer layer of a star by a solu-
tion of the OV equations.

In our final result (theorem 3 below) we construct solu-
tions of the Einstein equations that agree with an OV solu-
tion outside some positive radius, have positive density and
mass, and are singularity-free for some interval of time. This
construction applies to surface layer solutions of the OV sys-
tem that lie arbitrarily close to the Schwarzschild radius. On
the other hand, Buchdahl's theorem implies that static,
spherically symmetric, time-independent solutions of the
Einstein equations must have a singularity if the surface lies
within 9/8ths of its Schwarzschild radius. Theorem 3 implies
that this singularity theorem does not carry over to dynami-
cal models.

To do the construction for theorem 3, we use the *‘shock
matching’’ methods developed in [4,5] to explicitly construct
Lax-admissible shock-wave solutions of the Einstein equa-
tions (c.f. [6,7]). This is done by placing a shock-wave inte-
rior to the surface layers constructed in [3] which lie arbi-
trarily close to the Schwarzschild radius. We show that these
shock-wave solutions exist for a finite interval of time, and
this proves that an OV solutign given for, say, r=r at a fixed
time, can be extended as initial conditions defined on r<rin
such a way that the Einstein constraint equations are satis-
fied, cf. [10], and this can be done even when the OV solu-
tions lie arbitrarily close to the Schwarzschild radius. In this
construction, the shock waves tend to a standing shock wave
moving at the speed of light, right at the Schwarzschild ra-
dius, as the shock is started closer and closer to the
Schwarzschild radius. In this limit, the shock wave appears
to be stationary as viewed by an outer observer, and also
moves at zero speed relative to the fluid behind the shock. (It
is somewhat paradoxical that, in this limit, the shock trajec-
tory is lightlike because the shock is fixed at the Schwarzs-
child radius, but yet the shock moves with zero speed rela-
tive to the fluid behind the shock. The point is that the
coordinate system for OT metric becomes singular at the
Schwarzschild radius, and thus the shock-matching tech-
niques break down in the actual limit.)

To be precise, recall that in [3] we showed that the surface
layers that form in solutions of the OV system when the
surface lies within 9/8ths of the Schwarzschild radius are
determined by the values of three independent parameters
ro, Zo, and Ay, where zg and A, can be taken to be the
initial conditions for the OV system at radius ro. Here, A,
=1-2GMy/c’ry, and 2y=p,/py, where My, py. and p,
E(3/411-)(/%0/"(3,), denote the mass, density, and average
density at radius r=rg, respectively. The constants G and
¢ denote Newton’s gravitational constant and the speed of
light. The condition that the outer surface lies inside 9/8ths
of the Schwarzschild radius Rg(M,), where Rg¢(My)
=2GM/c?, is equivalent to the condition that Ap<l1/9.
Thus, let At denote the time, as measured by an observer in
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the far field, that it would take for a shock wave to propagate
out through such a surface layer described by a solution of
the OV equations, starting from initial data 0<zy<1| and
0<A(<1/9. In this paper we always assume that the density
behind the shock is smaller than the average density; this
restricts the surface layer to the region 0<z=<1. [One could
be more general, but the shock-matching results in [5] re-
quire z<1 for outgoing.shock waves. Moreover, since, by
Eq. (2.13) below, the time dilation factor A takes a minimum
value at z=1/3, it follows that the dominant effects of time
dilation occur within the region where 0<z< 1.] We prove,
under the assumptions that the sound speed of the fluid is
uniformly bounded away from zero, and that the shock speed
is less than the speed of light, that the time A is bounded
below by a function that is proportional to the the total mass
M of the star, times the factor In(1/zg). It follows, then, that
At tends to infinity as z,—0 or My—. Moreover, trying to
make At large by making the shock speed small does not
succeed, because, since the shock is supersonic, a small
shock speed implies a small sound speed, and this, in tumn,
has the effect of making the layer so narrow as to cancel out
the effect of the small shock speed on the value of At; c.f.
Eq. (1.1).

Now at first glance it is somewhat surprising that by mak-
ing zo small we can create a large time dilation. However,
assuming that ry and M, are fixed, 7,—0 is equivalent to
po—0. Thus, what is really happening, is that the assumption
that the sound speed is bounded from below as p—0 has the
effect in the OV system of creating a surface layer inside r
=rg. It tirns out that within this layer, the metric coefficient
A(r), the function that governs the time dilation, stays small
for a long enough subinterval within the layer so as to make
Ar tend to infinity, even though the width of the layer tends
to zero. However, because the logarithm grows so slowly, it
follows that the surface layer must be exceedingly narrow for
the factor In(1/z4) to significantly affect Ar. In fact, the
shock wave would need to be essentially right at the
Schwarzschild radius, or else the mass of the star would need
to be on the order of galaxies, in order for the lifetime A to
be on the order of a year. Indeed, our conclusion implies the
following: The time At it would take a shock wave (or sound
wave) to propagate from radius r=r_, where z(r,)=1, out
to radius ro, where z(ry) <1, is estimated above and below
by
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where ol =dp/dp denotes the square of the sound speed of
the fluid. If we assume the equation of state for free particles
in the extreme relativistic limit, namely p =(¢%/3)p, [2], and
evaluate the physical constants, we obtain the following es-
timates for At in years:
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for a mass M, equal to N solar masses. The logarithm term
tends to infinity as zy—0, but this term cannot significantly
increase the value of Ar without making the size of the layer
unrealistically narrow.

The plan of the paper is as follows. In Sec. Il we describe
the surface layers based on our earlier mathematical resuits
on solutions of the OV system. In Sec. III we state the new
results in this paper. In Sec. IV we prove the consistency of
placing shock waves arbitrarily close to the Schwarzschild
radius by establishing the existence of Lax admissible shock
waves based on matching Oppenheimer-Tolman (OT) met-
rics (determined by solutions of the OV system) to
Friedmann-Robertson-Walker (FRW) metrics, across shock
interfaces, cf. [3]. That is, it follows from the Lax shock
conditions that all speeds in the problem are bounded by the
speed of light, and that the shock is supersonic relative to the
fluid in front of the shock and subsonic relative to the fluid
behind the shock. In Appendix A we summarize the prior
results needed for the shock-matching problem in Sec. II1,
and in Appendix B we include a derivation of the volume of
the FRW space that lies inside the shock wave in the shock-
matching problem.

II. SURFACE LAYERS NEAR BLACK HOLES

In this section we summarize the results in [9,8] which
describe solutions of the OV equations in the region 0<r
<rg, starting from initial data 0<A,< 1/9, 0<zg<l, at r
=rg.

The Oppenheimer-Volkoff (OV) system is (cf. [2])

3

dp p 47rip
2 8P -1

r ar gMp(l+;;2-)(l+W—)A s (21)

dM—4 2 2.2

= 4mer, (2.2)

where
G M(r
A=A(r)°=‘l—2;71 i ). (2.3)

Equations (2.1) and {2.2) form a system of two ODE’s in the
unknown functions p=p(r), p=p(r), and M=M(r),
where p denotes the pressure, pc? denotes the mass-energy
density, ¢ denotes the speed of light, M(r) denotes the total
mass inside radius r, and G denotes Newton's gravitational
constant. The last three factors in Eq. (2.1) are the general-
relativistic corrections to the Newtonian theory [2].

Solutions of (2.1) and (2.2) determine a Lorentzian metric
tensor g of the form

ds?=—B(r)d(ct)*+A(r) " dr*+ r[d6*+sin’(6)d 42,

(2.4)
that solves the Einstein equations
87§

G= i A (2.5)

when G is the Einstein tensor, and 7 is the stress:energy
tensor for a perfect fluid:
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7;j=(P+PCZ)“i"j+P8ij- (2.6)

Here A(r) is defined by Eq. (2.3), and the function B satis-
fies the equation

Bl 2 pl
' P_W 2.7

The metric (2.4) is spherically symmetric, time independent,
and the fluid four-velocity is given by u,= VB and U,=ug
=1 4=0, so that the fluid is fixed in the (t,r,8,d) coordinate
system [2].

We assume that the equation of state is of the form
p=p(p), and satisfies the bounds (c.f. [8,3])

O<u<c? (2.8)
and
0<op,<o<c? (2.9)
where
p
==, 2.10
r=2 (2.10)
and o, the sound speed squared, is defined by
dpldr :
o= d—’m (2.11)

Note that since an equation of state of the form p=p(p) is
assumed, the bounds (2.8) and (2.9) are implied by the usual
physical requirements on the function p(p) (cf. [8]).

In [8] we showed that on the maximal interval (ry,rg]
over which M(r)>0, the OV system (2.1) and (2.2) is
equivalent to the system

dz _ CZ 1-A 212
AT 212
dA -3 1-A )
27—( z) I (2.13)
where
L+ p/e?)(1+3uz/c? A
CE( £ £ )— l-2) —.
5 1—-A
c?
(2.14)
In terms of z and A, Eq. (2.7) becomes
B’_l 1+3;uz -4
5o\ 215

Our results here rely on an analysis of the surface layers that
are described by solutions of the QV system when A,
< 1/9. These layers are quantitatively described in the fol-
lowing theorem which summarizes results proved in {8,3].

Theorem 1. Let (z(r),A(r)) be a smooth solution of Egs.
(2.12) and (2.13) starting from initial values 0>0, Ay>0,
and defined on a maximal interval (ry,rg). Then
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limz(r)=+o,

r—ry

limM(r)=0,

r—ry

and p and p are positive, p’ and p’' are negative on

[rl vrﬂ]'
* Assume further that the initial values satisfy

0<zp<1, (2.16)

1
9
Then r;>0, and there is a unique point Fer 1i<r,.<rg,
such that z(r,)=1, z(r)<1 for r>re, r)>1 for r
<r,, and the following inequalities hold:

Ty
I>=>\[1-9A(r)V[1-A(r)]  (2.18)
0
and
3 I_AO
P(’)<P(’*)<§T—g—rgl_“%, (2.19)

forall r, r,<r<r,. Finally, if ry and z, are fixed, then
(2.20)

The point r, plays an important role in the shock-wave-
matching problem considered in [4,9,5] because outgoing
shocks modeling explosions can be constructed by matching
FRW metrics to OT metrics only at OT positions r>r.,
where p>p. Note that Eq. (2.20) implies that the width of
the layer tends to zero as Ap—0, and the estimate (2.18)
gives a rate at which r, /ry— 1 as Ag—0. Note too that the
hypothesis 0<A,=<3§ implies that T¢ is outside the Schwarzs-
child radius R;(M,), but inside 9/8ths of R, (My).

The following corollary of theorem 1 gives a refinement
of the Buchdahl 9/8ths theorem [3].

Corollary 1. If r; =0, then Ag>4, or equivalently

9
r0>§ RS[M(rO)]

In what follows, we study the problem in which an inte-
rior shock wave supplies the pressure required to hold up a
surface layer that lies between r=r, and r=ry. We are
interested in determining the possible *‘lifetimes’’ of such a
solution by estimating the time it would take a shock wave to
pass through a surface layer that lies close to the Schwarzs-
child radius, as seen by a distant observer. In this treatment
Wwe assume that the shock wave lies outside radius r, , which
is equivalent to assuming that the density behind the shock is
smaller than the average density behind the shock because
O0sz=<I for r=r, . This condition was required for the con-
struction of outgoing shocks in [5]. Moreover, it is quite
reasonable to restrict to the layers that lie between r, and
ry because, by Eq. (2.13), A takes its minimum value at z

=1/3, and thus the time dilation factor A has its greatest
effect within the region between ry and ry.

III. STATEMENT OF RESULTS

In this section we consider the case of a shock wave
which propagates outward into a time-independent OV met-
ric between the radial positions r=r, and r=ry, where 0
<z=<1. We imagine that there is a shock wave inside the
star, blasting outward toward the boundary of the star. In
[4.9,5] we have shown how to construct explicit examples of
shock waves which match an arbitrary OT metric to a
Friedmann-Robertson-Walker (FRW) metric across a shock
interface such that mass energy and momentum are con-
served. Before turning to this matching procedure for the OV
solutions discussed above, we first estimate the time it would
take for an arbitrary wave inside the star to reach the surface
of the star when Aq is small. Since shock waves always
move at speeds supersonic relative to the fluid in front of the
shock, at this stage we assume only that the wave propagates
outward at speed c v less than the speed of light ¢. That is, if
the interior of the star gets into a configuration where the
pressure balances the gravitational force at some instant of
time, such that the stationary OV solution is on the outside
(for example, due to the rebound after gravitational col-
lapse), then we shall give an estimate for the time it would
take for a wave to reach the surface as measured by an ob-
server in the far field. This gives an estimate for the “‘life-
time’" of the star in the sense that it estimates the time inter-
val over which the outer layer of the star will appear time
independent to a far away observer. In particular, as A, tends
to zero (so that the boundary surface tends to the Schwarzs-
child radius of the star), we show that the time interval over
which it would take a wave to travel between r=r., where
z(ry)=1, out to ry, where z(rg)=z,<1 (cf. theorem 1),
tends to infinity due to the time dilation effect resulting from
the strong gravitational field in the outer layer.

In order to make this precise, assume that a spherical
wave propagates outward into a fluid, which we assume is
described by an OT metric (2.4). We assume too that for
sufficiently large values of r the solution reduces to the
empty space Schwarzschild metric, which is asymptotically
Minkowskian in the limit r—o; i.e., both A and B tend to
unity in the far field. Assume that the wave propagates from
radius r=r, at time =1, to r=ry at time t=¢,, whe_re
re<rg, 1,<tg. (From now on we shall suppress the ¢ and
¢ coordinates which play no role.) Then, from Eq. (2.4), the
coordinate speed of the wave is given by

dr
—=CVyAB,
dt

/

where v denotes the **dimensionless’ speed of the wave, as
measured in a local Minkowski frame (¢r.7) in which
dr=JBdt and di=( 1/JAYdr. Let t, and 15 denote the re-
spective OT coordinate times at which an observer in the far
held located at r.»1 receives light signals emitted at
(re,ry) and (ty,ry), respectively. Since we have assumed
that the OT metric is asymptotically Minkowskian, the time
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change Ar=r;— 1, measures proper time at r.. Now from
the OT metric (2.4), the lightlike radial geodesics travel at
coordinate speed

dr
E=c\/A_§.

Thus integrating, the time, A, it takes the wave to travel
from r, to ry as measured by an observer at r, is

ro dr
cAI=c(to—t*)+f —_—

"% \/7@’

where

( ) j’o dr
cltg—t, )= .
o ., vJAB

Thus we have

o l+v dr
cAt=f

. v VAB

Using Eq. (2.13) to rewrite the integral in terms of the
variable z in favor of r we obtain the following theorem.

Theorem 2. Let (z(r),A(r)) denote a solution of system
(2.12) and (2.13), starting from intial data 0<Ap<],
0<zy<1, where C is given by Eq. (2.14). Assume that the
solution is defined on the interval /=(r,,ry) over which 0
<zp<z<z,=1, and such that C>0, [which holds for suf-
ficiently small A, and guarantees that z’'(r)>0 in view of
Eq. (2.12)]. Then the time At it takes a wave moving out-
ward at dimensionless speed v, to travel from re to ro (as
measured by an observer in the far field) is given by

N f11+ux r
‘=), v C1-a

dz
A/B 7 3.1

We remark that, in view of theorem 1, re—rogasAy—0, and
thus by taking A, sufficiently small we can be sure C>0 on
the interval r, to ry. Note also that for z<1/3, A <Ay, soin
order to guarantee that C>0 we could obtain a similar result
by restricting the layer to the interval over which z< 1/3.

. We can obtain estimates for At that are independent of
" the shock speed as follows. Assuming that the shock speed is
less than the speed of light is equivalent to taking v<1, in
which case Eq. (3.1) gives

' 1 r dz
CAt?sz2°C':T:_‘K vA/ *"Z— 3.2)

Using the fact that shock waves are always supersonic rela-
tive to the fluid in front of the shock, and the fact that

Vo= vp'(p) is the sound speed when p=p(p), we obtain

V4 Voler | r dz
c JAIB =5, (3.3)
20 Volcd Cl-A Z

cArs<

We can apply Eq. (3.1) to the solutions described in theo-
rem | that satisfy the estimate (2.18) in the limit as Ay—0.
From Eq. (2.14), it follows that if A<1/9 and z<1, then

1

- sC"éSo (3.4)
4 i .

QNIQ

(In fact, we know that by Eq. (2.19), M’ is uniformly
bounded on [r, ,ro], so theorem 1 implies that A(r,)—A,
as Ap—0, and thus we may assume that Ap is sufficiently
small so that A <1/9 throughout this interval.) In this case,
we have the following corollary.

Corollary 2. Let (z(r),A(r)) be a solution of system
(2.12) and (2.13) defined on interval I=(ry,ro), r <rq.
Then

| O'min/Cz
4 v

| 1
r*lnz— ScAt<8 Vo, /czr*lnz—. (3.5)
0 0

max

where v, denotes the maximum shock speed in the interval
1.

In obtaining the right-hand inequality in Eq. (3.5), we
have used the fact that the dimensionless shock speed v is
always faster than the dimensionless sound speed \o/c?.

Note that by Eq. (2.18), r, tends to rg as A, tends to zero,
and since A=1-2GM/c?r, it follows that r, tends to
2GM (rg)/c? in this limit, where M(ry) can be interpreted as
the total mass of the star. Thus, the lower bound in Eq. (3.5)
implies .

Arm s Tmn 29 36
¢ 1/5—62—?; (ro)nzo, (3.6)

and the upper bound implies

2G 1
cAr<9 \/ama,‘/cI ?M(ro)lnz—, (3.7)
0

for Ag sufficiently small, where the errors have been incor-
porated into the replacement of the factor § by 1 for Eg.
(3.6), and the factor 8 by 9 in Eq. (3.7).

In particular, these inequalities show that the time interval
At increases linearly with the total mass of the star M (rg).
What is remarkable, however, is the presence of the addi-
tional factor In(1/zq), which tends to infinity as the initial
condition z, tends to zero. This is somewhat surprising. In-
deed, assume, for example, that r=r_ [ie, z(r,)=1].
Then, because in the above estimate (3.6) the shock speed is
assumed to be the speed of light, and by Eq. (2.18) the shock
layer Ar has a width on the order of rgA,, one might expect
this factor to cancel exactly the A in the time dilation factor
A~ that comes from the OT metric. But, in fact, the esti-
mate (3.6) demonstrates that in this case the time it takes a
wave moving at the speed of light to reach the surface at r
=rp, tends to infinity as the initial condition z, tends to
zero. In this case, the shock layer between z=z, and z=1.
would be on the order of z,. [To see this, note that from Eq.
{2.18) the layer width is smaller than order A(rg). but in
fact, from Egs. (2.12) and (2.13), we see that the function
z(r) stays very close to z, until A(r) becomes on the order
of z(r) in light of the factor z/A in Eq. (2.12) and the fact
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that A’ is bounded away from zero when z<1.] It is also
interesting to note that the time it takes the shock to propa-
gate through the layer cannot be increased beyond the esti-

mate (3.7) by making the shock speed arbitrarily small. The -
point here is that the shock speed v is bounded from below

by the sound speed \o/¢ of the fluid, but as ¢—0, the width
of the layer tends to zero. The inequality (3.7) represents the
net effect of these competing influences.

- In practical terms, once the physical constants are substi-
tuted into the estimates, the width of the layer between
and ry is exceedingly small when In( 1/z4) is large enough to
produce a significant time dilation.

To get a sense of how large cAt can be, note that when
p=p(p), the sound speed o satisfies o<1, and using the
values

c=3.00% 10'° cmy/sec,
G=6.67X10"% dyne cm?g~?,

we obtain

g
i =247X 107 sec.

Now the mass of the Sun is
1.99%x 10% g,

and as there are 3.15X 107 sec in a year, we see that, in
years, Eq. (3.6) yields

1
Ar=6.24% 10" ”Naminln; yr,

<0

while Eq. (3.7) yields

1
Ar<4.87X10” '2N(rmi,,ln:- yr,

<0

for a mass M(ry) in Eq. (3.6) of Eq. (3.7) equal to N solar
masses. Statement (1.2) of the Introduction follows in the
case &, =c*/3. Thus, without the In(1/z4) term, and assum-
ing that the sound speed is comparable to the speed of light,
it would take a mass equal to 10'> solar masses to get a
life-time on the order of one year.'

In the next theorem, we show that there exist fluid dy-
namical shock waves that satisfy the Lax entropy condition
[6,7], which lie arbitrarily close to the Schwarzschild radius
r=2Q’M/c2, A =0. Our construction is based on the analysis
in [5], which we summarize in Appendix A. The theorem
demonstrates the existence of shock waves satisfying the Lax
shock conditions, such that in the limit r—2GM/c? these
shock waves tend to a shock wave positioned right at the
Schwarzschild radius, as seen by a distant observer in the OT
coordinate system. For these shocks, the density behind the
shock tends to a fixed finite value, and the density in front of

'If there actually were stetlar objects described by this model, then
the shorter the lifetime, the more of them there would have to be in
order to have a chance of observing one.
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. the shock tends to zero, so in this limit, the shock wave tends

lo a contact discontinuity of Oppenheimer-Snyder type, cf.
[4]. Our analysis here entails determining initial conditions at
= rq for the shock equations derived in [5] (see Appendix
A), such that the Lax shock conditions hold initially, Bv
continuity it follows that these conditions are valid in a
neighborhood of ry. Note that this verifies the consistency of
placing a shock wave arbitrarily close to the Schwarzschild
radius. However, in this simplified model, the pressure be-
hind such a shock is larger than the pressure in front of the
shock, but the pressure behind the shock is determined by the
equations, and cannot be arbitrarily assigned when FRW-
lype metrics are assigned behind the shock, cf, [4,5]. (In the
following theorem, and its development in the next section,
we assume for simplicity that c=1.)

Theorem 3. Let (z(r),A(r)) be a solution of system (2.12)
and (2.13) defined on interval I=(r, ,rg), so that we may
assume Eq. (2.18) holds. Then if Zo=2(rp) is sufficiently
small, there exists a matching of a Friedmann-Robertson-
Walker (FRW) metric to the OT metric determined by
2(r),A(r)), such that the interface between the metrics de-
fines a fluid dynamical shock wave that satisfies the Lax
characteristic conditions in a neighborhood of r=ry. In this
construction, the shock waves propagate outward into the
fixed OT solution, and in the limit A(rg)—0, the shock po-
sition, as measured in OT coordinates, tends to r=20M,,
the density behind the shock tends to

L3 13
PTG 2 M

and the speed of the shock tends to the speed of light in the
sense that the trajectory of a particle fixed at the Schwarzs-
child radius is lightlike. Because the shock position in this
limit is right at the Schwarzschild radius, in this limit the
shock appears stationary to an observer at infinity in the OT
coordinates. Moreover, the limit of the pressure behind these
shocks tends to zero as A(ry)—0, and thus the limiting so-
lution is a standing shock wave, positioned right at the
Schwarzschild radius.

In this construction, the shock waves are determined by
two different sets of initial conditions imposed at r=r;.
Each determines a Lax admissible shock wave in a neighbor-
hood of r=r;. In the first case, the position of the shock as
measured in FRW coordinates behind the shock, tends to the
outer boundary of the FRW space, but in the second case, tlfe
FRW shock position tends to a finite radius.

IV. SHOCK WAVES NEAR THE SCHWARZSCHILD
RADIUS

In this section we give the proof of theorem 3. Through-
out this section we shall refer to results summarized in Ap-
pendix A. In order to distinguish different coordinate Sys-
tems in the shock-matching problem, from here on we use
barred variables to denote variables in an OT metric, and
unbarred variables for variables in a Friedmann-Robertson-
Walker metric. (This is consistent with the notatjon used in
[3-5]) To start, assume throughout that ¢=1, and assume
that (ztF).A(F) is a fixed solution of system (2.12) and
{2.13) detined on the interval I=(r,,ry). By theorem I, Eq.
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(2.18) holds, and hence z decreases monotonically from z

=11to z=z4<1, as  goes from 7, to 7y. We now construct
shock waves at F=7r;, by matching the OT metric (2.4) de-
termined by this OT solution, Lipschitz continuously to a
FRW metric [a metric of the form (Ad)], at F=7;, to obtain
a matched metric which agrees with the OT metric for i~
=Ty, and such that the OT metric for r<ry is replaced by a
FRW metric [3-5]; see Appendix A for a short summary of
the results in these papers.

The interface between the metrics defines a shock wave
whose position 7=7{r), is given implicitly by the equation
(cf. [4] and theorem 5 in Appendix A)

47
M(r)=—- p(1)r?,

where p(t) denotes the FRW mass-energy density function,
and ¢ is the time coordinate for the inner FRW metric. The
construction of the FRW metric that matches a given OT
metric Lipschitz continuously at the shock, such that conser-
vation of energy and momentum hold across the shock, sat-
isfy Eqs. (A15) and the FRW pressure is then determined by
Eq. (Al). For a fixed OT solution and fixed value of k in the
FRW metric, system (A15) is an autonomous system of two
ODE's for the two unknown functions R(¢) and r(¢), R(t)
being the cosmological scale factor that determines the FRW
metric, and r(t) giving the shock position in FRW coordi-
nates (¢,r). (By rescaling the variable r in the FRW metric,
the magnitude of k can be assigned arbitrarily, but the sign of
k is invariant under such scalings, and thus there are canoni-
cally three distinct cases, k= —1,0,+1, cf. Appendix B.)
The FRW sound speed ¢ in a given shock-wave solution, is
determined by Eq. (A19), where we assume an equation of
state of the form p=p(p) so that o=p’/p’.

The shock equations (A15) allow for two initial condi-
tions, and since we assume the shock is initially positioned at
r=ry, and the matching of the spheres of symmetry require
that 7=Rr, there is only one degree of freedom left in the
initial conditions. This final degree of freedom is fixed by a
choice of §=A(F)/(1~kr?), cf. Eq. (A10) in Appendix A.
The Lipschitz continuous matching of the metrics together
with the conservation of mass and energy, alone do not guar-
antee that the shock speed and FRW sound speed are less
than the speed of light, or that the Lax shock conditions,
(A22) and (A23), hold. The shock speed is subluminous if
and only if

_2‘)'—1_l (l—z )2 al
9>9—(<./I)=T— T a) .1

the OT-Lax condition (A23) holds if and only if

-2 \2_
0<0+(z,m=l—(l+ﬁ:) a. (4.2}
and when §_< <6, , it follows that p>5=0, and 0<pu
<1, where

oy
AT o1

v (4.3)

cf. theorem 8 in Appendix A.

We shall show that Eqs. (4.1) and (4.2) together with the
FRW-Lax condition (A22) can all be met at F=Fy in the
above fixed OT solution, for suitable initial values of 6, so
long as zg=2z(7y), is sufficiently small. To this end, we use
the following expressions which are valid to leading order in
z as z—0:

8_~2(1+ D)z, (4.4)

o
6.~1 —W. 4.5)

Consider, then, the problem of assigning initial conditions
for the shock equations at 7=7; in the OT solution
(z(7),A(7)). Recall that the OT solution itself is determined
from initial conditions 7(rg)=z¢ and A(rg)=Ay,. Consider
first a sequence of such OT solutions for which zy—0, and
Ap—0; ie, M(rg)—>M=Fy/2G. These imply p(rg)—p
=(3/4m)(MIF]), and @(Fp)— =0, and GF—3F=0. We
now determine appropriate initial conditions for the shock
equations (A15) as functions of zq, so that the OT solution
determined by each set of initial conditions determines a Lax
admissible shock wave at r=Fr; (and thus in a neighborhood
of ry), for z, sufficiently close to zero. In order to do this, we
assign initial values A and 6, at ro, as functions of z, [call
them A(zq) and 6(zq) and assume A(zq)—0 as z0—0) in
such a way that the shocks will be Lax admissible at r=ry
(and hence in a neighborhood of ro), for each value of z,
near zero. In this way, each value of z, will determine a
unique shock wave in a neighborhood of 7.

In order to ensure that the sound speed o given in Eq.
(A19) is finite in the limit z—0, it suffices to choose initial
condition #(z,) so that

20
0(zo)

0 (4.6)

as zo—0. That is, as z—0, the following asymptotic expres-
sions hold:

0 1 6
3
a~ -,
Z
1
B~~.
4

Moreover, it follows from Eq. (A19) that if we assume
20/ 8(zp)—0 as zo—0. then the following asymptotic ex-
pression for the FRW sound speed also holds:

p' 1+

Py 3 4.7

o

l—()) z
+—_-. _,
AQ

as z—0. Furthermore, the dimensionless shock speed s rela-
tive to the FRW fluid is given in Eq. (A16), and the FRW
pressure p is given in Eq. (Al). It follows from Eq. (A1) that
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Pz
~(l+p-—0)-—0— 4.8)
and
p
==~z 4.9
m - 4.9)

as z—0; and it follows from Eq. (A16) that

Ji-6

~(1+ @)z 7 (4.10)
and as z— 0. Moreover,
6_~2(1+ )z @.11)
and
6,~1—-o, (4.12)

as z—0. Thus, if 6(zy) stays smaller than 11— and
z/6—0, we must have by theorem 8 of Appendix A that
8_.<6<8, in the limit z,—0, and thus the OT-Lax condi-
tions must hold and the shock speed must be less than the
speed of light at r=ry if z, is sufficiently small.
To verify the FRW-Lax conditions, a calculation shows
that Eq. (A22) is equivalent to
1- 6) 8
+t =] -,
o]z

which obviously holds for z sufficiently small, assuming
z/6—0. Finally, we see from Eq. (4.7) that we can choose
A(z¢)—0 in such a way that o— ¢ for any 0<6<1 by
requiring

1
6(1+ ) (1~ 6)

A< “(4.13)

+1—9)1z
g | adgé

As a first example, take the case k>0 and let 8(z,) = 6,
be constant, and choose A =Kz, for some constants 0< 8,
<8,, and K>0. In this case, in the limit z,—0, the shock
position r; on the FRW side of the shock tends to
ro= 1/\k, the edge of the FRW universe. Also by Eq. (A17),
the speed of the OT fluid relative to the FRW fluid at the
shock tends to u=—y1—§6,>—1.

As a second example, take k#0, and choose 8=L\/—z;
and A=K \Jzg, in which case the shock position ry on the
FRW side of the shock tends to a nonzero finite value.

A~—

H“(s (4.14)
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APPENDIX A: THE SHOCK-MATCHING PROBLEM

In this section we summarize the results in [4,9], in which
we construct shock-wave solutions of the Einstein equations-
by matching a FRW metric to a given OT metric where we
assume that the FRW metric is on the inside of a given OT
metric. We assume in this section that the speed of light ¢
=1, and we let barred variables denote OT variables, un-
barred denote FRW variables, and we restrict to the case of
an outgoing shock wave in which the FRW metric is placed
on the inside of the OT metric. We assume in this section
that the OT solution (2.4) is given for a preassigned equation
of state of the form p=p(p), and the FRW solution, p(r),
p(t), R(t), is determined by a system of two ordinary dif-
ferential equations. The solution then determines the FRW
equation of state p=p(p) implicitly through the formulas

_ 1—v8z
p= 70— 1 e, (A1)
where
ptp
=—_, A2
=55 (A2)
and
_ 3 M7
REEE (A3)

is the FRW density, and p,p denote the OT density and
pressure, respectively. The solutions p(t), p(t), R(z) deter-
mine a solution of the Einstein equations of FRW-type,
namely,

d.2
dsi=—di+R(1)> {—)—-1—+r dm} (A4)

k

In this section we restrict to the case of an outgoing shock
wave for which the FRW metric is inside the OT metric, z
=plp<l.

The first theorem summarizes the results in Sec. IV of [4],
pp. 280-285.

Theorem 4. Assume that we are given any FRW and OT
metrics such that the shock surface r=r{r) is defined implic- =
itly by Eq. (A3) in a neighborhood of a point (¢,,7p), ¢
<ty<ty, r,<r<r,, and r,<r=rIR<r,. Assume that

dp
E>O’ (A5)
A(ry)#0, (A6)
and, hence,
L=krg>0  [ro=7rp/R(1y)]. (A7)
Then for any value of f,, there exists a mapping

(£,rY—(1.7) (defined in Sec. 4 of [4]), which we denote by
=(t,r),rle,r)), Fli.r)

Wit r) =R(1)r, (AB)
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such that W is 1-1 and regular in a neighborhood of the point
(r9,rp) and takes the open interval (ry,ry) into the interval
(T9.79). 2 Moreover, under this coordinate identification, the
given FRW and OT metrics match Lipschitz continuously
across the surface (A3). The condition

6, r)=R(t)r, (A9)

implies that the areas of the sphere’s of symmetry agree in
the barred and unbarred frames, and the shock surface in
(t,r) coordinates is given by r(t)y=r{r)/R(1).

Remarks: Condition (A5) says that the OT sound speed is
positive, condition (A6) says that r is not at the ‘‘Schwarzs-
child radius,” and condition (A7) says that the value of r is
not outside the FRW universe, i.e., is inside the region of
validity of the FRW coordinate system. It follows that the
condition

(A10)

must hold (see, e.g., [5]).

In this case, the results in [5] state that the only physically
interesting possibility is when p> 5, and the constraint equa-
tion determines the FRW pressure through the formulas
(A1)-(A3).

We now give the main results obtained in [5] for this case.
We always assume

O0<a=pip<l1, (ALD)
__dp
0<o=-—«|, (A12)
dp
and we use the notation
p
=— (A13)
A0
and
d .
=22 (Al4)
dp p

The first theorem gives the ODE’s that describe the time
evolution of the FRW metrics that match a given OT metric
across the surface (A3), such that conservation of energy and
momentum hold across the shock.

Theorem 5. Let a fixed OT solution satisfying (AS5) be
given. Then any FRW metric that matches this OT metric
Lipschitz continuously (on the inside) of the shock surface
(A3), such that p>p and Eq. (A10) hold, and such that the
Rankine Hugoniot Jjump conditions

(T9In,=0
also hold across the shock, must solve the ODE's
*Note that the mapping (1,r)— (1,7} is |- 1 whenever the mapping

(r,r)—(1.7) is 1-1, because the mapping (l.r)-—o(t,r")=(t,§(t)r)
has Jacobian R(¢)>0.

rR=\1-kr?JI =3,
l
R:=WT vI—kreyJt —ag.

(A15)

Conversely, any smooth solution of Egs. (A15) satisfying
Egs. (A6) and (A7) and (A10), will determine a solution of
FRW type if we take

‘EJK

3
Pman 7

and p to be given by Eq. (A1); this solution will match the
OT metric Lipschitz continuously across the shock surface
(A3) [when we make the identification (A8)], and the Rank-
ine Hugoniot jump conditions will hold across the shock.

The two unknowns in Egs. (A15) are the shock position
r(t) and the FRW cosmological scale factor R(t). fis a
function of 7=Rr and r obtainable from the known func-
tions p(7),p(r), and A(F) of the OT solution, and p is de-
termined as a function of 7 through the shock surface equa-
tion (A3), p=(3/47)(M/7? ). Thus we are free to choose
two initial conditions, r and R, for the ODE’s (A15). More-
over, the OT solution is determined by the choice of initial
conditions M and p at given 7 for arbitrary equation of state
p=p(p). Thus, we can determine local shock-wave solu-
tions by arbitrarily assigning the OT equation of state, as
well as 7, p, M and one of r or R, thus allowing four initial
conditions in all. The variables P> K, and o are all then
determined by Egs. (A15).

In this paper we take the OT solution to be given for
<r<ry as in theorem 1, and we take our initial conditions
for Egs. (A15) at 7=ry. In this case, since r=rR, we are
free to assign one additional initial condition, which we can
take to be the assignment of =4, at r=ry.

The next theorem discusses the shock speed.

Theorem 6. The speed of the shock determined by Egs.
(A1S5), as measured in a local Minkowski coordinate frame
fixed with the FRW fluid element, is given by

, 1-#6
s m (A16)

The other important **speeds’’ in the problem, the sound,
characteristic, and fluid speeds, are described in the follow-
ing theorem.

Theorem 7. Consider any shock-wave solution determined
by Egs. (A15). Then, in the locally Minkowski coordinate
frame fixed with the FRW metric, the OT fluid speed u is
given by

u=-\1-4. (A17)
the OT outgoing characteristic speed XZOT is given by
- i+ \/5
A= (A18)

P lvafe

and the FRW sound speed o is given by
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4,

|~ yyign L H1=4) 1-6) 26
( Y U-6A___(l+;7) a(z,p£) + B(z, jt) Fit3a
5
+0- =, (A19)
3
where
3-T7z+54z2- 97>
a(z,p)= (A20)
and
(1+3az)(1+ jaz)?
) 21
B(z ﬁf—’f =2 (A21)
The Lax shock conditions for an outgoing two-shock then
read
Jo>s (FRW-Lax) (A22)
and
s>AT  (OT-Lax). (A23)

The following two theorems give conditions under which
the Lax shock conditions hold on solutions of Eqgs. (A15).

Theorem 8. The pressure p=0 if and only if p=p if and
only if

- Z, (A24)

0<u<1 if and only if

.

2z(1+ )
6> 92(Z:IDE

T o+ 50" (423)

and the shock speed s is less than the speed of light if and
only if

2

6> 0_ (2= 2 gt =1 - L2 (A26)
()= y: l+ uz
The OT-Lax condition holds if and only if
0<6,(z. =1 1—1)2_ (A27)
< +(Z,/I)— 1 +/IZ o.

The final theorem gives an existence theorem for solu-
tions of Egs. (Al5).

Theorem 9. Assume that a positive OT solution
p(ry>0, p(r>0, and M{(F)>0 of the OV equations (2.1)
and (2.2) are defined and smooth for all 7in the interval

ro<r<r,s=,

Assume also that the following additional conditions hold
throughout the interval (7, ,7,):

G
0<,u,—5(;.)<l, (A28)
G
O<o= p:ﬁ< I, (A29)

and

3 M(r)

P= a7 7T =P (A30)

Then the solution (r(1),R(1)) of the shock equations (A15)
starting from initial data (ry,R,) satisfying

F:‘<r_0=r0R0<?b, (A31)
will exist, and satisfy, -
0<s<l1, (A32)
p
l</1.=;<l, (633)

and the OT-Lax condition (A23) throughout the maximal
subinterval of (r,,7}) containing 7y on which

0—- < 0< 0+ ] (A34)

cf. Eqs. (A26) and (A27).

APPENDIX B: REMARKS ON THE FRW-OT MATCHING
PROBLEM

In this section we clarify the role of the scaling laws
r—ar in the FRW metric (A4), and use this to determine the
“*size’’ of the FRW universe that matches a given OT metric
at a radius . To this end, consider a change of scale 7
= ar; in the new radial coordinate 7, Eq. (A4) reads

R(1)\? ar?
ds*=—dr’+ i) T +7d0* |, (B1)
~2
1 ?r
so that
-~ R
R=~—, (B2)
~ k - :
k=;§. . (B3)

That is, if P is a point in the FRW spacetime manifold
labeled by (1,r,6, ¢), then the label for P in the tilde coor-
dinates is (,7, 8, $), where Egs. (B2) and (B3) hold. Thus,
kr*=kF? and Rr=RF are invariant under the scaling
r—ar. .

Now fix k, and assume Eq. (A4) matches an OT metric
(2.4) at r=ry. Since our shock matching allows for two
initial conditions R, and ry, and one of these is fixed by the
identity ro=ryR,, we conclude that for each k there is a
one-parameter family of distinct FRW metrics (B1) that
match Eq. (2.4) at r=F;, these being parametrized by rg.
Thus, since

A(r)

“TeT

we can alternatively view the one-parameter family of distict
FRW metrics that match a given OT metric at r=ry, as
being parametrized by 6, 0< 8= 1. Since k2 is an invariant,
it follows that 8 is also invariant under the scaling r— ar.
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Thus, 6 is a dimensionless parameter that uniquely picks out
4 spacetime constructed by matching a FRW metric to a
given OT metric at r=Fy. Thus, choosing a value for k s
equivalent to setting a scale for the radial coordinate r in this
unique FRW spacetime.

Now for fixed 6 and any k, the area of the two-sphere
determined by the angular coordinates at 7= . can be cal-
culated to be 773 (where 7 is the area of the Euclidean
two-spheie, and this can be calculated from either the inner
FRW metric or the outer OT metric). That is, the FRW unj-
verse that matches a given OT metric at ro ‘‘fits inside a ball
of area 77 2."

Alternatively, one can calculate the invariant radial dis-
tan?:e, As, from the center r=0 of the FRW metric to the
shock wave positioned at r=7ry at fixed t=1ty; namely,

dr

As=R(;‘,)J’0'° — (B4)

Note that this expression is invariant under the rescaling
r—ar. To evaluate this integral, set r=sin(x) when k>0,
and r= \//?sinh(lul) when k<0. In the first case

ug  roug arccos(\/l—kroz)_

As=R(t0)—\/—;=\/I;g— \/I;% rg, k>0.
(B5)
In the second case, k<0, we obtain
As=R(z) Uy _ Foug _ arccosh( W) 7
VI Vil VIklr
k<0, (B6)
and in the case k=0,
As=ry. (B7)

These expressions give the invariant distance from the
center of the FRW space to the shock wave in terms of
invariant quantities. We now let w?=|k|r?, and show that
the function

arccos( /1 — wz)
pw)ys — ——_ ¢
Vw

(B8)

is monotone increasing from 1 to /2 on the interval 0<y
<1, and the function

arccosh( 1+ [k[r2)
Viklrg

is monotone decreasing from 1 to 0 on the interval
0<w<, In the case k>0, Eq. (B8) implies that

Y= (B9)

As
Is==<z, k>0, (B10)
0
and in the case k<0, Eq. (B9) implies
As
0=s—==x], k<. (B11)
ro

Statements (B6)-(B11) put precise limits on the size of the
FRW manifold that can be matched to an OT manifold at
radius r=7g.

To show that é(w) increases from 1 to /2 on O0<w
<1, we first note that

w
w2¢'= *ﬁ-arCCOSVI —wz.
—W

(B12)

Letting

V= =,
\/1—w7

implies 0<y <<=, and

v
AN v

Then Eq. (B12) implies that if ®’ =0, we must have

v=arccos(y1/(1 +vz)), (B13)

but as arccos(v1/(1 +vz)) takes values in (0,7/2) because
ro<1/Jk, we see that Eq. (B13) cannot hold for v=x/2,
Now if 0<v < /2, then Eq. (B13) implies tan(v)=v, on this
range, an impossibility. Thus ¢’(w)>0 for 0<w<I. But it
is easily verified that &(1)=7/2 and d(D)=1, so ¢ in-
creases from 1 to 7/2 for 0<sw<]|, An analogous argument
shows that in the case k<0, the function & decreases from |
to 0 for 0sw< x>,
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