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Abstract. In earlier work the authors derived a set of ODEs that describe a class of spherically
symmetric, fluid dynamical shock-wave solutions of the Einstein equations. These solutions model
explosions in a general relativistic setting. The theory is based on matching Friedmann–Robertson–
Walker (FRW) metrics (models for the expanding universe) to Oppenheimer–Tolman (OT) metrics,
(models for the interior of a star) Lipschitz-continuously across a surface that represents a time-
irreversible, outgoing shock-wave. In the limit when the outer OT solution reduces to the empty
space Schwarzschild metric and the inner FRW metric is restricted to the case of bounded expansion
(k > 0), our equations reproduce the well-known solution of Oppenheimer and Snyder in which the
pressure p ≡ 0. In this article we derive closed form expressions for solutions of our ODEs in all
cases (k > 0, k < 0, k = 0) when the outer OT solution is Schwarzschild, as well as in the case of
an arbitrary OT solution when the inner FRW metric is restricted to the case of critical expansion
(k = 0). This produces a large class of shock-wave solutions given by explicit formulas. Among other
things, these formulas can be useful in testing numerical shock-wave codes in general relativity.
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1. Introduction. In this paper we present a new class of exact shock-wave
solutions of the Einstein equations of general relativity, and we derive them from a
general theory in which the well-known Oppenheimer and Snyder (O-S) solution [3]
comes out as a special case. The O-S solution appears in the limit of zero pressure,
and in this paper we also characterize the zero pressure limit by constructing two
additional solutions of O-S type, these two new solutions being qualitatively different
from the one first given by Oppenheimer and Snyder [10]. We are interested in
presenting these solutions to the applied mathematics community in the hope that
these fluid dynamical shock-wave solutions given in closed form might find application
in the numerical analysis of fluids. Since we understand that the subject of general
relativity is not so familiar to researchers in applied mathematics, we begin by giving
a brief non-technical introduction to the subject of general relativity, and to our
previous work on shock-matching methods.

In Einstein’s theory of general relativity, the gravitational field is described by
a Lorentzian metric tensor defined on the four-dimensional manifold of spacetime.
In this theory, free-falling objects follow geodesics of the metric, and the geodesics
reduce to straight lines in inertial coordinate systems in which the metric tensor
is diagonal, with (−1, 1, 1, 1) along the diagonal. In Einstein’s theory, Newton’s
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gravitational “force” (say, at the surface of the Earth) is explained as the acceler-
ation one experiences because coordinate systems fixed relative to the Earth’s surface
are not inertial. Indeed, when curvature is present, free-falling objects will appear to
accelerate in any spacetime coordinate system, because in this case the fundamental
theorem of Riemannian geometry tells us that there does not exist a coordinate system
in which the components of the metric have the canonical diagonal form throughout
an open neighborhood of a point at which the curvature is nonzero. It is in this sense
that gravitational forces are identified with spacetime curvature in Einstein’s theory
of gravity. In 1915, Albert Einstein began the subject of general relativity by in-
troducing the system of partial differential equations that describes the simultaneous
evolution of the gravitational metric field together with the source of the gravitational
field—the source of the gravitational field at each point in spacetime being the mass-
energy and momentum densities, and their fluxes, at that point. These fundamental
equations go by the name of the Einstein gravitational field equations, or just the
Einstein equations.

Now the Einstein equations are not an esoteric set of equations far removed from
the study of classical fluids. To the contrary, when the source of the gravitational
field is assumed to be produced by a perfect fluid, we can turn this viewpoint around
and understand the Einstein equations as really being just the compressible Euler
equations coupled to “source terms,” where the source terms are the components of
the metric tensor, a source of accelerations for the Euler flow. But in this picture, the
coupling occurs in a very interesting and unique way. Indeed, the Einstein equations
are the simplest set of equations in which the coupling of the gravitational field to
the fluid turns the Euler equations into geometrical identities that follow from first-
order differential identities in the curvature of the underlying gravitational metric. In
geometry, these differential identities go by the name of the Bianchi identities. Thus,
the fluid variables appear undifferentiated in the Einstein equations. In this paper we
present a class of exact, spherically symmetric, shock-wave solutions of the Einstein
gravitational field equations for a perfect fluid, and these reduce to classical solutions
of the compressible Euler equations in the limit of weak fields and low velocities.

The Einstein equations for a perfect fluid are given in component form by

Gij = κTij
,(1.1)

Tij = (ρc2 + p)uiuj + pgij .(1.2)

Here Gij , i, j = 0, ..., 3, denote the components of the Einstein curvature tensor for
the gravitational metric g (G is a (0, 2)-tensor constructed from the general Riemann
curvature tensor of Riemannian geometry [10]), κ = 8πG

c4 , where G is Newton’s con-
stant, and c is the speed of light. The perfect fluid is described by the variables ρc2,
the mass-energy density p, the pressure, and u, the 4-velocity of the fluid; cf. [10].
The Bianchi identities of geometry imply that

divG = 0,(1.3)

and so on solutions of (1.1) we have

divT = 0,(1.4)

where we take the covariant divergence for the metric g. (The covariant divergence
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is just the differential operator that reduces to the classical divergence at a point in
a coordinate system that canonically diagonalizes the metric to second order at that
point.) In the limit of low velocities and weak gravitational fields, (1.4) reduces to
the classical compressible Euler equations of gas dynamics. The connection between
our exact solutions and classical fluids is demonstrated by the fact that in the limit
of weak gravitational fields and small densities, our shock waves reduce to solutions
of the classical Euler equations with classical gravity. It remains for us to study the
correspondence with the classical limit in detail.

The fact that the Euler equations reduce to identities that follow from geometri-
cal constraints has led us to the belief that there could be simplifying features that
Einstein-like equations have over the usual Euler equations. That is, the fluid vari-
ables appear undifferentiated in the Einstein equations, and we show in [6] that con-
servation across shocks becomes automatic in coordinate systems in which the metric
is sufficiently smooth (we show that C1,1 implies conservation). Thus conservation
translates into smoothness as you go from Euler to Einstein. This is quite remarkable,
and we continue to believe that there could be numerical advantages to be exploited
in this point of view. We hope that this paper helps bring these issues to the attention
of applied mathematicians.

Another mathematical aspect of our shock-wave solutions that makes them inter-
esting for applied mathematics is that the solution technique utilizes the full coordi-
nate independent geometrical framework of general relativity. Indeed, the greatness
of the Einstein equations lies in the fact that they are quite simple when expressed in
terms of geometrical quantities defined by coordinate independent tensorial quantities,
(1.1). But in any fixed coordinate system, the Einstein equations can look horren-
dously complicated ((1.1) gives 10 equations in 14 unknowns, and 4 more equations
are needed to fix the coordinate system). Our exact shock-wave solutions take advan-
tage of the ability to use a different coordinate system on each side of the shock. Since
these shocks reduce to classical shocks in the limit of weak fields and low velocities,
these solutions present a new technique for describing classical shocks—a technique
that brings the geometry of general relativity to bear upon the problem of describing
shock dynamics.

The shock-wave solutions described in this paper have a straightforward physical
interpretation. Indeed, the solutions are constructed by matching together two dif-
ferent metrics that solve the Einstein equations across a shock interface, and these
two metrics are used routinely in astrophysical models. Behind the shock is the
Friedmann–Robertson–Walker (FRW) metric (the solution of the Einstein equations
used to model the expanding universe), and ahead of the shock is the Oppenheimer–
Tolman (OT) metric (a static, spherically symmetric model for the interior of a star).
In [6], we describe in theory how to match any two such solutions across an interface,
and in [7] we obtain a solution in closed form by fixing the outer solution as the gen-
eral relativistic version of a classical static, singular, isothermal sphere. The static
isothermal sphere represents the pre-ignition state of a gas in classical scenarios of
star formation (see [7]), and this puts our exact solution into a physical context in
which explosions are to be expected. Our model can describe blast waves on many
scales. For the supernova problem, we take the outer solution to be the outer regions
of a star, in which case the inner solution represents the exploding inner core, and
the shock-wave moves outward through the star. For cosmology, our solutions give an
alternative cosmological model in which the universe begins with an explosion instead
of the popular big bang beginning that is described by the FRW metric alone.
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2. Background. In [6] the authors set out a theory of matching gravitational
metrics Lipschitz-continuously across interfaces that represent shock-waves in the the-
ory of general relativity. This was applied to the problem of matching FRW metrics
to OT metrics across a shock interface. The paper [6] concluded with the derivation
of an autonomous system of two ODEs that describe the evolution of the shock po-
sition as well as the cosmological scale factor and pressure p for the FRW metrics
that match a given OT solution across a shock interface, such that conservation of
energy and momentum holds across the shock. In the FRW–OT matching problem,
the smooth matching of the spheres of symmetry implies a reduction of the conser-
vation constraint to a single constraint on the FRW pressure, and it follows that the
FRW metric and shock position can be determined for any arbitrarily preassigned OT
solution. In [7] we found an exact solution of the shock equations that describes an
explosion into the general relativistic version of a static, singular, isothermal sphere.
In this model the geometry of the FRW and OT metrics constrains the inner FRW
equation of state in such a way that the pressure, sound speed, and temperature are
all higher where the density is higher, which suggests that this is a highly physical
situation. In [8] we derived a simplified system of ODEs and set out a general the-
ory for solutions of the ODEs, including the identification of natural dimensionless
parameters in terms of which the shock speed and Lax characteristic conditions [2, 4]
can be expressed. For simplicity we restrict ourselves throughout to the simplest case
of a perfect fluid satisfying an equation of state of the form p = p(ρ), where p denotes
the pressure of the fluid and ρ the mass-energy density of the fluid.

The FRW metric is isotropic, homogeneous, and maximally symmetric at each
fixed time because the spatial metric has constant scalar curvature along the constant
time surfaces [10]. Thus there are three cases, the cases of positive, negative, and zero
scalar curvature in the constant time surfaces. The positive curvature case (k < 0)
is the case of bounded expansion, negative curvature (k > 0), the case of uniform
expansion, and zero curvature (k = 0), the case of critical uniform expansion.

In this paper we use the shock ODEs established in [8] to derive closed form
expressions for solutions in the case when the OT solution reduces to the empty space
Schwarzschild metric (Oppenheimer and Snyder did the case k > 0, but here we do
all three cases k < 0, k = 0, and k > 0), as well as in the case of an arbitrary OT
solution under the assumption of critical expansion (k = 0) in the FRW metric. This
completes and unifies the theory first begun by Oppenheimer and Snyder in [3], and
also introduces a large class of multidimensional, time-irreversible, fluid dynamical
shock-wave solutions of the Einstein equations that are given in terms of explicit
formulas. As an application, we use these formulas to rederive the exact solution
introduced in [7], which models an explosion into a static, isothermal sphere. We also
derive a general class of examples having an inverse square density profile (as does
the static, singular, isothermal sphere), and we show again how the example in [6]
comes out as a special case.

Our equations provide a unified approach in that they display the O-S solutions as
limits of shock-wave solutions. We furthermore anticipate that the formulas derived
here will be useful for testing numerical shock-wave codes in general relativity. We
refer to [5, 6, 7, 8, 10] for background.

3. Preliminaries. In coordinates, the FRW metric takes the special form

ds2 = −dt2 + R2(t)
{

1
1 − kr2 dr2 + r2dΩ2

}
,(3.1)
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where R(t) denotes the cosmological scale factor and sign(k) is minus the sign of the
scalar 3-curvature of the t = const. surfaces [10]. Here, dΩ denotes the area element
on the unit 2-sphere. By rescaling the radial coordinate r one can rescale k to one of
the normalized values 1, 0,−1, the cases of bounded expansion, critical expansion, and
uniform expansion; cf. [10]. Assuming a perfect fluid co-moving with the coordinates
and assuming a barotropic equation of state p = p(ρ), the Einstein equations are
equivalent to the following system of two ODEs in the density ρ and scale factor R(t)
(cf. [8, 10]):

p = −ρ − Rρ̇

3Ṙ
,(3.2)

Ṙ2 + k =
8πG

3
ρR2.(3.3)

Here G denotes Newton’s gravitational constant, and we let “dot ”denote differenti-
ation with respect to FRW time t.

The OT metric takes the special form

ds̄2 = −B(r̄)dt̄2 + A(r̄)−1dr̄2 + r̄2dΩ2,(3.4)

where

A(r̄) = 1 − 2GM(r̄)
r̄

,

and M(r̄) denotes the total mass inside the radius r̄. In this metric, the density ρ̄
is assumed to be a function of r̄ alone, so that (3.4) represents a static, spherical
distribution of fluid with variable radial density and pressure. Imposing the Ein-
stein equations on a metric of type (3.4) implies the following two ODEs in the two
unknowns M, ρ̄ once an equation of state p̄ = p̄(ρ̄) is given by (cf. [8, 10]):

dM

dr̄
= 4πr̄2ρ̄,(3.5)

−r̄2 dp̄

dr̄
= GMρ̄

{
1 +

p̄

ρ̄

} {
1 +

4πr̄3p̄

M

} {
1 − 2GM

r̄

}−1

.(3.6)

The metric component B ≡ B(r̄) is then determined on solutions of (3.5) and (3.6)
from the equation

B′(r̄)
B

= −2
p̄′(r̄)
p̄ + ρ̄

.(3.7)

We refer to system (3.5), (3.6) as the Oppenheimer–Volkoff (OV) system.
Throughout this paper we use the barred vs. unbarred coordinates for the OT

and FRW metrics, respectively, to indicate two different coordinate systems when the
metrics are matched across a shock interface. In [6] we showed that for arbitrary FRW
and OT metrics, there exists a coordinate mapping

(t, r) → (t̄, r̄),
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such that, under this coordinate identification, the FRW metric (3.1) matches the
OT metric (3.4) Lipschitz-continuously across an interface r̄ = r̄(t) that is defined
implicitly by the equation (see [6])

M(r̄) =
4π

3
ρ(t)r̄3.(3.8)

The coordinate mapping for r̄ is given by

r̄ = R(t)r,

which implies that the areas of the spheres of symmetry change smoothly across the
interface. The t̄ = t̄(t, r) mapping is proven to exist, but no explicit use of this is
required for our analysis.

One further constraint on the FRW metric is required in order to rule out the
possibility of the surface being a surface layer containing delta function sources of
energy and momentum. In [6] (see also [1]), we derived a system of two ODEs that
determine the shock position and the FRW metric that will match a given OT metric
across the shock surface (3.8) such that conservation of energy and momentum hold
across the shock, and such that the shock surface is free of delta function sources of
energy and momentum. In [5] we showed that for such surfaces there exist a C1,1

(differentiable with Lipschitz-continuous first derivatives) coordinate transformation,
defined in a neighborhood of the shock surface, such that in the new coordinates the
metric is C1,1, and thus has one more order of smoothness than in the original coor-
dinates. In [8] we used an analysis that rules out an unphysical pressure jump across
the shock to derive the following simplified set of equations for the shock position
r(t) and scale factor R(t) that determine the FRW metrics that match a given OT
metric Lipschitz-continuously across the shock surface (3.8), such that conservation
holds across the shock:

rṘ = +
−

√
1 − kr2

√
1 − θ,(3.9)

Rṙ = +
−

√
1 − kr2

√
1 − θ

γθ − 1
.(3.10)

Here, θ and γ are dimensionless parameters defined by

θ =
A

1 − kr2(3.11)

and

γ =
ρ + p̄

ρ̄ + p̄
.(3.12)

The speed of the shock relative to the inner FRW fluid is easily shown to be

s ≡ dr̃

dt
=

1 − kr2

R
ṙ,

and so the equation (3.10) immediately gives the shock speed as (cf. [8])

s2 =
1 − θ

(γθ − 1)2
.(3.13)
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The upper plus and lower minus signs in (3.9), (3.10) correspond to the outgoing
shock and its time-reversal, an incoming shock, respectively. In general, solutions of
(3.9) and (3.10) will only be Lax admissible and moving at less than the speed of
light when the parameter θ lies within certain bounds that were identified in [8]. It is
shown in [8] that, in general, only the outgoing shock will be a Lax admissible shock,
and its time-reversal will then be an unstable Lax rarefaction shock [5, 4, 2]. The
outgoing shock will generally satisfy ρ > ρ̄ and γθ > 1; cf. equations (3.9), (3.10), and
[8].

Solutions of (3.9) and (3.10) determine a FRW metric having pressure given by
(3.2) and density given by (3.8), and since all quantities in the given OT metric
are functions of r̄ = rR, the ODEs (3.9), (3.10) are autonomous in the unknowns
(r(t), R(t)). After ruling out an unphysical pressure (see [8]), it follows that the FRW
pressure is given by the simple formula

p =
1 − γθz

γθ − 1
ρ,(3.14)

where

z ≡ ρ̄

ρ
.

In [8, Theorem 5], it is shown that the FRW pressure p satisfies p > p̄ (where p̄ is the
OT pressure in front of the shock) if and only if γθ > 1, and this inequality holds for
a large class of solutions.

4. The zero pressure limit. In this section we analyze the limit ρ̄ → 0, p̄ → 0,
the limit in which the outer OT solution tends to the empty space Schwarzschild
metric

ds2 = −A(r̄)dt̄2 + A(r̄)−1dr̄2 + r̄2dΩ2,(4.1)

where A = 1− 2GM
r̄ and M ≡ const. In this limit the shock surface reduces to a time-

reversible contact discontinuity that can be interpreted as modeling the boundary
surface of a spherical star of constant spatial density. (We still refer to such a surface
as a “shock”surface.) Indeed, in this limit,

γ =
ρ + p̄

ρ̄ + p̄
→ ∞,

and thus equation (3.10) implies ṙ = 0, and hence

r = a ≡ const.1(4.2)

Equation (3.14) then implies that the FRW pressure is given by p ≡ 0, the well-known
simplifying assumption made in Oppenheimer and Snyder’s original paper; and from
the shock surface equation we immediately obtain

ρ(t) =
3M

4πa3

1
R(t)3

.(4.3)

1Although we have only derived (4.2) at a formal level, equation (4.2) follows directly from the
“constraint equation”(Eq. (2.29) of [8]), if we were to redo the derivation of (3.9), (3.10) as in [8] for
the case p = ρ̄ = p̄ = 0.
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In particular, this implies

ρ(t)R(t)3 =
3M

4πa3 = ρ0R
3
0,(4.4)

because 3M
4πa3 ≡ const. It remains then only to find a formula for R(t).

To this end, note that for constant θ and φ, it is easy to check that r = const.
defines a radial geodesic of the inner FRW metric. This implies that r = a also
defines a radial geodesic of the outer OT metric. Indeed, geodesics satisfy the geodesic
equation

ẍi = Γi
jkxjxk,

where Γi
jk denote the Christoffel symbols

Γi
jk =

1
2
giσ{−gjk,σ + gσj,k + gkσ,j}.

Here, xi, i = 0, ..., 3, denotes a coordinate system, gij denote the components of the
metric in this coordinate system, and we assume summation from 0 to 3 on repeated
up-down indices. Now, by the general results in [6], the Gaussian normal coordinates
at the shock surface are related to the original FRW or OT coordinates by a C1,1

coordinate transformation, and in the Gaussian normal coordinates the metric is C1,1

because the ODEs (3.9), (3.10) preclude the presence of delta function sources on the
shock surface. Thus, in the Gaussian normal coordinates, the Christoffel symbols,
which involve at most first derivatives of the metric components gij , are continuous
functions of the coordinate variables. From this we conclude that in the Gaussian
normal coordinates, the shock surface must satisfy the geodesic equation on the OT
side of the shock if it is satisfied on the FRW side. By covariance and the fact
that geodesics are critical points of the length functional, we conclude that the shock
surface must also be a geodesic of the outer Schwarzschild metric as well, when we
take the limit ρ̄, p̄ → 0.

Using the fact that r = a on the shock, equation (3.9) can be written as(
aṘ

)2
= (1 − ka2)

(
1 − A

1 − ka2

)
=

2GM

aR
− ka2,(4.5)

which simplifies to

Ṙ2 =
2GM

a3

1
R

− k.(4.6)

We first analyze the case k 6= 0.
When k 6= 0 and we make the change of variables

r = αr̃,

the FRW metric becomes

ds2 = −dt2 + R(t)2α2
{

dr̃2

1 − kr̃2 + r̃2dΩ
}

.
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Thus, in the new tr̃-coordinates,

R̃ = αR, k̃ = α2k.

We conclude that changing the value of k is equivalent to rescaling the FRW coordinate
system. Indeed, we can choose k so that R(t) = 1 at an arbitrary time t, and since
r̄ = Rr, fixing the value of k so that R(t) = 1 is equivalent to choosing a FRW radial
coordinate so that r = r̄ at the special time t. Therefore, when k 6= 0, choose

|k| =
2GM

a3 ,(4.7)

so that (4.6) reduces to

Ṙ2 = |k|
(

1
R

− 1
)

.(4.8)

We now analyze (4.8) in the cases k > 0 and k < 0 separately.
Consider first the case k > 0, the case first considered by Oppenheimer and Snyder

[3]. When k > 0, equation (4.8) reads

Ṙ2 = k

(
1
R

− 1
)

.(4.9)

It is easy to see from (4.9) that the outgoing solution in (4.9) increases to a maximum
radius R = 1, at which point Ṙ = 0, and the solution cannot be continued to values of
R larger than 1. Thus, when k > 0, setting k = 2GM

a3 in (4.7) has the effect of making
r̄ = r at the maximum radius. Now initialize t = 0 at R = 1 and consider the incoming
solution starting at R(0) = 1, Ṙ(0) = 0. To the observer in the outer Schwarzschild
coordinates, this corresponds to a sphere which starts at rest with surface coordinate
r̄ = r = a, and then free-falls (geodesic motion) inward as the surface coordinate
r̄ = aR(t) decreases, as R(t) decreases according to (4.9). The surface then hits r̄ = 0
when R(t) = 0, which corresponds to the big bang singularity in the FRW metric
inside the shock. Following Weinberg [10], the solution of equation (4.9) is a cycloid
which has the closed form solution given parametrically by

R =
1
2
(1 + cos ψ),(4.10)

t =
ψ + sinψ

2
√

k
.(4.11)

Here, the solution expands from r̄ = 0, R = 0, out to the maximum radius r̄ = r = a,
R = 1, as ψ goes from −π to 0; and then the solution reverses itself and collapses back
in to r̄ = 0 as ψ goes from 0 to π. Thus, for the collapse, R hits zero when ψ = π,
which implies R(t∗) = 0 at

t∗ =
π

2
√

k
.(4.12)

Since t is proper time along the shock (which in this case is really a contact discontinu-
ity), t∗ gives the proper time it takes an observer at the surface to hit the singularity
r̄ = 0.
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Consider next the time it takes the shock surface to hit the Schwarzschild radius
r̄S = 2GM. At this time,

r̄S = RSa = 2GM,

RS =
2GM

a
=

1
2
(1 + cos ψS),(4.13)

which implies

cos ψS =
2GM

a
− 1.

The assumption

2GM < a = r̄(0)

is required to insure that the initial surface position is outside the Schwarzschild radius
of the outer Schwarzschild metric. For the incoming solution, R decreases from its
initial value R = 1, and so

0 <
2GM

a
< 1,

0 <
4GM

a
− 1 < 1,

which insures that the solution hits the Schwarzschild radius at the unique value of
ψS ∈ (0, π

2 ) where cos ψ = 4GM
a − 1, i.e.,

ψS = cos−1
(

4GM

a
− 1

)
,

tS =
ψS + sinψ

2
√

k
.

Note now that the lightlike radial geodesics of the Schwarzschild metric satisfy

dt̄

dr̄
=

1
A

.(4.14)

Thus if light is emitted from the shock surface at (t̄2, r̄2) and then again at (t̄1, r̄1),
where t̄2 < t̄1 and 2GM < r̄1 < r̄2, then the coordinate time lag ∆t̄ observed between
the pulses received at r̄3, r̄3 > r̄2 > r̄1, is given by

∆t̄ = t̄1 +
∫ r̄3

r̄1

dr̄

A
− t̄2 −

∫ r̄3

r̄2

dr̄

A

= t̄1 − t̄2 +
∫ r̄2

r̄1

dr̄

A
>

∫ r̄2

r̄1

dr̄

A
.(4.15)

Therefore, we conclude that the time lag ∆t̄ (which is at least as small as the time lag
observed at r̄3 between a lightlike signal emitted from (t̄1, r̄1) and any signal emitted



SHOCK-WAVES AND THE OPPENHEIMER–SNYDER LIMIT 25

from (t̄2, r̄2)) tends to ∞ as the shock surface falls into the Schwarzschild radius
r̄ = 2GM. Since t̄ measures proper time for observers in the far field r̄ → ∞, we have
the conclusion first reached by Oppenheimer and Snyder that observers at r̄ = ∞
will measure an infinite time lapse ∆t̄ before the shock surface hits the Schwarzschild
radius, while observers on the shock surface will hit r̄ = 2GM as well as r̄ = 0 in their
own finite proper time ∆t.

Since the shock surface follows a radial geodesic of the Schwarzschild metric, it
follows that the surface trajectory r̄ = r̄(t) is a timelike geodesic of the metric

ds2 = −Adt̄2 + A−1dr̄2,(4.16)

and the variable t of the FRW metric gives the proper time or arclength parametriza-
tion of this geodesic. Thus

−1 = −A ˙̄t
2

+ A−1 ˙̄r2

(where the minus sign accounts for the fact that the shock surface defines a radial
timelike geodesic), so that dividing by ˙̄r2 gives

dt̄

dr̄
=

1
A

1√
1 − θ

where we have used the following formula for ˙̄r obtained by adding (3.9) to (3.10) and
taking the limit γ → ∞:

˙̄r2 = (1 − kr2)(1 − θ).

Moreover, using the variational formulation for geodesics,

0 = δ

∫
ds = δ

∫
−A ˙̄t

2
+ A−1 ˙̄r2

,

the Euler–Lagrange equation for t̄ gives

d

dt

(
2A ˙̄t

)
= 0,

so

˙̄t =
C

A
(4.17)

for some positive constant C. Now

˙̄t =
dt̄

dA
Ȧ,

where

Ȧ =
2GM

r̄

˙̄r
r̄

= (1 − A)
Ṙ

R
.(4.18)

Now by (3.10) and (4.13),

Ṙ

R
=

√
k
√

1 − R

R3/2 ,
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and substituting this into (4.17) yields

dt̄

dA
=

R3/2
√

k
√

1 − R

C

(1 − A)A
.(4.19)

Since R tends to a finite value as the shock tends to the Schwarzschild radius, i.e.,
as A → 0, (4.19) implies directly that the t̄-coordinate time change tends to infinity
as the shock surface position r̄ tends to the Schwarzschild radius. (Note that we can
integrate (4.18) to obtain

1 − A0

1 − A
=

R0

R
,(4.20)

which simply reproduces the identity r̄ = rR.)
Consider next the case k < 0. In this case (4.8) becomes

Ṙ2 = |k|
(

1
R

+ 1
)

.(4.21)

Since (4.21) admits no maximum radius, we restrict ourselves to the outgoing solution
that satisfies

Ṙ = |k|1/2
(

1
R

+ 1
)1/2

= |k|1/2

√
R + R2

R
,(4.22)

so that

RdR√
R + R2

=
√

|k|dt.(4.23)

A calculation gives the explicit formula∫
RdR√
R + R2

=
√

R + R2 − 1
2

ln
(

1
2

+ R +
√

R + R2

)
.(4.24)

Setting the initial condition R(0) = 0 so that the big bang occurs at t = 0, leads to
the explicit formula for the solution of (4.21),√

R + R2 − 1
2

ln
(
1 + 2(R +

√
R + R2)

)
=

√
|k|t.(4.25)

We conclude from (4.25) that when k < 0, both R and the shock position r̄ = aR
increase at linear rates with respect to the FRW time t, i.e.,

dR

dt
→

√
|k|,

dr̄

dt
→

√
|k|
a

,

as t → ∞.
Consider, finally, the case k = 0, under the assumption that the outer solution is

Schwarzschild. In this case, the ODE (3.10) reduces to

Ṙ2 =
2GM

a3

1
R

.(4.26)
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Solutions of (4.26) never have a zero derivative for R > 0, so consider the solution for
the outgoing shock interface (recall that the solution is time-reversible):

Ṙ =
(

2GM

a3

)1/2 1
R1/2 .(4.27)

The solution of (4.27) satisfying R(0) = 0 is

R(t) =
(

9πGM

2

)1/3

t2/3.(4.28)

From (4.3) we obtain

ρ(t) =
1

6πG

1
t2

.(4.29)

In [7] we obtained the following formulas for this same solution:

ρ(t) =
1(√

6πG(t − t0) + 1√
ρ0

)2 ,(4.30)

R(t) = R0

(
ρ(t)
ρ0

)1/3

.(4.31)

Choosing

t0 =
1√

6πGρ0
,

so that R(0) = 0, (4.30) reduces to (4.29). Equation (4.31) can then be transformed
into (4.28) using the substitution

ρ0 =
3M

4πa3

1
R3

0
,

which follows from (4.4). Note that in the k = 0 case the growth rate in R and r̄ = aR
as t → ∞ is like the 2/3 power of t, while it is linear in t for the k < 0 case.

5. The general solution when k = 0 and p 6= 0. In this section we obtain
closed form expressions for solutions of the shock equations (3.9), (3.10), in the general
case when k = 0. Specifically, we obtain the time t at the shock, the scale factor R, and
the shock position r in terms of integrals of known functions of r̄. In [7] we previously
derived closed form expressions for solutions of the FRW equations (3.2), (3.3) in the
case k = 0, and these were based on integrals of known functions of the variable ρ.
We used these formulas to construct the exact solution presented in [7]. So assume
that ρ̄(r̄), p̄(r̄), M(r̄) correspond to a fixed, known, outer OT solution. Then in the
case k = 0, the equations (3.9), (3.10) for an outgoing shock reduce to

rṘ = +
√

1 − A,(5.1)

Rṙ = +

√
1 − A

γA − 1
,(5.2)
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where

A ≡ A(r̄) = 1 − 2GM(r̄)
r̄

,

γ ≡ γ(r̄) =
ρ + p̄(r̄)

ρ̄(r̄) + p̄(r̄)
,

and ρ is a known function of r̄ (which in this section we refer to as ρ(r̄)), determined
by the shock surface equation (3.8) to be

ρ ≡ ρ(r̄) =
3

4πG

M(r̄)
r̄3 .

Now the right-hand sides of (5.1) and (5.2) depend only on known functions of r̄.
Thus, adding the equations (5.1) and (5.2) yields

˙̄r =
γA

√
1 − A

γA − 1
.(5.3)

Direct integration of (5.3) yields a formula for the FRW time at which the shock is
at position r̄ :

t − t0 =
∫ r̄

r̄0

γ(ξ)A(ξ)
√

1 − A(ξ)
γ(ξ)A(ξ) − 1

dξ.(5.4)

To obtain a formula for R, note that by (5.3),

Ṙ =
dR

dr̄
˙̄r =

dR

dr̄

γA
√

1 − A

γA − 1
,

so that (5.1) implies

1
R

dR

dr̄
=

γ(r̄)A(r̄) − 1
γ(r̄)A(r̄)r̄

.(5.5)

Direct integration of (5.5) gives the value of R when the shock is at position r̄ :

R = R0 exp
(∫ r̄

r̄0

γ(ξ)A(ξ) − 1
γ(ξ)A(ξ)ξ

dξ

)
.(5.6)

Finally, to obtain a formula for the shock position r, use (5.3) to write

ṙ =
dr

dr̄
˙̄r =

dr

dr̄

γA
√

1 − A

γA − 1
,

which together with (5.1) yields

dr

dr̄
=

1
RγA

.(5.7)

This integrates to

r = r0 +
∫ r̄

r̄0

dξ

R(ξ)γ(ξ)A(ξ)
,(5.8)
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where, as above, ξ denotes a dummy variable for r̄. The FRW pressure is then given
by the following function of the shock position r̄ (cf. (3.14)):

p =
1 − γ(r̄)A(r̄)z(r̄)

γ(r̄)A(r̄) − 1
ρ(r̄),(5.9)

where

z(r̄) =
ρ̄(r̄)
ρ(r̄)

.(5.10)

We can use (5.4) to write R, ρ, and p as functions of t, and our general theory implies
that the resulting FRW metric will solve the Einstein equations (3.2), (3.3).

As an application, we can use our formulas for k = 0 to reproduce the exact
solution derived in [7]. For the exact solution there, k = 0, and the outer OT solution
is taken to be the general relativistic version of a static, singular, isothermal sphere:

ρ̄(r̄) =
α

r̄2 ,(5.11)

M(r̄) = 4παr̄,(5.12)

p̄ = σ̄ρ̄,(5.13)

B =
(

r̄

r̄0

) 4σ̄
1+σ̄

.(5.14)

Here σ̄, the OT sound speed squared, takes a constant value in (0, 1), and α is the
constant given by

α =
1

2πG

(
σ̄

1 + 6σ̄ + σ̄2

)
.(5.15)

It is straightforward to verify that (5.11)–(5.15) define an exact solution of the OT
equations (3.5), (3.6), and (3.7). For this fixed, outer OT solution, the shock surface
equation (3.8) gives

ρ = 3ρ̄.(5.16)

In this case the formula (5.9) for the FRW pressure is

p =
1 − γAz

γA − 1
ρ,(5.17)

where in this case

z =
ρ̄

ρ
=

1
3
,(5.18)

A = 1 − 8πGα =
(1 + σ̄)2

1 + 6σ̄ + σ̄2 ,(5.19)
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and

γ =
ρ + p̄

ρ̄ + p̄
=

3 + σ̄

1 + σ̄
.(5.20)

Substituting (5.18)–(5.20) into (5.17) yields

p = σρ,(5.21)

where σ takes the constant value

σ =
σ̄(σ̄ + 7)
3(1 − σ̄)

.(5.22)

Equation (5.22) agrees with (5.2) of [7]. Using (5.18)–(5.20) in (5.6) yields

R = R0

(
r̄

r̄0

) 2(1−σ̄)
(3+σ̄)(1+σ̄)

.(5.23)

A calculation using (5.22) shows that this is equivalent to

R = R0

(
r̄

r̄0

) 2
3(1+σ̄)

,(5.24)

which is (5.10) of [7]. Substituting (5.18)–(5.20) into (5.8) yields

˙̄r(t) =
(1 + σ̄)(3 + σ̄)

(1 − σ̄)

√
σ̄

1 + 6σ̄ + σ̄2 .(5.25)

A calculation shows that this agrees with

˙̄r(t) = 3(1 + σ)
√

σ̄

1 + 6σ̄ + σ̄2 ,(5.26)

which is (5.12) of [7].
In this model, the sound speeds

√
σ̄ and

√
σ are constant, and a calculation shows

σ > σ̄. Moreover, equation (3.13) gives the shock speed as

s =
√

1 + 6σ̄ + σ̄2

1 − σ̄

√
σ̄,(5.27)

which is also constant in this example. The equation of state for a (classical) ideal
gas is

p = RTρ,

where T is the temperature and R denotes the universal gas constant divided by
the effective molecular weight of the particular gas. Thus, when the temperature is
constant, the sound speed is proportional to the temperature alone, in which case the
higher sound speed in the FRW metric represents an ideal gas at a higher temperature,
which accords with the higher density and pressure behind the shock. Alternatively,
the case σ = 1

3 gives the equation of state in the extreme relativistic limit of free
particles, as well as the equation of state for pure radiation; cf. [5, 7]. As a final
comment, note that in this example the total mass inside the shock-wave tends to
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zero as the shock-wave tends to r̄ = 0 in backward time. (See (5.12), where, as in
the zero pressure problems, the total mass inside the shock tends to a delta function
source at the origin as r̄ → 0.)

The formulas in the above example were especially simple because

A ≡ A0 ∈ (0, 1),(5.28)

z =
1
3
,(5.29)

ρ =
Cρ

r̄2 ,(5.30)

and

ρ̄ =
Cρ̄

r̄2 ,(5.31)

where A0, Cρ, and Cρ̄ are positive constants. We now construct a more general class of
equations of state, more general than isothermal, in which the simplifying conditions
(5.28)–(5.31) also hold. Note first that (5.29) and (5.30) follow directly from (5.28)
and (5.29). Indeed,

A ≡ 1 − 2GM(r̄)
r̄

= A0 ≡ const.(5.32)

implies that

M(r̄) =
1 − A0

2G r̄,(5.33)

and since M ′(r̄) = 4πρ̄r̄2, it follows from (5.32) that

ρ̄ =
1
4π

(1 − A0)
2G

1
r̄2 .(5.34)

This, together with (5.29), then implies

ρ = 3ρ̄ =
3
4π

(1 − A0)
2G

1
r̄2 ,(5.35)

so that

Cρ̄ =
1
4π

(1 − A0)
2G(5.36)

and

Cρ =
3
4π

(1 − A0)
2G .(5.37)

We now find more general equations of state for which (5.28) and (5.29) hold. To
this end, assume that A = A0 is constant, so that M = 1−A0

2G r̄. Substituting these
into the OV equation (3.6), and using (5.36) to simplify, yields

dp̄

dr̄
= −1 − A0

2A0r̄
ρ̄

(
1 +

p̄

ρ̄

)2

.(5.38)
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Using the relation

ρ̄ =
1 − A0

8πG
1
r̄2 ,

we can rewrite (5.38) as the following equation for p̄ as a function of ρ̄, which is now
equivalent to the OV equation:

dp̄

dρ̄
=

1 − A0

4A0

(
1 +

p̄

ρ̄

)2

.(5.39)

Thus we conclude that the OT pressure p̄ is determined by the choice of A0, together
with an arbitrary additional initial condition for the ODE (5.39). Moreover, if we take
k = 0, then we can use (5.9) to obtain the following formula for the FRW pressure in
terms of the function µ̄ = p̄

ρ̄ , which is determined by the ODE (5.39):

p = µρ,(5.40)

where

µ =
(1 − A0/3) µ̄ + (1 − A0)
(A0 − 1)µ̄ + (3A0 − 1)

,(5.41)

The general theory in [8] implies that p > p̄ > 0 at each value of r̄ if and only if
θ > 1/γ, which translates into the condition

µ̄ <
3A0 − 1
1 − A0

,

when k = 0, θ = A0, and z = 1/3. In particular this requires A0 > 1/3 for µ̄ to be
positive.

We recover the example of an explosion into a static isothermal sphere [6] by
setting σ̄ = µ̄ = const., so that σ̄ = p̄

ρ̄ = dp̄
dρ̄ . Substituting this into (5.39) then enables

us to solve for σ̄ in terms of A0 to obtain the relation (5.19) derived above.
We can integrate the ODE (5.39) in general as follows: let

w = 1 +
p̄

ρ̄

and set

α =
A0

1 − A0
.

Then, clearly, w > 0 and α > 0. Substituting w for p in (5.39) yields the equivalent
ODE:

ρ̄
dw

dρ̄
=

1
4α

w2 − w + 1.(5.42)

Now changing to the independent variable s = ln(ρ̄) turns (5.42) into the autonomous
ODE

dw

ds
=

1
4α

w2 − w + 1.(5.43)
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Integrating yields

ln
ρ̄

ρ̄0
=

∫ w

w0

dw
1
4αw2 − w + 1

.(5.44)

We can integrate the right-hand side by completing the square. It follows that

1
4α

w2 − w + 1 =
(w − 2α)2

4α
+ (1 − α).(5.45)

Thus there are three cases depending on whether (1−α) is positive, negative, or zero.
Note that 1 − α > 0 is equivalent to A0 < 1

2 , 1 − α < 0 is equivalent to A0 > 1
2 , and

1−α = 0 is equivalent to A0 = 1
2 . In the first case (A0 < 1

2 ), making the substitution

z =
w − 2α

2
√

α(1 − α)
,

integrating, and solving for p in (5.44) gives the formula

p̄

ρ̄
=

(
3A0 − 1
1 − A0

)
+ 2

√
A0(1 − 2A0)

1 − A0
tan

(
1
2

√
1 − 2A0

A0
ln ρ̄ + C

)
,(5.46)

where C is an arbitrary constant of integration.
For the second case (A0 > 1

2 ), the integration leads to the formula

p̄

ρ̄
=

(
3A0 − 1
1 − A0

)
+

(
2

√
A0(2A0 − 1)

1 − A0

)
1 +

(
ρ̄
C

)√
2A0−1

A0

1 −
(

ρ̄
C

)√
2A0−1

A0

.(5.47)

For the third and final case (A0 = 1
2 ), the integration leads to the formula

p̄

ρ̄
= 1 +

1

ln
[
ρ̄− 1

4

]
+ C

.(5.48)

These exact formulas could be used to approximate realistic equations of state
over limited ranges of the variable ρ̄.
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