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Abstract

We introduce a new formulation of the Oppenheimer-Volkoff (O-V) equations, a
system of ordinary differential equations that models the interior of a star in general
relativity, and we use this to give a completely rigorous mathematical analysis of
solutions. In particular, we prove that, under mild assumptions on the equation of
state, black holesneverform in solutions of the O-V equations. As a corollary,
this implies that the portion of the empty-space Schwarzschild solution inside the
Schwarzschild radius cannot be obtained as a limit of O-V solutions having non-zero
density. We also prove that if the densityρ at radiusr is ever larger than3

4π
M(r)

r3 ,

whereM(r) is the total mass inside radiusr, thenM must become negative for
some positive radius. We interpretM < 0 as a condition for instability because
we show that if the pressure is a decreasing function ofr, thenM(r) < 0 at some
r > 0 implies that the pressure tends to infinity beforer = 0.

1. Introduction

The Oppenheimer-Volkoff (O-V) equations describe the pressure gradient inside
a static fluid sphere when the gravitational forces are modeled by Einstein’s Theory
of General Relativity, and thus they provide a model for the interior of a star [1].
The O-V equations form a system of two non-autonomous, nonlinear, ordinary
differential equations in the unknown pressurep, the densityρ (ρc2 is the mass-
energy density,c is the speed of light), and the “mass function”M, whereM ≡ M(r)

denotes the total mass inside radiusr. Although an equation of state of the form
p = p(ρ) closes the O-V system, the O-V system applies to equations of state
which can allow, e.g., for temperature dependence.

In this paper we introduce a new formulation of the O-V system, and use this
to rigorously describe the behavior of solutionsin the large, assuming only mild
restrictions on the equation of state (namely, (2.10) and (2.11) below.) Specifically,
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we describe the behavior of solutions for values of the radiusr < r0, starting from
initial data given atr = r0 > 0, wherer0 could, for example, be taken to be the
outer surface of a star. This differs from the standard approach which pose initial
conditions at the centerr = 0. Our equations are written in terms of a new variable
z ≡ ρ

ρ̄
which we introduce, wherēρ(r) ≡ 3

4π
M(r)

r3 denotes the average density
inside radiusr. The variablez is quite natural for this problem. In particular, we
show below thatz → +∞ asr → r1+ whenever there is a positive radiusr1 > 0
at whichM(r1) = 0. Thus, if one restricts attention to the class of solutions of
the O-V equations satisfyingM = 0 (these are usually considered to be the only
physically relevant solutions [1, page 300]), thenr1 marks the inner boundary of
the “physical”solution. Indeed, we show that ifM(r) < 0 for somer > 0, then
eitherp′ < 0 cannot hold for allr < r1, or elsep tends to infinity beforer = 0.

We interpret this as a condition for instability.
The occurrence ofM(r1) = 0 happens when there is no additional mass avail-

able to continue a positive mass solution of the O-V equations inward beyond
r = r1. WhenM(r1) = 0 for r1 > 0, we prove that the O-V solution can be
continued to valuesr < r1, r nearr1, but for these values,M < 0. Thus,ρ andp

must have finite non-zero values atr = r1 even thoughM(r1) = 0 marks the end
of the “physical regime” in the above sense. On the other hand, the variablez tends
to infinity at the inner boundaryr1 of the solution, becausez = ρ

ρ̄
andρ̄ → 0 at

r = r1. In this sense the variablez is more natural thanρ or p for this problem.
In this paper we also prove that for solutions of the O-V system, if the density

ever exceeds the average density, thenM = 0 at somer1 > 0. (This is not predicated
on thea priori assumption that black holes never form in solutions.) SinceM ′(r) >

0, this provides the following a priori bound on the density profile of a static fluid
sphere having positive mass functionM(r) = 0 in general relativity. (The only
restrictions on the equation of state are imposed by (2.10) and (2.11) below.)

Theorem 1. If a static fluid sphere satisfiesM(r) = 0 for r = r1 = 0, then for
everyr0 > r1, the density profileρ(r) satisfies

ρ(r) 5 3

4π

M(r)

r3
5 3

4π

M(r0)

r3
(1.1)

for all r1 5 r 5 r0.

In particular, (1.1) implies that ifρ(r) > 3
4π

M(r)

r3 at any radiusr, thenM(r) < 0
at some positive radiusr. One can interpret this as a local condition for instability
which is independent of the equation of state.

We also prove that black holescannotform in solutions of the O-V equations
when the pressure is non-zero (assuming only (2.10) and (2.11) below). That is,
when the pressure is non-zero,black holes cannot form in static, spherically sym-
metric solutions of the Einstein equations for a perfect fluid.This implies that the
portion of the empty-space Schwarzschild solution inside the Schwarzschild radius
is “disconnected” from the rest of the solution space of the O-V system in the sense
that it cannot be obtained as a limit of O-V solutions having non-zero density.
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2. Statement of Results

We now give a precise statement of our main results. The O-V system is given
by (cf. [1])

− r2dp

dr
= G Mρ

(
1 + p

ρc2

) (
1 + 4πr3p

Mc2

)
A−1, (2.1)

dM

dr
= 4πρr2. (2.2)

This is a system of two ordinary differential equations in the unknown functions
p = p(r), ρ = ρ(r), andM = M(r), wherep denotes the pressure,ρc2 denotes
the the mass-energy density,c denotes the speed of light,M(r) denotes the total
mass inside radiusr, G denotes Newton’s gravitational constant, and

A = A(r) ≡ 1 − 2
G
c2

M(r)

r
. (2.3)

Weinberg [1, page 301], refers to the Oppenheimer-Volkoff equation (2.1) as
the fundamental equation of Newtonian astrophysics, with general-relativistic cor-
rections supplied by the last three factors.

The constantG enters through the Einstein equations

G = 8πG
c4

T , (2.4)

whereG is the Einstein tensor andT denotes the stress-energy tensor. Solutions
of (2.1) and (2.2) determine a Lorentzian metric tensorg of the form

ds2 = −B(r)d(ct)2 + A(r)−1dr2 + r2
(
dθ2 + sin2(θ)dφ2

)
(2.5)

that satisfies the Einstein equations (2.4) whenT is the stress-energy tensor for a
perfect fluid:

T ij = (p + ρc2)uiuj + pgij . (2.6)

For the metric (2.5), the functionA(r) is defined by (2.3), and the functionB ≡ B(r)

is determined by the equation

B ′

B
= −2

p′

p + ρc2
. (2.7)

The metric (2.5) is spherically symmetric, time-independent, and the fluid 4-
velocity is given byu0 = √

B andur = uθ = uφ = 0 [1], so that the fluid is
fixed in the(t, r, θ, φ)-coordinate system.

To close the O-V system (2.1), (2.2), one usually assigns an equation of state
that relatesp andρ, and thenB(r) is determined by (2.7). However, to be more
general (for example, to allow for temperature dependence), we assume only that

µ = p

ρ
, (2.8)
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σ = dp/dr

dρ/dr
(2.9)

satisfy the a priori bounds
0 5 µ̃ < Σ < ∞, (2.10)

0 < Σ1 < σ̃ < Σ2 < ∞, (2.11)

where throughout this paper we useµ̃ andσ̃ to denote the dimensionless quantities

µ̃ = µ

c2
, (2.12)

σ̃ = σ

c2
. (2.13)

That is, our results apply to any solution for which (2.10) and (2.11) hold. In
particular, our results apply to any barytropic equation of state in whichµ(ρ) ≡
p
ρ

< Σ and 0< Σ1 < σ(ρ) ≡ dp
dρ

< Σ2. In this case, for physically reasonable
equations of state,σ is the square of the sound speed and must be bounded byc2.

Thus, in the case of a barytropic equation of statep = p(ρ), it is reasonable to
assume that the equation of state satisfies the bounds (2.10), (2.11).

However, our results apply even when the pressurep is not a given function of
the densityρ alone. For example, when there is a more general equation of state
allowing for temperature dependence in the problem, our results still apply to any
solution so long as the bounds (2.10) and (2.11) hold. To motivate (2.10) and (2.11),
we note that these bounds have a very natural interpretation in the case of an ideal
gas in the nonrelativistic limit. Here the ideal gas law reads

p = RTρ, (2.14)

whereR is a constant andT denotes the temperature. In this case, the sound speed√
σs is given by √

σs =
√

γ (T )RT ,

whereγ (T ) is the ratio of specific heats, a constant in the case of a polytropic
equation of state [2]. Thus when (2.14) holds,

σ = p′

ρ′ = RT ′ρ
ρ′ + RT , (2.15)

where the prime denotes differentiation with respect tor in a given solution. Now
the second term on the right-hand side of (2.15) is the square of the sound speed
divided byγ (T ) > 0, and the first term on the right-hand side of (2.15) is positive if
T ′ < 0 andρ′ < 0, both reasonable assumptions. (In this case the first term on the
right-hand side of (2.15) is a measure of the temperature gradient inside the star.)
We conclude that in the case of an ideal gas, the bound 0< Σ1 < σ̃ holds when
there is a negative temperature gradient. Note also that in light of the O-V equation,
assuming (2.10) and (2.11) is equivalent to restricting the class of solutions to those
for which −∞ < ρ′ < 0 whenρ, M, p are positive and finite, andA > 0. In
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summary,our results apply to equations of state with temperature dependence so
long as the bounds(2.10)and(2.11)hold.

In order to obtain estimates on any O-V solution for which (2.10) and (2.11)
hold, we proceed as follows. Namely, we takeµ(r) andσ(r) to be any given known
functions defined on [0, r0] that are smooth and satisfy these bounds. We then use
the expressionsp

ρ
= µ and p′

ρ′ = σ to close the O-V equations (2.1), (2.2) in the

variablesρ andM by writing (2.1) as

− r2dρ

dr
= G

σ
Mρ (1 + µ̃)

(
1 + 4πr3µ̃ρ

M

)
A−1. (2.16)

We now take (2.16) and (2.2) as a system of two non-autonomous ordinary dif-
ferential equations in the two unknownsρ andM. It is important to note that for
fixed functionsµ(r) andσ(r), the solutions(ρ(r), M(r)) that satisfy (2.16) and
(2.2) donot in general satisfy (2.10) and (2.11). However, becauseµ andσ are
arbitrary, we can conclude thatanyactual solution of the original O-V system such
that the bounds (2.10) and (2.11) hold, must satisfy the conclusions of our theorem.
Note finally that in the case when we aregivenan equation of state of the form
p = p(ρ), the system (2.16), (2.2) isexactlyequivalent to the original O-V system
(2.1), (2.2).

To study solutions of the O-V system (2.16), (2.2) for fixedµ(r) andσ(r), we
introduce the variables̄ρ andz by

ρ̄ = 3

4π

M

r3
, (2.17)

z = ρ

ρ̄
. (2.18)

The variables̄ρ(r) andz arise naturally in our previous work on constructing exact
shock-wave solutions of the Einstein equations [3, 4, 5]. The variableρ̄(r) is the
average density of a solution inside radiusr, and in [4],ρ̄ is also the density of the
inner Friedmann-Robertson-Walker metric that matches the (outer) O-V solution
Lipschitz continuously across a shock interface positioned atr. The variablez

measures the strength of the density jump across the shock, and the shock wave
is an outgoing shock modeling an explosion in the case when 0< z < 1 [5].
Although these variables arise in the shock-wave construction problem, they are
defined solely in terms of the O-V solution.

In order to study solutions of the O-V system, we transform (2.1), (2.2) into an
equivalent system in the variablesz andA. To this end, multiplyM into the second
of the last three factors in (2.1), use the identities (2.17), (2.18), and (2.3) together
with p′ = σρ′ andp = µρ to eliminatep, ρ andM in favor of z andA in (2.1),
(2.2). This gives the equivalent system

dz

dr
= −C

z

A

(
1 − A

r

)
, (2.19)

dA

dr
= (1 − 3z)

(
1 − A

r

)
, (2.20)
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where

C ≡
(
1 + µ

c2

)(
1 + 3µz

c2

)
2 σ

c2

− 3(1 − z)A

(1 − A)
. (2.21)

In terms ofz andA, equation (2.7) becomes

B ′

B
= c2

r

(
1 + 3

µz

c2

) (1 − A

A

)
. (2.22)

The main advantage of the formulation (2.19), (2.20) is that all of the dependence
onµ andσ (i.e., on the equation of state) is isolated in the factorC, and whenz > 1,

C is positive, and can be estimated from above and below. Moreover, we will see that
we can use equations (2.19) and (2.20) to estimateA in terms ofz by substituting
into one of the equations the expression for

(1−A
r

)
obtained from the other, thereby

obtaining an equation which is independent ofr. However, the main difficulty in
analyzing solutions of system (2.19), (2.20) lies in the fact that the functionC in
(2.21) need not be positive whenz < 1. Indeed, for the exact solution of the O-V
system studied in [4], i.e, the solution that describes a static, singular, isothermal
sphere in general relativity, it is easy to verify thatC is identically zero. In this
example,p = µρ for µ ≡ const., A ≡ const., z ≡ 1

3, and the density profile
varies as the inverse square inr. Note, finally, that when we assume thatp is a
given function ofρ, the substitutions = ln(r) reduces the system (2.19), (2.20)
to an autonomous system, but since we are interested in quantitative rather than
qualitative information about solutions, this gives us no essential simplification.

The main results of this paper are summarized in the following theorem:

Theorem 2. Let(z(r), A(r)) denote the smooth (i.e.,C1) solution of(2.19), (2.20),
defined on a maximal interval(r1, r0], 0 5 r1 < r0 < ∞, satisfying the initial
conditionsz(r0) = z0, A(r0) = A0, where

0 < z0 < ∞, 0 < A0 < 1. (2.23)

Assume that(2.10)and (2.11)hold. Then(z(r), A(r)) satisfies the following in-
equalities for allr ∈ (r1, r0] :

0 < z(r) < ∞, (2.24)

0 < A(r) < 1, (2.25)

B(r) > 0, (2.26)

0 < M(r) < M(r0), M ′(r) > 0, (2.27)

lim
r→r1+

M(r) = 0. (2.28)

Moreover, ifr1 > 0, then
lim

r→r1+
z(r) = +∞, (2.29)

lim
r→r1+

A(r) = 1, (2.30)
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lim
r→r1+

B(r) = B(r1) > 0. (2.31)

If r1 = 0, then
0 5 z(r) 5 1 (2.32)

for all r ∈ (0, r0], and if ρ(r) has a finite limit atr1 = 0, then(2.30)and (2.31)
also hold.

The original variablesρ and p of the O-V system(2.1), (2.2) satisfy the in-
equalities

0 < ρ(r0) < ρ(r) < ρ(r1) < ∞, ρ′(r) < 0, (2.33)

0 < p(r0) < p(r) < p(r1) < ∞, p′(r) < 0. (2.34)

Finally, if r1 > 0 andp′ < 0 for all r 5 r1, then there exists anr2, 0 5 r2 < r1,

such that
lim

r→r2+
p(r) = +∞. (2.35)

We remark that (2.28) and (2.29) show thatz can only tend to infinity at a
positive value ofr whereM = 0. Furthermore, it follows that whenr1 > 0, the
values ofρ andp are bounded on the closed intervalr1 5 r 5 r0. Thus, solutions
of the O-V system (2.1), (2.2), exist on a larger interval containing [r1, r0], and
for r < r1, M(r) < 0. Thus (2.19), (2.20) is a more natural formulation in the
sense that the breakdown of smooth solutions occurs exactly atr1, the point where
M = 0. That is, (2.33) and (2.34) state thatρ andp are finite atr = r1 when
r1 > 0. This is because the O-V equation implies that ifρ → ∞ at r = r1, thenρ

must have a non-integrable singularity atr1 (this follows by an argument analogous
to that following (3.14) below), and thus since

M(r) = M(r0) −
∫ r0

r

4πρ(s)s2ds,

M must tend to−∞ if ρ → +∞ at r = r1 > 0, thereby violating (2.28). In
contrast, ifr1 = 0, we see by example thatρ can tend to infinity atr1 with z staying
bounded. Indeed, this occurs in the case of an isothermal sphere when the equation
of state is of the formp = σρ, σ constant; cf. [4].

It is interesting to note that (2.32) implies that if initiallyz(r0) > 1, then blow-up
in z mustoccurbeforer = 0, so thatr1 > 0. As a corollary, we have the following
local condition which implies instability for solutions of the Oppenheimer-Volkoff
equations, and (sinceM ′ > 0) this implies Theorem 1 of the introduction:

Corollary 1. Let (z(r), A(r)) be anyC1 solution of(2.19), (2.20), starting from
the initial conditionsz(r0) = z0, A(r0) = A0, satisfying

0 < z0 < ∞, 0 < A0 < 1, (2.36)

and assume that(2.10)and(2.11)hold. Then ifz(r0) > 1, i.e., if

ρ(r0) >
3

4π

M(r0)

r3
0

, (2.37)

it follows that there exists anr1, 0 < r1 < r0, such thatM(r1) = 0.
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This result shows that if the equation of state satisfies (2.10) and (2.11), and if
(2.37) holds, i.e., if the density of a star at radiusr0 is too large relative to the total
massM0 at r0, then no finite pressure at the center of the star is sufficient to “hold
the static configuration up”, because (2.35) implies thatp is unbounded inr < r1.

ThatA > 0 in solutions of (2.1), (2.2) implies that the portion of the empty-space
Schwarzschild solution inside the Schwarzschild radius is “disconnected” from the
rest of the solution space of the O-V system in the sense that it cannot be obtained as
a limit of O-V solutions having non-zero density. Indeed, by continuous dependence
for ordinary differential equations, it follows that ifA(r0) = A0 is fixed and we
let ρ(r0) → 0, the solution must tend to the empty-space Schwarzschild solution
outside the Schwarzschild radius (a solution of (2.1), (2.2)). But sinceA |= 0 in a
solution starting fromρ(r0) |= 0, andA < 0 inside the Schwarzschild radius of
the Schwarzschild solution, it follows that O-V solutions withρ(r0) |= 0 diverge
from the empty-space Schwarzschild solution near the Schwarzschild radius, and
there is no convergence inside the Schwarzschild radius in the limitρ(r0) → 0.

3. Regularity of the OT Solutions

In this section we give the proof of Theorem 1. To start, letI ≡ (r1, r0], r1 = 0,

be the maximal interval on whichz(r) andA(r) are smooth (C1) solutions of (2.19),
(2.20), whereC is given by (2.21) and the initial data satisfy (2.23). We begin with
the following lemma:

Lemma 1. The metric componentA satisfiesA(r) < 1 for all r ∈ I. Moreover, if
r1 > 0 and limr→r1+ A(r) = 1, thenlimr→r1+ z(r) = +∞.

Proof. Assume for contradiction thatA(s) = 1 for somes ∈ (r1, r0). Then from
(2.20), we have

dA

1 − A
= (1 − 3z)

dr

r
,

and integrating froms to r0 gives

1 − A(s)

1 − A0
= exp

[
−

∫ r0

s

(1 − 3z)
dr

r

]
. (3.1)

Hence, ifA(s) = 1, it follows that∫ r0

s

(1 − 3z)
dr

r
= −∞,

becauses > 0. This is a contradiction sincez(r) is assumed to be a smooth function
on (r1, r0]; this proves thatA(r) < 1 onI.

Now assume thatr1 > 0 and limr→r1+ A(r) = 1. Then replacings by r1 > 0
in (3.1), we see that limr→r1 z(r) = +∞. This completes the proof of Lemma 1.

Next we prove that ifA is positive on a sub-interval(r̃, r0] of I, thenz(r) is
positive on the same sub-interval.
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Lemma 2. Assume thatA(r) > 0 on an interval(r̃, r0], wherer1 5 r̃ < r0. Then
z(r) > 0 for all r ∈ (r̃, r0].

Proof. Let s ∈ (r̃, r0]. Then writing (2.20) in the form

(1 − A)

r
= A′

1 − 3z
,

and substituting into (2.19), we have

z′ = −C
z

A

A′

(1 − 3z)
,

or
1 − 3z

z
dz = −C

dA

A
,

which gives ∫ z(s)

z0

(
1

z
− 3

)
dz =

∫ A0

A(s)

C
dA

A
.

Integrating yields

z(s)

z0
exp[−3(z(s) − z0)] = exp

[∫ A0

A(s)

C
dA

A

]
. (3.2)

But C is continuous on [s, r0], becausez(r) andA(r) are continuous on [r̃ , r0],
and 0< A < 1 on(r̃, r0] implies thatA is also bounded away from 0 and 1 on the
closed sub-interval [s, r0] ∈ I (becauseI is the maximal interval on whichA andz

are continuous). ThusC is continuous and hence bounded on [s, r0], so it follows
from (3.2) thatz(s) > 0, for all s ∈ (r̃, r0]. This proves Lemma 2.

We show that Lemmas 1 and 2 imply that ifr1 > 0, thenA > 0 on the entire
intervalI :

Lemma 3. Assume thatr1 > 0. ThenA(r) > 0 on the maximal intervalI =
(r1, r0].

Proof. Let J ≡ (r̃, r0] ⊂ I now denote the maximal sub-interval ofI on which
A > 0. Then sinceI is the maximal interval on whichz(r) and A(r) are C1

functions, it follows that either̃r = r1 (in which case we are done) or elser̃ > r1
andA(r̃) = 0. If r̃ > r1 andA(r̃) = 0, we claim that

lim
r→r̃+

z(r) = +∞, (3.3)

which would prove the lemma by contradicting the maximality ofI.

So assume that̃r > r1 and A(r̃) = 0. To verify (3.3), note that since
limr→r̃ A(r) = 0, it follows that forr sufficiently close tõr, we can find a constant
C0 > 0 such that

C ≡ (1 + µ)(1 + 3µz)

2σ
− 3(1 − z)A

1 − A
= C0.
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Thus forr sufficiently close tõr, it follows that

z′ = −C
z

r

1 − A

A
< 0,

in view of (2.19) and the fact thatz > 0 onJ by Lemma 2. Thus forr sufficiently
close tor̃ , z(r) = δ for someδ > 0. Hence, there exists an interval(r̃, r̃0], in which
we have

z′(r) 5 −C1

A
, (3.4)

A′(r) 5 C2, (3.5)

for some positive constantsC1 andC2. Thus integrating (3.5) gives

A(r) 5 C2(r − r̃) (3.6)

for all r ∈ (r̃, r̃0]. Substituting this into (3.4) gives

z′(r) 5 − C1

C2(r − r̃)
. (3.7)

Now let s ∈ (r̃, r̃0). Then integrating (3.7) froms to r̃0 gives

z(r̃0) − z(s) 5 −C1

C2
ln

r̃0 − r̃

s − r̃
, (3.8)

so that

z(s) = z(r̃0) + C1

C2
ln

r̃0 − r̃

s − r̃
. (3.9)

Letting s → r̃ , in (3.9) gives the conclusion (3.3). This completes the proof of
Lemma 3.

Note that in the caser1 > 0, if z is uniformly bounded in a neighborhood
r1 < r < r1 + δ of r1, then from (2.20), the derivativeA′(r) is uniformly bounded
on this neighborhood, and thusA has a value and is continuous from the right at
r1. Thus the proof of the above lemma directly implies

Corollary 2. If r1 = 0 and if limrn→r1+ A(rn) = 0 for some sequencern → r1+,

thenlimr→r1+ z(r) = +∞.

We now have that 0< A < 1 on the maximal intervalI, and this will be used
to prove

Lemma 4. Supposez(r̃) = 1 for somer̃ ∈ I. Thenz′(r) < 0 andA′(r) < 0 for
all r ∈ (r1, r̃). (This applies whenr1 > 0 and whenr1 = 0.)

Proof. Lemmas 1–3 imply that 0< A < 1 andz > 0 throughout the intervalI,
and so by (2.21),C > 0 atr = r̃ . Thus (2.19) and (2.20) imply thatz′(r̃) < 0 and
A′(r̃) < 0, and this is clearly maintained forr < r̃.

The next lemma demonstrates that whenr1 > 0, z tends to infinity asr tends
to r1 + .
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Lemma 5. Let r1 > 0; thenlimr→r1+ z(r) = +∞.

Proof. First, if A tends to zero on some subsequencern → r1+, then Corollary 2
implies that limr→r1+ z(r) = +∞. Thus we may assume that there is someδ > 0
such thatδ < A(r) < 1 for all r ∈ (r1, r0] (in light of the fact that 0< A < 1 away
from r1). In this case, we see from (2.19)–(2.21) that ifz is uniformly bounded on
I, thenC(1 − A) is uniformly bounded onI, and hence thatz, A, z′, andA′ all
have finite limits atr1. This contradicts the maximality ofI. Thus there must be a
sequencerk tending tor1 from above, such thatz(rk) tends to+∞, and so by the
last lemma, limr→r1+ z(r) = +∞. This completes the proof of the lemma.

The next lemma shows thatM(r) tends to 0 atr1.

Lemma 6. The mass functionM(r) satisfies

lim
r→r1+

M(r) = 0.

Proof. First note thatM ′(r) > 0 for all r ∈ (r1, r0] becauseM ′(r) = 4πρr2 and
ρ > 0 (in view of (2.1), (2.2), our initial conditions,A > 0 and the fact that we
assume (2.11), so thatρ′ ≡ p′

σ
> 0).

Consider first the caser1 = 0. Writing

2G M

r
= 1 − A, (3.10)

we see that ifM → M0 |= 0 asr → 0, thenA → ±∞ asr → 0+, which violates
the fact that 0< A < 1 onI. ThusM0 = 0 whenr1 = 0.

Consider next the caser1 > 0. In view of (3.10), in order to show thatM(r) → 0
asr → r1+, it suffices to show that

lim
r→r1+

A(r) = 1. (3.11)

To show this, assume for contradiction that

lim
r→r1+

A(r) |= 1. (3.12)

Now consider the identity (3.1) which we can write as

1 − A(r)

1 − A(r0)
= exp

[
−

∫ r

r0

(1 − 3z)
dr

r

]
. (3.13)

Since we know already thatz tends to+∞ atr1, it follows from (3.13) thatA tends
to 1 atr1 if z(r) has a non-integrable singularity atr = r1, thereby violating (3.12).

We now show thatz(r) has a non-integrable singularity atr = r1. To do this,
note first thatA(r) has a finite limit atr = r1 becausez > 1 nearr = r1, so from
(2.20),A′ < 0, andA < 1 onI. Thus by (3.12), there exists aδ > 0 such that

δ < A(r) < 1 − δ
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throughout the intervalI, and so from (2.19), there exists a constantC1 > 0 such
that forr nearr1, sayr ∈ (r1, r2),

z′ 5 −C1z
2. (3.14)

We show thatz(r) is not integrable atr = r1 as follows: Let̃z(r) be the solution of

z̃′ = −C1z̃
2, (3.15)

z̃(r2) = z̃2. (3.16)

Integrating (3.15) gives

z̃(r) = 1

C1

[
r −

(
r2 − 1

C1z̃2

)] . (3.17)

Now choosẽz2 so that

r2 − 1

C1z̃2
= r1

that is,

z̃2 = 1

C1 (r2 − r1)
.

Thusz̃(r) is defined throughout the interval(r1, r2], and by (3.17),

z̃(r) = 1

C1(r − r1)
, (3.18)

so that̃z(r) has a non-integrable blowup precisely atr = r1. We now comparẽz(r)
to z(r). To this end, choosẽC such that

z(r) = z̃(r) + C̃ (3.19)

for all r ∈ (r1, r2]. Note that we can achieve (3.19) becausez′(r) 5 z̃′(r) for all
r ∈ (r1, r2], and so (3.19) holds if

z(r2) < z̃(r2) + C̃.

Thus to achieve (3.19), we need only chooseC̃ > z(r2) − z̃(r2). Sincez′ < z̃′,
(3.19) holds for allr ∈ (r1, r2]. Hence, in light of (3.18), (3.19) implies thatz(r)

is non-integrable atr = r1. Therefore, (3.13) implies thatA → 1 andM → 0
asr → r1+, and this contradicts equation (3.12) and completes the proof of the
lemma.

An argument similar to (3.14)–(3.19) shows that ifr1 > 0, thenρ andp have
finite limits at r = r1. To see this, note that if limr→r1+ ρ(r) = ∞, thenρ(r)

would have a non-integrable singularity atr = r1 because the right-hand side of
the O-V equation (2.1) is quadratic inρ. This would imply that

lim
r→r1+

M(r) = M(r0) − lim
r→r1+

∫ r0

r

4πρ(s)s2ds = −∞,
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thereby contradicting Lemma 6. Thusρ(r) andp(r) = ρ(r)
σ (r)

must have finite values
at r = r1 whenr1 > 0. This, together withp′ < 0, (by the O-V equation), and
ρ′ < 0, (sinceσ > 0), implies (2.33) and (2.34). To verify (2.35), note that if
r1 > 0, then since we assume thatp′ < 0, the O-V equation implies thatρ′ < 0,
and we must haveρ > 0 for r < r1. ThusM ′(r) = 4πρ(r)r2 > 0. Thus eitherp
tends to infinity beforer = 0, or elseM(r) tends toM(0) < 0 asr → 0. But the
latter contradictsp′ < 0 because (2.16) implies thatp′ < 0 for sufficiently small
r whenρ is bounded.

We next show that (2.32) and (2.30) hold for the caser1 = 0. For this, first note
that (2.32) follows becauseM(0) = 0 andρ′ < 0. Indeed,

ρ̄(r) = 3

4π

M(r)

r3
= 3

4π

1

r3

∫ r

0
4πρ(s)s2ds

= 3

4π

ρ(r)

r3

∫ r

0
4πs2ds = ρ(r)

hencez(r) 5 1 for all r ∈ I, and (2.32) is established. For (2.30), note that if
ρ(r) → ρ(0) < ∞ asr → 0, then we can writeρ(r) = ρ(0)+ o(r). This implies
that forr near zero,

M(r) =
∫ r

0
4πρ(s)s2ds = 4π

3
ρ(0)r3 + o(r3).

Thus

ρ̄ ≡ 3

4π

M(r)

r3
= ρ(0) + o(r),

and so

z(r) = ρ(r)

ρ̄(r)
→ 1,

asr → 0. Moreover, by L’Ĥopital’s rule,

lim
r→0

M(r)

r
= lim

r→0
M ′(r) = lim

r→0
4πρ(r)r2 = 0,

so that (2.30) holds.
To verify (2.26), first note that from (2.22) we have

(ln B)′ = (1 + 3µ̃z)(1 − A)

rA
, (3.20)

so that ifB → 0 for somer → r̃ ∈ (r1, r0), then lnB → −∞ asr → r̃ . But by
(3.20), we see that(ln B)′ is bounded near̃r, and this is a contradiction; thus (2.26)
holds. Moreover, whenr1 > 0, (2.30) holds becauseM(r1) = 0, and for (2.31),
integrate (3.20) fromr to r̃ , r1 < r < r̃, to obtain

B(r) = B(r̃) exp

[
−

∫ r̃

r

(1 + 3µz)

s

1 − A

A
ds

]
. (3.21)
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But z is of order(1 − A)−1 asr → r1 andA → 1, so the integrand is bounded,
and henceB(r1) > 0. To show that (2.31) holds whenr1 = 0 andρ has a finite
limit at r = 0, note that in this casez tends to unity asr → 0 and1−A

r
= 2G M

r2 has
a finite limit atr = 0 by L’Hôpital’s Rule, so (3.21) implies thatB(r) has a finite
positive limit asr → 0 in this case as well.

To complete the proof of Theorem 1, it remains only to verify (2.35). So assume
thatr1 > 0, andp′ < 0 for r < r1. In this case,σ > 0 impliesρ′ < 0, and so also
M ′ > 0 andA > 1 on the smooth continuation of the O-V system (2.1), (2.2) to a
maximal interval of existenceJ ≡ (r2, r1], 0 5 r2 < r1. Sinceρ′ > 0, it follows
directly from the maximality ofJ that eitherρ → +∞ asr → r2+, with r2 > 0,

in which case we are done, or elser2 = 0. But if r2 = 0 andρ (hencep andM)
have finite limits atr = 0, then nearr = 0, A ∼ −2M(0)/r, and thus it follows
from (2.1) that the equation forρ can be estimated above and below by an equation
of the form

ρ ′ = −D
ρ

r
(3.22)

for some postitive constantD. But solutions of (3.22) take the form

ρ(r) = ρ(r1)
( r1

r

)D

, 0 < r < r1,

and soρ must blow up atr = 0. This contradicts the boundedness ofρ, and hence
establishes (2.35). This completes the proof of Theorem 1.

As a final comment note that Theorem 1 implies that black-holescannotform
at any positive radius in smooth solutions of the O-V system starting from initial
conditions (2.23). Indeed, we have shown thatA > 0 on the intervalI, so when
r1 = 0, A cannot be zero at any positive value ofr. Thus, the only case to consider
is the case whenr1 > 0. In this case, sinceM ′ > 0, we must have thatM < 0
throughout the smooth continuation of the O-V system (2.1), (2.2) to values of
0 < r < r1. ThusA > 1 on this extended domain.
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