Arch. Rational Mech. Anal. 142 (1998) 177-1%9d).Springer-Verlag 1998

On the Oppenheimer-Volkoff Equations
in General Relativity

JOEL SMOLLER & BLAKE TEMPLE

Communicated byC. DAFERMOS

Abstract

We introduce a new formulation of the Oppenheimer-Volkoff (O-V) equations, a
system of ordinary differential equations that models the interior of a star in general
relativity, and we use this to give a completely rigorous mathematical analysis of
solutions. In particular, we prove that, under mild assumptions on the equation of
state, black holeseverform in solutions of the O-V equations. As a corollary,
this implies that the portion of the empty-space Schwarzschild solution inside the
Schwarzschild radius cannot be obtained as a limit of O-V solutions having non-zero
density. We also prove that if the densityat radius- is ever larger thaa%%,
where M (r) is the total mass inside radiusthen M must become negative for
some positive radius. We interprgéf < 0 as a condition for instability because
we show that if the pressure is a decreasing function tifenM (r) < 0 at some
r > 0 implies that the pressure tends to infinity before 0.

1. Introduction

The Oppenheimer-Volkoff (O-V) equations describe the pressure gradientinside
a static fluid sphere when the gravitational forces are modeled by Einstein’s Theory
of General Relativity, and thus they provide a model for the interior of a star [1].
The O-V equations form a system of two non-autonomous, nonlinear, ordinary
differential equations in the unknown pressurethe densityp (pc? is the mass-
energy density; is the speed of light), and the “mass functiofh,'whereM = M (r)
denotes the total mass inside radiuglthough an equation of state of the form
p = p(p) closes the O-V system, the O-V system applies to equations of state
which can allow, e.g., for temperature dependence.

In this paper we introduce a new formulation of the O-V system, and use this
to rigorously describe the behavior of solutianghe large assuming only mild
restrictions on the equation of state (namely, (2.10) and (2.11) below.) Specifically,



178 J.SMOLLER & B. TEMPLE

we describe the behavior of solutions for values of the radids-g, starting from
initial data given at = ro > 0, whererg could, for example, be taken to be the
outer surface of a star. This differs from the standard approach which pose initial
conditions at the center= 0. Our equations are written in terms of a new variable
z = £ which we introduce, wherg(r) = %@ denotes the average density
inside radius. The variablez is quite natural for this problem. In particular, we
show below that — +oco0 asr — r1+ whenever there is a positive raditss> 0

at whichM (r1) = 0. Thus, if one restricts attention to the class of solutions of
the O-V equations satisfyingf > 0 (these are usually considered to be the only
physically relevant solutions [1, page 300]), thermarks the inner boundary of
the “physical’solution. Indeed, we show thatdf(r) < O for somer > 0, then
eitherp’ < 0 cannot hold for all < r1, or elsep tends to infinity before = 0.

We interpret this as a condition for instability.

The occurrence o# (r1) = 0 happens when there is no additional mass avail-
able to continue a positive mass solution of the O-V equations inward beyond
r = r1. WhenM(r1) = 0 for 1 > 0, we prove that the O-V solution can be
continued to values < r1, r nearry, but for these valuesy < 0. Thus,p andp
must have finite non-zero valuesrat= r1 even thoughV (r1) = 0 marks the end
of the “physical regime” in the above sense. On the other hand, the varitdrids
to infinity at the inner boundary, of the solution, because= £ andp — 0 at
r = r1. In this sense the variableis more natural thap or p for this problem.

In this paper we also prove that for solutions of the O-V system, if the density
ever exceeds the average density, thes- 0 at some;1 > 0. (Thisis not predicated
on thea priori assumption that black holes never form in solutions.) Site) >
0, this provides the following a priori bound on the density profile of a static fluid
sphere having positive mass functiafi(r) = 0 in general relativity. (The only
restrictions on the equation of state are imposed by (2.10) and (2.11) below.)

Theorem 1. If a static fluid sphere satisfie® (r) = 0for r = r1 = 0, then for
everyrg > r1, the density profile (r) satisfies

3 M(r) _ 3 M(ro)

<2 =
p(r):4n r3 T 4g 3

(1.1)

forall ri <r <.

In particular, (1.1) implies that i (r) > %% atany radius, thenM (r) < O
at some positive radius One can interpret this as a local condition for instability
which is independent of the equation of state.

We also prove that black holesinnotform in solutions of the O-V equations
when the pressure is non-zero (assuming only (2.10) and (2.11) below). That is,
when the pressure is non-zeldack holes cannot form in static, spherically sym-
metric solutions of the Einstein equations for a perfect flliiis implies that the
portion of the empty-space Schwarzschild solution inside the Schwarzschild radius
is “disconnected” from the rest of the solution space of the O-V system in the sense
that it cannot be obtained as a limit of O-V solutions having non-zero density.
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2. Statement of Results

We now give a precise statement of our main results. The O-V system is given
by (cf. [1])

dp p 47r3p _
2 > 1
—r°-—=9%Mpll+— |1 AT, 2.1
" dr p< +,0c2>< + Mc? 2.1)
amM
= = 47pr?. (2.2)
dr

This is a system of two ordinary differential equations in the unknown functions
p=pr), p=p@r),andM = M(r), wherep denotes the pressurec? denotes
the the mass-energy densitydenotes the speed of ligh/ () denotes the total
mass inside radius < denotes Newton’s gravitational constant, and

G M(r)

A=AnN=1-2— . (2.3)
c® r

WEINBERG [1, page 301], refers to the Oppenheimer-Volkoff equation (2.1) as
the fundamental equation of Newtonian astrophysics, with general-relativistic cor-
rections supplied by the last three factors.

The constants” enters through the Einstein equations
81

G="L7, (2.4)
C

whereG is the Einstein tensor an@ denotes the stress-energy tensor. Solutions
of (2.1) and (2.2) determine a Lorentzian metric tengof the form

ds® = —B(r)d(ct)® + A(r) " tdr? + r2 <d92 + sin2(9)d¢2) (2.5)

that satisfies the Einstein equations (2.4) whéris the stress-energy tensor for a
perfect fluid:
Ti=(@+ ,0C2)M1‘Mj + pgij- (2.6)

For the metric (2.5), the functiafi(r) is defined by (2.3), and the functigh= B(r)
is determined by the equation

/ /

B_ _, P

B Tp+pc?

2.7)

The metric (2.5) is spherically symmetric, time-independent, and the fluid 4-
velocity is given byug = v/B andu, = uy = ug = 0 [1], so that the fluid is
fixed in the(z, r, 0, ¢)-coordinate system.

To close the O-V system (2.1), (2.2), one usually assigns an equation of state
that relate andp, and thenB(r) is determined by (2.7). However, to be more
general (for example, to allow for temperature dependence), we assume only that

1%
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dp/dr

= 2.9
dp/dr (2:9)
satisfy the a priori bounds
05 i< X < oo, (2.10)
O0< X1 <0 < Xy < o0, (2.11)

where throughout this paper we ys@ndas to denote the dimensionless quantities

u

=1L, (2.12)
C

- o

6= (2.13)

That is, our results apply to any solution for which (2.10) and (2.11) hold. In
particular, our results apply to any barytropic equation of state in whigh =
% < XYand0< X1 <o(p) = j— < X>. In this case, for physically reasonable
equations of state; is the square of the sound speed and must be boundeti by
Thus, in the case of a barytropic equation of state- p(p), it is reasonable to
assume that the equation of state satisfies the bounds (2.10), (2.11).

However, our results apply even when the presguigenot a given function of
the densityp alone. For example, when there is a more general equation of state
allowing for temperature dependence in the problem, our results still apply to any
solution so long as the bounds (2.10) and (2.11) hold. To motivate (2.10) and (2.11),
we note that these bounds have a very natural interpretation in the case of an ideal
gas in the nonrelativistic limit. Here the ideal gas law reads

p=.RTp, (2.14)

where.#72 is a constant an@l denotes the temperature. In this case, the sound speed

/05 is given by
\/a =V )/(T)‘%Ta

wherey (T) is the ratio of specific heats, a constant in the case of a polytropic
equation of state [2]. Thus when (2.14) holds,
/ /
o=L = 2T o pr, (2.15)
P P

where the prime denotes differentiation with respect ito a given solution. Now
the second term on the right-hand side of (2.15) is the square of the sound speed
divided byy (T) > 0, and the first term on the right-hand side of (2.15) is positive if
T’ < 0andp’ < 0, both reasonable assumptions. (In this case the first term on the
right-hand side of (2.15) is a measure of the temperature gradient inside the star.)
We conclude that in the case of an ideal gas, the bourdX; < ¢ holds when
there is a negative temperature gradient. Note also that in light of the O-V equation,
assuming (2.10) and (2.11) is equivalent to restricting the class of solutions to those
for which —oco < p’ < 0 whenp, M, p are positive and finite, and > 0. In
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summaryour results apply to equations of state with temperature dependence so
long as the bound@.10)and(2.11)hold.

In order to obtain estimates on any O-V solution for which (2.10) and (2.11)
hold, we proceed as follows. Namely, we take) ando (r) to be any given known
functions defined on [0] that are smooth and satisfy these bounds. We then use
the expression% =u andﬁ—f = o to close the O-V equations (2.1), (2.2) in the
variablesp andM by writing (2.1) as

_2de _ 2

dr o

We now take (2.16) and (2.2) as a system of two non-autonomous ordinary dif-
ferential equations in the two unknowpsand M. It is important to note that for
fixed functionsu(r) ando (r), the solutionsp(r), M(r)) that satisfy (2.16) and
(2.2) donotin general satisfy (2.10) and (2.11). However, becgusmdo are
arbitrary, we can conclude thatyactual solution of the original O-V system such
that the bounds (2.10) and (2.11) hold, must satisfy the conclusions of our theorem.
Note finally that in the case when we agiwenan equation of state of the form
p = p(p), the system (2.16), (2.2) exactlyequivalent to the original O-V system
(2.1), (2.2).

To study solutions of the O-V system (2.16), (2.2) for fixed) ando (r), we
introduce the variableg andz by

47 r3i
Mp L+ i) <1+ %) AL (2.16)

3 M
p = —— 2.17
P= a3 2.17)

Z

Il
il

(2.18)

The variable$ (r) andz arise naturally in our previous work on constructing exact
shock-wave solutions of the Einstein equations [3, 4, 5]. The varjableis the
average density of a solution inside radiuand in [4], 0 is also the density of the
inner Friedmann-Robertson-Walker metric that matches the (outer) O-V solution
Lipschitz continuously across a shock interface positioned @he variablez
measures the strength of the density jump across the shock, and the shock wave
is an outgoing shock modeling an explosion in the case when § < 1 [5].
Although these variables arise in the shock-wave construction problem, they are
defined solely in terms of the O-V solution.

In order to study solutions of the O-V system, we transform (2.1), (2.2) into an
equivalent system in the variableandA. To this end, multiplyM into the second
of the last three factors in (2.1), use the identities (2.17), (2.18), and (2.3) together
with p’ = op’ andp = up to eliminatep, p andM in favor of z and A in (2.1),
(2.2). This gives the equivalent system

dz z (1—A
= __cx , 2.19
dr A ( r ) ( )

A _ 13y (—l - A) , (2.20)
dr r
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where s
1+5)(1+ % 1-2)A
e 6'2)(0 £) _31-94 (2.21)
2% (1-—A)
In terms ofz and A, equation (2.7) becomes
B ¢ uz\ 1—A
=== (1+ 36—2) (T) (2.22)

The main advantage of the formulation (2.19), (2.20) is that all of the dependence
onu ando (i.e., onthe equation of state) is isolated in the factosnd whery > 1,
C is positive, and can be estimated from above and below. Moreover, we will see that
we can use equations (2.19) and (2.20) to estimaiteterms ofz by substituting
into one of the equations the expression(fb‘rﬁ‘) obtained from the other, thereby
obtaining an equation which is independent-offowever, the main difficulty in
analyzing solutions of system (2.19), (2.20) lies in the fact that the function
(2.21) need not be positive when< 1. Indeed, for the exact solution of the O-V
system studied in [4], i.e, the solution that describes a static, singular, isothermal
sphere in general relativity, it is easy to verify th@tis identically zero. In this
example,p = up for u = const, A = const, z = % and the density profile
varies as the inverse squarerinNote, finally, that when we assume thatis a
given function ofp, the substitutions = In(r) reduces the system (2.19), (2.20)
to an autonomous system, but since we are interested in quantitative rather than
qualitative information about solutions, this gives us no essential simplification.
The main results of this paper are summarized in the following theorem:

Theorem 2. Let(z(r), A(r)) denote the smooth (i.&}!) solution 0f(2.19), (2.20),
defined on a maximal intervali, ro], 0 < r1 < ro < oo, satisfying the initial
conditionsz(rg) = zo, A(ro) = Ag, Where

O<zp<oo, O0<Ap<1l. (2.23)

Assume thaf2.10) and (2.11) hold. Then(z(r), A(r)) satisfies the following in-
equalities for allr € (r1, ro] :

0<z(r) < o0, (2.24)
0<A@r) <1, (2.25)
B(r) > 0, (2.26)
0< M) <M(rg), M(r)>0, (2.27)
lim M@)=0. (2.28)

r—>ri+

Moreover, ifr1 > 0, then
lim z(r) = +o0, (2.29)
r—ri+

lim A(r) =1, (2.30)

r—>ri+



On the Oppenheimer-Volkoff Equations in General Relativity 183

Iim+ B(r) = B(r1) > 0. (2.312)

r—ri

If 1 =0, then
0=z =1 (2.32)

forall » € (0, ro], and if p(r) has a finite limit aty = 0, then(2.30)and (2.31)
also hold.

The original variablesp and p of the O-V systen2.1), (2.2) satisfy the in-
equalities

0 < p(ro) < p(r) < p(r1) < oo, p'(r) <0, (2.33)

0< p@ro) < p(r) < p(ry) <oo, p'(r) <O. (2.34)

Finally, if 1 > Oand p’ < Ofor all r < r1, then there exists arp, 0 < rp < 1y,
such that
lim p(r) = +o0. (2.35)

r—>ro+

We remark that (2.28) and (2.29) show thatan only tend to infinity at a
positive value of- whereM = 0. Furthermore, it follows that whery > 0, the
values ofp and p are bounded on the closed interval< r < rg. Thus, solutions
of the O-V system (2.1), (2.2), exist on a larger interval containingrp], and
forr < r1, M(r) < 0. Thus (2.19), (2.20) is a more natural formulation in the
sense that the breakdown of smooth solutions occurs exaetlythe point where
M = 0. That is, (2.33) and (2.34) state thatand p are finite atr = r1 when
r1 > 0. This is because the O-V equation implies that if> oo atr = r1, thenp
must have a non-integrable singularity-afthis follows by an argument analogous
to that following (3.14) below), and thus since

M(r) = M(ro) — /ro A7t p(s)s2ds,

M must tend to—oo if p — 400 atr = r; > 0, thereby violating (2.28). In
contrast, ifrp = 0, we see by example thatcan tend to infinity at; with z staying
bounded. Indeed, this occurs in the case of an isothermal sphere when the equation
of state is of the fornp = op, o constant; cf. [4].

Itisinteresting to note that (2.32) implies that if initialyro) > 1, then blow-up
in z mustoccurbeforer = 0, so that; > 0. As a corollary, we have the following
local condition which implies instability for solutions of the Oppenheimer-Volkoff
equations, and (sinc’ > 0) this implies Theorem 1 of the introduction:

Corollary 1. Let (z(r), A(r)) be anyC? solution of(2.19) (2.20) starting from
the initial conditionsz (rg) = zo, A(rg) = Ag, satisfying

O<zp<oo, O0<Apg<]1, (2.36)
and assume thdqR.10)and(2.11)hold. Then ifz(rg) > 1, i.e., if

3 M(ro)
p(ro) > E?’ (2.37)

it follows that there exists an, 0 < r1 < rg, such thatM (r1) = 0.



184 J.SMOLLER & B. TEMPLE

This result shows that if the equation of state satisfies (2.10) and (2.11), and if
(2.37) holds, i.e., if the density of a star at radigss too large relative to the total
massMy atrop, then no finite pressure at the center of the star is sufficient to “hold
the static configuration up”, because (2.35) implies that unbounded im < r1.

ThatA > Oinsolutionsof (2.1), (2.2) implies thatthe portion of the empty-space
Schwarzschild solution inside the Schwarzschild radius is “disconnected” from the
rest of the solution space of the O-V system in the sense that it cannot be obtained as
alimit of O-V solutions having non-zero density. Indeed, by continuous dependence
for ordinary differential equations, it follows that £(rg) = Ag is fixed and we
let p(rg) — 0, the solution must tend to the empty-space Schwarzschild solution
outside the Schwarzschild radius (a solution of (2.1), (2.2)). But singe0 in a
solution starting fromp(rg) & 0, andA < 0 inside the Schwarzschild radius of
the Schwarzschild solution, it follows that O-V solutions wittrg) £ O diverge
from the empty-space Schwarzschild solution near the Schwarzschild radius, and
there is no convergence inside the Schwarzschild radius in thediijy — O.

3. Regularity of the OT Solutions

In this section we give the proof of Theorem 1. To start/let (r1, o], r1 = 0,
be the maximal interval on whict(r) andA (r) are smooth(?) solutions of (2.19),
(2.20), whereC is given by (2.21) and the initial data satisfy (2.23). We begin with
the following lemma:

Lemma 1. The metric componemt satisfiesA(r) < 1for all r € 1. Moreover, if
r1 > 0andlim,_,,+ A(r) = 1, thenlim,_,, 4+ z(r) = +o0.

Proof. Assume for contradiction thad(s) = 1 for somes € (r1, ro). Then from
(2.20), we have

dA dr
L —(1=3)—
1-A ( 2) r’
and integrating from to rg gives
1— A(s) "o dr
e — - 1-3)—|. 3.1
14 exp[ / ( z)r} 3.1)

Hence, ifA(s) = 1, it follows that
ro d
/ 1- 3z)—r = —00,
s r

because > 0. Thisis a contradiction sincgr) is assumed to be a smooth function
on (r1, ro]; this proves thai(r) < 1 onl.

Now assume that; > 0 and lim-._,,+ A(r) = 1. Then replacing by r; > 0
in (3.1), we see that lim, , z(r) = +oo. This completes the proof of Lemma 1.

Next we prove that ifA is positive on a sub-intervdF, ro] of I, thenz(r) is
positive on the same sub-interval.
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Lemma 2. Assume thati(r) > 0on an interval(7, ro], wherer; < 7 < rg. Then
z(r) > Oforall r € (7, r].

Proof. Lets € (7, ro]. Then writing (2.20) in the form

1-4) A
r 1-37

and substituting into (2.19), we have

o _ci A
TR Aa-3y
o 1-3 dA
— Zdz =-C—,
Z A
which gives
) 1 Ao dA
[ ) et
20 z As) A
Integrating yields
Ao dA
) expl-3(z(s) — 20)] = exp[ / c—] (3.2)
20 A A

But C is continuous ong, ro], because;(r) and A(r) are continuous orv| rg],
and O< A < 1 on(F, ro] implies thatA is also bounded away from 0 and 1 on the
closed sub-intervak[ o] € I (becausd is the maximal interval on whichA andz
are continuous). Thu§ is continuous and hence bounded oyr§], so it follows
from (3.2) thatz(s) > 0O, for all s € (7, ro]. This proves Lemma 2.

We show that Lemmas 1 and 2 imply thatif > 0, thenA > 0 on the entire
interval I:

Lemma 3. Assume that; > 0. ThenA(r) > 0 on the maximal interval =
(rl? r0]~

Proof. Let J = (7, ro] € I now denote the maximal sub-interval bfon which
A > 0. Then sincel is the maximal interval on which(r) and A(r) are C?!
functions, it follows that eithef = r1 (in which case we are done) or elge- r;
andA(F) = 0. If 7 > rp andA(F) = 0, we claim that

lim z(r) = +oo, (3.3)
r—>r+
which would prove the lemma by contradicting the maximality of
So assume that > r; and A(F) = 0. To verify (3.3), note that since
lim,_; A(r) = 0, itfollows that forr sufficiently close tg, we can find a constant
Co > 0 such that

(1+w(@+3uz) 3(1-24A

C
20 1-A

2 Co.
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Thus forr sufficiently close td, it follows that

1-A
/=-ci2"2 <
r A

in view of (2.19) and the fact that> 0 onJ by Lemma 2. Thus for sufficiently
closetar, z(r) = 8 forsomes > 0. Hence, there exists an interval 7], in which
we have

OES 34
A'(r) = Co, (3.5)

for some positive constantg andC,. Thus integrating (3.5) gives
A@r) £ Co(r — 7) (3.6)

for all r € (7, 7p]. Substituting this into (3.4) gives

C1
) S - 3.7
SRR (3.1
Now lets € (7, 7p). Then integrating (3.7) from to 7o gives

o) —2(s) < — 07T (3.8)

Cy s —r

so that co s
2(5) 2 2(Fo) + —In 2= (3.9)

Cs s—r

Lettings — 7, in (3.9) gives the conclusion (3.3). This completes the proof of
Lemma 3.

Note that in the case; > 0, if z is uniformly bounded in a neighborhood
r1 < r < r1+ 8 of ry, then from (2.20), the derivativé’(r) is uniformly bounded
on this neighborhood, and thushas a value and is continuous from the right at
r1. Thus the proof of the above lemma directly implies

Corollary 2. If r1 2 0and iflim,,_, .+ A(r,) = 0for some sequencg — ri+,
thenlim,_, ., z(r) = +o0.

We now have that < A < 1 on the maximal interval, and this will be used
to prove

Lemma 4. Suppose (7) = 1for somer € I. Thenz/(r) < OandA’(r) < O for
all r € (r1, 7). (This applies when; > 0 and whernry = 0.)

Proof. Lemmas 1-3 imply that &< A < 1 andz > 0 throughout the interval,
and so by (2.21)¢ > O atr = 7. Thus (2.19) and (2.20) imply that(F) < 0 and
A’(F) < 0, and this is clearly maintained for< 7.

The next lemma demonstrates that when- 0, z tends to infinity as tends
tor, +.
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Lemma 5. Letry > 0; thenlim,_,,,+ z(r) = +o0.

Proof. First, if A tends to zero on some subsequence> r1+, then Corollary 2
implies that lim-_, ., + z(r) = +o0c. Thus we may assume that there is same 0
suchthat < A(r) < 1forallr € (r1, ro] (in light of the factthat O< A < 1 away
from r1). In this case, we see from (2.19)—(2.21) thati$ uniformly bounded on
I, thenC (1 — A) is uniformly bounded ord, and hence that, A, 7/, and A’ all
have finite limits at;. This contradicts the maximality df Thus there must be a
sequencey tending tor; from above, such that(r;) tends to+oo, and so by the
last lemma, lim_, .+ z(r) = 4o0. This completes the proof of the lemma.

The next lemma shows thaf (r) tends to 0 at.
Lemma 6. The mass function (r) satisfies

lim M) = 0.

r—ri+

Proof. First note that’(r) > 0 for all r € (r1, ro] becauseM’(r) = 4npr? and
p > 0 (in view of (2.1), (2.2), our initial conditions4 > 0 and the fact that we
assume (2.11), so that = % > 0).

Consider first the case = 0. Writing

26 M
r
we see thatif — My + 0asr — 0, thenA — +oo asr — 0+, which violates
the factthatO< A < 1 on!l. ThusMy = 0 whenr; = 0.
Consider nextthe casg > 0. Inview of (3.10), in orderto showthaf (r) — 0
asr — r1+, it suffices to show that

—1-A, (3.10)

lim A(r) = 1. (3.11)

r—r1+

To show this, assume for contradiction that

lim A(r) + 1. (3.12)

r—ri+

Now consider the identity (3.1) which we can write as

1-A() ' dr
]_——A(ro) = exp[— /;O (1—32) p ] (313)

Since we know already thatends tot+oo atry, it follows from (3.13) thatd tends
to 1 atr1 if z(r) has a non-integrable singularityrat= 1, thereby violating (3.12).
We now show that(r) has a non-integrable singularityat= r1. To do this,
note first thatA (r) has a finite limit at = r1 because > 1 nearr = r1, so from
(2.20),A’ < 0, andA < 1onl. Thus by (3.12), there existssa> 0 such that

§<A(r)<1-36
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throughout the interval, and so from (2.19), there exists a const@nt> 0 such
that forr nearr1, sayr € (r1, r2),
7 < —C172 (3.14)

We show that () is not integrable at = r1 as follows: LetZ(r) be the solution of

7 =172 (3.15)
Z(rp) = Zo. (3.16)
Integrating (3.15) gives
) L (3.17)
\r) = . .
1
clr=(r2-5)]
Now choose€;» so that
1
r2 — i r
that is,
- 1
D=0
2T Cila—r1)
Thusz(r) is defined throughout the intervéds, 2], and by (3.17),
1
(r)y= ——, 3.18
= —mw (3.18)

so thatz(r) has a non-integrable blowup precisely at r1. We now comparé(r)
to z(r). To this end, choos€ such that

2r) 22+ C (3.19)

for all r € (r1, r2]. Note that we can achieve (3.19) becaw<ge) < 7/(r) for all
r € (r1, r2], and so (3.19) holds if

z2(r2) < Z(r2) + C.

Thus to achieve (3.19), we need only cho@se- z(r2) — Z(r2). Sincez’ < 7/,
(3.19) holds for all- € (r1, r2]. Hence, in light of (3.18), (3.19) implies thatr)

is non-integrable at = r1. Therefore, (3.13) implies that — 1 andM — 0

asr — r1+, and this contradicts equation (3.12) and completes the proof of the
lemma.

An argument similar to (3.14)—(3.19) shows thatjif> 0, thenp andp have
finite limits atr = rq1. To see this, note that if lim,,,+ p(r) = oo, thenp(r)
would have a non-integrable singularityrat= r1 because the right-hand side of
the O-V equation (2.1) is quadratic jn This would imply that

ro
lim M@) = M(@rg) — lim / A7p(s)s2ds = —oo,
+ r—ri+

r—ri r
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thereby contradicting Lemma 6. Thug) andp(r) = fy’g; must have finite values
atr = r; whenry > 0. This, together withp’ < 0, (by the O-V equation), and
o' < 0, (sincec > 0), implies (2.33) and (2.34). To verify (2.35), note that if
r1 > 0, then since we assume that < 0, the O-V equation implies that < 0,
and we must have > 0 forr < r1. ThusM'(r) = 4mp(r)r? > 0. Thus eithep
tends to infinity before = 0, or elseM (r) tends toM (0) < 0 asr — 0. But the
latter contradicty’ < 0 because (2.16) implies that < 0 for sufficiently small
r whenp is bounded.

We next show that (2.32) and (2.30) hold for the case 0. For this, first note
that (2.32) follows becaus# (0) = 0 andp’ < 0. Indeed,

_ 3 M(r) 31 (7 2
pr) = E 3 = Er_3 A A p(s)s<ds
3 r
> Epr(;) Arrs2ds = p(r)

hencez(r) < 1 for allr € I, and (2.32) is established. For (2.30), note that if
p(r) = p(0) < oo asr — 0, then we can write(r) = p(0) + o(r). This implies
that forr near zero,

M(r) = /V 4rp(s)s°ds = 4?”/9(0)}’3 +o(r®).
0

Thus 3 M)
_ r
P=4-"3 = p(0) +o(r),
and so
=20
p(r)
asr — 0. Moreover, by L'Hopital’s rule,
M
tim 20 _ im M'(r) = lim 47p(r)r?> = 0,
r—-0 r r—0 r—0

so that (2.30) holds.
To verify (2.26), first note that from (2.22) we have

A+4+3az(1-A)
rA ’

(InB) = (3.20)
so that ifB — 0 for somer — 7 € (r1, ro), then InB — —oo asr — 7. But by
(3.20), we see thdtn B)’ is bounded nedr, and this is a contradiction; thus (2.26)
holds. Moreover, when; > 0, (2.30) holds becaus# (r1) = 0, and for (2.31),
integrate (3.20) from to 7, r1 < r < r, to obtain

B(r) = B(7) exp[ - / aiﬂl_TAds] (3.21)
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But z is of order(1 — A)~1 asr — r; andA — 1, so the integrand is bounded,
and henceB(r1) > 0. To show that (2.31) holds when = 0 andp has a finite
limitat » = 0, note that in this casetends to unity ag — 0 and1 A — 2/M has
a finite limit atr = 0 by L'Hopital’'s Rule, so (3.21) implies thai(r) has aﬂmte
positive limit asr — 0 in this case as well.

To complete the proof of Theorem 1, it remains only to verify (2.35). So assume
thatr; > 0, andp’ < O forr < r1. In this caseg > 0 impliesp’ < 0, and so also
M’ > 0andA > 1 on the smooth continuation of the O-V system (2.1), (2.2) to a
maximal interval of existencé = (r», r1], 0 < ro < r1. Sincep’ > 0, it follows
directly from the maximality of/ that eithero — +o0 asr — ro+, withrp > 0,
in which case we are done, or elge= 0. But if , = 0 andp (hencep and M)
have finite limits atr = 0, then near = 0, A ~ —2M (0)/r, and thus it follows
from (2.1) that the equation fgr can be estimated above and below by an equation
of the form

Y (3.22)
r

for some postitive consta?. But solutions of (3.22) take the form

D
p()=p()() . 0<r<n,

and sop must blow up at = 0. This contradicts the boundednessofand hence
establishes (2.35). This completes the proof of Theorem 1.

As a final comment note that Theorem 1 implies that black-hcéesmotform
at any positive radius in smooth solutions of the O-V system starting from initial
conditions (2.23). Indeed, we have shown that- 0 on the intervall, so when
r1 = 0, A cannot be zero at any positive valueroThus, the only case to consider
is the case whem > 0. In this case, sincé/’ > 0, we must have thal < 0
throughout the smooth continuation of the O-V system (2.1), (2.2) to values of
0 <r < r1. ThusA > 1 on this extended domain.
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