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Applications of Shock-Waves in
General Relativity

Blake Temple and Joel Smoller

Abstract. We discuss recently published work and work in progress on ap-
plications of shock-waves in general relativity, We discuss the problem of
constructing shock-waves arbitrarily close to the Schwarzschild radius of a
star, and the problem of introducing a shock-wave into the standard theory
of cosmology.

1. Introduction

In 1915 Albert Einstein introduced the gravitational ficld equations that now bear
his name. These equations provide the foundation for the general theory of rela-
tivity. In Einstein’s theory, the gravitational ficld is a Lorentzian metric g, which
in a given coordinate system x = (29, 21, 22, 43) on spacetime, has components
gi;(x), 4,7 = 0,1,2,3. In this theory, freefall paths through a gravitational field are
geodesics of the spacetime metric. For example, the planets follow geodesics of the
gravitational metric generated by the Sun, (approximated by the Schwarzschild
metric beyond the surface of the Sun, and by the Tolman-Oppenheimer-Volkoff
(TOV) metric inside the surlace of the Sun), and according to the standard model
of cosmology, the galaxies follow geodesics of the Friedmann-Robertson-Walker
(FRW) metric. In spherical coordinates x = (t,r,6.¢), the Schwarzschild metric
is given by

ds? = — <1 - 2Gf“"> dt* + (1 - 2(?[0)*] dr? + r2dQ?, (1)
the TOV metric is given by
ds® = —B(r)dt* + <1 ~ QC”:—[(’)) B dr? + r2dQ?, (2)
and the FRW metric is given by
ds® = —dt? + R(t)? (%%—, + 7-2(1522) : (3)

Here d2? = df? + sin®(#)d¢? denotes the standard line element on the 2-sphere, G
denotes Newton'’s gravitational constant, Ay denotes the mass of the Sun (or
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a star), M(r) denotes the total mass inside radius r, (a function that tends
smoothly to My at the star surface), and B(r) is a function that tends smoothly
to 1 —2GMy/r at the star surface. The only unknown in the FRW metric is the
cosmological scale factor R(t) from which the Hubble constant H is determined,

0 )
The FRW metric describes the time evolution of a three dimensional space of
constant scalar curvature, (the t=constant surfaces), and the sign of the curvature
is given by sign(k), a constant that can be rescaled to one of the values {-1,0,1)
via a rescaling of the radial coordinate r. ‘

The fundamental tenet of general relativity is the principle that there is no
apriori global inertial coordinate system on spacetime. Rather, in general relativ-
ity, inertial coordinate systems are local properties of spacetime in the sense that
they change from point to point. For example, if there were a global Newtonian ab-
solute space, then there would exist global coordinate systems in which freefalling
objects do not accelerate, and any two such coordinate systems would be related
by transformations from the 10 parameter Galilean Group-the set of coordinate
transformations that do not introduce accelerations. In special relativity, the exis-
tence of absolute space would presume the existence of global coordinate systems
related by the transformations of special relativity; that is, in special relativity,
the 10 parameter Poincare group replaces the the 10 parameter Galilean Group as
the set of transformations that introduce no accelerations. The Poincare Group is
obtained from the Galilean group by essentially replacing Euclidean translation in
time by Lorentz transformations, and this accounts for time dilation. The space-
time metric can then be viewed as a book-keeping device for keeping track of the
location of the local inertial reference frames as they vary from point to point in a
given coordinate system. Because the metric components transform like a bilinear
form, the metric locates the local inertial frames at a given point as those coordi-
nate systems that diagonalize the metric at that point, 9i; = diag(—1,1,1,1), such
that the derivatives of the metric components also vanish at the point. Thus, the
earth moves “unaccelerated” in each local inertial frame, but these frames change
from point to point, thus producing apparent accelerations in a global coordinate
system in which the metric is not everywhere diagonal. The fact that the earth
moves in a periodic orbit around the Sun is proof that there is no coordinate Sys-
tem that globally diagonalizes the metric, and this is an expression of the fact that
gravitational fields produce non-zero spacetime curvature. Indeed, in an inertial
coordinate frame, when a gravitational field is present, one cannot in general elim-
inate the second derivatives of the metric components at a point by any coordinate
transformation, and the nonzero second derivatives of the metric that cannot be
eliminated, represent the gravitational field. These second derivatives are mea-
sured by the Riemann Curvature Tensor associated with the Riemannian metric
g- Riemann introduced the curvature tensor in his inaugural lecture of 1854, in
which he solved the longstanding open problem of describing curvature in surfaces
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ol dimension higher than two. Although the curvature tensor was first developed
lor positive definite “spatial™ metrics, Einstein accounted for time dilation by let-
ting Lorentz transformations play the role of rotations in Ricmann’s theory, and
exceept for this, Riemann’s theory carries over essentially unchanged. The Riemann
Curvature Tensor R; w{X) is a quantity that involves second derivatives of 9ii (X),
but which transforms like a tensor under coordinate transformation; that is, the
components transform like a four component. version of a vector field, even though
a vector field is constructed essentially from first derivatives. The connection be-
tween general relativity and geometry can be summarized in the statement that
the Riemann Curvature Tensor associated with the meoetric g glves an invariant
description of gravitational accelerations.

Once one makes the leap to the idea that the inertial coordinate frames
change from point to point in spacetime, one is immediately stuck with the idea
that, since our non-rotating inertial frames here on carth are also non-rotating
with respect to the fixed stars, the stars must have had something to do with the
determination of our non- accelerating reference frames here on carth, (Mach’s
Principle). Indeed, not every Lorentzian metric can describe a gravitational field,
which means that gravitational metrics must satisfy a constraint that describes
how inertial frames at different points of spacetime interact. In Einstein’s theory
of gravity, this constraint is given by the Einstein Equations, which, in a given
coordinate system x, can be written in the compact form

8rG
Gij(x) = — T (x). (5)
Here ¢ denotes the speed of light, G;; = R7 ;i — 551 gi; denote the components of

the Einstein curvature tensor, and T;; the components of the stress energy tensor,
the source of the gravitational ficld. We assunie the summation convention. The
components of the stress energy tensor give the densitics of energy and momentum
together with their fluxes. When the sources are modcled by a perfect fluid, T is
given by

Tij = (p+ pluin + pgi;. (6)

where u denotes the unit 4-velocity of the fluid, p denotes the cnergy density,
(as measured in the inertial frame moving with the fluid), and p denotes the
fluid pressure. The Einstein equations play the role in general relativity that the
Poisson equation ~A¢ = 47Gp plays in the Newtonian theory of gravity, except
for an important difference: the Poisson equation describes the time evolution of
the (scalar) gravitational potential ¢, but this must be augmented by some system
of conservation laws in order to describe the time evolution of the density p as well.
In Einstein’s theory, the time evolution of the gravitational metric is determined
simultaneously with the time evolution of the sources through system (5). This
principle is the basis for the discovery of the Einstein equations. Indeed, note that
conservation of cnergy in curved spacetime reduces to the statement

Div(T) = 0. (7)
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where the divergence is taken as the covariant divergence for the metric ¢ so that
it agrees with the ordinary divergence in each local inertial coordinate frame.
In this way equations (7) reduce to the relativistic compressible Euler equations
in flat Minkowski space. Since the covariant derivative depends on the metric
components, the conservation equation (7) is essentially coupled to the equation
for the gravitational field g. But the stress tensor T is symmetric, and so the tensor
on the LHS of (5) must also be symmetric, and thus there are ten equations in
the ten independent unknown functions among the components of the symmetric
matrix g;; together with the four independent functions among p and the unit
vector field u. (Here p is assumed to be determined by an equation of state.) But
(6) assumes no coordinate system, and thus in principle we are free to give four
further relations that tie the components of G and T to the coordinate system. This
leaves ten equations in ten unknowns, and thus there are no further constraints
allowable to couple system (6) to the conservation laws (7). It follows that (7) must
follow as an identity from (5), and this determines the LHS of (5) as the simplest

tensor constructable from R;:kl such that (7) follows identically from the Bianchi

identities R;‘[kl, mj=0» [12]. In a specified system of coordinates, (5) determines a
hyperbolic system of equations that describes the time evolution and interaction
of local inertial coordinate frames. Putting the metric ansatz (3) into (5) gives a
system of two ODE’s for R(t) and p(t), and this has a unique solution when we
assign the present value of the Hubble constant and the present density of the
universe as initial conditions. This solution is the basis for the standard model of
cosmology. In the sense that the metric is consistent with equation (5), it “explains”
why our local inertial frames are non-rotating relative to the stars.

Since the relativistic Euler equations (7) form a subsystem of the Einstein
equations (5), we know that shock-waves must be an important aspect of solutions
of (5). The mathematical theory of shock-wave solutions of (5) is rudimentary. For
example, we know of no proof or examples demonstrating that shock-waves form
from smooth solutions of (5) as they do in solutions of classical Euler equations.
There is no local existence theorem, no “Glimm’s Theorem”, for solutions with
shocks, even for 1-dimensional problems, cf [12]. There are no known solutions that
represent rarefaction waves in general relativity. In (7], the authors constructed the
first explicit examples of shock-wave solutions of the Einstein equations obtained
by matching metrics of form (3) to metrics of form (2) across a shock-wave inter-
face. In these solutions the expanding universe of FRW represents the expansion
behind a shock-wave that blasts into an ambient, spacetime modeled by a TOV
metric of form (2). This models a spherically symmetric blast wave in which a
fluid dynamical shock-wave carries with it a wave in the metrical properties of
spacetime. In these examples, the spacetime metric is only Ct1 at the shock, (one
Lipschitz continuous derivative at the shock), but exact formulas are made possible
in “singular” coordinate systems in which the metric is only Lipschitz continuous
at the shock. A general theory for matching spacetime metrics was presented in
[8]. Since this time, the authors have studied the problems of placing a shock-wave
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near the Schwarzschild radius of a star, (r = 2GM(r) in (2)), and the problem of
modeling the expansion of the universe as coming from a classical explosion into
an ambient spacetime.

2. Recent results

The results in [2] describe surface layers arbitrarily close to a black hole; that is,
solutions of (2) near the event horizon of a black-hole where r = 2GM(r). In a
sort of “counterexample” to the Buchdahl stability theorem [9], we show in [1]
that a shock-wave can supply the pressure required to hold up a highly collapsed
surface layer, and the time it takes the shock-wave to reach the surface tends to
infinity as the surface layer tends to the Schwarzschild radius. The developmental
work in [2] provides a general theory of solutions of the TOV system starting from
initial data at a star surface. Interesting conclusions in [2,3] include a proof that
black-holes never form in solutions of the TOV equations, as well as a quantitative
description of solutions of the TOV equations when the star surface lies inside the
critical radius of 9/8’ths the Schwarzschild radius, (the Buchdahl stability limit for
stars, [9]). We show that the density and pressure profiles always remain smooth,
positive, and bounded, and tend to zero together with their derivatives at r = 0,
the center of the star. Thus the star is “hollow”. This is a bit surprising because
when 1 > %26’]”(7‘), there are examples of solutions of the TOV equations in which
the pressure tends to infinity as r — 0, [13]. We show that this happens because
M(r) goes negative before r = 0. This produces a naked singularity at » = 0 which
can be interpreted as a negative delta function source of mass. The singularity then
supplies the repulsive effect at the center of the star in these solutions. We show
that these solutions can match up to empty space only at radii at which M (r) >0,
so such negative masses would never be noticed by an observer in the far field.
Since the total mass M (1) enters only as a metric component in (2), negative mass
is not apriori unphysical in Einstein’s theory as it is in Newton’s theory. Indeed,
it 1s the local quantities like density and pressure that are well defined in general
relativity. Since there are no global inertial reference frames, the “total mass” M
in a region of spacetime is not well defined as a global quantity in Einstein’s theory
of gravity, except in special solutions. Thus an additional principle is required to
rule out negative mass in solutions of the Einstein equations. If a positive density,
singularity free solution of the Einstein equations could replace a neighborhood of
the singularity at r = 0 in these solutions, then this would demonstrate that gravity
can have a repulsive effect, while if not, then there is an interesting geometrical
property that is constraining things. This is an open problem.

We now discuss work in progress on the problem of putting a shock-wave into
the standard model of cosmology. The question we ask is this: Could the expanding
universe have arisen from a great explosion into an ambient spacetime? Hubble’s
law correlates the red-shift in galaxies with distance, and this supports the belief
that the galaxies are receding from us due to an average uniform expansion of the
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universe. The idea is that the universe is expanding uniformly in three dimensions
analogous to the two dimensional uniform expansion of the surface of a balloon
as it expands. This uniform expansion is expressed by metric (3) where the uni-
form expansion of the three dimensional constant curvature surface ¢ = constant
is described by the scale factor R(t). When the ansatz (3) is put into the Einstein
equations (5), the resulting ODE’s imply that R(t,) = 0 at some time t = ¢,
in the past, and this represents the Big Bang, the moment in which the entire
space t = constant burst from a single point. The Big Bang is forced on you once
you accept that the entire universe is undergoing expansion. One consequence of
the singularity theorems of Hawking and Penrose is that any perturbation of the
FRW metric that remains everywhere expanding, must also have a singularity in
backward time, and so the Big Bang is not special to FRW metrics. We are ex-
ploring the possibility that the expansion of the universe could be due to a limited
expansion into an ambient spacetime, such that the leading edge is modeled by a
shock-wave. This would be the case if the observed expansion of the universe actu-
ally resulted from something more like a classical explosion than from the esoteric
Big Bang singularity in the FRW metric. Moreover, in the standard cosmological
model, the expansion is assumed to be isentropic, and thus it makes physical sense
to time reverse the solution all the way back to 10734 seconds after the Big Bang,
(the onset of inflation), and before. In contrast to this, since shock-waves introduce
increase of entropy and loss of information, the existence of a shock-wave would
imply that many solutions could have decayed to the present expanding universe,
and thus the shock-wave model implies that there is a fundamental limit on our
ability to re-construct the details of the initial explosion from the continuum model
alone. The work in [6] demonstrates that these shock-wave models of cosmology
do not meet the assumptions of the first relevant singularity theorem of Hawking,
[10].

In work in progress, and to start, we consider the problem of estimating the
present position of a shock-wave under the assumption that the universe is modeled
by the standard FRW metric of cosmology on the inside, and a TOV metric on
the outside, such that the interface in between is an exact shock-wave solution of
(5). The assumption that outside the shock-wave is a time-independent spherically
symmetric solution is not so unreasonable if you imagine that the spacetime before
the explosion took a long time getting into the pre-explosion configuration. In [7] we
we have formulas for such a shock-wave assuming an equation of state p = % P, the
equation of state for the very early universe in the standard model. (The equation
of state p = % p represents the equation of state for a stress tensor that is trace free,
and this applies to pure radiation, and for free particles in the extreme relativistic
limit, [9,12,13].) The equation of state in the TOV metric beyond the shock-wave is
p = 0p where & = /17 —4 =~ .1231. In this model k — 0, (deviation from k = 0 has
not been observed, although most estimates place the density of the universe below
the critical density, [11]), and one can calculate the shock position at the time the
universe is at the critical density Q.,.;; = H. 2 where Hy = hg x 100km/sMpc is the
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present value of the Hubble constant, giving Qq &~ 1.87 x 1072902 gem =3, Taking
hy & .55 for the Hubble constant puts the position of the shock at an intriguing
11 billion light years away. Until recently, this was roughly where it was thought
that the superclusters of galaxies end and the quasars begin.

To go further, we assume the equation of state of the universe since the
uncoupling of radiation from thermal equilibrium with matter. This occurred at
approximately 000°A" at about 7, = 300.000 vears alter the Big Bang in the
standard model. To analyze this situation, we use the theory in [5,8] to derive
equations for the time evolution of the shock position and the outer TOV solution
given the FRW mietric that applies to the equation of state during this epoch in
the standard FRW cosmology. For this we must re-work our prior theory which
was based on fixing the outer TOV metric and solving the ODE for the shock
position and FRW metric. We have obtained this system, and have found that in
the case & = 0, this system can be essentially completely analyzed by transform
to variables in which the cosmological scale factor R is taken as the independent
variable instead of the FRW time t. We show that a physically interesting shock-
wave model emerges. What we find most interesting is that the condition that the
outer deusity in the TOV metric be positive places a constraint on the possible
shock positions. Our analysis shows that this condition implies that the shock
position at time £ = ¢, must be closer than about 10° light-years from the center
of the explosion, (on the order of the size of galaxies). Once this condition is
niet, we show that the density and pressure profiles are reasonable from that time
onward. Starting with this initial condition at t = ¢, our calculations then place
the shock-wave at present time in this model at about 270 million light-years
from the center of the explosion. The constraint on the shock position based on
owr positive energy density condition applied at present time yields that the outer
limit of the shock position is about twelve billion light-years from the center. What,
we find most interesting about this work is that there are nnexpected constraints,
and not all shock positions are possible. The authors are now completing the case
for & # 0 where different estimates are possible. Details will appear in the authors’
forthcoming paper. '

In conclusion, we ask whether a shock-wave cosmology gives a more robust
explanation for why the non-rotating inertial frames here on earth are non-rotating
relative to the stars, or why the universe is so close to critical expansion. If we
cvolved from the center of a great explosion. it also makes one wonder whether
some of the far away objects that we observe in the night-time sky are possibly due
to similar explosions that originated at other locations in spacetiime. We now know
that the scale of supernovae is not the largest scale on which classical explosions
have occurred in the universe. Indeed. we just received word, (as reported by
George Djorgovski from Caltech in the recent issue of Nature), that on May 7,
1998, a gamma ray explosion emanating from a faint galaxy known as GRB971214
erupted, and for two seconds the burst was more luminous than the rest of the
universe combined. This is the largest explosion ever recorded, redshifts placed it
about 12 billion light-years away, and conditions at the explosion were judged to
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be equivalent to those one millisecond after the Big Bang in the standard model.
”...this is such an extreme phenomenon that it is possible that we are dealing with
something completely unanticipated. . .” Could explosions such as this be similar
to the one that gave rise to our own “expanding universe”, but in a region of
spacetime beyond the expansion of our own universe, (that is, beyond the shock-
wave that marks the edge of our own expansion)? At least we believe that these
examples will provide an interesting alternative scenario for the Big Bang, and
mathematically will provide an interesting inroad for the study of shock-waves in
Einstein’s theory of gravity.
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