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THEORY OF A COSMIC SHOCK-WAVE

JOEL SMOLLER* AND BLAKE TEMPLE'

Abstract. We discuss mathematical issues related to the authors recent paper “Cosmology with
a Shock-Wave” in which we incorporate a shock wave into the standard model of Cosmology. Here
we discuss the derivation of the “conservation constraint” which is used to derive the equation for
the shock position in that paper.

1. Introduction. In Einstein’s theory of general relativity, all properties of the
gravitational field are determined by the gravitational metric tensor g, a Lorentzian
metric of signature (—1,1,1, 1), defined at each point of a four dimensional manifold
M called “spacetime.” The equations that describe the time evolution of the metric
tensor are given by the Einstein equations, which take the compact form

(1.1) G = kT.

Here G denotes the Einstein curvature tensor, 7" the stress energy tensor, (the source
of the gravitational field) and

k= 81G/c,

is a universal constant determined by the condition that the theory should incorporate
Newton’s theory of gravity in the limit of low velocities and weak gravitational fields.
Here ¢ denotes the speed of light and G denotes Newton’s gravitational constant. In
the case of a perfect fluid, T" takes the form

(1.2) T = (p+ p)u'v’ + pg”,

where u denotes the unit 4-velocity, (a tangent vector to a particle path in spacetime),
p denotes the energy density, (as measured in the inertial frame moving with the fluid),
and p denotes the fluid pressure. Here indices always run from 0 to 3, indices always
represent tensor components which can be raised or lowered with the metric, and we
assume summation on repeated up-down indices, [33]. The general relativistic version
of the compressible Euler equations is given by

(1.3) Div(T) = 0,

where the divergence is taken as the covariant divergence for the metric g so that it
agrees with the ordinary divergence in each local inertial coordinate frame, [20]. Equa-
tions (1.3) reduce to the relativistic compressible Euler equations in flat Minkowski
space, and further reduce to the classical compressible Euler equations in the limit of
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low velocities. Thus the classical compressible Euler equations of gas dynamics can be
viewed as a subsystem of (1.3). Since the covariant derivative depends on the metric
components, the conservation equation (1.3) is essentially coupled to the equation for
the gravitational field g. The Einstein tensor

o 1 oT
Gij = Riaj - §RG‘Tgij

is the simplest tensor constructable from the Riemann curvature tensor R;kl such
that (1.3) follows identically from the Bianchi identities of Riemannian geometry,
(R;[kl,m] = 0, where [kl,m] denotes cyclic sum). Thus (1.3) holds identically on
solutions of G = kT, a requirement for the consistency of the Einstein equations,
[33]. The components of the Riemann curvature tensor in a given coordinate system
x are determined from second order derivatives of the metric tensor g;;(x) through
the formulas

(1.4) j‘kl = j'l,k - F;’k,l + {F}Tl bk~ ?kl_‘frl} )

where the Christoffel symbols, (connection coefficients), involve first order derivatives
of the metric, given by

. 1
(1.5) ;k = 59[” {=9jk,oc + 9ojk + Gro,j -

The F;k are the fundamental objects of classical differential geometry that do not
transform like a tensor. Moreover, since tensors transform by first derivatives, second
derivatives of tensors are not in general tensors. Thus the Riemman and Einstein
curvature tensors are special in that they are obtained from second order derivatives
of the metric tensor g, but yet remain tensorial.

To summarize, in Einstein’s theory of gravity, based on (1.1), the conservation
of energy and momentum (1.3) are not imposed, but follow as differential identities
from the field equations (1.1). In a specified system of coordinates, (1.1) determines
a hyperbolic system of equations that simultaneously describes the time evolution of
the gravitational metric, together with the time evolution of the fluid according to
(1.3). Since GR is coordinate independent, we can always view the time evolution
of (1.1) in local inertial coordinates (coordinates that are “locally flat” in the sense
that g;; = diag{—1,1,1,1} and g;;,x = 0 at a point, [33]) at any point in spacetime,
in which case (1.3) reduces to the classical relativistic Euler equations at the point.
This tells us that, heuristically, shock-waves must form in the time evolution of (1.1)
because one could in principle drive a solution into a shock while in a neighborhood
where the equations remained a small perturbation of the classical Euler equations.
(This is much easier to say than to demonstrate rigorously, and as far as we know,
such a demonstration remains an open problem.)

We now assume that shock-waves are in the time evolution of solutions of the
Einstein equations for a perfect fluid, just as they are in the time evolution of solutions
of the classical compressible Euler equations. So consider the consequences of (1.1)
under the assumption that there are discontinuities in the fluid variables p, u and p
across some smooth shock surface X. Note that if T' is discontinuous across X, then by
(1.1), the Einstein curvature tensor G will also have discontinuities across the surface.
Since G involves second derivatives of the metric tensor g, the only way (1.1) can
hold in the classical pointwise a.e. sense at the shock is if the component functions
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gi; are continuously differentiable at the shock, with bounded derivatives on either
side, that is, if g;; € C'''. But it is known that shock-wave solutions of the Einstein
equations make sense under the assumption that the metrics match only Lipschitz
continuously at the shock surface, that is, g;; € C%1, [19]. In this case, a condition
must be imposed that guarantees that the delta function sources cancel out in G at
the shock, so that G on the LHS of (1.1) does not introduce delta function sources
of mass and momentum into the RHS of (1.1). (That is, we need a condition that
guarantees that the surface defines a true shock-wave, and not a surface layer, [6].)
This condition is characterized in the following theorem of [19].

THEOREM 1. Let ¥ denote a smooth, 3-dimensional shock surface in spacetime
with spacelike normal vector n. Assume that the components g;; of the gravitational
metric g are smooth on either side of ¥, (continuous up to the boundary on either
side separately), and Lipschitz continuous across ¥ in some fized coordinate system.
Then the following statements are equivalent:

(i) [K] = 0 at each point of X.

(i1) The curvature tensors Rj-kl and G;j, viewed as second order operators on the
metric components g;;, produce no delta function sources on X.

(iii) For each point P € ¥ there exists a CY! coordinate transformation defined in
a neighborhood of P, such that, in the new coordinates, (which can be taken to be
the Gaussian normal coordinates for the surface), the metric components are C11
functions of these coordinates.

(iv) For each P € X, there exists a coordinate frame that is locally Lorentzian at P,
and can be reached within the class of C*' coordinate transformations.

Moreover, if any one of these equivalencies hold, then the Rankine-Hugoniot jump
conditions, [G]Ins = 0, (which express the weak form of conservation of energy and
momentum across ¥ when G = kT), hold at each point on X.

Here [K] denotes the jump in the second fundamental form (extrinsic curvature)
K across X, (this being determined by the metric separately on each side of 3 be-
cause g;; is only Lipschitz continuous across ¥), and by C''! we mean that the first
derivatives are Lipschitz continuous.

For spherically symmetric solutions, it follows that the above equivalencies reduce
to the single condition

(1.6) [Glornn™ =0,

so long as there is a smooth matching of the spheres of symmetry at the shock, [19].
We now apply (1.6) to the problem of matching the standard Friedmann-

Robertson-Walker (FRW) metric of Cosmology to a static Tolman-Oppenheimer-

Volkoff (TOV) metric across a shock-wave. The FRW line element is given by

2

1 — kr2

(1.7) ds* = —dt* + R(t)? ( + TQdQZ) ,

and the TOV line element is given by

—1
(1.8) ds* = —B(r)dt* + <1 - 2GM(T)> dr? 4+ r2dQ?.
T



602 J. SMOLLER AND B. TEMPLE

Here d2? = df? + sin?(0)d¢p? denotes the standard line element on the unit 2-sphere,
G denotes Newton’s gravitational constant, M (r) denotes the total mass inside radius
r, and B(r) is a function that tends smoothly to 1—2GM (r)/r as the density vanishes.
The only unknown in the FRW metric is the cosmological scale factor R(t) from which
the Hubble “constant” H is determined,

R(t)
(1.9) H = R’
The FRW metric describes the time evolution of a three dimensional space of constant
scalar curvature, (the t=constant surfaces), and the sign of the curvature is given by
sign(k), a constant that can be rescaled to one of the values {—1,0, 1) via a rescaling of
the radial coordinate r. Of course, the line element determines the metric components
gi; through the identity

ds?® = Gij datda’ .

We now outline the procedure for matching an FRW metric (1.7) to a TOV met-
ric (1.8) across a shock interface. This requires defining a coordinate transformation
(t,r) — (¢ 7) such that, under this coordinate identification, (take the TOV coor-
dinates as barred), the metrics match Lipschitz continuously, and the conservation
condition (1.6) holds across the interface, [19]. The matching proceedure goes as
follows: First, the matching of the spheres of symmetry implies the identity

(1.10) 7 = R(t)r.

Using this, one can go to (¢,7) coordinates and match the gz coordinates. After
simplification, this implies the identity

(1.11) M(F) = %p(t)f?’.

This implicitly defines the shock position 7 = 7(t), that is, the TOV position 7 is given
as a function of FRW time ¢. Having (1.11) enables one to match the g;; components at
the implicitly defined surface, and this leads to the fact that the function (¢, ) solves
a linear PDE with initial conditions chosen so that Lipschitz matching of the metrics
is achieved at the shock surface. It follows that the shock surface is non-characteristic
for this PDE as long as the shock lies outside the Schwarzschild radius. From this
one concludes that the coordinate identification is defined in a neighborhood of the
shock surface, and the Lipschitz matching of an arbitrary FRW and TOV metric is
achieved. Only the (¢, r) mapping is not given explicitly, but it turns out that only
its existence is important for the further development. It remains, however, to impose
the additional conservation constraint (1.6). On solutions of G = T, the condition
(1.6) is equivalent to the condition

[Tij]nmj =0.

A calculation using the identities (1.2), (1.10) and (1.11) leads to the following equiv-
alent formulation of the conservation constraint:
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(1L12) 0= (1—0)(p+p)p+ 7 + (1 - 1) G+ D)o+ + (0= D)o — )

0
where

A
(1.13) 0 —_— m.

Note that this is a homogeneous polynomial in the p’s and p’s.

Now one can use the identity (1.13) alone to derive the exact shock-wave solutions
first constructed in [20]. The idea is that there exists exact FRW solutions for equation
of state

(1.14) p=op.

and other exact TOV solutions with equation of state

(1.15) p=ap,

where o and ¢ are assumed to be constant, (modeling the simple case of a constant
sound speed). In this special case, the exact TOV solutions have A = constant, and
the FRW solutions have k = 0, so it follows that because § = constant and (1.12)
is homogeneous cubic, when the p’s are linearly related to the p’s as in (1.14) and
(1.15), (1.12) reduces to a constraint that gives a cubic relation between o and &; that
is, a relation between the inner and the outer sound speeds. In fact, the constraint
can be reduced to the explicit form

1 3 7

o= = —+/902 — =0 — —.

g = H(o) 5 902 4 540 + 49 57 3

(See [20] for details.) The point is that no more than the condition (1.12) is required

to verify conservation in the construction of these examples when the sound speed is

constant, and the conservation constraint imposes a relation between the inner and

outer sound speeds at the shock. The discovery of the explicit formula for the func-

tion H (o) above required (MAPLE) finding that the conservation constraint (1.12)

factors, and the factoring of this cubic polynomial is the key to using this method to
incorporate a shock-wave into the standard model of cosmology.

So consider now the problem of matching a TOV metric on the outside of an
expanding FRW metric when the pressure and energy density agree with those of the
standard model of cosmology after the time ¢, at which the thermal uncoupling of
radiation and matter occured, where, t, = 300,000 years after the Big Bang, and
at a temperature of about T, = 4000°K. The idea is that radiation is in thermal
equilibrium with matter up until the time when the universe became transparent,
and after this time, the radiation evolves with a blackbody spectrum associated with
a temperature 7' that is inversely proportional to the FRW scale factor R,

(1.16) T =

S|
S
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After time ¢,, the pressure of matter can be neglected, and so in the standard model,
the energy density of the universe is the sum of the contribution from the matter and
radiation separately, and the the pressure is due to the pressure of radiation alone, as
determined by the Stefan-Boltzmann law. It follows from these assumptions, together
with the FRW equations,

. 81G
and
d .
(1.18) ﬁ(pR5) = —3pR?.

(these are the Einstein equations when one takes (1.7) as the ansatz for the metric,
“dot” denotes d/d(ct)), that the total energy density and pressure due to radiation
plus matter in the universe after time ¢t = ¢, is given in terms of the FRW scale factor
by the formulas, [27],

3a I6] «
(1.19) Q- S poo
where ) and P are given in terms of the physical energy density and pressure through
the formulas

81G 81G
1.20 == p=_"=
(1.20) Q=3P 3 P
and
(121) P = Pradiation + Pmatters P = Pradiation-

The constants « and ( are easily determined from the present value of the radiation
temperature,

Ty ~ 2.7°K,
and the Hubble constant,
100k
Ho = ho sy
s - mpc

where hg is believed to be in the range .5 < hg < .85. Note that once one has (1.19),
one can substitute these values into (1.17) to obtain an equation for the FRW scale
factor R as a function of time ¢ for ¢ > t,. In particular, the FRW metric for standard
cosmology is given in closed form when R is taken as the independent variable.
Consider now the problem of matching this FRW metric to a TOV metric across a
shock surface, such that the conservation constraint (1.12) holds across the surface. It
is difficult to apply (1.12) directly. What makes this possible is that the homogeneous
cubic polynomial in (1.12) factors, thus allowing one to solve for two different possible
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TOV pressures, one of which can be ruled out on physical grounds. Indeed, the
factoring of (1.12) leads to two factors, each of which can be solved for the FRW
pressure, leading to the following formulas for two possible pressures, py and p4,
given as a function of p, p and p, these representing a reformulation of the conservation
constraint, (unbarred refers to FRW values and barred refers to TOV values, at the
shock, [19]):

31=(p+p)*+2(0 = 1)pp+2(0 + 5)pp+2(5 — Dpp © SQ}

(1.22) ps+ = 2

- (1=0)p+(2-0-5p+(1-35)p
where
(1.23) SQ = (670" —4p°p — 4p3p+ p* + p")'/* = (p — p)*.

Simplification using identities at the shock that come from the Lipschitz matching of
the metrics, leads to the following simpler formulas for p_ and py :

_©p—p

(1.24) py =L,

bp—p
1.2 _ =
(1.25) D =9
where
(1.26) 0 =46,
and

p+p
(1.27) ey

An easy calculation gives a symmetrical formulation of (1.24) in terms of the TOV
pressure p,

__Bwp-p
(1.28 p= —,
) 1—60%
where
_ p+p
1.29 y=—.
( ) p+Dp

Now if we interpret the FRW-TOV shock-wave as the leading edge of an explosion
in which the FRW solution is on the inside, expanding outward into the static TOV
solution, then as an entropy condition we can take p/p < 1; that is, the density should
be greater behind the shock. In [19] we show that this, (together with the condition
that pressure should increase with density), leads to the conclusion that we must take
the pressure to be p = py, in which case (1.24), or its equivalent form (1.28), must
be imposed for conservation.
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To get the final equations for the shock position and TOV metric that matches
the standard FRW metric of cosmology across a shock wave, we differentiate the shock
position equation

M(r) = o) (e),

with respect to ¢ and use the pressure constraint (1.24), together with identities arising
from the matching of the metrics, to get the following equivalent formulation of (1.24)
(details omitted),

o1 p—ﬁ)l—er
1.30 = —=|— - .
(1:30) ' R<p+p Rr

This can be coupled with the Oppenheimer-Volkoff equation, the constraint on the
TOV pressure that comes from the Einstein equations, namely,

Ldp P 4n73p ogM Yt

r

Rewriting (1.30) and (1.31) so that the FRW scale factor R is taken as the independent
variable, and simplifying, yields the following system of two equations that close when
(1.19) are taken as the constitutive assumptions:

(1.32) dr _ R 0 PR\ (1 k)
. dR  (3a+ BR—kR?) \ 3a+ 3R + PR% PR
(1.33) dP 1 (3a+fBR+3PR*)(a—PRY)
| dR — 2R° 30 + BR — kR?

Observe, again, that a nice feature of the formulation (1.32), (1.33) is that, in this
formulation, the second equation (1.33) for the TOV pressure P uncouples from the
first equation (1.32) for the shock position r. One can finally obtain a formula for @
by using the second TOV equation

M'(7) = 4mpr?.

A calculation leads to the formula

Rr d

(1.34) Q= ——T(QFB) =Q+ ?%Q

Note that if @ decreases as the shock moves outward, (that is, the 7 position of
the shock increases), then the second term in (1.34) is negative, and so Q < @, (the
density behind the shock is greater than the density in front of the shock), as is the case
for classical shock—waves in fluids, [17]. Note, however that the physically necessary
condition @ > 0, or the physically reasonable condition @) > P, is not guaranteed.
This condition puts an outer bound on the possible shock position, and is related to
the fact that if the shock-wave is much beyond the Hubble distance from the center of
the explosion, then in fact the expanding universe is inside its Schwarzschild radius,
where the TOV system breaks down since there are no spherical static solutions inside
an event horizon. For further details, we refer the reader to the authors’ paper [27],
where the simplest case k = 0 is worked out in detail.
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