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Abstract: We construct the simplest solution of the Einstein equations that incorporates
a shock-wave into a standard Friedmann–Robertson–Walker metric whose equation of
state accounts for the Hubble constant and the microwave background radiation temper-
ature. This produces a new solution of the Einstein equations from which we are able to
show that the distance from the shock-wave to the center of the explosion at present time
is comparable to the Hubble distance. We are motivated by the idea that the expansion
of the universe as measured by the Hubble constant might be accounted for by an event
more similar to a classical explosion than by the well-accepted scenario of the Big Bang.

1. Introduction

In the standard model for cosmology it is assumed that the Cosmological Principle
holds: on the largest scale, theentire universe is expanding at a rate measured by the
Hubble law, [1,6,7,9,14,15]. Hubble’s Law correlates recessional velocities of galaxies
with red-shifts. However, this correlation has only been verified for nearby galaxies,
and it is an extrapolation to apply this law to the entire universe. Moreover, it follows
from the Einstein equations, [2,3,14], that if the universe is everywhere expanding, then
every spacetime point can be traced back to a singularity in the past, a singularity from
which the entire universeburstin an event referred to as theBig Bang. The Cosmolgical
Principle is what forces the singularity into the standard Big Bang interpretation of
the origin of the universe. In this paper we explore the possibility that Hubble’s Law
actually only measures alocalizedexpansion of the universe, and not the expansion of
the entire universe. We demonstrate the consistency of this possibility by constructing
the simplest possible solution of the Einstein equations that accounts for the observed
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Hubble expansion rate and the correct microwave background radiation temperature,
such that there is a shock-wave present at the leading edge of the expansion.

Our motivation is the idea that the expansion of the universe, as measured by the
Hubble constant, might be the result of a large scalelocalizedexplosion that generated a
shock-wave at the leading edge, not unlike a classical explosion into a static background,
except on an enormously large scale. If this were true, then it would place our solar system
in a special position relative to the center of the explosion, and this would violate the
so-calledCopernican Principle, at least on the scale at which the Hubble Law applies.
The Copernican Principle is the statement that the earth is not in a “special place” in
the universe. This principle justifies the standard cosmology based on the Friedmann–
Robertson–Walker (FRW) metric because the FRW metric is the unique metric that is
consistent with the Einstein equations, and is homogeneous and isotropic about every
point. The high degree of uniformity of the background microwave radiation in all
directions, together with the directional independence of the redshifting of galaxies,
provides the strongest support for the Copernican Principle. The idea that there is a
shock-wave present at the leading edge of that portion of the universe where the Hubble
constant applies, also violates another basic tenet of modern cosmology; namely, that we
can meaningfully time reverse the continuum model all the way back to microseconds
after the Big Bang. Indeed, it follows from the mathematical theory that shock-waves
introduce a fundamental increase of entropy and consequent loss of information, [5,
13]. Thus, when a shock-wave is incorporated into cosmology, it becomes impossible
to reconstruct the details of the early explosion from present data, at least at the level of
the continuum model.

The simplest shock-wave model for cosmology is one in which the “expanding uni-
verse”, inside the shock-wave, is modeled by the standard FRW metric of cosmology,
and the spacetime on the outside is modeled by a Tolman–Oppenheimer–Volkoff (TOV)
metric, (the general relativistic version of a static fluid sphere), such that the interface in
between produces a spherically symmetric shock-wave solution of the Einstein equations
propagating outward. (Such a shock-wave differs from a classical shock-wave because
in addition to discontinuities in the fluid variables, there are discontinuities in the cur-
vature of spacetime at the shock-wave.) The assumption that outside the shock-wave is
a time-independent spherically symmetric solution is not unreasonable if one imagines
that the spacetime before the explosion occurred took a long time getting into the pre-
explosion configuration; the assumption that an expanding FRW metric describes the
spacetime behind the shock-wave is consistent with the fact that the galaxies appear to be
uniformly expanding. In such a model one can interpret the shock-wave as thermalizing
the radiation so as to maintain the uniform background radiation temperature behind the
shock. (Of course, all of this implies that the model must be finely tuned to meet the
physics.) In this paper we construct such a model assuming critical expansion, (k = 0),
for the FRW metric, and what emerges is a new, essentially exact solution of the Einstein
equations. We show that reasonable physical requirements on the TOV equation of state,
(which can be interpreted as an entropy condition), put an interesting constraint on the
possible position of the shock-wave relative to the center of the explosion. Using this,
we derive precise estimates for the shock position at present time, as predicted by this
model; that is, at the time in this model at which the Hubble constant and the value
of the background radiation temperature agree with observed values. The constraint on
the shock position can be interpreted as a length scale derived from the model, and this
length scale is not determined by any adjustable parameters in the problem other than the
experimentally determined values of the Hubble constant and the background radiation
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temperature. The constraint on the position of the interface arises because the interface
is a true shock-wave. There is no similar constraint on the position of the interface in the
well-known Oppenheimer–Snyder model, where the interface is a contact discontinuity,
[8,10].

In this paper we start with a critically expanding, (k = 0), FRW metric under the
assumption that the equation of state agrees with the equation of state that applies in
the standard model of cosmology after the time of the thermal uncoupling of matter
from radiation. This uncoupling occurred at a temperature of approximately 4000◦ K,
at about 300, 000 years after the Big Bang in the standard model, [1,15]. In Sect. 3, we
derive a system of ODE’s that determine the TOV metrics that match the given FRW
metric across a shock-wave interface, (Eqs. (5.3), (5.4) below). In fact, we derive the
shock equations in the case of a general FRW metric, allowing fork 6= 0 and for general
equations of state, (Eqs. (3.40), (3.41) below). In Sect. 4 we derive the FRW equation
of state in terms of the cosmological scale factor, including a discussion of the FRW
metric in the presence of both matter and radiation fields, assuming that the pressure
due to matter is negligible, and that there is no thermal coupling between the fields. The
results in Sect. 4 also apply for arbitraryk.

To obtain the ODE’s for the TOV metric, we must rework the theory in [10,12] where
a given outer TOV metric is the starting point, instead of a given inner FRW metric which
we require here. These ODE’s, which are non-autonomous, simultaneously describe the
TOV pressurep̄ and the FRW shock positionr, assuming conservation of energy and
momentum and no delta function sources at the shock. (We let barred quantities refer
to TOV variables and unbarred quantities to FRW variables, cf. [10].) We then derive
a formula for the TOV energy densitȳρ, (the only remaining undetermined variable
in the TOV metric), which, together with solutions of the ODE’s, determine the TOV
solutions that match the given FRW metric across a shock-wave interface. The ODE’s
take a particularly simple form when the cosmological scale factorR of the FRW metric
is taken to be the independent variable instead of the usual TOV radial variabler̄. In
Sect. 5 we present a rather complete phase plane analysis of these equations and we
prove that there exists a unique bounded orbit. This orbit describes the TOV pressure,
but does not constrain either the initial shock position or the TOV energy density. We
show that along this orbit, the pressure jump across the shock-wave has the property
that the ratio of the TOV pressure to the FRW pressure at the shock is bounded between
1/9 ≈ .1111 andσ̄ = √

17− 4 ≈ .1231, where the FRW pressure is supplied by the
background radiation. Using this bound we obtain the following sharp upper and lower
bounds for the distance that the shock-wave can propagateover and abovethe (geodesic)
motion of the galaxies, as a function of “starting time”,R∗. (HereR = 1 denotes present
time in the model, and we view the starting timeR∗ < 1 as the earliest time at which
the shock-wave solution has settled down to the point where our model applies; that
is, as entropy increases, we expect shock-wave solutions to settle down to simple time
asymptotic configurations, and we assume here that this time asymptotic solution agrees
with our model fromR∗ onward.) The inequality reads, (cf. Eq. (7.29) below),

(2.62× 10−7)T 4
0

h2
0H

2
0

ln

(
1

R∗

)
≤ r2 − r2∗ ≤ (2.65× 10−7)T 4

0

h2
0H

2
0

ln

(
1

R∗

)
.

Here the distancer is given in terms of the Hubble length

H−1
0 ≈ 9.8

h0
× 109 lightyears,
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where
H0 = 100h0 km s−1 mpc−1,

and it is generally agreed thath0 lies in the interval.5 ≤ h0 ≤ .85, [9]. For example, if
we takeT0 = 2.736≈ 2.7◦ K, R∗ = 2.7/4000, andh0 = .55, (a recently quoted value),
the above estimate reduces to

r2 − r2∗ ≈
(

.019

H0

)2

,

so that the distance our shock-wave has traveled betweenR∗ = 2.7/4000 and present
timeR = 1, as predicted by this model, is approximately.019 times the Hubble length.

In the standard interpretation of the FRW metric in Cosmology, the galaxies are in
freefall, and traverse geodesicsr = const. Thus we can interpretr2−r2∗ as the (squared)
distance that the shock-wave travels over and above the motion due to freefall, a result of
the fact that mass and momentum are driven across the shock-wave as it evolves outward.
From this point of view it is a bit surprising that the quantityr2 − r2∗ is independent of
the starting positionr∗.

Using the formula for theTOV energy density, we next prove that the minimal physical
requirementρ > ρ̄ > p̄ > 0, (we take this as the entropy condition; in classical gas
dynamics it is known that this is equivalent to the physical increase of entropy, [13]),
places an additional constraint on theinitial shock positionr∗ that depends on the starting
“time” R∗. We prove that once this constraint is met at one time, it is met at all succeeding
times in the solution, and the density and pressure profiles are physically reasonable. We
thus obtain the following bounds on the shock position at the present time as a function
of background radiation temperatureT0, the Hubble constantH0, and the starting value
R∗; (cf. (7.35) and (7.36) below):
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0

{
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The maximum shock position is plotted in Fig. 2 for the caseT0 = 2.7◦ K, andh0 = .55.
In Sect. 8 we compare these bounds to the analagous bounds one obtains in the case
of pure radiation, thus making contact with the exact solution discussed in [11]. For
example, atT0 = 2.7◦ K we obtain

36h0

H0
≤ r ≤ 36h0

√
1 + 2.5R∗
H0

,

cf. (8.7) below. (Of course, since we are neglecting the matter field, we do not have
Ṙ/R = H0 at the same time whenT = T0 in the pure radiation model.) We note
that in this case the distance from the shock position to the center of the explosion is
significantlybeyond the Hubble length.

In summary, starting with the idea that there might be a shock-wave that marks
the outer boundary of the expansion that we measure by the Hubble constant, one’s
first reaction is that nothing quantitative could be said about the position of the shock
without knowing details concerning the nature of the spacetime beyond the shock-wave,
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or details about the mechanism that might have created such an explosion in the first
place. And to a large extent this must be true. But what we find interesting here is that
this simplest shock-wave cosmological model, consistent with both the observed values
of the Hubble constant and the background radiation temperature, contains within it
unexpected constraints on the possible position of such a shock-wave, and the shock
position is comparable to the Hubble length.

In conclusion, we ask whether our expanding universe could have evolved from the
center of a great explosion that generated a shock-wave at its leading edge. If so it makes
sense to wonder whether some of the far away objects that we observe in the nightime
sky are possibly due to similar explosions that originated at other locations in spacetime.
We now know that the scale of supernovae is not the largest scale on which classical
explosions have occurred in the universe. Indeed, it was reported in a recent issue of
Nature, that on May 7, 1998, a gamma ray explosion emanating from a faint galaxy known
as GRB971214 erupted, and for two seconds the burst was more luminous than the rest of
the universe combined.This is the largest explosion ever recorded, and redshifts place it at
about 12 billion lightyears away. Moreover, conditions at the explosion were equivalent
to those one millisecond after the Big Bang in the standard model. Thus we ask: could
explosions such as this, or even greater than this, have given rise to our own “expanding
universe”? Indeed, could we then observe other similar explosions in distant regions of
spacetime beyond the expansion of our own universe, (that is, beyond the shock-wave
that marks the edge of the expansion we measure by the Hubble constant)? We propose
the shock-wave model presented in this paper as a natural and simple starting point for
a further investigation of these issues. But independently of this, the model provides a
new, essentiallyexactsolution of the Einstein equations that we feel is interesting in its
own right.

2. Preliminaries

According to Einstein’s theory of general relativity, the gravitational field is described
by a Lorenzian metricg that satisfies the Einstein equations

G = 8πG
c4 T , (2.1)

on 4-dimensional spacetime. HereG is the Einstein curvature tensor,G denotes Newton’s
gravitational constant,c denotes the speed of light, andT is the stress energy tensor,
the source of the gravitational field. In this paper we are concerned with FRW and TOV
metrics, two spherically symmetric metrics which are exact solutions of (2.1) whenT

takes the form of a stress tensor for a perfect fluid, namely

Tij = (p + ρc2)uiuj + pgij , (2.2)

whereρ denotes the mass-energy density,p the pressure andi, j = 0, ..., 3 denote
indices of spacetime coordinates. The FRW metric is given by

ds2 = −d(ct)2 + R2(t)

{
1

1 − kr2dr2 + r2(dθ2 + sin2(θ)dφ2)

}
, (2.3)

and the TOV metric is given by

ds̄2 = −B(r̄)d(ct̄)2 + A(r̄)−1dr̄2 + r̄2(dθ2 + sin2(θ)dφ2). (2.4)
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We write the TOV metric in barred coordinates so that it can be distinguished from the
unbarred FRW coordinates when we do the matching of these two metrics below, cf.
[10]. Substituting (2.3) into (2.1) yields the following FRW equations, [7,9,14,15]:

Ṙ2 = 8πG
3c2 ρR2 − k, (2.5)

and

p = −ρ − Rρ̇

3Ṙ
. (2.6)

The unknownsR, ρ andp in the FRW equations are assumed to be functions of the FRW
time t alone, and “dot” denotes differentiation with respect tot . Assuming co-moving
coordinates and substituting (2.4) into (2.1) yields the following TOV equations:

dM

dr̄
= 4πr̄2ρ̄, (2.7)

−r̄2dp̄

dr̄
= G

c2Mρ̄

(
1 + p̄

ρ̄

)(
1 + 4πr̄3p̄

M

)
A−1, (2.8)

and

B ′

B
= −2

p̄′

p̄ + ρ̄
, (2.9)

where

A = 1 − 2GM

c2r̄
. (2.10)

Here the unknown functions are the densityρ̄, the pressurēp, and the total massM,
which are assumed to be functions ofr̄ alone, and prime denotes differentiation with
respect tor̄. In the next section we fix an FRW metric and derive equations for the
TOV metrics that match the given FRW metric across a shock-wave interface at which
the metric is only Lipschitz continuous, and across which conservation of mass and
momentum hold, and at which there are no delta function sources. In [10] it is shown
that the shock surface is given implicitly by

M(r̄) = 4π

3
ρ(t)r̄3, (2.11)

and the metrics (2.3), (2.4) are identified via a coordinate transformation in which

r̄ = Rr. (2.12)
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3. Derivation of Equations

In this section we derive equations that describe the time evolution of an outgoing
spherical shock-wave interface together with an outer TOV metric, such that the shock
surface matches a given FRW metric on the inside, and such that conservation of energy
and momentum hold across the interface. The main point here is that we are assuming a
given inner FRW metric, rather than assuming a givenouterTOV metric as in [10,12].
Thus we seek a pair of equations that determine an outer TOV metric that matches a given
FRW across a shock-wave interface. Rather than deriving the shock equations, we shall
write them down and prove that solutions of these equations determine a shock-wave
solution of the Einstein equations. (The reader can obtain a formal derivation of these
equations by reversing the steps in the arguments below.)

Equation (3.10) in our first theorem below is the first equation in the pair of ODE’s
that we will work with.

Theorem 1.Assume thatρ(t), p(t), andR(t) solve the FRW system

Ṙ =
√

8πG
3c2 R2ρ − k, (3.1)

ρ̇ = −3
Ṙ

R
(ρ + p), (3.2)

over some interval

I = (t1, t2). (3.3)

Assume that

R(t) > 0, (3.4)

and that

Ṙ 6= 0, (3.5)

on I . We assume WLOG, (by the choice of positive square root in (3.1)), that

Ṙ > 0. (3.6)

Assume further thatr(t) is a positive invertible function defined onI , and definēr(t) on
I by

r̄ = Rr. (3.7)

Define functionsM(r̄) andρ̄(r̄)) by

M(r̄(t)) = 4π

3
ρ(t)r̄(t)3, (3.8)

and

ρ̄(r̄) = M ′(r̄)
4πr̄2 , (3.9)
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where prime denotes differentiation with respect tor̄. Assume, finally, thatr(t) satisfies

ṙ = 1

R

(
p − p̄

ρ + p̄

)
1 − kr2

Ṙr
, (3.10)

for some function̄p, and thatρ, p, M, ρ̄, andp̄ are all positive valued functions onI .
Then for allt ∈ I we have,

p = γ θρ̄ − ρ

1 − γ θ
, (3.11)

where, [12],

θ = A

1 − kr2 , (3.12)

A = 1 − 2GM

c2r̄
, (3.13)

and

γ = ρ + p̄

ρ̄ + p̄
. (3.14)

That is, Theorem 1 implies that for a given FRW solution, (3.10) implies the conservation
condition (3.11) whenM andρ̄ are defined by (3.8) and (3.9), (these latter two equations
being the shock surface matching condition and the second TOV equation, respectively,
[10,12]). Here dot denotesd

ct
, and we assumec = 1.

Proof. Differentiating (3.8) with respect toct and using (3.9) gives

Ṁ = dM

dr̄
˙̄r = 4πρ̄r̄2 ˙̄r. (3.15)

But (3.8) gives

Ṁ = 4π

3
ρ̇r̄3 + 4πρr̄2 ˙̄r, (3.16)

so from (3.15) and (3.16) we get

˙̄r = Rr

3(ρ̄ − ρ)
ρ̇. (3.17)

Using (3.2) in (3.17) gives

˙̄r = −rṘ
p + ρ

ρ̄ − ρ
. (3.18)

Using (3.7) and simplifying we have

ṙR + rṘ = −Ṙr

(
ρ + p

ρ̄ − ρ

)
. (3.19)
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Using (3.10) to eliminatėr from (3.19) gives

1 − kr2

Ṙ2r2
= −

(
p + ρ̄

ρ̄ − ρ

)(
ρ + p̄

p − p̄

)
. (3.20)

We now use the identity

1 − kr2

Ṙ2r2
= 1

1 − θ
, (3.21)

which follows from (3.1) and (3.8). Indeed,

Ṙ2 = 2G
c2

M

r̄3 R2 − k.

But (3.13) implies that
2GM

c2 = (1 − A)r̄,

and using this gives

Ṙ2 = 1 − A

r2 − k,

or, (cf. [10,12]),

r2Ṙ2 = −A + (1 − kr2). (3.22)

Using (3.12) in (3.22) gives (3.21), as claimed.
Now using (3.21) in (3.20) yields

1

1 − θ
= −

(
p + ρ̄

ρ̄ − ρ

)(
ρ + p̄

p − p̄

)
.

Solving this forp gives (3.11), where we have used (3.14). This completes the proof of
Theorem 1. ut

For a given FRW metric, Theorem 1 tells us that the ODE (3.10) can be taken in place
of the conservation constraint (3.11), and the reversal of the steps in the above proof
can be regarded as a formal derivation of the ODE (3.10). We now record the following
additional equations that follow from the hypotheses of Theorem 3.1.

Corollary 1. Assume that the hypotheses (3.1) through (3.10) of Theorem 3.1 hold. Then
the following equations are valid:

ρ + p

ρ − ρ̄
= γ θ

γ θ − 1
, (3.23)

˙̄r(ρ̄ + p̄) =
√

1 − kr2

(
θ√

1 − θ

)
(p − p̄), (3.24)

θ

1 − θ
=
(

ρ + p

ρ̄ − ρ

)(
ρ̄ + p̄

p − p̄

)
, (3.25)
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˙̄r = γ θ

γ θ − 1

√
1 − kr2

√
1 − θ, (3.26)

r2Ṙ2 = −A +
(
1 − kr2

)
, (3.27)

1 − kr2

r2Ṙ2
= 1

1 − θ
. (3.28)

Proof. By Theorem 4.1, we know that (3.11) holds, and using this in the LHS of (3.23)
gives the RHS of (3.23). Also, from (3.22),

rṘ =
√

1 − kr2
√

1 − θ, (3.29)

and using this in (3.19) gives

˙̄r = −
√

1 − kr2
√

1 − θ

(
ρ + p

ρ̄ − ρ

)
. (3.30)

Using (3.23) in (3.30) gives (3.26). From (3.11) we get

p − p̄ = γ θρ̄ − ρ

1 − γ θ
− p̄(1 − γ θ)

1 − γ θ
= (ρ + p̄)θ) − (ρ + p̄)

1 − γ θ
,

so

p − p̄

ρ + p̄
= θ − 1

1 − γ θ
. (3.31)

To verify (3.24), we use (3.26) which we write in the form

˙̄r
√

1 − kr2 1√
1 − θ

1 − θ

γ θ − 1
θ,

and so from (3.31) we have

˙̄r =
√

1 − kr2
√

1 − θ
θ

(
p − p̄

ρ̄ − p̄

)
. (3.32)

Solving for (ρ̄ + p̄) ˙̄r in (3.32) gives (3.24). Finally, to obtain (3.25), equate the RHS’s of
(3.30) and (3.32). Equations (3.27) and (3.28) have already been derived as (3.22) and
(3.21) within the proof of Theorem 1.ut
Now assume thatρ(t),p(t), andR(t) solve the FRW system (3.1) and (3.2) fort ∈ I , and
assume that the hypotheses (3.3) to (3.10) of Theorem 1 hold. We know from Theorem
1 that the conservation condition (3.11) also holds. We now find an equation forp̄(r̄),
(Eq. (3.35) below), which guarantees thatp̄ solves the TOV equation (2.8), since then,
in light of (3.9), the functions̄ρ(r̄), p̄(r̄), andM(r̄) will then solve the TOV system as
well. DefiningA(r̄) by (3.13), we can define the functionB(r̄) as a solution of the ODE,
[10,12],

B ′(r̄)
B(r̄)

= − 2p̄′(r̄)
ρ̄(r̄) + p̄(r̄)

, (3.33)
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thus determining a TOV metric of the form (2.4). For this metric, co-moving coordinates
are assumed, [15], and thus the 4-velocityu is given by

u0 = √
B, ui = 0, i = 1, 2, 3.

Note that we are free to choose any positive initial value forB by suitable rescaling of
the time coordinatēt . The next lemma demonstrates that ifp̄ satisfies Eq. (3.35) below,
then as a consequence it also satisfies

˙̄p = −GM ˙̄r
c2r̄2 (ρ̄ + p̄)

(
1 + 4πp̄r̄3

M

)
A−1, (3.34)

which is equivalent to the TOV equation (2.8).

Lemma 1. The hypotheses (3.1) to (3.10) of Theorem 3.1, together with the equation

˙̄p = − GM

c2r̄2

(
1 − kr2

Ṙr

)(
A

1 − kr2

)
(p − p̄)

(
1 + 3

p̄

ρ

)
A−1, (3.35)

imply thatp̄(r̄) also solves the TOV equation (2.8).

Proof. By (3.28) we have √
1 − kr2

Ṙr
= 1√

1 − θ
,

and substituting this together with (3.12) into (3.35) gives

˙̄p = − GM

c2r̄2

√
1 − kr2

(
θ√

1 − θ

)
(p − p̄)

(
1 + 3

p̄

ρ

)
A−1. (3.36)

But using (3.24) and (3.8) in (3.36) we obtain

˙̄p = − GM

c2r̄2
˙̄r(ρ̄ + p̄)

(
1 + 4πp̄r̄3

4π
3 ρr̄3

)
A−1, (3.37)

which, after dividing bẏ̄r, directly implies the TOV equation (2.8).ut
We now introduce the system of ODE’s whose solutions we analyze in subsequent
sections:

Theorem 2.Assume thatρ(t), p(t), andR(t) satisfy the FRW equations (3.1) and (3.2)
for t ∈ I , and that the other hypotheses (3.3) through (3.10) of Theorem 3.1 hold. Assume
further that (r(t), p̄(t)) solves the system of ODE’s

ṙ = 1

R

(
p − p̄

ρ + p̄

)
1 − kr2

Ṙr
, (3.38)

˙̄p = − GM

c2r̄2

(p − p̄)
(
1 + 3p̄

ρ

)
Ṙr

, (3.39)

for t ∈ I , wherer̄, M(r̄), andρ̄(r̄) are defined for̄r(t1) < r̄ < r̄(t2) by (3.7), (3.8) and
(3.9). Thenρ̄(r̄), p̄(r̄), M(r̄) solve the TOV system (2.7), (2.8), and the conservation
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condition (3.11) holds for allt ∈ I . Furthermore, under these assumptions, the system
(3.38), (3.39) is equivalent to the system

dr

dR
= 1

R(QR2 − k)

(
P − P̄

Q + P̄

)(
1 − kr2

r

)
, (3.40)

dP̄

dR
= −1

2
R

(Q + 3P̄ )(P − P̄ )

QR2 − k
, (3.41)

for R(t1) < R < R(t2), where

(Q, P, P̄ ) = 8πG
3c2 (ρ, p, p̄), (3.42)

and all have the dimensions of inverse length squared.

Note that Eq. (3.39) is equivalent to (3.35) of Lemma 1, and the equivalence of system
(3.38), (3.39) with (3.40), (3.41) follows because of the assumptionṘ 6= 0. This also
implies thatP andQ can be considered as functions ofR, in which case Eqs. (3.40)
and (3.41) close to form a well-defined nonlinear system of two ODE’s. After solving
(3.40), (3.41) the dependence ofR on t can be recovered from (3.1). Thus for a given
FRW metric and a given solution of (3.40), (3.41), the only variable remaining to be
determined is the TOV energy densitȳQ. To obtainQ̄, write (3.8) as

2GM = Qr̄3. (3.43)

Writing (2.7) as

d

dr̄
(2GM) = 3Q̄r̄2, (3.44)

differentiating (3.43), substituting into (3.44) and solving forQ̄ gives

Q̄ = 1

3r̄2

d

dr̄
(Qr̄3) = Q + Rr

3

d

dr̄
Q. (3.45)

Note that ifQ decreases as the shock moves outward, (that is, ther̄ position of the shock
increases), then the second term in (3.45) is negative, and soQ̄ < Q, (the density behind
the shock is greater than the density in front of the shock), as is the case for classical
shock-waves in fluids, [13]. Note, however that the physically necessary conditionQ̄ >

0, or the physically reasonable conditionQ̄ > P̄ , is not guaranteed, and depends on the
particular solution; cf. Sect. 6.

The final theorem of this section tells us that solutions of the ODE’s (3.40), (3.41)
do indeed determine exact shock-wave solutions of the Einstein equations.

Theorem 3.Assume thatρ(t), p(t), andR(t) satisfy the FRW equations (3.1) and (3.2)
for t ∈ I , and that the hypotheses (3.3) through (3.9) of Theorem 3.1 hold. Assume further
that (r(R), P̄ (R)) solve the system of ODE’s (3.40), (3.41) forR(t1) < R < R(t2).
Assume thatQ, P , M, Q̄, P̄ , andA are all positive and that the shock speed in FRW
coordinates is less than the speed of light throughout the intervalI . Then there exists a
C1,1 invertible coordinate transformation mapping(t, r) → (t̄ , r̄) of the form

t̄ = t̄ (t, r), (3.46)

r̄ = r̄(t, r) ≡ R(t)r, (3.47)
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such that, under this identification, the resulting TOV metric matches the given FRW
metric Lipschitz continuously across the shock surfacer = r(t). (The angular coor-
dinatesθ and φ are implicitly identified.) Moreover, the Lipschitz continuous metric
defined by taking the FRW metric forr < r(t) and the TOV metric forr > r(t) defines
a shock-wave solution of the Einstein equations ([4,7]), cf. [10,12]. In particular, the
Rankine-Hugoniot jump conditions

[Tij ]ni = 0, j = 0, ..., 3, (3.48)

hold across the shock surface; there are no “delta function sources" on the surface; there
exists a regularC1,1 coordinate transformation defined in a neighborhood of each point
on the shock such that the metric components in the transformed coordinates, (which
can be taken to be Gaussian normal coordinates), have smoothness levelC1,1; and the
matched metric determines a weak solution of the Einstein equations in the sense of the
theory of distributions, cf. [10].

Proof. The existence of the coordinate transformation is proved in [10] pp. 278–280
under the assumption that the shock surface is nowhere characteristic in the sense of
(4.43) of that paper. Using (4.55) of the same reference, the non-characteristic condition
can be re-written as

˙̄r 6= − A

Ṙr
, (3.49)

which holds here because we assume thatA > 0, r > 0, Ṙ > 0 and ˙̄r > 0. Since the
normal vectorn to the shock surface is non-null, (because we assume that the shock
speed is less than the speed of light), and the functionsc(t, r) and c̄(t̄ , r̄) in Lemma
9 of [10] are here equal toR(t)r and r̄, respectively, it follows that the conclusions of
Lemma 9, [10] are valid. Moreover, the conservation condition (3.11) is valid, and thus
the argument in [10] that leads to (3.9) in this latter reference, implies that, under our
hypotheses, condition (5.5) of Lemma 9, [10], follows from the conservation condition
(3.11) above. (Note that the condition (2.20) of [10], assumed in that paper, is not needed
here.) Since the conclusions of Theorem 3 are just a re-statement of the conclusions of
Lemma 9, [10], the proof of Theorem 3 is now complete.ut

A remarkable aspect of the formulation of the shock equations given in (3.40) and
(3.41) is that, ifQ andP are given functions ofR, (which can be obtained from the
FRW equations once an equation of state is specified), then Eq. (3.41) forP̄ uncouples
from the r̄ equation (3.40). Thus, in principle, one can solve system (3.40) and (3.41)
by first solving the scalar non-autonomous equation (3.41) forP̄ .

Note that system (3.40), (3.41) includes, as a special case, the exact solutions first
presented in [11]; that is, the case whenk = 0 and

P = σQ, (3.50)

P̄ = σ̄

3
Q̄, (3.51)

where

σ = σ̄ (7 + σ̄ )

3(1 − σ̄ )
. (3.52)
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4. The Equation of State

In this section we derive the FRW equation of state that we use to close the system
(3.34) and (3.35). We consider the case when the equation of state for the FRW metric
agrees with the equation of state in the standard model of cosmology after the time that
the radiation in the universe uncoupled from thermal equilibrium with matter. This is an
effort to account for the observed microwave backgound radiation level in our shock-
wave model. Our idea is that if the expanding universe arose from a great explosion,
then one might conjecture that the expansion would have settled down to a uniform
expansion by the time that this decoupling occurred. In the standard model of cosmology,
the thermal uncoupling of radiation and matter occurred at about 300, 000 years after
theBig Bang, at a temperature of about 4000 degrees Kelvin, [1,15,9]. Thus, we analyze
our shock-wave model in the case that there is an energy densityρr for the radiation,
(which supplies a pressurepr = (1/3)ρr via the Stefan–Boltzmann law), and a separate
energy densityρm for the matter, which is assumed to exert a zero pressurepm = 0.
Since the scale factorR is the independent variable in our shock equations (3.34) and
(3.35), we now obtain formulas for the FRW energy density and pressure as functions
of R.

We start with the FRW equations in the form, [15],

Ṙ2 = 8πG
3c2 ρR2 − k, (4.1)

and

d

dR
(ρR3) = −3pR2. (4.2)

(Again, we assume that “dot” denotesd/d(ct).) We can rewrite (4.1) as

Ṙ2 = QR2 − k, (4.3)

and Eq. (4.2) as

d

dR
(QR3) = −3PR2, (4.4)

cf. (3.42). Now assume that the energy in the FRW system is in the form of pure radiation
and matter alone, so that

Q = Qr + Qm, (4.5)

whereQr , Qm denote the (appropriately scaled) energy density of radiation and mat-
ter, respectively. Further, assume that the pressure of radiation is given by the Stefan-
Boltzmann Law, [15],

Pr = (1/3)Qr, (4.6)

and that

Pm = 0, (4.7)

so that the uncoupling implies that

P = Pr + Pm = Pr = (1/3)Qr . (4.8)
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Finally, assume that

Qm = β

R3 , (4.9)

for some positive constantβ, so that the total energy of matter within a (geodesically)
expanding volume in the FRW metric remains constant. Substituting (4.6)–(4.9) into
(4.4) gives

d
dR

(QrR
3)

QrR3 = − 1

R
, (4.10)

which has the solution

Qr = 3α

R4 , (4.11)

for some positive constantα. Then the FRW pressure is given by

P = Pr = α

R4 . (4.12)

We conclude that the equation of state that applies to the FRW system under the assump-
tion that radiation is uncoupled from matter is given by

Q = 3α

R4 + β

R3 , (4.13)

P = α

R4 . (4.14)

Putting (4.13), (4.14) into Eqs. (3.40), (3.41) gives the system of ODE’s

dr

dR
= R

(3α + βR − kR2)

(
α − P̄R4

3α + βR + P̄R4

)
(1 − kr2)

r
, (4.15)

dP̄

dR
= − 1

2R5

(3α + βR + 3P̄R4)(α − P̄R4)

3α + βR − kR2 . (4.16)

Observe, again, that in this formulation, the second equation (4.16) uncouples from the
first equation (4.15). Equations (4.13) and (4.14) together with the Stefan–Boltzmann
law imply that the temperature of radiation is proportional to 1/R. Indeed, letT ≡ T (R)

denote the temperature of radiation. The Stefan–Bolzmann law relates the energy density
of radiationρr to the temperature through the relation

ρr = aT 4, (4.17)

where

a ≈ 7.664× 10−15 erg

cm3 (K◦)4. (4.18)

SinceQr = 8πG
3c2 ρr , we can write this as



290 J. Smoller, B. Temple

Qr = âT 4, (4.19)

where, [15],

â = 8πGa

3c4 (4.20)

defines the constantâ. Now by (4.11)

3α

R4 = Qr = 8πG
3c4 ρr = 8πG

3c4 aT 4 = âT 4,

we have the following lemma:

Lemma 2. The Stefan–Boltzmann law (4.6) implies that

T =
(

3α

â

)1/4 1

R
. (4.21)

5. Restriction to k = 0 – Phase Plane Analysis

We now analyze system (4.15), (4.16) in the case of critical expansion whenk = 0. The
casek 6= 0 will be considered in a subsequent paper. To start, note that in the casek = 0,
system (3.40), (3.41) reduces to

dr

dR
= 1

(QR3)

(
P − P̄

Q + P̄

)(
1

r

)
, (5.1)

dP̄

dR
= −1

2

(Q + 3P̄ )(P − P̄ )

QR
. (5.2)

Assuming now thatQ andP are given by (4.13), (4.14), and substituting these into (5.1),
(5.2) yields the system

dr

dR
= R

(3α + βR)

(
α − P̄R4

3α + βR + P̄R4

)
1

r
, (5.3)

dP̄

dR
= − 1

2R5

(3α + βR + 3P̄R4)(α − P̄R4)

3α + βR
, (5.4)

which is just system (4.15), (4.16) in the casek = 0. Solutions of system (5.3) and (5.4)
determine the shock positionr(R), (the position as measured by the radial coordinate
of the FRW metric that is behind the shock-wave), together with the TOV pressure
P̄ (R) in front of the shock. The TOV pressurēp(r̄) is then recovered from the solution
(r(R), P̄ (R)) by inverting the equation̄r = Rr(R) and usingP̄ = 8πG

3c2 p̄. The function
R(t) is obtained by solving the FRW equation (3.1) withk = 0, and due to the scaling
law for this equation, we are free to choose the scale factorR0 such thatR0 = 1 at present
time in the universe. The constantsα andβ that determineQ rescale with choice ofR0,
and are determined from initial conditions for the FRW metric. For an FRW metric that
models the expanding universe, we can take one of the two initial conditions as

Q0 = 3α + β = H 2
0 , (5.5)
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whereH0 is the present value of the Hubble constant, cf. ([9]). Finally, the TOV energy
densityQ̄ is given by the formula in (3.45):

Q̄ = 1

3r̄2

d

dr̄
(Qr̄3) = Q + Rr

3

d

dr̄
Q. (5.6)

This simplifies under our special assumption (4.13) forQ. Indeed, by (4.13),

dQ

dr̄
= dQ

dR

dR

dr̄
= d

dR

(
3α

R4 + β

R3

)(
r + R

dr

dR

)−1

. (5.7)

Since

dr̄

dR
= d(Rr)

dR
= r + R

dr

dR
, (5.8)

where dr
dR

is given by Eq. (5.1). Putting (5.1) and (5.7) into (5.6) and simplifying yields
the following expression for the TOV energy densityQ̄ :

Q̄ = Q − (4α + βR)(3 + β
α
R + w)(3 + β

α
R)αr2

R4
{
αr2(3 + β

α
R + w)(3 + β

α
R) + (1 − w)R2

} , (5.9)

where

w = P̄R4

α
. (5.10)

We conclude that each choice of constantsα andβ and each choice of initial conditions
for (5.3) and (5.4) determines a shock-wave solution of the Einstein equations, at each
point where all the variables are positive. We now analyze solutions of system (5.3) and
(5.4) in detail.

Substitutingw for P̄ in (5.3), (5.4) yields the equivalent system

dr

dR
= R

(3 + β
α
R)

(
1 − w

3 + β
α
R + w

)
1

αr
, (5.11)

dw

dR
= 4w

R

(
1 − (1 − w)(3 + β

α
R + 3w)

8(3 + β
α
R)w

)
. (5.12)

Now (5.12) is a non-autonomous scalar equation forP̄ that uncouples from Eq. (5.11).
In order to analyze Eq. (5.12), we rewrite (5.12) as an autonomous system, by setting

S = 1

α
R, (5.13)

and

u = 1

S
. (5.14)
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Substituting these into (5.12) and letting “dot” denoted/dS, we obtain the following
autonomous system of two ODE’s that is equivalent to Eq. (5.12):

u̇ ≡ du

dS
= −u2, (5.15)

ẇ ≡ dw

dS
= 4wu

[
1 − (1 − w)(β + 3(1 + w)u)

8(β + 3u)w

]
. (5.16)

We now analyze the phase plane associated with system (5.15), (5.16).
System (5.15), (5.16) has a line of rest points atu = 0, and an isocline wherėw = 0.

Setting the RHS of Eq. (5.16) equal to zero gives[
1 − (1 − w)(β + 3(1 + w)u)

8(β + 3u)w

]
= 0, (5.17)

and solving this forw gives

w = (3β + 8u)

2u

{
−1 +

√
1 + 4

3

(β + 3u)

(3β + 8u)2u

}
≡ φ(u). (5.18)

Thus the isocline is defined for 0< u < ∞ by

w = φ(u). (5.19)

Note first that whenβ = 0, (the case of pure radiation), the isocline degenerates to

φ(u) ≡ √
17− 4 = σ̄ . (5.20)

It is straightforward to verify that whenβ = 0, the isocline is also a solution orbit of
system (5.15), (5.16), and the special solution in [10] withσ = 1/3, σ̄ = √

17 − 4
corresponds to this orbit. We will see below that the special valueσ̄ = √

17− 4 also
is important in the caseβ 6= 0. The next theorem gives the qualitative behavior of the
solution orbits of system (5.15), (5.16) in the(u, w)-plane whenβ 6= 0.

Theorem 4.Assume thatβ 6= 0. Then the following statements hold regarding solutions
of system (5.15), (5.16)). (Here we define an orbit of system (5.15), (5.16) to be a function
w = w(u) such that(u(S), w(1/S)), (u = 1/S), is a solution of system (5.15), (5.16)):

(i) The isoclinew = φ(u) defined by(5.18) is monotone increasing for0 < u < ∞,
and satisfies

lim
u→∞ φ(u) = σ̄ ≡ √

17− 4 ≈ .1231..., (5.21)

lim
u→0

φ(u) = 1

9
≈ .1111..., (5.22)

lim
u→0

φ′(u) = 1 − (1
9

)2 − 8
9

9β
≈ .01097...

β
> 0. (5.23)

(ii) Orbits can only cross the isoclinew = φ(u) once, from right to left in the(u, w)-
plane, asS increases, (see Fig. 1).
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Fig. 1.

(iii) Along any orbitw = w(u) we have

lim
u→∞ w(u) = σ̄ . (5.24)

(iv) There exists a unique orbitwcrit (u) satisfying

lim
u→0

wcrit (u) = 1

9
. (5.25)

Moreover, all orbitsw = w(u) starting from initial conditions(u0, w0) such that
w0 > φ(u0), (that is, starting above the isocline), satisfy

lim
u→0

w(u) = ∞; (5.26)

and all orbits starting from initial conditions(u0, w0) such thatw0 < φ(u0),
(starting below the isocline), satisfy

lim
u→0

w(u) = −∞. (5.27)
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Proof. To verify (5.21), we have

lim
u→∞ φ(u) = lim

u→∞
(3β + 8u)

2u

{
−1 +

√
1 + 4

3

(β + 3u)

(3β + 8u)2u

}

= lim
u→∞

(3β + 8u)

2u

{
−1 +

√
1 + 1

16

}

= −1 + √
17 ≡ σ̄ .

We next show thatφ(u) tends toσ̄ monotonically from below asu → ∞. Note that
by (5.18),w = φ(u) is equivalent to

0 =
[
1 − (1 − w)(β + 3(1 + w)u)

8(β + 3u)w

]
, (5.28)

which we rewrite as

0 = 8(β + 3u)w − (1 − w) [β + 3(1 + w)u] . (5.29)

Now differentiating (5.29) implicitly with respect tou gives

8(β + 3u)
dw

du
+ 24w = − [β + 3(1 + w)u]

dw

du

+(1 − w)

[
3 + 3w + 3u

dw

du

]
. (5.30)

Simplifying (5.30) we obtain

(9β + 24u + 6uw)
dw

du
= −3(w2 + 8w − 1). (5.31)

Now the roots ofw2 + 8w − 1 are

σ̄ ≡ √
17− 4 ≈ .1231, σ̃ ≡ −√

17− 4, (5.32)

and thus we conclude that, along the isoclinew = φ(u),

dw

du
> 0 if w < σ̄ , (5.33)

dw

du
< 0 if w > σ̄ , (5.34)

where we use the fact thatφ(u) > 0 for allu. Thus, it suffices to show thatφ(u) 6= σ̄ for
anyu in order to conclude thatφ′(u) 6= 0 for 0 < u < ∞. So assume for contradiction
thatφ(u) = σ̄ . But solving foru in (5.29) gives

u = − β(9w − 1)

(w − σ̄ )(w + |σ̃ |) , (5.35)

and thusw = σ̄ leads to a contradiction unlessβ = 0. We conclude that ifβ 6= 0, then
φ(u) monotonically increases tōσ asu → ∞, thus proving (5.21). Statement (5.22)
follows from (5.29), and (5.22) follows from (5.31).
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Statement (ii) follows becausėw = 0 only onw = φ(u), ẇ > 0 if w > φ(u), and
since we have shown thatφ′(u) > 0, it follows that orbits can only cross the isocline
from right to left in forwardS-time.

To verify (iii), we show that all orbits tend in backward time, (increasingu), tow = σ̄ .
To see this note that

lim
u→∞ ẇ = lim

u→∞ 4wu

{
1 − (1 − w)(3 + β

u
+ 3w)

8(3 + β
u
w)

}

≈ 4wu

{
1 − 1 − w2

8w

}
, (5.36)

where approximately means to leading order asu → ∞. Now each orbit that starts
abovew = φ(u) decreases as u increases unless the orbit crosses the isocline, in which
case the orbit increases from there on out asu → ∞. It follows that orbits starting below
w = φ(u) can never crossw = φ(u) at any value ofu larger than the initial value. Thus,
since limu→∞ φ(u) = σ̄ , all orbits must be bounded above inw by the maximum of
{σ̄ , w0}, and bounded below by the minimum of{1/9, w0}. But from (5.36), we must
have that

lim
u→∞

{
1 − 1 − w2

8w

}
= 0. (5.37)

Indeed, if not, then (5.36) implies that|ẇ| tends to infinity asu → ∞, which implies
thatw is not bounded asu → ∞, and this contradicts the above bounds. Sinceσ̄ is the
only positive root of

{
1 − 1−w2

8w

}
, we conclude from (5.37) that

lim
u→∞ w = σ̄ .

We now give the proof of (iv). From (5.15) and (5.16),

−dw

du
= 4w

u

[
1 − (1 − w)(β + 3(1 + w)u)

8(β + 3u)w

]

≈ 4w

u

[
1 − 1 − w

8w

]
, (5.38)

where approximate equality means to leading order asu → 0. Now assume for contra-
diction that there exists an orbitw = f (u) that is bounded in a neighborhood ofu = 0,
but such that limu→0 f (u) 6= 1/9. The boundedness condition implies that (5.38) applies
with errors that are bounded asu → 0. That is,

−dw

du
= 4w

u

(
1 − 1 − w

8w

)
+ O(1) (5.39)

= 9w − 1

2u
+ O(1), (5.40)

whereO(1) denotes a constant that depends on the bounds forw but is independent of
u asu → 0. Integrating (5.40) leads to the estimate

− 9w − 1

9w0 − 1
=
(u0

u

)9/2 + O(1)eO(1)|u−u0|, (5.41)
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where(u0, w0) are taken as initial data,u0 > 0. But (5.41) implies that if limu→0 w 6=
1/9, thenw = f (u) is unbounded nearu = 0. From this we conclude that every orbit
that is bounded asu → 0 satisfies

lim
u→0

w = 1/9. (5.42)

We now show that there exists at least one orbit such that limu→0 w = 1/9. Note first
that any orbit starting from initial data(u0, w0) that lies on the isocline,w0 = φ(u0),
u0 > 0, must lie above the isocline for all 0< u < u0 because we know thatdw

du
< 0

on this interval, andφ′(u) > 0. Since the isocline decreases toσ̄ ≈ .1231 > 1/9
as u → 0, it follows thatw0 > 1/9 for initial data lying above the isocline, and
hence limu→0 w > 1/9 along an orbit starting from such initial data. But our argument
above shows that when this happens, we must have limu→0 w = +∞. We conclude that
limu→0 w = +∞ for any orbit starting from initial data above the isocline,w0 > φ(u0).
Similarly, if the initial data(u0, w0) lies below the linew = 1/9, that is,w0 < 1/9, then
alsow0 < φ(u0) because we have thatφ(u) > 1/9. Thus from (5.38),dw

du
> 0, and so

it follows that limu→0 < 1/9, and our argument above implies that limu→0 w = −∞.
We conclude that limu→0 w = −∞ for any orbit starting from initial data below the
line w = 1/9; and limu→0 w = +∞ for any orbit starting from initial data above the
isocline,w0 > φ(u0). Now consider all orbits emanating from initial data on some fixed
vertical lineu = ε > 0. Then ifw0 > φ(ε), we have limu→0 = +∞; and ifw0 < 1/9,
we have limu→0 = −∞. So define

w+ = Inf

{
w0 : lim

u→0
w = +∞

}
, (5.43)

where the limit is taken along the orbit emanating from the point(ε, w0). We now claim
that the critical orbit emanating from initial condition(ε, w0) satisfies limu→0 w = 1/9.
To see this note first thatw+ ≥ 1/9 because orbits beloww = 1/9 tend to−∞ as
u → 0. We show next that the orbit emanating from(ε, w+) cannot tend tow = +∞
asu → 0. To see this, note that if limu→0 w = +∞ along the crititcal orbit, then
this must be true for all orbits starting in a neighborhood of(ε, w0) as well. Indeed, if
limu→0 w = +∞, then at some positive value ofu we must havew > φ(u) along the
critical orbit; and so by continuity, nearby orbits must also rise above the isocline at some
u > 0, and hence by above we know that limu→0 w = +∞ along orbits sufficiently
close to the critical orbit. But this contradicts the fact thatw− is a greatest lower bound.
We conclude that we cannot have limu→0 w = +∞ along the critical orbit. Similarly,
we cannot have limu→0 w = −∞ along the critical orbit because then nearby orbits
would also satisfy limu→0 w = −∞ since they would crossw = 1/9 beforeu = 0,
and again this would contradict the fact thatw+ is a greatest lower bound. Since we
cannot have limu→0 w = −∞ or limu→0 w = +∞, it follows from (5.42) that the only
alternative is that limu→0 w = 1/9 along the critical orbit, as claimed.

We now show that the critical orbit is unique. To this end, rewrite Eq. (5.16) as

ẇ = 4wu

[
1 − (1 − w)(β + 3(1 + w)u)

8(β + 3u)w

]
≡ F(u, w). (5.44)

Differentiating (5.44) with respect tow gives

dẇ

dw
≡ ∂F

∂w
= 4u

[
1 + 6w + β/u

8(3 + β/u)

]
> 0. (5.45)
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But (5.45) implies that the distance between orbits is increasing in forward timeS, (that
is, increasing asu = 1/S decreases. Indeed,

˙(w2 − w1) = F(u, w2) − F(u, w1) = ∂F

∂w
(u, w∗)(w2 − w1) > 0 (5.46)

if w2−w1 > 0. This implies that there cannot be two orbits that satisfy limu→0 w = 1/9
since the distance between them would then tend to zero asu → 0, contradicting (5.46).
This finishes the proof of (iv), and thus the proof of the theorem is complete.ut
The salient properties of the phase plane for system (5.15), (5.16) are sketched in Fig. 1.
Note that asβ → 0, the isocline moves up to the linew = σ̄ , (continuously, except for
a jump from 1/9 to σ̄ at u = 0, β = 0). The isocline is a curve of absolute minima of
orbits that cross the isocline, and the isocline, together with all orbits, tend tow = σ̄

asu → ∞, R → ∞. Moreover, all orbits except the critical orbit tend to infinity as
u → 0, (R → ∞), and so the critical orbit is the only orbit bounded for all values of
R > 0. Along both the critical orbit and the isocline, the following apriori bounds hold
for all 0 < R < ∞:

1/9 ≈ .1111< w < σ̄ ≈ .1231. (5.47)

Note, however, that the critical orbit and the isocline do not coincide except in the limiting
caseβ = 0, in which case both reduce to the linew = σ̄ , which also can be identified
with the special solution constructed in [10]. In particular, Fig. 1 describes how this
special solution is imbedded in the larger class of solutions that allow for general initial
data.

6. Conditions for Q̄ > 0 andQ̄ > P̄

In this section we obtain conditions which guarantee thatQ̄ > 0 andQ̄ > P̄ , physically
reasonable conditions on the TOV energy density and pressure which are equivalent
to the entropy inequality for shocks in classical gas dynamics. In particular,Q̄ > P̄

guarantees that̄Q > 0 whenever the solution orbits of system (5.15), (5.16) satisfy
w ≡ P̄R4/α > 0. We begin with the formula (5.9) for̄Q, by asking that the RHS of
(5.9) be positive. Using the formula

Q = 3α

R4 + β

R3

we see thatQ̄ > 0 is equivalent to

α

{
αr2(3 + β

α
R + w)(3 + β

α
R) + (1 − w)R2

}
(6.1)

−(4α + βR)(3 + β

α
R + w)αr2 > 0.

Solving (6.1) forr2 leads to the following inequality that is equivalent toQ̄ > 0:

αr2 <
(1 − w)R2

3 + β
α
R + w

. (6.2)
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Equation (6.2) implies that the condition̄Q > 0 puts a contraint on the maximum
possible shock position at a given value ofR. The following theorem implies that if the
condition holds at some valueR = R∗ in a solution of (5.15), (5.16), then it holds for
all R ≥ R∗ in that solution, so long as 0< w < 1 anddw/dR < 0. Both of these
conditions are satisfied along the critical orbit where 1/9 < w < σ̄ ≈ .1231.

Lemma 3. Define the quantity{}I by

{}I ≡
{

(1 − w)R2

3 + β
α
R + w

− αr2

}
I

. (6.3)

Then for any solution of (5.11), (5.12) we have

d

dR
{}I > 0 (6.4)

at each point where

0 < w < σ̄ , (6.5)

and
dw

dR
< 0. (6.6)

Lemma 3 implies that{}I is monotone increasing along any solution of (5.15), (5.16)
that satisfies (6.6), and thus if (6.2) holds at a valueR = R∗ in such a solution, then it
must hold at allR > R∗; in particular it holds all along the critical orbit.

Proof. Starting with (6.3) we have

d

dR
{}I = 2(1 − w)R

3 + β
α
R + w

− α
dr2

dR
+ R2 d

dR

{
1 − w

3 + β
α
R + w

}
II

(6.7)

= 2(1 − w)R

3 + β
α
R + w

− 2(1 − w)R

(3 + β
α
R + w)(3 + β

α
R)

+ R2 d

dR
{}II ,

where we have used (5.11). This simplifies to

d

dR
{}I = 2(1 − w)R

3 + β
α
R + w

(
2 + β

α
R

3 + β
α
R

)
+ R2 d

dR
{}II . (6.8)

Moreover,

d

dR
{}II = d

dR

{
1 − w

3 + β
α
R + w

}
II

= (3 + β
α
R + w)

(− dw
dR

)− (1 − w)(
β
α

+ dw
dR

)

(3 + β
α
R + w)2

= (3 + β
α
R + 1)

(− dw
dR

)− (1 − w)
β
α(

3 + β
α
R + w

)2

≥ − (1 − w)
β
α(

3 + β
α
R + w

)2 , (6.9)
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where we have used (6.5) and (6.6). Using (6.9) in (6.8) and simplifying gives

d

dR
{}I ≥

(1 − w)
(
4 + β

α
R
)

R(
3 + β

α
R + w)

) (
3 + β

α
R
) > 0. (6.10)

This completes the proof of Lemma 3.ut
We now obtain a corresponding condition forQ̄ > P̄ . Using (5.10) and (6.5) we

know

P̄ ≤ ασ̄

R4 . (6.11)

Using this together with (5.9), we see thatQ̄ > P̄ will hold if

R4Q̄

α
= 3 + α

β
R

αr2(3 + β
α
R) + R2(1−w)

3+ β
α
R+w

{}I ≥ σ̄ . (6.12)

Solving (6.12) forαr2 gives the equivalent condition

1 + σ̄

1 − σ̄

3+ β
α
R

αr2 ≤ {}III , (6.13)

where

{}III = R2(1 − w)

3 + β
α
R + w

. (6.14)

Thus to get (6.13) it suffices to have

1 + σ̄

1 − σ̄
3

αr2 = (1 + ε)αr2 ≤ {}III , (6.15)

where

ε = 4σ̄

3 − σ̄
. (6.16)

We conclude that̄Q ≥ P̄ holds so long as{
{}III − (1 + ε)αr2

}
≥ 0. (6.17)

Lemma 4. Define the quantity{}IV by

{}IV ≡
{
{}III − (1 + ε)αr2

}
. (6.18)

Then for any solution of (5.11), (5.12) we have

d

dR
{}IV > 0 (6.19)

at each point where (6.5) and (6.6) hold.
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In particular, Lemma 4 implies that if (6.17) holds at a pointR∗ in a solution of (5.11),
(5.12) such that (6.5) and (6.6) hold for allR ≥ R∗, then we conclude that (6.19) holds
at all pointsR ≥ R∗, and thus thatQ̄ ≥ P̄ for all R ≥ R∗. Thus (6.19) holds all along
the critical orbit.

Proof. Differentiating we obtain

d

dR
{}IV = 2(1 − w)R

3 + β
α
R + w

− (1 + ε)α
dr2

dR
+ R2 d

dR

{
1 − w

3 + β
α
R + w

}
II

= 2(1 − w)R

3 + β
α
R + w

− (1 + ε)
2(1 − w)R

(3 + β
α
R + w)(3 + β

α
R)

+ R2 d

dR
{}II

= 2(1 − w)R

3 + β
α
R + w

(
2 − ε + α

β
R

3 + α
β
R

)
+ R2 d

dR
{}II . (6.20)

Now using (6.9) in (6.20) and simplfying yields

d

dR
{}IV ≥ (1 − w)R

3 + β
α
R + w

3 + β

α
R(4 + β

α
R − 2ε) > 0, (6.21)

since 2ε < 4 andw < 1. This concludes the proof of Lemma 4.ut
We have proven the following theorem:

Theorem 5.Assume that (6.5) and (6.6) hold for allR > R∗ on a solution of (5.11),
(5.12). Then{}I > 0 at R = R∗ is equivalent toQ̄ > 0 at R = R∗, and implies that
Q̄ > 0 for all R > R∗; and if {}IV > 0 at R = R∗, then we must havēQ > P̄ for all
R > R∗. The condition{}I > 0 is equivalent to

αr2 <
(1 − w)R2

3 + β
α
R + w

, (6.22)

and the condition{}IV > 0 simplifies to

αr2 <

(
1 − σ̄ /3

1 + σ̄

)
(1 − w)R2

3 + β
α
R + w

. (6.23)

We end this section by showing that the constraint (6.22) implies thatA(r̄) > 0; that
is, we show that the shock surface lies outside the Schwarzschild radius for the mass
generated by the FRW mass behind the shock. Since

A(r̄) = 1 − 2GM(r̄)

c2r̄2 ,

we require that
2GM(r̄) < 1,

or, using the shock surface equationM(r̄) = 4π
3 ρ(t)r̄3, this becomes̄r2 < Q−1, or

r2 < Q−1R−2. Using (4.13), we need only show that

r̄2 <
R2

3α + βR
.

However, this is clearly implied by (6.22).
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7. Estimates for the Shock Position

In this section we take system (5.11), (5.12) as a simple cosmological model in which
the FRW metric behind the shock-wave at positionr is assumed to model the expanding
universe. Given this, we now estimate the position of the shock-wave in the present
universe as determined by this model. In this model, the expanding universe is modeled
by an FRW, (k = 0,) metric in which the energy densityQ and pressureP are given by
(4.13), (4.14), that is, the same as that assumed in the standard cosmological model after
the time of thermal decoupling of matter with radiation, (approximately 300,000 years
after theBig Bangin the standard model, [15]). The FRW metric is assumed to have been
created behind a radially expanding shock-wave due to a great explosion into a static,
spherically symmetric universe modeled by a TOV metric. Given these assumptions,
we have shown that conservation of energy at the shock then implies that the positionr

of the shock-wave is determined by Eq. (5.11), wherer is the radial coordinate in the
FRW universe behind the shock. Equation (5.11) is coupled to Eq. (5.12) for the TOV
pressureP̄ , and the TOV energy densitȳQ is then given by the formula (5.9). In this
section we assume thatw = R4P̄ /α lies on the critical orbitw = wcrit(S), (S = R

α
).

(This is justified by the fact that, according to Theorem 4, this is the only orbit bounded
for all R, and all orbits are asymptotic to this one asR → 0.) By Theorem 4,w ranges
betweenσ̄ and 1/9 along the critical orbit, and thus we have the apriori estimate

1/9 ≈ .1111< w < σ̄ ≈ .1231. (7.1)

The only remaining piece of information missing is the initial condition for the shock-
wave. At first one might think that this initial condition can be chosen arbitrarily, but as
we have shown in the last section, the condition that the energy density be positive in
front of the shock-wave, or that it be larger than the pressure in front of the shock, puts a
constraint on the maximum shock position at a given time. That is, assuming thatw lies
on the critical orbit implies that the hypotheses of Theorem 5 hold, and thus condition
(6.22) is equivalent toQ̄ > 0, and the condition (6.23) is sufficient to guarantee that
Q̄ > P̄ , at any given value ofR. Moreover, if (6.22) or (6.23) hold at a given value
R = R∗, Theorem 5 tells us that they continue to hold for allR > R∗.

Under the above assumptions, we now obtain estimates for the shock position. To
start, rewrite (5.11) as

dr2

dR
= 2(1 − w)R

α
(
3 + β

α
R
) (

3 + β
α
R + w

)

=
2(1 − w) α

β2 R(
R + α

β
(3 + w)

) (
R + 3α

β

) . (7.2)

Using (7.1) in (7.2) gives the estimate

(1 − w+)2α
β2 R(

R + (3 + w+) α
β

) (
R + 3α

β

) ≤ dr2

dR
≤

(1 − w−)2α
β2 R(

R + (3 + w−) α
β

) (
R + 3α

β

) ,

(7.3)
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wherew− = 1/9 ≈ .1111< w+ = σ̄ ≈ .1231. That is,

α

β2

2(1 − σ̄ )R(
R + (3 + σ̄ ) α

β

) (
R + 3α

β

) ≤ dr2

dR
≤ α

β2

(16/9)R(
R + (28α

9β

) (
R + 3α

β

) .

(7.4)

Now by direct calculation, the solution to the ODE

dr2

dR
= C

R

(R + A)(R + B)
, (7.5)

for positive constantsA, B, andC, is given by

r2 = r2∗ + ln

[(
R + A

R∗ + A

) AC
A−B

(
R + B

R∗ + B

)−BC
A−B

]
, (7.6)

where inequalities can be substituted for equalities in (7.5), (7.6). Applying this to (7.3)
gives the inequalities

r2 − r2∗ ≥ ln

[(
R + A+
R∗ + A+

)a+ ( R + B+
R∗ + B+

)b+
]

, (7.7)

r2 − r2∗ ≤ ln

[(
R + A−
R∗ + A−

)a− ( R + B−
R∗ + B−

)b−
]

, (7.8)

where

A = (3 + w)
α

β
,

B = 3
α

β
,

a = 2(3 + w)(1 − w)

w

α

β2 ,

b = −6(1 − w)

w

α

β2 , (7.9)

andA−, A+, are obtained by substitutingw−, w+ for w, respectively, in the above
expressions, etc.

We now evaluateα andβ in terms of the present value of the Hubble constantH0
and the observed microwave background radiation temperatureT0. Here we let subscript
zero denote value at present time in the FRW metric, and WLOG we assume thatR0 = 1.
Recall that the FRW equation (2.5) fork = 0 can be written as

H 2 ≡
(

Ṙ

R

)2

= QR2,

so that the “Hubble constant”H0 is

H0 = √
Q0,
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whereQ0 denotes the present value of the (scaled) energy density in the universe at
present time. By (4.13),

Q0 = 3α + β,

where 3α is the energy density of radiation at present time, andβ is the energy density of
matter at present time. LetT ≡ T (R) denote the temperature of radiation. Then (4.21)
is

T =
(

3α

â

)1/4 1

R
, (7.10)

where (4.20) gives

â = 8πGa

3c4 .

SettingR0 = 1 and solving (4.21) forα gives

α = â

3
T 4

0 , (7.11)

and using this in (4.13) gives

β = Q0 − 3α = H 2
0 − âT 4

0 . (7.12)

We evaluate the above constants using the values, ([15]),

G
c2 = 7.425× 10−29 cm g−1, (7.13)

c = 2.997925× 1010 cm s−1, (7.14)

lty = 9.4605× 1017 cm, (7.15)

mpc= 106 pc = 3.2615× 106 lty, (7.16)

a = 7.5641× 10−15 erg cm−3 K−4, (7.17)

H0 = 100h0 km s−1 mpc−1, (7.18)

T0 = 2.736◦K . (7.19)

Here,G is Newton’s gravitational constant,c the speed of light, lty is lightyear, mpc is
megaparcec,◦ K is degrees Kelvin,a is the Stefan–Boltzmann constant,T0 is the observed
microwave background radiation temperature [9], andH0 is Hubble’s constant, where
h0 is generally accepted to be between.5 and unity. (We takeh0 ≈ .55 as a recently
quoted value.) Using these values we calculate

â = 4.6852× 10−27 lty−2 K−4, (7.20)

H0 = 1.023h0 × 10−10 lty−1. (7.21)

Using the above values we obtain from (7.11) and (7.12) that

α

β
= 1/3(

H2
0

âT 4
0

)
+ 1

≈ â

3H 2
0

T 4
0 = 1.492T 4

0

h2
0

× 10−7, (7.22)
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and

α

β2 = âT 4
0

3

[
âT 4

0

(
H2

0
âT 4

0

)
− 1

] ≈
(

â

3H 2
0

)
T 4

0

H 2
0

(7.23)

= (1.492× 10−7)
T 4

0

h2
0H

2
0

= 8.34× 10−6

h2
0H

2
0

, (7.24)

where we used̂
aT 4

0
H2

0
<< 1 at the approximate equality. Using these values we can

evaluate:

A+ = (3 + .1231)
α

β
= (4.66× 10−7)

T 4
0

h2
0

, (7.25)

B+ = 3
α

β
= (4.48× 10−7)

T 4
0

h2
0

,

a+ = 2(3 + .1231)(1 − .1231)

.1231

α

β2 = (6.639× 10−6)
T 4

0

h2
0H

2
0

,

b+ = −6(1 − .1231)

.1231

α

β2 = (6.377× 10−6)
T 4

0

h2
0H

2
0

,

A− = (3 + 1/9)
α

β
= (4.64× 10−7)

T 4
0

h2
0

, (7.26)

B− = 3
α

β
= (4.48× 10−7)

T 4
0

h2
0

,

a− = 2(3 + 1/9)(1 − 1/9)

1/9

α

β2 = (7.427× 10−6)
T 4

0

h2
0H

2
0

,

b− = −6(1 − 1/9)

1/9

α

β2 = (7.162× 10−6)
T 4

0

h2
0H

2
0

.

Now, assuming that the uncoupling of matter and radiation occurred at a temperature
less than 4000 degrees Kelvin, [15], it follows from (4.21) that

R∗ ≥ 2.2/4000= 6.75× 10−4, (7.27)

and so it follows that we can essentially neglect theA’s andB ’s in estimates (7.7) and
(7.8), given their small values in (7.25) and (7.26), and assuming this, estimates (7.7)
and (7.8) reduce to,

(a+ + b+) ln(1/R∗) ≤ r2 − r2∗ ≤ (a− + b−) ln(1/R∗). (7.28)

Using (7.25) and (7.26) to estimate (7.28) gives the following estimate for the distance
the shock-wave must have traveled betweenr = R∗ andR = 1 as predicted by our
model:

(2.62× 10−7)T 4
0

h2
0H

2
0

ln

(
1

R∗

)
≤ r2 − r2∗ ≤ (2.65× 10−7)T 4

0

h2
0H

2
0

ln

(
1

R∗

)
. (7.29)
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Here the distancer is given in terms of the Hubble length

H−1
0 ≈ .98

h0
× 1010. (7.30)

In particular, (7.29) shows that, in this shock-wave model, the quantityr2 − r2∗ is essen-
tially independent of the starting positionr∗.

As an example, if we takeh0 = .55,T0 = 2.736◦ K andR∗ = 2.7/4000 in (7.29),
we obtain the estimate

r2 − r2∗ ≈
(

.019

H0

)2

. (7.31)

In the standard interpretation of the FRW metric in Cosmology, the galaxies are in
freefall, and traverse geodesicsr = const. Thus we can interpretr2 − r2∗ in (7.29) as the
(squared) distance that the shock-wave travels over and above the motion due to freefall,
a result of the fact that mass and momentum are driven across the shock-wave as it
evolves outward. We conclude that the distance the shock-wave has traveled, (over and
above freefall), betweenR = R∗ = 2.7/4000 andR = 1, as predicted by this model, is
approximately.019 of the Hubble length. (Recall thatr̄ = R(t)r measures distance in
lightyears for the three dimensional space at fixed timet in thek = 0 FRW metric.)

We now discuss the initial conditionr = r∗ at R = R∗. We saw in (6.23) that the
conditionQ̄ > P̄ put constraints on the maximal shock position at each value ofR.
Using the valuēσ = .1231 in (6.23) gives the inequality

r2∗ <
.759R2

(3.11)α + βR
= .759

1 +
[

(4.64×10−7)T 4
0

h2
0R

2∗

] R∗
H 2

0

. (7.32)

Estimate (7.32) is the bound on the initial shock position, imposed byQ̄ > P̄ , in terms
of the Hubble length. Putting (7.32) together with (7.29), we conclude that the maximal
distancermax from the shock-wave to the center of the explosionr = 0 at present time
R = 1, given as a function of starting timeR∗, 2.7/4000 ≤ R∗ ≤ 1, (assuming the
shock-wave started at positionr = r∗ at R∗ ≥ 2.7/4000, and such thatr∗ is restricted
by (7.32) so thatQ̄ > P̄ for all R > R∗), is predicted by this model to be

rmax ≈ H−1
0

√√√√√ .76

1 +
[

(4.6×10−7)T 4
0

h2
0R

2∗

]R∗ + (2.6 × 10−7)
T 4

0

h2
0

ln

(
1

R∗

)
. (7.33)

For example, taking the valueh0 = .55 andT0 = 2.736◦ K gives the formula

rmax ≈ H−1
0

√√√√ .76

1 +
[

(8.5×10−5)

R2∗

]R∗ + (4.9 × 10−5) ln

(
1

R∗

)
. (7.34)

This function is plotted in Fig. 2. Using (7.33) in (7.29) we obtain the following upper
and lower bounds for the shock positionr at present timeR = 1 assuming that it starts
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Fig. 2. rmax is in units ofH−1
0 , H0 = 100h0

km
s mpc, h0 = .55

atR = R∗, and such that̄Q > P̄ holds for allR ≥ R∗ :

r ≥ H−1
0

{
(5.1 × 10−4)

T 2
0

h0

√
ln

(
1

R∗

)}
, (7.35)

r ≤ H−1
0

√√√√√ .76

1 +
{

(4.6×10−7)T 4
0

h2
0R

2∗

}R∗ + (2.6 × 10−7)
T 4

0

h2
0

ln

(
1

R∗

)
.

(7.36)

8. The Case of Pure Radiation,β = 0

As a point of comparison, in this section we redo the calculation of the shock position
under the assumptionβ = 0 in (4.13); that is, under the assumption that the energy
densityQ is due entirely to radiation, (see [11]. Thus assume thatα = âT 4

0 /3 is as given
in (7.11), but thatβ = 0. We estimate the position of the shock-wave in this model at
the timeR = 1, whereT = T0. Now of course, sinceβ is determined in (7.12) fromH0

in the above analysis, the value ofṘ
R

in the pure radiation model will not coincide with
H0 at the time whenT = T0. Nevertheless, for comparison purposes, we shall estimate
the radial position of the shock-wave in the pure radiation model at timeR = 1 in terms
of the Hubble lengthH−1

0 given in (7.30).
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In the caseβ = 0, the constraint (6.23) that guaranteesQ̄ > P̄ reduces to

αr2∗ <

(
(1 − σ̄ /3)(1 − w)

(1 + σ̄ )(3 + w)

)
R2∗, (8.1)

and the critical orbit becomesw ≡ σ̄ . Usingw = σ̄ ≈ .1231 in (8.1) gives

r∗ <
.49√

α
R∗. (8.2)

(Note that in the alternative caseα = 0, the case of pure matter, the RHS of (6.23) tends
to infinity, and thus (6.23) places no constraint on the shock position. This is consistent
with the fact that whenα = 0, the pressure is zero, and the shock-wave reduces to a
contact discontinuity. For example,̄Q = 0, P̄ = 0, solves the shock equations (3.40),
(3.41) and it is not difficult to show that the solution of the shock equations in this case
reduces to thek = 0 version of the Oppenheimer–Snyder model, first presented in [11].
In these Oppenheimer–Snyder models, there are no constraints on the shock position
corresponding to (6.23).)

Settingβ = 0 andw = σ̄ in (5.11) gives

dr2

dR
= 2(1 − σ̄ )

3(3 + σ̄ )

R

α
(8.3)

as the differential equation for the shock position. Integrating gives

r2 = (1 − σ̄ )

3(3 + σ̄ )

R2

α
+ r2∗ . (8.4)

Using (8.2) for the maximum value ofr∗ yields the following bounds on the shock
positionr at the timeR = 1 whenT = T0 that are analogous to (7.35) and (7.36) and
apply whenβ = 0 :

1√
α

√
(1 − σ̄ )

3(3 + σ̄ )
≤ r ≤ 1√

α

√
(1 − σ̄ )

3(3 + σ̄ )
+ .24R∗. (8.5)

From (7.11) it follows that

1√
α

= 118h0H
−1
0 , (8.6)

for the value ofH0 given in (7.18), (note as above thatH0 6= √
Q0 in this case). Using

this value together with the valuēσ = .1231 in (8.5) yields

36h0

H0
≤ r ≤ 36h0

√
1 + 2.5R∗
H0

. (8.7)

Note that the shock position atR = 1 that applies to the exact solution given in [11],
which was discussed in detail at the end of Sect. 3, is the caseR∗ = 0 in (8.7).
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