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Abstract: We construct the simplest solution of the Einstein equations that incorporates
a shock-wave into a standard Friedmann—Robertson—Walker metric whose equation of
state accounts for the Hubble constant and the microwave background radiation temper-
ature. This produces a new solution of the Einstein equations from which we are able to
show that the distance from the shock-wave to the center of the explosion at present time
is comparable to the Hubble distance. We are motivated by the idea that the expansion
of the universe as measured by the Hubble constant might be accounted for by an event
more similar to a classical explosion than by the well-accepted scenario of the Big Bang.

1. Introduction

In the standard model for cosmology it is assumed that the Cosmological Principle
holds: on the largest scale, thatire universe is expanding at a rate measured by the
Hubble law, [1,6,7,9,14,15]. Hubble's Law correlates recessional velocities of galaxies
with red-shifts. However, this correlation has only been verified for nearby galaxies,
and it is an extrapolation to apply this law to the entire universe. Moreover, it follows
from the Einstein equations, [2,3,14], that if the universe is everywhere expanding, then
every spacetime point can be traced back to a singularity in the past, a singularity from
which the entire univerdaurstin an event referred to as tiBég Bang The Cosmolgical
Principle is what forces the singularity into the standard Big Bang interpretation of
the origin of the universe. In this paper we explore the possibility that Hubble’s Law
actually only measureslacalizedexpansion of the universe, and not the expansion of
the entire universe. We demonstrate the consistency of this possibility by constructing
the simplest possible solution of the Einstein equations that accounts for the observed
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Hubble expansion rate and the correct microwave background radiation temperature,
such that there is a shock-wave present at the leading edge of the expansion.

Our motivation is the idea that the expansion of the universe, as measured by the
Hubble constant, might be the result of a large stadalizedexplosion that generated a
shock-wave at the leading edge, not unlike a classical explosion into a static background,
exceptonan enormously large scale. If this were true, then it would place our solar system
in a special position relative to the center of the explosion, and this would violate the
so-calledCopernican Principleat least on the scale at which the Hubble Law applies.
The Copernican Principle is the statement that the earth is not in a “special place” in
the universe. This principle justifies the standard cosmology based on the Friedmann—
Robertson-Walker (FRW) metric because the FRW metric is the unique metric that is
consistent with the Einstein equations, and is homogeneous and isotropic about every
point. The high degree of uniformity of the background microwave radiation in all
directions, together with the directional independence of the redshifting of galaxies,
provides the strongest support for the Copernican Principle. The idea that there is a
shock-wave present at the leading edge of that portion of the universe where the Hubble
constant applies, also violates another basic tenet of modern cosmology; namely, that we
can meaningfully time reverse the continuum model all the way back to microseconds
after the Big Bang. Indeed, it follows from the mathematical theory that shock-waves
introduce a fundamental increase of entropy and consequent loss of information, [5,
13]. Thus, when a shock-wave is incorporated into cosmology, it becomes impossible
to reconstruct the details of the early explosion from present data, at least at the level of
the continuum model.

The simplest shock-wave model for cosmology is one in which the “expanding uni-
verse”, inside the shock-wave, is modeled by the standard FRW metric of cosmology,
and the spacetime on the outside is modeled by a Tolman—Oppenheimer-\Volkoff (TOV)
metric, (the general relativistic version of a static fluid sphere), such that the interface in
between produces a spherically symmetric shock-wave solution of the Einstein equations
propagating outward. (Such a shock-wave differs from a classical shock-wave because
in addition to discontinuities in the fluid variables, there are discontinuities in the cur-
vature of spacetime at the shock-wave.) The assumption that outside the shock-wave is
a time-independent spherically symmetric solution is not unreasonable if one imagines
that the spacetime before the explosion occurred took a long time getting into the pre-
explosion configuration; the assumption that an expanding FRW metric describes the
spacetime behind the shock-wave is consistent with the fact that the galaxies appear to be
uniformly expanding. In such a model one can interpret the shock-wave as thermalizing
the radiation so as to maintain the uniform background radiation temperature behind the
shock. (Of course, all of this implies that the model must be finely tuned to meet the
physics.) In this paper we construct such a model assuming critical expartsie)(
for the FRW metric, and what emerges is a new, essentially exact solution of the Einstein
equations. We show that reasonable physical requirements on the TOV equation of state,
(which can be interpreted as an entropy condition), put an interesting constraint on the
possible position of the shock-wave relative to the center of the explosion. Using this,
we derive precise estimates for the shock position at present time, as predicted by this
model; that is, at the time in this model at which the Hubble constant and the value
of the background radiation temperature agree with observed values. The constraint on
the shock position can be interpreted as a length scale derived from the model, and this
length scale is not determined by any adjustable parameters in the problem other than the
experimentally determined values of the Hubble constant and the background radiation
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temperature. The constraint on the position of the interface arises because the interface
is a true shock-wave. There is no similar constraint on the position of the interface in the
well-known Oppenheimer—Snyder model, where the interface is a contact discontinuity,
[8,10].

In this paper we start with a critically expanding, £ 0), FRW metric under the
assumption that the equation of state agrees with the equation of state that applies in
the standard model of cosmology after the time of the thermal uncoupling of matter
from radiation. This uncoupling occurred at a temperature of approximately® 4000
at about 300000 years after the Big Bang in the standard model, [1,15]. In Sect. 3, we
derive a system of ODE’s that determine the TOV metrics that match the given FRW
metric across a shock-wave interface, (Eqgs. (5.3), (5.4) below). In fact, we derive the
shock equations in the case of a general FRW metric, allowing $610 and for general
equations of state, (Egs. (3.40), (3.41) below). In Sect. 4 we derive the FRW equation
of state in terms of the cosmological scale factor, including a discussion of the FRW
metric in the presence of both matter and radiation fields, assuming that the pressure
due to matter is negligible, and that there is no thermal coupling between the fields. The
results in Sect. 4 also apply for arbitrary

To obtain the ODE'’s for the TOV metric, we must rework the theory in [10,12] where
a given outer TOV metric is the starting point, instead of a given inner FRW metric which
we require here. These ODE'’s, which are non-autonomous, simultaneously describe the
TOV pressurep and the FRW shock position assuming conservation of energy and
momentum and no delta function sources at the shock. (We let barred quantities refer
to TOV variables and unbarred quantities to FRW variables, cf. [10].) We then derive
a formula for the TOV energy density, (the only remaining undetermined variable
in the TOV metric), which, together with solutions of the ODE’s, determine the TOV
solutions that match the given FRW metric across a shock-wave interface. The ODE’s
take a particularly simple form when the cosmological scale faktwfithe FRW metric
is taken to be the independent variable instead of the usual TOV radial varidble
Sect. 5 we present a rather complete phase plane analysis of these equations and we
prove that there exists a unique bounded orbit. This orbit describes the TOV pressure,
but does not constrain either the initial shock position or the TOV energy density. We
show that along this orbit, the pressure jump across the shock-wave has the property
that the ratio of the TOV pressure to the FRW pressure at the shock is bounded between
1/9 ~ 1111 ands = /17 — 4 ~ .1231, where the FRW pressure is supplied by the
background radiation. Using this bound we obtain the following sharp upper and lower
bounds for the distance that the shock-wave can propageatend abovéhe (geodesic)
motion of the galaxies, as a function of “starting tim&},. (HereR = 1 denotes present
time in the model, and we view the starting tirRg < 1 as the earliest time at which
the shock-wave solution has settled down to the point where our model applies; that
is, as entropy increases, we expect shock-wave solutions to settle down to simple time
asymptotic configurations, and we assume here that this time asymptotic solution agrees
with our model fromR, onward.) The inequality reads, (cf. Eq. (7.29) below),

262x 10014 1 2.65x 10014 1
#M_) . #M_)_
hOHO hOHO

R,
Here the distanceis given in terms of the Hubble length

*

_ 9.8 .
Hy'w o X 10° lightyears
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where
Ho = 100hg km st mpc 2,

and it is generally agreed thag lies in the interval5 < hg < .85, [9]. For example, if
we takeTy = 2.736~ 2.7°K, R, = 2.7/4000, andhg = .55, (a recently quoted value),
the above estimate reduces to

2
rz—rf ~ <0—19> s
Ho

so that the distance our shock-wave has traveled betRgen 2.7/4000 and present
time R = 1, as predicted by this model, is approximat€l§9 times the Hubble length.

In the standard interpretation of the FRW metric in Cosmology, the galaxies are in
freefall, and traverse geodesics- const. Thus we can interpret — 2 as the (squared)
distance that the shock-wave travels over and above the motion due to freefall, a result of
the fact that mass and momentum are driven across the shock-wave as it evolves outward.
From this point of view it is a bit surprising that the quantity— 2 is independent of
the starting position,.

Using the formula for the TOV energy density, we next prove that the minimal physical
requiremento > o0 > p > 0, (we take this as the entropy condition; in classical gas
dynamics it is known that this is equivalent to the physical increase of entropy, [13]),
places an additional constraint on thigial shock positiom, that depends on the starting
“time” R,.We prove that once this constraint is met at one time, itis met at all succeeding
times in the solution, and the density and pressure profiles are physically reasonable. We
thus obtain the following bounds on the shock position at the present time as a function
of background radiation temperatufg the Hubble constartlp, and the starting value
Ry; (cf. (7.35) and (7.36) below):

T2
r>Hyt {(5.1 x 10—4)]1—O [In (%)} ,
0 *

76 T 1
r < Hyt R, + (26 x 10°7)-% In (-)
(4.6x10-1)T3 hg R,
1+ hgR2
0%

The maximum shock position is plotted in Fig. 2 for the c&ge- 2.7° K, andhg = .55.

In Sect. 8 we compare these bounds to the analagous bounds one obtains in the case
of pure radiation, thus making contact with the exact solution discussed in [11]. For
example, affp = 2.7° K we obtain

3649 - - 36ho+/1 + 2.5R,
—_— r —,
Ho — Ho

cf. (8.7) below. (Of course, since we are neglecting the matter field, we do not have
R/R = Hp at the same time wheli = Ty in the pure radiation model.) We note
that in this case the distance from the shock position to the center of the explosion is
significantlybeyond the Hubble length.

In summary, starting with the idea that there might be a shock-wave that marks
the outer boundary of the expansion that we measure by the Hubble constant, one’s
first reaction is that nothing quantitative could be said about the position of the shock
without knowing details concerning the nature of the spacetime beyond the shock-wave,
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or details about the mechanism that might have created such an explosion in the first
place. And to a large extent this must be true. But what we find interesting here is that
this simplest shock-wave cosmological model, consistent with both the observed values
of the Hubble constant and the background radiation temperature, contains within it
unexpected constraints on the possible position of such a shock-wave, and the shock
position is comparable to the Hubble length.

In conclusion, we ask whether our expanding universe could have evolved from the
center of a great explosion that generated a shock-wave at its leading edge. If so it makes
sense to wonder whether some of the far away objects that we observe in the nightime
sky are possibly due to similar explosions that originated at other locations in spacetime.
We now know that the scale of supernovae is not the largest scale on which classical
explosions have occurred in the universe. Indeed, it was reported in a recent issue of
Nature thaton May 7, 1998, agamma ray explosion emanating from a faint galaxy known
as GRB971214 erupted, and for two seconds the burst was more luminous than the rest of
the universe combined. Thisis the largest explosion ever recorded, and redshifts place it at
about 12 billion lightyears away. Moreover, conditions at the explosion were equivalent
to those one millisecond after the Big Bang in the standard model. Thus we ask: could
explosions such as this, or even greater than this, have given rise to our own “expanding
universe”? Indeed, could we then observe other similar explosions in distant regions of
spacetime beyond the expansion of our own universe, (that is, beyond the shock-wave
that marks the edge of the expansion we measure by the Hubble constant)? We propose
the shock-wave model presented in this paper as a natural and simple starting point for
a further investigation of these issues. But independently of this, the model provides a
new, essentiallgxactsolution of the Einstein equations that we feel is interesting in its
own right.

2. Preliminaries

According to Einstein’s theory of general relativity, the gravitational field is described
by a Lorenzian metrig that satisfies the Einstein equations

8
G = LfT, 2.1)
C
on 4-dimensional spacetime. He&rés the Einstein curvature tensgrdenotes Newton’s
gravitational constant; denotes the speed of light, afidis the stress energy tensor,
the source of the gravitational field. In this paper we are concerned with FRW and TOV
metrics, two spherically symmetric metrics which are exact solutions of (2.1) When
takes the form of a stress tensor for a perfect fluid, namely

T;j = (p + pcPuinj + pgij, 2.2)

where p denotes the mass-energy densjiythe pressure and j = 0, ..., 3 denote
indices of spacetime coordinates. The FRW metric is given by

2 2 2
ds® = —d(ct)*+ R (t){l—krz

dr? + r?(de?* + sin2(9)d¢2)} , (2.:3)

and the TOV metric is given by

ds? = —B(F)d(cD)? + A(F) " YdF? + F2(d6? + sin®(0)d¢?). (2.4)
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We write the TOV metric in barred coordinates so that it can be distinguished from the
unbarred FRW coordinates when we do the matching of these two metrics below, cf.
[10]. Substituting (2.3) into (2.1) yields the following FRW equations, [7,9,14,15]:

. 87§
R2 = @,ORZ — k, (25)
and
Rp
=—p— —. 2.6
P=-pP-3z (2.6)

The unknowngR, p andp in the FRW equations are assumed to be functions of the FRW
time ¢+ alone, and “dot” denotes differentiation with respect.tdssuming co-moving
coordinates and substituting (2.4) into (2.1) yields the following TOV equations:

M o

E=47rr 0, (2.7)
Ldp G p 4nr3p\ -
2 1
—rr—=SMpll+=)|1 A 2.8
" 02p<+ﬁ><+M ’ (2:8)
and
B/ =~/
A W (2.9)
B p+p
where
2GM
A=1— gz . (2.10)
cer

Here the unknown functions are the dengitythe pressuregy, and the total masaz,

which are assumed to be functionsroflone, and prime denotes differentiation with
respect tar. In the next section we fix an FRW metric and derive equations for the
TOV metrics that match the given FRW metric across a shock-wave interface at which
the metric is only Lipschitz continuous, and across which conservation of mass and
momentum hold, and at which there are no delta function sources. In [10] it is shown
that the shock surface is given implicitly by

M) = %’p(r)fs, (2.11)

and the metrics (2.3), (2.4) are identified via a coordinate transformation in which

7= Rr. (2.12)
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3. Derivation of Equations

In this section we derive equations that describe the time evolution of an outgoing
spherical shock-wave interface together with an outer TOV metric, such that the shock
surface matches a given FRW metric on the inside, and such that conservation of energy
and momentum hold across the interface. The main point here is that we are assuming a
giveninner FRW metric, rather than assuming a givarter TOV metric as in [10,12].
Thus we seek a pair of equations that determine an outer TOV metric that matches a given
FRW across a shock-wave interface. Rather than deriving the shock equations, we shall
write them down and prove that solutions of these equations determine a shock-wave
solution of the Einstein equations. (The reader can obtain a formal derivation of these
equations by reversing the steps in the arguments below.)

Equation (3.10) in our first theorem below is the first equation in the pair of ODE’s
that we will work with.

Theorem 1.Assume thap (z), p(z), and R(¢) solve the FRW system

. 13544
R=,/—R?p—k 3.1
V 32 Rop — k. (3.1)

p=-3500+p). (3.2)
over some interval
I = (11, 12). (3.3)
Assume that
R(t) > 0, (3.4)
and that
R #0, (3.5)

on . We assume WLOG, (by the choice of positive square root in (3.1)), that
R > 0. (3.6)

Assume further that(z) is a positive invertible function defined énand define () on
I by

F = Rr. (3.7)
Define functiongV () and p(r)) by
M@ (1) = %p(r)f(rﬁ (38)
and
5 = L0 (39)

A2’
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where prime denotes differentiation with respeci.tdssume, finally, that(r) satisfies

1 /(p—p\1—kr?
r-z_(_f’ ’3) o (3.10)
R\p+p Rr

for some functiorp, and thatp, p, M, p, and p are all positive valued functions ah
Then for allr € I we have,

0o —
_ror=—r (3.11)
1—y6
where, [12],
A
0=—3 3.12
1— k2 (3.12)
2GM
A=1 gz_ , (3.13)
cer
and
y=L*P (3.14)
p+p

Thatis, Theorem 1implies that for a given FRW solution, (3.10) implies the conservation
condition (3.11) whe/ andp are defined by (3.8) and (3.9), (these latter two equations
being the shock surface matching condition and the second TOV equation, respectively,
[10,12]). Here dot denoteg, and we assume= 1.

Proof. Differentiating (3.8) with respect tar and using (3.9) gives

. dM. .
M = ——F = 4 pi°r. (3.15)
dr
But (3.8) gives
. Am 3 —22
M= 3P + 4rprer, (3.16)
so from (3.15) and (3.16) we get
. Rr
F=—m0=9y. 3.17
30— p) (317)
Using (3.2) in (3.17) gives
F=_rRPTP (3.18)
p—p

Using (3.7) and simplifying we have

FR+7rR=—Rr (‘f+p>. (3.19)
p—p
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Using (3.10) to eliminaté from (3.19) gives

1__”2 S (M) (ﬂ) (3.20)
R?r2 p—po)\p=p) '
We now use the identity
1 — kr? 1
- = 3.21
R2r2 1-¢6 ( )
which follows from (3.1) and (3.8). Indeed,
. 26 M
2 2
But (3.13) implies that
2GM
g2 = (1- A7,
C
and using this gives
=174
= ,
or, (cf. [10,12)),
r2R? = —A+ (1 — kr?). (3.22)

Using (3.12) in (3.22) gives (3.21), as claimed.
Now using (3.21) in (3.20) yields

1 z_(p+ﬁ>(p+ﬁ>
1-0 pP—p)\p—D

Solving this forp gives (3.11), where we have used (3.14). This completes the proof of
Theorem 1. O

For a given FRW metric, Theorem 1 tells us that the ODE (3.10) can be taken in place
of the conservation constraint (3.11), and the reversal of the steps in the above proof
can be regarded as a formal derivation of the ODE (3.10). We now record the following
additional equations that follow from the hypotheses of Theorem 3.1.

Corollary 1. Assume that the hypotheses (3.1) through (3.10) of Theorem 3.1 hold. Then
the following equations are valid:
p+p  yo

p—p yo—1

(3.23)

) - P, (3.24)

& (p+p\(PtDh
== (77) G55) (329
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: 0
F= Y /1 k2yiso, (3.26)
y0 —1
P2R2 = —A + (1 - krz) : (3.27)
1— kr? 1
7 = 3.28
r2R? 1-06 ( )

Proof. By Theorem 4.1, we know that (3.11) holds, and using this in the LHS of (3.23)
gives the RHS of (3.23). Also, from (3.22),

rR=+v1—kr2J/1—9, (3.29)
and using this in (3.19) gives
Fe—V1—kr2yi—o (ﬂ) : (3.30)
p—0p

Using (3.23) in (3.30) gives (3.26). From (3.11) we get
v0p—p pA—yb) (p+p)o)—(o+p)

P=P=""08 " T1-y6 1—,0
o]
—-p 6—1
Lt . (3.31)
p+p 1—vyb
To verify (3.24), we use (3.26) which we write in the form
. 1 1-6
rv1—kr2 a,
r r TG0 -1
and so from (3.31) we have
V1—kr? —p
P -y (’f ’f). (3.32)
1-906 p—p

Solving for (5 + p)r in (3.32) gives (3.24). Finally, to obtain (3.25), equate the RHS's of
(3.30) and (3.32). Equations (3.27) and (3.28) have already been derived as (3.22) and
(3.21) within the proof of Theorem 10

Now assume thai(zr), p(r), andR(¢) solve the FRW system (3.1) and (3.2) for 1, and
assume that the hypotheses (3.3) to (3.10) of Theorem 1 hold. We know from Theorem
1 that the conservation condition (3.11) also holds. We now find an equatigi(finr
(Eg. (3.35) below), which guarantees thasolves the TOV equation (2.8), since then,
in light of (3.9), the functiong (¥), p(r¥), andM (¥) will then solve the TOV system as
well. DefiningA(r) by (3.13), we can define the functidr) as a solution of the ODE,
[10,12],

B ___6) (3.33)

B(r) p(r) + p(r)
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thus determining a TOV metric of the form (2.4). For this metric, co-moving coordinates
are assumed, [15], and thus the 4-velocitg given by

uW=vB, u=0i=1223

Note that we are free to choose any positive initial valueKdry suitable rescaling of
the time coordinate. The next lemma demonstrates thgg ifatisfies Eq. (3.35) below,
then as a consequence it also satisfies

. GMF _ 4mprd\ | g
=27 1 AL 3.34
p szz(p+p)( + = ) (3.34)

which is equivalent to the TOV equation (2.8).

Lemma 1. The hypotheses (3.1) to (3.10) of Theorem 3.1, together with the equation

L GM 1—kl’2 A . p 1
p__cz;z( ir )(1—kr2>(”_1’)(1+3;)A , (3.35)

imply thatp(r) also solves the TOV equation (2.8).

Proof. By (3.28) we have

1 —kr? 1
Rr J1-0
and substituting this together with (3.12) into (3.35) gives
- gM 0 - ﬁ -1
=-S5V 1—kr? — 1+3=)A™ " 3.36
V0 (=) - (1457) 330
But using (3.24) and (3.8) in (3.36) we obtain

. M. _ _ Arpird\ 4
== 1+——— A7, 3.37
p szzr(erp)( + % 3 (3.37)

which, after dividing by, directly implies the TOV equation (2.8)o

We now introduce the system of ODE’s whose solutions we analyze in subsequent
sections:

Theorem 2.Assume thap (¢), p(¢), andR(¢) satisfy the FRW equations (3.1) and (3.2)
fort € I,andthatthe other hypotheses (3.3) through (3.10) of Theorem 3.1 hold. Assume
further that ¢ (¢), p(¢)) solves the system of ODE’s

1(p—p\1l—kr?
- _(_P 13) o (3.38)
R\p+p) Rr

. gu - (1+32)
P="22 Rr

: (3.39)

fort € I, wherer, M (7), and o () are defined for (t1) < 7 < r(t2) by (3.7), (3.8) and
(3.9). Theno(r), p(r), M(r) solve the TOV system (2.7), (2.8), and the conservation
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condition (3.11) holds for alt € I. Furthermore, under these assumptions, the system
(3.38), (3.39) is equivalent to the system

_p L2
dr _ 1 (P 1f) (1 kr ) (3.40)
dR ~ RQRZ—k\Q+P)\ r
dP 1 (Q+3P)(P—P)
ak = 2" om—r @40

for R(r1) < R < R(2), where

- 8rg -
and all have the dimensions of inverse length squared.

Note that Eq. (3.39) is equivalent to (3.35) of Lemma 1, and the equivalence of system
(3.38), (3.39) with (3.40), (3.41) follows because of the assumpiica 0. This also
implies thatP and Q can be considered as functions ®f in which case Egs. (3.40)
and (3.41) close to form a well-defined nonlinear system of two ODE’s. After solving
(3.40), (3.41) the dependence Bfon ¢t can be recovered from (3.1). Thus for a given
FRW metric and a given solution of (3.40), (3.41), the only variable remaining to be
determined is the TOV energy densify To obtainQ, write (3.8) as

26M = QF°. (3.43)
Writing (2.7) as

d _
ﬁ(ng) = 3072, (3.44)

differentiating (3.43), substituting into (3.44) and solving @gives

- 1 3 Rr d

Q—32d_(Qr) 0+ 0. (3.45)
Note that ifQ decreases as the shock moves outward, (that ig,fbsition of the shock
increases), then the second term in (3.45) is negative, a@d<sa, (the density behind
the shock is greater than the density in front of the shock), as is the case for classical
shock-waves in fluids, [13]. Note, however that the physically necessary con@ition
0, or the physically reasonable condition> P, is not guaranteed, and depends on the
particular solution; cf. Sect. 6.

The final theorem of this section tells us that solutions of the ODE’s (3.40), (3.41)

do indeed determine exact shock-wave solutions of the Einstein equations.

Theorem 3.Assume thab (), p(¢), and R(¢) satisfy the FRW equations (3.1) and (3.2)
fort e I, andthatthe hypotheses (3.3) through (3.9) of Theorem 3.1 hold. Assume further
that (*(R), P(R)) solve the system of ODE’s (3.40), (3.41) ®fr1) < R < R(12).
Assume thapQ, P, M, Q, P, and A are all positive and that the shock speed in FRW
coordinates is less than the speed of light throughout the intdrvBlhen there exists a
ct1invertible coordinate transformation mappirig ) — (7, 7) of the form

f=1t,r), (3.46)
F=7(tr) = R(@)r, (3.47)
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such that, under this identification, the resulting TOV metric matches the given FRW
metric Lipschitz continuously across the shock surface r(z). (The angular coor-
dinates® and ¢ are implicitly identified.) Moreover, the Lipschitz continuous metric
defined by taking the FRW metric for< r(¢) and the TOV metric for > r(¢) defines

a shock-wave solution of the Einstein equations ([4,7]), cf. [10,12]. In particular, the
Rankine-Hugoniot jump conditions

[T;jln' =0, j=0,..,3, (3.48)

hold across the shock surface; there are no “delta function sources” on the surface; there
exists a regulaC! coordinate transformation defined in a neighborhood of each point

on the shock such that the metric components in the transformed coordinates, (which
can be taken to be Gaussian normal coordinates), have smoothnes§ léyeind the
matched metric determines a weak solution of the Einstein equations in the sense of the
theory of distributions, cf. [10].

Proof. The existence of the coordinate transformation is proved in [10] pp. 278-280
under the assumption that the shock surface is nowhere characteristic in the sense of
(4.43) of that paper. Using (4.55) of the same reference, the non-characteristic condition
can be re-written as

. A
Pt (3.49)

which holds here because we assume that 0,7 > 0, R > 0 andr > 0. Since the
normal vectom to the shock surface is non-null, (because we assume that the shock
speed is less than the speed of light), and the functions) andc(z, 7) in Lemma

9 of [10] are here equal t&(¢)r andr, respectively, it follows that the conclusions of
Lemma 9, [10] are valid. Moreover, the conservation condition (3.11) is valid, and thus
the argument in [10] that leads to (3.9) in this latter reference, implies that, under our
hypotheses, condition (5.5) of Lemma 9, [10], follows from the conservation condition
(3.11) above. (Note that the condition (2.20) of [10], assumed in that paper, is not needed
here.) Since the conclusions of Theorem 3 are just a re-statement of the conclusions of
Lemma 9, [10], the proof of Theorem 3 is now complete.

A remarkable aspect of the formulation of the shock equations given in (3.40) and
(3.41) is that, ifQ and P are given functions oR, (which can be obtained from the
FRW equations once an equation of state is specified), then Eq. (3.4 )ecouples
from ther equation (3.40). Thus, in principle, one can solve system (3.40) and (3.41)
by first solving the scalar non-autonomous equation (3.41pfor

Note that system (3.40), (3.41) includes, as a special case, the exact solutions first
presented in [11]; that is, the case whiea: 0 and

P =00, (3.50)

N

P = §Q, (3.51)
where

_o(7+0)

o= 31_5) (3.52)
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4. The Equation of State

In this section we derive the FRW equation of state that we use to close the system
(3.34) and (3.35). We consider the case when the equation of state for the FRW metric
agrees with the equation of state in the standard model of cosmology after the time that
the radiation in the universe uncoupled from thermal equilibrium with matter. This is an
effort to account for the observed microwave backgound radiation level in our shock-
wave model. Our idea is that if the expanding universe arose from a great explosion,
then one might conjecture that the expansion would have settled down to a uniform
expansion by the time that this decoupling occurred. In the standard model of cosmology,
the thermal uncoupling of radiation and matter occurred at about@®@years after
theBig Bang at a temperature of about 4000 degrees Kelvin, [1,15,9]. Thus, we analyze
our shock-wave model in the case that there is an energy density the radiation,
(which supplies a pressupe = (1/3) o, via the Stefan—Boltzmann law), and a separate
energy density,, for the matter, which is assumed to exert a zero presgyre= 0.
Since the scale factar is the independent variable in our shock equations (3.34) and
(3.35), we now obtain formulas for the FRW energy density and pressure as functions
of R.

We start with the FRW equations in the form, [15],

. 13544

RZ = ?pRz — k, (41)
and

d 3 2

£ (pR® = —3pR2. (4.2)

(Again, we assume that “dot” denotégd (ct).) We can rewrite (4.1) as
R? = QR? —k, (4.3)
and Eq. (4.2) as

;iR(QR% = —3PR?, (4.4)

cf. (3.42). Now assume that the energy in the FRW system is in the form of pure radiation
and matter alone, so that

0 =0+ 0On, (4-5)

whereQ,, Q,, denote the (appropriately scaled) energy density of radiation and mat-
ter, respectively. Further, assume that the pressure of radiation is given by the Stefan-
Boltzmann Law, [15],

P =(1/3) 0y, (4.6)
and that
P, =0, 4.7)
so that the uncoupling implies that

P=Pr+Pm=Pr=(1/3)Qr- (48)
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Finally, assume that

B

=5 (4.9)

Qm
for some positive constart, so that the total energy of matter within a (geodesically)
expanding volume in the FRW metric remains constant. Substituting (4.6)—(4.9) into
(4.4) gives

(@R 1

=_=, 4.10
O,R3 R ( )
which has the solution
3o
0, = =& (4.11)
for some positive constant Then the FRW pressure is given by
o
P=P = F (4.12)

We conclude that the equation of state that applies to the FRW system under the assump-
tion that radiation is uncoupled from matter is given by

3 B

0= F + F, (4.13)
o
P=— (4.14)
Putting (4.13), (4.14) into Egs. (3.40), (3.41) gives the system of ODE’s

d R — PR* 1—kr?
ar _ , ( « _ >( ) (4.15)
dR = (3¢ + BR —kR?) \3a + SR+ PR* r
dP 1 Bu+BR+3PRY(a— PRY (4.16)
dR ~  2RS 3a 4+ BR — kR? ‘

Observe, again, that in this formulation, the second equation (4.16) uncouples from the
first equation (4.15). Equations (4.13) and (4.14) together with the Stefan—Boltzmann
law imply that the temperature of radiation is proportionalt& 1indeed, leT” = T (R)

denote the temperature of radiation. The Stefan—Bolzmann law relates the energy density
of radiationp, to the temperature through the relation

or =aT?, (4.17)
where

er
a~7.664x 10*15C—mg3(1(°)4. (4.18)

SinceQ, = &% p,, we can write this as
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0, =aT*, (4.19)
where, [15],

. 8nGa

i= 77 (4.20)

defines the constadt Now by (4.11)

3 87‘[9 87'[9 4 ~rd
F:Qr:?prZ?aT =aT .
we have the following lemma:

Lemma 2. The Stefan—Boltzmann law (4.6) implies that

1/4
T = (%> 1 (4.21)
a R

5. Restriction to k = 0 — Phase Plane Analysis

We now analyze system (4.15), (4.16) in the case of critical expansionivhed. The
casek # 0 will be considered in a subsequent paper. To start, note that in the eae
system (3.40), (3.41) reduces to

ﬂz L (P_Ii)<1'>7 (5.1)
ar ~(erRd)\ 0+ 2/ \7

dp __1(Q+3P)(P—P) (5.2)
dR 2 OR

Assuming now tha andP are given by (4.13), (4.14), and substituting these into (5.1),
(5.2) yields the system

dr . R < a— PR* ) 1 (5.3)
dR  (Ba+BR) \3u+BR+PR*) 1’ '
dP 1 Bu+BR+3PRY(a— PRY (5.4)
dR ~  2RS 3a + BR ’ ‘

which is just system (4.15), (4.16) in the cdse 0. Solutions of system (5.3) and (5.4)
determine the shock positioffR), (the position as measured by the radial coordinate
of the FRW metric that is behind the shock-wave), together with the TOV pressure
P(R) in front of the shock. The TOV pressup&r) is then recovered from the solution
(r(R), P(R)) by inverting the equation = Rr(R) and usingP = %gﬁ. The function

R(t) is obtained by solving the FRW equation (3.1) with= 0, and due to the scaling
law for this equation, we are free to choose the scale fagtsuch thatRg = 1 at present

time in the universe. The constanteindg that determing? rescale with choice aRp,

and are determined from initial conditions for the FRW metric. For an FRW metric that
models the expanding universe, we can take one of the two initial conditions as

Qo =30+ = H, (5.5)
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whereHj is the present value of the Hubble constant, cf. ([9]). Finally, the TOV energy
densityQ is given by the formula in (3.45):

3 3 _ o Rrd
Q—32diQ ) =0+ 5 0. (5.6)

This simplifies under our special assumption (4.13)@oindeed, by (4.13),

dQ dQdR d (3a P dr\7*
2F AR dF d_R< +R><+Rd—R). (5.7)

Since

dr d(R d
ar _dRr) L g4 (5.8)
dR dR dR

Where 7 Is given by Eq. (5.1). Putting (5.1) and (5.7) into (5.6) and simplifying yields
the foIIowmg expression for the TOV energy densily:

_ (4o + BRYB+ LR+ w)(B+ ER)ar?

R4 {ar2(3+ BR+w)@+LER) + (1 w)RZ}
where
D p4
w=1K (5.10)
o

We conclude that each choice of constantadg and each choice of initial conditions
for (5.3) and (5.4) determines a shock-wave solution of the Einstein equations, at each
point where all the variables are positive. We now analyze solutions of system (5.3) and
(5.4) in detail.

Substitutingw for P in (5.3), (5.4) yields the equivalent system

d R 1— 1
a_ v )=, (5.11)
dR @B+ER)\3+LR+w/ ar

(5.12)

dw _ 4w ( (- w)(3+’3R+3w)
dR ~ R 83+ LRyw

Now (5.12) is a non-autonomous scalar equationfdhat uncouples from Eq. (5.11).
In order to analyze Eq. (5.12), we rewrite (5.12) as an autonomous system, by setting

1
S=ZR, (5.13)
o

and

1
=—. 5.14
YT ( )
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Substituting these into (5.12) and letting “dot” dendtgl S, we obtain the following
autonomous system of two ODE'’s that is equivalent to Eq. (5.12):

i = d_g -2 (5.15)
L_dw [1_ (1—w)(/3+3(1+w)u)] (5.16)
ds 8(B + 3u)w

We now analyze the phase plane associated with system (5.15), (5.16).
System (5.15), (5.16) has a line of rest pointg at 0, and an isocline wheng = 0.
Setting the RHS of Eq. (5.16) equal to zero gives

L-w)(B+3L+wu)]
[1 — 85 + 30w ] =0, (5.17)
and solving this fow gives
0N I 4 B+3n | _
w = o { 1+\/1+3(3I3+8u)2u}_¢(u). (5.18)
Thus the isocline is defined forQ u < oo by
w = ¢(u). (5.19)

Note first that wher8 = 0, (the case of pure radiation), the isocline degenerates to
pu)=17T—4=5. (5.20)

It is straightforward to verify that whefi = 0, the isocline is also a solution orbit of
system (5.15), (5.16), and the special solution in [10] with= 1/3,6 = /17 — 4
corresponds to this orbit. We will see below that the special value /17 — 4 also

is important in the casg # 0. The next theorem gives the qualitative behavior of the
solution orbits of system (5.15), (5.16) in the w)-plane wherg # 0.

Theorem 4.Assume that # 0. Then the following statements hold regarding solutions
of system (5.15), (5.16)). (Here we define an orbit of system (5.15), (5.16) to be a function
w = w(u) such thatu(S), w(1/S)), w = 1/5), is a solution of system (5.15), (5.16)):

(i) Theisoclinew = ¢ (u) defined by5.18) is monotone increasing f@ < u < oo,
and satisfies

lim ¢u) =6 = V17— 4~ 1231.., (5.21)

. 1

lim ¢pu) = 5~ 1111, (5.22)
o 1-(b)*-8  o1097.

IIqub (u) 9 5 > 0. (5.23)

(ii) Orbits can only cross the isocline = ¢ («) once, from right to left in théu, w)-
plane, asS increases, (see Fig. 1).
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1/9

L asaaaaasase ool Isocline —e——  —€— Orbits

Fig. 1.

(iii) Along any orbitw = w(u) we have

lim w(u) =o0. (5.24)

U— 00
(iv) There exists a unique orhit,;, (1) satisfying

IimO Werir (1) = (5.25)

6.

Moreover, all orbitsw = w(u) starting from initial conditionsug, wo) such that
wo > ¢ (up), (that is, starting above the isocline), satisfy

Iimow(u) = o0; (5.26)

and all orbits starting from initial conditiongug, wo) such thatwy < ¢ (uo),
(starting below the isocline), satisfy

|im0 w(u) = —oo. (5.27)
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Proof. To verify (5.21), we have

uleoo(p(u)zuli%moow{_1—’_\/14-ilr (B +3u) }

336 + 8u)2"
(3848w [ 1
_ull—>moo 2u { 1+ 1+16
= 1~|—\/1_756.

We next show thap (1) tends tod monotonically from below ag — oco. Note that
by (5.18),w = ¢ (u) is equivalent to

0— |:1_ A-w(B+31+ u))u)]
B 8(8 + 3u)w ’

(5.28)
which we rewrite as
0=8B+3uww—(1—w)[B+31+wu]. (5.29)
Now differentiating (5.29) implicitly with respect to gives
d d
88 + 312 4 24w = —[B + 3L+ wyu] =2
du du
d
+(1—w) |:3+3w +3ud—“’]. (5.30)
u
Simplifying (5.30) we obtain
dw 2
(96 + 241 + buw)—— = —3(w” + 8w — 1), (5.31)
u
Now the roots ofw? + 8w — 1 are
6=+V17—4~ 1231 6 =—-/17—4, (5.32)
and thus we conclude that, along the isoclime= ¢ (),

—>01if w<a, (5.33)
du

dw <0if w>oao, (5.34)
du

where we use the fact thatu) > 0 for allu. Thus, it suffices to show that(i) # & for

anyu in order to conclude that' (1) # 0 for 0 < u < co. So assume for contradiction
that¢ (u) = o. But solving foru in (5.29) gives

L BOw-D
 w-a)w+|5])’

(5.35)
and thusw = o leads to a contradiction unlegs= 0. We conclude that i # 0, then

¢ (1) monotonically increases ® asu — oo, thus proving (5.21). Statement (5.22)
follows from (5.29), and (5.22) follows from (5.31).
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Statement (ii) follows because = 0 only onw = ¢ (1), w > 0 if w > ¢(u), and
since we have shown that(x) > 0, it follows that orbits can only cross the isocline
from right to left in forwardS-time.

To verify (iii), we show that all orbits tend in backward time, (increasijdow = &.

To see this note that

1-w)3+2+3
lim @ = lim 4wu{l—( wX +ﬁ” h w)}
u—o00 u—0o00 8(3+Ew)
1— 2
%4%{1_ w } (5.36)
8w

where approximately means to leading ordemas> oo. Now each orbit that starts
abovew = ¢ (1) decreases as u increases unless the orbit crosses the isocline, in which
case the orbitincreases from there on out as oc. It follows that orbits starting below

w = ¢ (u) can never cros® = ¢ (u) at any value of larger than the initial value. Thus,
since lim,_. .. ¢ (u) = &, all orbits must be bounded aboveinby the maximum of

{6, wo}, and bounded below by the minimum /9, wo}. But from (5.36), we must

have that

a2
lim {1—18'” }:o. (5.37)

u—00 w
Indeed, if not, then (5.36) implies thab| tends to infinity as: — oo, which implies
thatw is not bounded ag — oo, and this contradicts the above bounds. Simdg the
only positive root of{l — 1g—u”j2 } we conclude from (5.37) that

lim w=o.
u—>o00

We now give the proof of (iv). From (5.15) and (5.16),

dw 4w 1 A-—w)(B+31+ wu)
___|: B 8(8 + 3u)w ]

%4_“’[1_1_"’], (5.38)

u 8w

du u

where approximate equality means to leading order as 0. Now assume for contra-
diction that there exists an orhit = f («) that is bounded in a neighborhood:of= 0,
butsuchthatlim_o f () # 1/9. The boundedness condition implies that (5.38) applies
with errors that are bounded as— 0. That is,

dw 4w 1—w
ot (1_ S ) Lo (5.39)
_Sw—otl 0(1), (5.40)

whereO (1) denotes a constant that depends on the bounds furt is independent of
u asu — 0. Integrating (5.40) leads to the estimate

9w -1
9wo—1

9/2
= (=) + 0@eO W, (5.41)
u
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where(ug, wo) are taken as initial datag > 0. But (5.41) implies that if lip_.ow #
1/9, thenw = f(u) is unbounded near = 0. From this we conclude that every orbit
that is bounded as — 0 satisfies
lim w = 1/9. (5.42)
u—0

We now show that there exists at least one orbit such thatJigno = 1/9. Note first
that any orbit starting from initial daté:q, wo) that lies on the isoclinewg = ¢ (ug),
ug > 0, must lie above the isocline for all @ u < ug because we know thz%‘uﬁ <0
on this interval, andy’(x) > 0. Since the isocline decreasesdsto~ .1231 > 1/9
asu — 0, it follows thatwg > 1/9 for initial data lying above the isocline, and
hence lim_.ow > 1/9 along an orbit starting from such initial data. But our argument
above shows that when this happens, we must hayeJgymw = +o0. We conclude that
lim,_.ow = +oo for any orbit starting from initial data above the isocling, > ¢ (u0).
Similarly, if the initial data(ug, wo) lies below the linav = 1/9, thatis,wg < 1/9, then
alsowg < ¢ (up) because we have thatu) > 1/9. Thus from (5.38)51—’: > 0, and so
it follows that lim,_,o < 1/9, and our argument above implies that Jioy w = —o0.
We conclude that lim,ow = —oo for any orbit starting from initial data below the
line w = 1/9; and lim,_,o w = +o0 for any orbit starting from initial data above the
isocline,wg > ¢ (1g). Now consider all orbits emanating from initial data on some fixed
vertical lineu = ¢ > 0. Then ifwg > ¢ (¢), we have lim_, o = +o0; and ifwg < 1/9,
we have lim,_.g = —o0. So define

w+=1nf{wo: |im0w=+oo}, (5.43)
u—
where the limit is taken along the orbit emanating from the p@intvo). We now claim
that the critical orbit emanating from initial conditiga, wo) satisfies lim_ow = 1/9.
To see this note first thab, > 1/9 because orbits below = 1/9 tend to—oco as
u — 0. We show next that the orbit emanating frémw,) cannot tend tav = +o0
asu — 0. To see this, note that if lijp,ow = +oo along the crititcal orbit, then
this must be true for all orbits starting in a neighborhoodegfwg) as well. Indeed, if
lim,_ow = 400, then at some positive value afwe must havev > ¢ () along the
critical orbit; and so by continuity, nearby orbits must also rise above the isocline at some
u > 0, and hence by above we know that Jimh w = +o0 along orbits sufficiently
close to the critical orbit. But this contradicts the fact thatis a greatest lower bound.
We conclude that we cannot have Jimp w = +oco along the critical orbit. Similarly,
we cannot have ligL,ow = —oo along the critical orbit because then nearby orbits
would also satisfy lim_.ow = —oo since they would crose = 1/9 beforeu = 0,
and again this would contradict the fact that is a greatest lower bound. Since we
cannot have lip,ow = —oo or lim,_.o w = +0o0, it follows from (5.42) that the only
alternative is that linp, o w = 1/9 along the critical orbit, as claimed.
We now show that the critical orbit is unique. To this end, rewrite Eq. (5.16) as

. _A-w)(B+30+wu)]
w = dwu |:1 86 1 30w :| = F(u,w). (5.44)
Differentiating (5.44) with respect to gives
dw oF 6w + B/u
o= = Au |:1+ 8G 1A/ ﬁ/bl)i| > (5.45)
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But (5.45) implies that the distance between orbits is increasing in forwardstiltieat
is, increasing as = 1/S decreases. Indeed,

. aF
(w2 —w1) = F(u, wz) — F(u, wy) = ﬁ(u, wy) (w2 —wp) >0 (5.46)

if wp—w1 > 0. Thisimplies that there cannot be two orbits that satisfy limw = 1/9
since the distance between them would then tend to zere-a9, contradicting (5.46).
This finishes the proof of (iv), and thus the proof of the theorem is complete.

The salient properties of the phase plane for system (5.15), (5.16) are sketched in Fig. 1.
Note that ag — 0, the isocline moves up to the line= &, (continuously, except for

a jump from Y9 tos atu = 0, 8 = 0). The isocline is a curve of absolute minima of
orbits that cross the isocline, and the isocline, together with all orbits, tendtos

asu — oo, R — oo. Moreover, all orbits except the critical orbit tend to infinity as

u — 0, (R - o0), and so the critical orbit is the only orbit bounded for all values of

R > 0. Along both the critical orbit and the isocline, the following apriori bounds hold
forall0 < R < oc:

1/9~ 1111< w < & ~.1231 (5.47)

Note, however, that the critical orbit and the isocline do not coincide exceptin the limiting
cases = 0, in which case both reduce to the line= &, which also can be identified
with the special solution constructed in [10]. In particular, Fig. 1 describes how this
special solution is imbedded in the larger class of solutions that allow for general initial
data.

6. Conditions for Q > 0and @ > P

In this section we obtain conditions which guarantee that 0 andQ > P, physically
reasonable conditions on the TOV energy density and pressure wh|ch are equivalent
to the entropy inequality for shocks in classical gas dynamics. In partia@lar, P
guarantees thaD > 0 whenever the solution orbits of system (5.15), (5.16) satisfy

w = PR*/a > 0. We begin with the formula (5.9) faP, by asking that the RHS of

(5. 9) be positive. Using the formula

3 B
C=%"r
we see thap > 0 is equivalent to
2 p p 2
ajar< B+ =R+ w)3+—-R)+(1—w)R (6.1)
o o

—(4a + BR)(3+ gR + w)ar? > 0.

Solving (6.1) forr? leads to the following inequality that is equivalent@-> O:

_ 2
ar? < (].ﬂ—w)R (6.2)
3+ aR +w
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Equation (6.2) implies that the conditioB > 0 puts a contraint on the maximum
possible shock position at a given valuerafThe following theorem implies that if the
condition holds at some value = R, in a solution of (5.15), (5.16), then it holds for
all R > R, in that solution, so long as & w < 1 anddw/dR < 0. Both of these
conditions are satisfied along the critical orbit whef@ ¥ w < & ~ .1231.

Lemma 3. Define the quantity}; by

1— w)R?
{h = (-wk ar?} . (6.3)
3+ER+w ,
Then for any solution of (5.11), (5.12) we have
d
— 4
dR{}I >0 (6.4)
at each point where
O<w<a, (6.5)
and
dw
— < 0. 6.6
T (6.6)

Lemma 3 implies that}; is monotone increasing along any solution of (5.15), (5.16)
that satisfies (6.6), and thus if (6.2) holds at a vakue- R, in such a solution, then it
must hold at allR > R,; in particular it holds all along the critical orbit.

Proof. Starting with (6.3) we have

d 2(1— w)R dr? d 1—w
= e e R*— P I (6.7)
dR 3+LR+w dR dR |3+ LR+w],,
2(1— w)R 2(1— w)R > d
= B - B B _{}Ila
3+5R+w B+ 5R+w)EB+LR) dR
where we have used (5.11). This simplifies to
d 20— w)R (2+ELR d
—f{hr = (ﬂ ) 5 + R*—{}y. (6.8)
dR 3+ZR+w \3+ZR dR
Moreover,
d d 1-w
d—R{}u:d—R 3 Pron
+eR+wf,,;
_ B+ R+ w) (—gk) —A-w)(E + 7R
B+ LR+ w)?
CGBHER+D (- -a-wik
= ; 3
<3+5R+w)
1-wk
> e (6.9)

(3+§R+w)
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where we have used (6.5) and (6.6). Using (6.9) in (6.8) and simplifying gives

a. (1—w)(4+§R)R
arV = (3+ §R+w)) (3+ gR)

This completes the proof of Lemma 31

> 0. (6.10)

We now obtain a corresponding condition for > P. Using (5.10) and (6.5) we
know

_ oo
P < = (6.11)
Using this together with (5.9), we see th@at> P will hold if
R40 3+ %R
on T a2 3+ B8R : R2(A—w) r=zo. (612)
arf@+ g R+ 3+ L R+w
Solving (6.12) forer? gives the equivalent condition
1+0
— ar? < (11, (6.13)
~ 3+LR
where
R21—-w
{irr = % (6.14)
3 + ER +w
Thus to get (6.13) it suffices to have
145
rar® = L+ Qar® < (. (6.15)
-3
where
46
= . 6.16
€=3—% (6.16)
We conclude thaD > P holds so long as
{{}111 -1+ G)Otrz} > 0. (6.17)
Lemma 4. Define the quantity};y by
{hiv = {{}111 -1+ E)WZ] . (6.18)
Then for any solution of (5.11), (5.12) we have
d {} 0 (6.19)
—_— > .
dR v

at each point where (6.5) and (6.6) hold.
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In particular, Lemma 4 implies that if (6.17) holds at a pdtpin a solution of (5.11),
(5.12) such that (6.5) and (6.6) hold for &l> R, then we conclude that (6.19) holds
at all pointsR > R,, and thus thapQ > P for all R > R,. Thus (6.19) holds all along
the critical orbit.

Proof. Differentiating we obtain

d 0 2(1— w)R A+o dr2+R2d 1-w
- =—a — €e)a—— e D —
dr""" 3+ LR+ w dR dR |3+ LR+ w],,

21— w)R 21— w)R d
=—(ﬁ ) —(1+e) ﬁ( ) 3 + R>——{}y
3+LR+w B+ LR+w)EB+ER) dR

20— w)R (2—€+5R d
= (ﬁ : aﬂ +R*— {11 (6.20)
3+ER4+w \ 3+3R dR
Now using (6.9) in (6.20) and simplfying yields
d 1—w)R
—{v > &@r éR(4+ éR —2¢) >0, (6.21)
dR 3+gR+w o o

since 2 < 4 andw < 1. This concludes the proof of Lemma 41
We have proven the following theorem:

Theorem 5.Assume that (6.5) and (6.6) hold for &l > R, on a solution of (5.11),
(5.12). Then}; > Oat R = R, is equivalent toQ > 0 at R = R,, and implies that
Q > Oforall R > R,; andif{};y > Oat R = R,, then we must hav@ > P for all
R > R,. The condition(}; > 0is equivalent to

1— w)R?
ar? < &, (6.22)
3+ER+w
and the conditior{};y > 0 simplifies to
1-6/3\ (1—w)R?
ar2<< G/> d-wir” (6.23)
146 )3+ LR+ w

We end this section by showing that the constraint (6.22) implies4tigt> 0; that
is, we show that the shock surface lies outside the Schwarzschild radius for the mass
generated by the FRW mass behind the shock. Since

_ 2GM(r)
AF)=1-
() o
we require that
26M ) < 1,

or, using the shock surface equatitfv) = % o (173, this becomes? < 01, or
r?2 < Q~1R2. Using (4.13), we need only show that
P R?
r<< .
30+ BR
However, this is clearly implied by (6.22).
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7. Estimates for the Shock Position

In this section we take system (5.11), (5.12) as a simple cosmological model in which
the FRW metric behind the shock-wave at posittasassumed to model the expanding
universe. Given this, we now estimate the position of the shock-wave in the present
universe as determined by this model. In this model, the expanding universe is modeled
by an FRW, ¢ = 0,) metric in which the energy density and pressur® are given by
(4.13), (4.14), that is, the same as that assumed in the standard cosmological model after
the time of thermal decoupling of matter with radiation, (approximately 300,000 years
after theBig Bangin the standard model, [15]). The FRW metric is assumed to have been
created behind a radially expanding shock-wave due to a great explosion into a static,
spherically symmetric universe modeled by a TOV metric. Given these assumptions,
we have shown that conservation of energy at the shock then implies that the position
of the shock-wave is determined by Eq. (5.11), where the radial coordinate in the
FRW universe behind the shock. Equation (5.11) is coupled to Eq. (5.12) for the TOV
pressureP, and the TOV energy densit@ is then given by the formula (5.9). In this
section we assume that = R*P /« lies on the critical orbity = weit(S), (S = £).

(This is justified by the fact that, according to Theorem 4, this is the only orbit bounded
for all R, and all orbits are asymptotic to this oneRs~> 0.) By Theorem 4w ranges
betweers and 1/9 along the critical orbit, and thus we have the apriori estimate

1/9~ 1111< w < 6 ~ .1231 (7.1)

The only remaining piece of information missing is the initial condition for the shock-
wave. At first one might think that this initial condition can be chosen arbitrarily, but as
we have shown in the last section, the condition that the energy density be positive in
front of the shock-wave, or that it be larger than the pressure in front of the shock, puts a
constraint on the maximum shock position at a given time. That is, assuming tiest
on the critical orbit implies that the hypotheses of Theorem 5 hold, and thus condition
(6.22) is equivalent t@) > 0, and the condition (6.23) is sufficient to guarantee that
Q > P, at any given value oR. Moreover, if (6.22) or (6.23) hold at a given value
R = R,, Theorem 5 tells us that they continue to hold forRl> R..

Under the above assumptions, we now obtain estimates for the shock position. To
start, rewrite (5.11) as

ar® 21— w)R
dR a<3+§R) (3+§R+w)
2(1—w)§2R

- (R+5G+w)(R+35) 72

Using (7.1) in (7.2) gives the estimate

U

(1-w)ZR
b <

(R+@+wng) (R+35) ~ ¢

2 1- w_)%gR

: (R + (3+w_)%) (R+3%)’

=

(7.3)
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wherew_ = 1/9~ .1111< wy = ¢ ~ .1231. That s,
o 2(1-6)R dr’ « (16/9)R
B2 —\ o o R B2 28« a)’
P (R+@+5)%) (R+3%) P (R+(3%) (R +3%)

(7.4)
Now by direct calculation, the solution to the ODE
dr? R
e N — (7.5)
dR (R+ A)(R+ B)
for positive constantd, B, andC, is given by
R+A\4F (R4 B 5
r?=rZ+In : (7.6)
R+ A Ry + B

where inequalities can be substituted for equalities in (7.5), (7.6). Applying this to (7.3)
gives the inequalities

[/ R+ A, \“ [ R+ B, \|
r2—r§z|n( + +> < + +) , 7.7)
R+ A R. + B,
[/ R+A_\*“ [/ R+B_\"|
r2—r35|n( + ) < + ) , (7.8)
R, +A_ R, + B_
where
o
A=@G@+w)-,
B
B =32,
B
2B+ w)(1l—-w) o
a= ">,
w B2
6(1—w) o
h=—— = 7.9
e (7.9

and A_, A, are obtained by substituting_, w for w, respectively, in the above
expressions, etc.

We now evaluater and g in terms of the present value of the Hubble constdgt
and the observed microwave background radiation temperBjuirere we let subscript
zero denote value at presenttime in the FRW metric, and WLOG we assuni that.
Recall that the FRW equation (2.5) fbr= 0 can be written as

2

H? = (%) = QR?,

so that the “Hubble constanfiy is

Ho=/a,
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where Qg denotes the present value of the (scaled) energy density in the universe at
present time. By (4.13),
Qo =3a + B,

where 3 is the energy density of radiation at present time, @rglthe energy density of
matter at present time. L&t = T'(R) denote the temperature of radiation. Then (4.21)

is
y4 4
T - (E) L (7.10)
a R
where (4.20) gives
. 8nGa
a=——-;—.
3c4

SettingRo = 1 and solving (4.21) fow gives

a

T, 7.11
370 (7.11)

o =
and using this in (4.13) gives
B = Qo—3a =HE—aTy. (7.12)

We evaluate the above constants using the values, ([15]),

§ =7425x10%cmg™, (7.13)
¢ =2.997925x 10°°cm s7?, (7.14)
lty = 9.4605x 10" cm, (7.15)
mpc= 10° pc= 3.2615x 10° Ity, (7.16)
a =75641x 107 ergcm3 K4, (7.17)
Ho = 100ho km st mpc?, (7.18)
Ty = 2.736°K. (7.19)

Here,G is Newton’s gravitational constantthe speed of light, Ity is lightyear, mpc is
megaparce€,K is degrees Kelviry is the Stefan—Boltzmann constafijs the observed

microwave background radiation temperature [9], &fyds Hubble's constant, where
ho is generally accepted to be betwe&nand unity. (We takég ~ .55 as a recently

guoted value.) Using these values we calculate

4 =46852x 102" Ity=2 K4, (7.20)

Ho = 1.0231p x 10701ty 1. (7.21)
Using the above values we obtain from (7.11) and (7.12) that

1/3 7 149214
S N 0 1077, (7.22)

o
B H?2 3H§
(5) -+
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and
o cAzTé1 a To
B2 L T.a( 1 (3H0> 72
3|aT, 275 -1
= (1492x 107") Ty _ 834 1076, (7.24)
hoHg h§H§

Al
where we used%T% << 1 at the approximate equality. Using these values we can

evaluate:
o 4
Ay = (3+.123)= = (4.66x 107 /)-2, (7.25)
B h§
4
By = 35 (4.48 x 10—7)—2
0
2(3+.123)(1—.123) « o To
6.639x 10~ ,
“= 1231 pz = (0039x 30D 0H02
6(1—.123) « 6 IO
by =——————""7 — —(6.377x 1079
1231 B2 OH@
4
(7.26)

_ o _ N
= (3+1/9)ﬂ = (4.64x 10 )ho,

T4
B_=3% = (448x107)-%,
B hj
2 _ 4
.= 28HIOAZLD & (7497, 10°0) 10
1/9 2 OHO
6(1—1/9 T
N T 10°%)—
1/9 p2 oH0
Now, assuming that the uncoupling of matter and radiation occurred at a temperature
less than 4000 degrees Kelvin, [15], it follows from (4.21) that
R, > 2.2/4000= 6.75 x 1074,

and so it follows that we can essentially neglect i®and B’s in estimates (7.7) and
(7.8), given their small values in (7.25) and (7.26), and assuming this, estimates (7.7)

and (7.8) reduce to,
(ar +b)In(A/R,) < r? —r?

Using (7.25) and (7.26) to estimate (7.28) gives the following estimate for the distance
the shock-wave must have traveled betweea R, and R = 1 as predicted by our

model:

(2.62x 1014 1 s o (265x 10Ty 1

—————Cn (-) <r?—rZ<—=—— "0 (-) (7.29)
h3HZ h3H. R,

b_ =

(7.27)

< (a_ +b_)In(1/Ry). (7.28)

*
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Here the distanceis given in terms of the Hubble length
.98
Hyl~ X 100, (7.30)
0

In particular, (7.29) shows that, in this shock-wave model, the quarttityr? is essen-
tially independent of the starting position

As an example, if we takkg = .55,7Tp = 2.736 K and R, = 2.7/4000 in (7.29),
we obtain the estimate

019\ 2
r?—r2x (?O) : (7.31)

In the standard interpretation of the FRW metric in Cosmology, the galaxies are in
freefall, and traverse geodesics= const. Thus we can interpret — rf in (7.29) as the
(squared) distance that the shock-wave travels over and above the motion due to freefall,
a result of the fact that mass and momentum are driven across the shock-wave as it
evolves outward. We conclude that the distance the shock-wave has traveled, (over and
above freefall), betweeR = R, = 2.7/4000 andR = 1, as predicted by this model, is
approximately.019 of the Hubble length. (Recall that= R(r)r measures distance in
lightyears for the three dimensional space at fixed tinmethek = 0 FRW metric.)

We now discuss the initial condition= r, at R = R,. We saw in (6.23) that the
conditionQ > P put constraints on the maximal shock position at each valug. of
Using the valugsr = .1231 in (6.23) gives the inequality

2 _ _ TS9RZ 759 R (7.32)
* 7 (@A1Da +BR 14 [(4.e4x10—7)rg:| HZ .
h3R2

Estimate (7.32) is the bound on the initial shock position, impose@ by P, in terms

of the Hubble length. Putting (7.32) together with (7.29), we conclude that the maximal
distancermax from the shock-wave to the center of the explosiea 0 at present time

R = 1, given as a function of starting time,, 2.7/4000 < R, < 1, (assuming the
shock-wave started at positien= r, at R, > 2.7/4000, and such that, is restricted

by (7.32) so thaD > P for all R > R,), is predicted by this model to be

.76 T3 1
rmax~ Hy * R, +(26x10°7)-%In (—) (7.33)
(4.6x10-1)T h{ R,
1+ h3R2

For example, taking the valug = .55 andTy = 2.736 K gives the formula

.76 1
~HY | — 0> —_—
e

*

This function is plotted in Fig. 2. Using (7.33) in (7.29) we obtain the following upper
and lower bounds for the shock positioat present time? = 1 assuming that it starts
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1.0

max

0 0 S S S SR RS I AP
00 01 02 03 04 05 06 07 08 09 1.0
R*

Fig. 2. rmaxis in units of Hy *, Ho = 1000 ¢, ho = .55

atR = R,, and such thaD > P holds forallR > R, :

-1 N 1
r>Hy {(5.1x 10 Ve In (R—) , (7.35)

.76 T4 1
r<Hy* R, +(26x10°")-%In <—)
(4.6x10-1T4 hy R,
1+ h2R2
0%

(7.36)

8. The Case of Pure Radiationg =0

As a point of comparison, in this section we redo the calculation of the shock position
under the assumptiop = 0 in (4.13); that is, under the assumption that the energy
densityQ is due entirely to radiation, (see [11]. Thus assumedhata T5‘/3 is as given

in (7.11), but thas = 0. We estimate the position of the shock-wave in this model at
the timeR = 1, whereT' = Top. Now of course, sincg is determined in (7.12) fronfl

in the above analysis, the vaIue@fin the pure radiation model will not coincide with

Hp at the time wherT" = Tp. Nevertheless, for comparison purposes, we shall estimate
the radial position of the shock-wave in the pure radiation model at&rael in terms

of the Hubble Iength‘lo_l given in (7.30).
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In the case8 = 0, the constraint (6.23) that guarante®s- P reduces to

2 (A=5/3A-w))
RZ, 8.1
“’*<( d+aerm ) 1)
and the critical orbit becomeas = 6. Usingw = ¢ =~ .1231 in (8.1) gives
.49

(Note that in the alternative case= 0, the case of pure matter, the RHS of (6.23) tends
to infinity, and thus (6.23) places no constraint on the shock position. This is consistent
with the fact that whem = 0, the pressure is zero, and the shock-wave reduces to a
contact discontinuity. For example, = 0, P = 0, solves the shock equations (3.40),
(3.41) and it is not difficult to show that the solution of the shock equations in this case
reduces to thé = 0 version of the Oppenheimer—Snyder model, first presented in [11].
In these Oppenheimer—Snyder models, there are no constraints on the shock position
corresponding to (6.23).)

Setting8 = 0 andw = & in (5.11) gives

dr>  2(1-6)R

e i 8.3
dR 3@B+0)« (8:3)

as the differential equation for the shock position. Integrating gives
2 A-0) R, (8.4)

“@ro

Using (8.2) for the maximum value of, yields the following bounds on the shock
positionr at the timeR = 1 whenT = Ty that are analogous to (7.35) and (7.36) and

apply wheng =0

(1-0) 5) (1-0)
f 3(3+U) <r=< [\/3(3+&) + .24R,. (8.5)
From (7.11) it follows that
% = 11810H; L, (8.6)

for the value ofHg given in (7.18), (note as above thdp £ +/ Qg in this case). Using
this value together with the valde= .1231 in (8.5) yields

36h¢ - < 36hov/1+ 2.5R,
—<r<—.

8.7
Hy &= — Hyp 8.7)

Note that the shock position & = 1 that applies to the exact solution given in [11],
which was discussed in detail at the end of Sect. 3, is theRase0 in (8.7).
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