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 2000 International PressVol. 7, No. 4, pp. 793{812, De
ember 2000 010A SHOCK-WAVE FORMULATION OF THE EINSTEIN EQUATIONS�JEFFREY M. GROAHy AND BLAKE TEMPLEzAbstra
t. We derive a weak (sho
k wave) formulation of the Einstein equations for a perfe
t
uid assuming spheri
al symmetry. Our purpose is to provide a framework for the weak equationsthat makes them amenable to mathemati
al methods developed for the study of sho
k waves innonlinear 
onservation laws.1. Introdu
tion. We derive a weak formulation of the Einstein equations fora perfe
t 
uid under the assumption of spheri
al symmetry. The weak formulationis required in order to allow for the presen
e of sho
k wave dis
ontinuities in the
uid variables. We assume the standard gauge, and we show that in the resulting
oordinates, the weak formulation of the initial value problem for the Einstein equa-tions is valid for metri
s that are only Lips
hitz 
ontinuous: that is, valid for metri
sthat lie in the spa
e C0;1; the spa
e of 
ontinuous fun
tions with bounded di�eren
equotients, (and hen
e Holder exponent one, [13℄). Moreover, we show that in thestandard gauge, the metri
 
an in general be no smoother than Lips
hitz 
ontinuouswhen sho
k waves are present. To 
larify this, note that if T is dis
ontinuous a
ross asmooth 3-dimensional surfa
e �; then the Einstein equations G = �T imply that the
urvature tensor G will also have dis
ontinuities a
ross the surfa
e. Sin
e G involvesse
ond derivatives of the metri
 tensor g; one expe
ts that g should be 
ontinuouslydi�erentiable at sho
k waves, with bounded se
ond derivatives on either side, (that is,g 2 C1;1), in order that the equation G = �T will hold in the 
lassi
al, pointwise a.e.sense at the sho
ks. However, it is known that sho
k-wave solutions of the Einsteinequations make sense under the assumption that the metri
s mat
h only Lips
hitz
ontinuously at a sho
k surfa
e, that is, g 2 C0;1: But in this 
ase, the Lips
hitz
ontinuous mat
hing of the metri
 alone is not enough to guarantee 
onservation ata sho
k, and an additional 
ondition must be imposed to rule out the possibility thatthere are delta fun
tion sour
es in T on the sho
k surfa
e, [8, 15℄.Our analysis shows that for spheri
ally symmetri
 solutions of G = �T; it is ingeneral not possible to have metri
s smoother than Lips
hitz 
ontinuous, (that is,smoother than C0;1 at sho
ks), when the metri
 is written in the standard gauge. Inthis paper, we show that the weak formulation is nonetheless 
onsistent for metri
sin the lower smoothness 
lass C0;1. This helps explain why the Oppenheimer-Snydersolution, [12℄, and its sho
k wave generalizations, [15, 16℄, involve metri
s that aremat
hed only Lips
hitz 
ontinuously at an interfa
e. Thus our results imply thatwhen sho
k-waves are present, we 
annot expe
t metri
s to be smoother than theseexamples in the standard gauge.The aim of this paper is to formulate the Einstein equations as a system of
onservation laws with sour
e terms. For this reason, the dis
ussion is written tobe a

essible to experts in the mathemati
al theory of sho
k waves and 
onservationlaws, [9, 5, 13℄. The work here is preparatory for a subsequent paper in whi
h theauthors will give a rigorous lo
al existen
e theory for sho
k wave solutions of these�Re
eived Feb. 22, 2000; revised July 17, 2000.yDepartment of Mathemati
s, UC-Davis, Davis, CA 95616, USA (groah�math.u
davis.edu). Sup-ported in part by the Institute of Theoreti
al Dynami
s (ITD), UC-Davis.zInstitute of Theoreti
al Dynami
s (Mathemati
al Physi
s) and Department of Mathemati
s,UC-Davis, Davis, CA 95616, USA (temple�math.u
davi.edu). Supported in part by NSF AppliedMathemati
s Grant No. DMS-980-2473, and in part by the Institute of Theoreti
al Dynami
s (ITD).793



794 J. M. GROAH AND B. TEMPLEequations based on a modi�ed Glimm method, [6℄. An analysis of the large timebehavior of solutions to these equations would, in parti
ular, address the issue ofbla
k-hole formation in general relativity.2. Preliminaries. In Einstein's theory of general relativity, all properties of thegravitational �eld are determined by an inde�nite Lorentzian metri
 g; of signature(�1; 1; 1; 1), de�ned on a four dimensional manifold M 
alled Spa
etime. In generalrelativity, gravitational\for
es" are identi�ed with spa
etime 
urvature, (as measuredby the Riemann 
urvature tensor of the metri
 g), and the energy and momentumdensities and their 
uxes are the sour
es of spa
etime 
urvature. In 1915, Albert Ein-stein began the subje
t of general relativity by introdu
ing the Einstein gravitational�eld equations|the equations that des
ribe the simultaneous evolution of the gravi-tational metri
 g together with the sour
es. The Einstein equations 
an be expressedin the 
ompa
t form [20℄, G = �T:(2.1)Here G denotes the Einstein 
urvature tensor for metri
 g, and T denotes the stress-energy tensor, the sour
e of the gravitational �eld. Both G and T are symmetri
tensors of rank 2: The 
omponents of the Einstein 
urvature tensor are given in termsof the 
omponents Rijkl of the Riemann 
urvature tensor byGij = Rij � 12Rgij ;(2.2)where Rij denotes the Ri

i tensor Rij = R�i�j ;(2.3)and R denotes the Ri

i s
alar 
urvatureR = R���� :(2.4)The 
omponents of the Riemann 
urvature tensor in a given 
oordinate system xare determined from se
ond order derivatives of the metri
 tensor gij(x) through theformulas Rijkl = �ijl;k � �ijk;l + ���jl�i�k � ��jk�i�l	 ;(2.5)where the Christo�el symbols, (
onne
tion 
oeÆ
ients), involve �rst order derivativesof the metri
, given by �ijk = 12g�i f�gjk;� + g�j;k + gk�;jg :(2.6)(We assume the Einstein summation 
onvention whereby repeated up-down indi
esare to be summed from 0-3, and indi
es are raised and lowered by the metri
, 
.f.[20℄.) In the 
ase of a perfe
t 
uid, the stress tensor takes the spe
ial formTij = (�+ p)uiuj + pgij ;(2.7)where p denotes the pressure,� the mass-energy density (as measured in the Lorentzianframe moving with the parti
le), and u is the 4-velo
ity of the 
uid. The four velo
ityu; (in the tangent spa
e TM), is the unit ve
tor tangent to the parti
le path at a



A SHOCK-WAVE FORMULATION OF THE EINSTEIN EQUATIONS 795given point{that is, the 
omponents of u are equal to the derivative of the 
oordinateparameterization of the parti
le path taken with respe
t to ar
length, and hen
e u isa unit ve
tor relative to the spa
etime metri
 g at ea
h point:g(u; u) � gijuiuj = �1:(2.8)The Einstein tensor G is 
onstru
ted so that divG = 0 holds identi
ally as a
onsequen
e of the Bian
hi identities of geometry, [20℄, and thusdivT = 0;(2.9)is a 
onsequen
e of the Einstein equations (2.1) alone. Here we take the 
ovariantdivergen
e so that it agrees with the 
lassi
al divergen
e at the 
enter of a lo
allyinertial 
oordinate system, [15℄:divT = T ij;i(2.10) = T ij;i + �iikT kj + �jikT ik:As usual, the 
omma denotes ordinary partial derivative, and semi
olon denotes 
o-variant derivative. It follows from (2.6) that �ijk = 0 in 
at Minkowski spa
e, or toleading order in a lo
ally inertial 
oordinate system, (that is, a 
oordinate system
entered at a point where gij = diag(�1; 1; 1; 1); gij;k = 0; for all i,j,k). In theselimits, the 
ovariant divergen
e redu
es to the 
lassi
al divergen
e, and (2.9) redu
esto the 
lassi
al relativisti
 
ompressible Euler equations when T is given by (2.7),[15℄. It follows that the 
ompressible Euler equations are a subsystem of the Einsteinequations (2.1), (2.7). It is well known that the theory of the initial value problem forthe 
ompressible Euler equations is in
omplete unless sho
k waves are in
orporatedinto the solutions, [5, 13℄, and this strongly suggests that the same must be true forthe Einstein equations for a perfe
t 
uid. In this paper we derive a weak (sho
k wave)formulation of (2.1), (2.7) that applies to spheri
ally symmetri
 solutions written inthe standard 
oordinate gauge.A spa
etime metri
 g is said to be spheri
ally symmetri
 if it takes the generalform, [20, 19, 7, 11℄,ds2 = gijdxidxj � �A(r; t)dt2 +B(r; t)dr2 + 2D(r; t)dtdr + C(r; t)d
2:(2.11)Here the 
omponents A; B; C and D of the metri
 are assumed to be fun
tions ofthe radial and time 
oordinates r and t alone, d
2 � d�2 + sin2(�)d�2 denotes theline element on the 2-sphere, and x � (x0; :::; x3) � (t; r; �; �); denotes the underlying
oordinate system on spa
etime. (To keep tra
k of units, we put fa
tors of 
 in, butto redu
e the proliferation of symbols, we also use the 
onvention t � x0 instead ofthe usual 
t = x0: This 
an be interpreted as 
 = 1:) In this 
ase we assume that the4-velo
ity u is radial, by whi
h we mean that the x-
omponents of u are given byui = (u0(r; t); u1(r; t); 0; 0); i = 0; :::; 3; respe
tively;(2.12)for some fun
tions u0 and u1:Now it is well known that in general there exists a 
oordinate transformation(r; t) ! (�r; �t) that takes an arbitrary metri
 of form (2.11) over to one of form, 
.f.,[20℄, ds2 = gijdxidxj � �A(r; t)dt2 +B(r; t)dr2 + r2d
2:(2.13)



796 J. M. GROAH AND B. TEMPLEA metri
 of form (2.13) is said to be in the standard 
oordinate gauge, and it is ourpurpose here to establish the weak formulation of the Einstein equations for metri
sof the form (2.13) in the 
ase when A and B are �nite, and satisfy AB 6= 0: It followsfrom our formulation that the Einstein equations together with the assumption (2.13)imply that the metri
 
omponents A and B are only Lips
hitz 
ontinuous at sho
kwaves, that is, A and B are one degree less smooth than the general theory suggeststhey should be.The general problem of making sense of gravitational metri
s that are only Lips-
hitz 
ontinuous at sho
k surfa
es was taken up in [16℄. The analysis there identi�es
onditions that must be pla
ed on the metri
 in order to insure that 
onservationholds at the sho
k, and that there do not exist delta-fun
tion sour
es at the sho
k,[8℄. When these 
onditions are met, the methods in [16℄ imply the existen
e of a C1;1
oordinate transformation that improves the level of smoothness of the metri
 
om-ponents from C0;1 up to C1;1 at the sho
k. However, the results in [16℄ apply only tosmooth interfa
es that de�ne a single sho
k surfa
e for whi
h G = �T holds identi
allyon either side. For general sho
k wave solutions of the form (2.13), (that 
an 
ontainmultipli
ities of intera
ting sho
k waves), it is an open question whether there existsa 
oordinate transformation, (say to a metri
 in the more general 
lass (2.11)), that
an in
rease the level of smoothness of the metri
 
omponents by one order. For thisreason, we now show that the mapping (r; t) ! (�r; �t) that takes an arbitrary metri
of form (2.11) over to one of form (2.13), implies a loss of one order of di�erentiabilityin the metri
 
omponents when sho
k waves are present. This argues that our resultsare 
onsistent with the existen
e of su
h a smoothing 
oordinate transformation, butstill leaves open the problem of the existen
e of su
h a transformation.Thus we now review the 
onstru
tion of the mapping (r; t) ! (�r; �t) that takesan arbitrary metri
 of form (2.11) over to one of form (2.13), 
.f., [20℄. To start, onemust assume that the metri
 
omponent C(t; r) in (2.11) satis�es the 
ondition thatfor ea
h �xed t, C in
reases from zero to in�nity as r in
reases from zero to in�nity,and that ��rC(r; t) 6= 0:(2.14)(These are not unreasonable assumptions 
onsidering that C measures the areas ofthe spheres of symmetry.) De�ne �r =pC(r; t):(2.15)Then the determinant of the Ja
obian of the mapping (r; t)! (�r; t) satis�es������r�r ���� = ��rpC(r; t) 6= 0;in light of (2.14). Thus the transformation to (�r; t) 
oordinates is a nonsingulartransformation, and in (�r; t) 
oordinates the metri
 (2.11) takes the formds2 = �A(r; t)dt2 +B(r; t)dr2 + 2E(r; t)dtd�r + r2d
2:(2.16)(Here we have repla
ed �r by r and A; B and E stand in for the transformed 
ompo-nents.) It is easy to verify that, to eliminate the mixed term, it suÆ
es to de�ne thetime 
oordinate �t so that, 
f. [20℄,d�t = �(r; t) fA(r; t)dt �E(r; t)drg :(2.17)



A SHOCK-WAVE FORMULATION OF THE EINSTEIN EQUATIONS 797In order for (2.17) to be exa
t, so that �t really does de�ne a 
oordinate fun
tion, theintegrating fa
tor � must be 
hosen to satisfy the (linear) PDE��r f�(r; t)A(r; t)g = � ��t f�(r; t)E(r; t)g :(2.18)But we 
an solve (2.18) for �(r; t) from initial data �(r; t0), by the method of 
hara
-teristi
s. From this it follows that, (at least lo
ally), we 
an transform metri
s of form(2.11) over to metri
s of form (2.13) by 
oordinate transformation. To globalize thispro
edure, we need only assume that Cr(t; r) 6= 0; and that C takes values from zeroto in�nity at ea
h �xed t: Now note that in general �(r; t); the solution to (2.18), willhave the same level of di�erentiability as A(r; t) and E(r; t); and so it follows that the
omponents of dt and dr in (2.17) will have this same level of di�erentiability. Thisimplies that the �t transformation de�ned by (2.17) preserves the level of smoothnessof the metri
 
omponent fun
tions. On the other hand, the �r transformation in (2.15)redu
es the level of di�erentiablility of the metri
 
omponents by one order. Indeed,the level of smoothness of the transformed metri
 
omponent fun
tions are in generalno smoother than the Ja
obian that transforms them, and by (2.15), the Ja
obian ofthe transformation 
ontains the terms Cr and Ct whi
h will in general be only C0;1when C 2 C1;1: Thus, if we presume, (motivated by [15℄), that for general spheri
allysymmetri
 sho
k wave solutions of G = �T; that there exists a 
oordinate system inwhi
h the metri
 takes the form (2.11), and the 
omponents of g in these 
oordinatesare C1;1 fun
tions of these 
oordinates, then it follows that we 
annot expe
t thetransformed metri
s of form (2.13) to be better than C0;1; that is, Lips
hitz 
ontin-uous. The equations we derive below allow for metri
s in the smoothness 
lass C0;1;but in general they do not admit solutions smoother than Lips
hitz 
ontinuous. Itremains an open question whether solutions to these equations 
an be smoothed by
oordinate transformation when sho
k waves are present.In Se
tion 3 we verify the equivalen
e of several weak formulations of the Ein-stein equations that allow for sho
k waves, and that are valid for metri
s of form(2.13), in the smoothness 
lass C0;1: In Se
tion 4, we show that these equations areweakly equivalent to a system of 
onservation laws with time dependent sour
es. In afuture paper, the authors will give an existen
e theory for these equations with gen-eral Cau
hy data of bounded variation, thereby demonstrating the 
onsisten
y of theEinstein equations for weak (sho
k wave) solutions within the 
lass of C0;1 metri
s.3. The Einstein Equations for a Perfe
t Fluid with Spheri
al Symme-try. In this se
tion we study the system of equations obtained from the Einsteinequations under the assumption that the spa
etime metri
 g is spheri
ally symmet-ri
. So assume that the gravitational metri
 g is of the form (2.11), and to start,assume that T ij is any arbitrary stress tensor. To obtain the equations for the metri

omponents A and B implied by the Einstein equations (2.1), plug the ansatz (2.13)into the Einstein equations (2.1). The resulting system of equations is obtained usingMAPLE: Ar2B �rB0B +B � 1� = �A2T 00(3.1) �BtrB = �ABT 01(3.2) 1r2 �rA0A � (B � 1)� = �B2T 11(3.3)



798 J. M. GROAH AND B. TEMPLE� 1rAB2 fBtt �A00 +�g = 2�rB T 22:(3.4)Here \prime" denotes partial di�erentiation with respe
t to r; and the quantity � inthe last equation is given by,� = �BAtBt2AB � B2 �BtB �2 � A0r + AB0rB+A2 �A0A �2 + A2 A0A B0B :Equations (3.1)-(3.4) represent the (0,0), (0,1), (1,1) and (2,2) 
omponents of Gij =�T ij ; respe
tively, (as indexed by T on the RHS of ea
h equation). The (3,3) equationis a multiple of the (2,2) equation, and all remaining 
omponents are identi
ally zero.(Note that MAPLE de�nes the 
urvature tensor to be minus one times the 
urvaturetensor de�ned in (2.5).) It is sometimes 
onvenient to make the 
hange of variableA = eÆ, B = 1=(1� 2M=r); [1℄. In these variables, the Einstein equations (3.1), (3.2),and (3.3) are equivalent to �M�r = r22 A�T 00;(3.5) �M�t = �r22 A�T 01;(3.6) �Æ�r = rB�T 11 + B � 1r :(3.7)HereM(r; t) is interpreted as the total mass inside radius r at time t; and if the energydensity T 00 � 0; then (3.5) implies that M is a monotone in
reasing fun
tion of r:We are interested in solutions of (3.1)-(3.4) in the 
ase when sho
k waves arepresent. A sho
k wave in the 
ompressible Euler equations leads to dis
ontinuitiesin the 
uid density, pressure and velo
ity, and thus in light of (2.7), it follows that asho
k wave would produ
e a dis
ontinuity in the stress tensor T at a sho
k. But whenT is dis
ontinuous, equations (3.1)-(3.3) above imply immediately that derivatives ofthe metri
 
omponents A and B are dis
ontinuous at sho
ks. Moreover, if A and Bhave dis
ontinuous derivatives when sho
k waves are present, it follows that (3.4),being se
ond order, 
annot hold 
lassi
ally, and thus equation (3.4) must be takenin the weak sense, that is, in the sense of the theory of distributions. To get theweak formulation of (3.4), multiply through by rAB2 to 
lear away the 
oeÆ
ient ofthe highest (se
ond) order derivatives, then multiply through by a test fun
tion andintegrate the highest order derivatives on
e by parts. It follows that if the test fun
tionis in the 
lass C1;10 ; (that is, one 
ontinuous derivative that is Lips
hitz 
ontinuous,the subs
ript zero denoting 
ompa
t support), and if the metri
 
omponents A andB are in the 
lass C0;1; and T ij is in 
lass L1; then all terms in the integrand of theresulting integrated expression are at most dis
ontinuous, and so all derivatives makesense in the 
lassi
al pointwise a.e. sense.In order to a

ount for initial and boundary 
onditions in the weak formulation,it is standard to take the test fun
tion � to be nonzero at t = 0 or at the spe
i�edboundary. In this 
ase, when we integrate by parts to obtain the weak formulation,the boundary integrals are non-vanishing, and their in
lusion in the weak formulationrepresents the 
ondition that the boundary values are taken on in the weak sense.Thus, for example, if the boundary is r = r0 � 0; we say � 2 C1;10 (r � r0; t � 0) to
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ate that � 
an be nonzero initially and at the boundary r = r0, thereby impli
itlyindi
ating that boundary integrals will appear in the weak formulation based on su
htest fun
tions.We presently 
onsider various equivalent weak formulations of equations (3.1)-(3.4), and we wish to in
lude the equivalen
e of the weak formulation of boundary
onditions in the dis
ussion. Thus, in order to keep things as simple as possible,we now restri
t to the 
ase of weak solutions of (3.1)-(3.4) de�ned on the domainr � r0 � 0; t � 0; and we always assume that test fun
tions � lie in the spa
e� 2 C1;10 (t � 0; r � r0), so that initial and boundary values are a

ounted for in theweak formulation. (This is the simplest 
ase in whi
h to rigorously demonstrate theequivalen
e of several weak formulations of initial boundary value problems. Moregeneral domains 
an be handled in a similar manner.)Note that be
ause (3.1)-(3.3) involve only �rst derivatives of A and B; and A;B 2C0;1; it follows that (3.1)-(3.3) 
an be taken in the strong sense, that is, derivatives
an be taken in the pointwise a.e. sense. The 
ontinuity of A and B imply also thatthe initial and boundary values are taken on strongly in any C0;1 weak solution of(3:1)�(3:3): On the other hand, equation (3.4) involves se
ond derivatives, and so thislast equation is the only one that requires a weak formulation. The weak formulationof (3.4) is thus obtained on domain t � 0; r � r0 � 0 by multiplying through by a testfun
tion � 2 C1;10 (r � r0; t � 0) and integrating by parts. This yields the followingweak formulation of (3.4):0 = Z 1r0 Z 10 �� Bt�trAB2 � Bt�r �� AtA2B2 � 2BtAB3�+ A0�0rAB2(3.8) + A0��� 1r2AB2 � A0rA2B2 � 2B0rAB3�+ �rAB2� + 2�rB �T 22� drdt� Z 1r0 Bt(r; 0)�(r; 0)rA(r; 0)B2(r; 0)dr + Z 10 A0(r0; t)�(r0; t)r0A(r0; t)B2(r0; t)dtOur �rst proposition states that the weak formulation (3.8) of equation (3.4) may berepla
ed by the weak formulation of the 
onservation laws divT = 0, so long as A andB are in C0;1 and T ij 2 L1:Proposition 3.1. Assume that A;B 2 C0;1(r � r0; t � 0); T ij 2 L1(r � r0; t �0), and assume that A; B and T solve (3.1)-(3.3) strongly. Then A; B and T solveT 1i;i = 0; (the 1-
omponent of divT = 0), weakly if and only if A; B and T satisfy(3.8).Proof. The proof strategy is to modify (3.8) and the weak form of 
onservationusing (3.1)-(3.3) as identities, and then observe that the two are identi
al at an inter-mediate stage. To begin, substitute for Bt and A0 in several pla
es in (3.8) to obtainthe equivalent 
ondition0 = Z 1r0 Z 10 ��T 01't + �T 11'0 + ��r �' (B � 1)r2B2 �+ ' �� ��r �B � 1r2B2 �(3.9) +Btr � AtA2B2 + 2BtAB3�+A0 �� 1r2AB2 � A0rA2B2 � 2B0rAB3�+ 1rAB2�+ 2�rB T 22�� dr dt+� Z 1r0 T 01(r; 0)'(r; 0) dr + � Z 10 '(r0; t) �T 11(r0; t)B(r0; t)� 1r20B2(r0; t) � dt



800 J. M. GROAH AND B. TEMPLE= Z 1r0 Z 10 ��T 01't + �T 11'0 + ' �B0(B � 2)r2B3 + 2(B � 1)r3B2+Btr � AtA2B2 + 2BtAB3�+A0 �� 1r2AB2 � A0rA2B2 � 2B0rAB3�+ 1rAB2�+ 2�rB T 22�� dr dt+� Z 1r0 T 01(r; 0)'(x; 0) dr + � Z 10 '(r0; t)T 11(r0; t) dt:Now, the weak form of 
onservation of energy-momentum is given by0 = Z 1r0 Z 10 �T 01't + T 11'0 � ��ii0T 01 + �ii1T 11(3.10) +�100T 00 + 2�101T 01 + �111T 11 + 2�122T 22�'	 drdt+ Z 1r0 T 01(r; 0)'(x; 0) dr + Z 10 '(r0; t)T 11(r0; t) dt:Here, we have used the fa
t that T 22 = sin2 �T 33, T ij = 0 if i 6= j = 2 or 3; and�133 = sin2 ��122. Next, we 
al
ulate the 
onne
tion 
oeÆ
ients �ijk using (2.6) toobtain, �ii0 = 12 �AtA + BtB � �ii1 = 12 �A0A + B0B + 4r��000 = At2A �001 = A02A�011 = Bt2A �022 = 0 = �033�100 = A02B �101 = Bt2B�111 = B02B �122 = � rB�133 = � r sin2 �B :(3.11)Substituting the above formulas for �ijk into (3.10) and using (3.1)-(3.3) as identitiesto eliminate some of the T ij in favor of expressions involving A; B and r; we see that(3.10) is equivalent to:0 = Z 1r0 Z 10 �T 01't + T 11'0 + '� �12 �AtA + 3BtB � BtrAB2�12 �A0A + 2B0B + 4r� 1r2B2 �rA0A � (B � 1)�(3.12) � A02r2AB �rB0B + (B � 1)�+ 2� rBT 22�� drdt+ Z 1r0 T 01(r; 0)'(r; 0) dr + Z 10 '(r0; t)T 11(r0; t) dt:After some simpli�
ation, it is 
lear that (3.9) is equal to (3.12). This 
ompletes theproof of Proposition 3.1.We next show that the Einstein equations (3.1)-(3.3) together with divT = 0 areoverdetermined. Indeed, we show that for weak solutions with Lips
hitz 
ontinuousmetri
, either (3.1) or (3.2) may be dropped in the sense that the dropped equationwill redu
e to an identity on any solution of the remaining equations, so long as the



A SHOCK-WAVE FORMULATION OF THE EINSTEIN EQUATIONS 801dropped equation is satis�ed by either the initial or boundary data, as appropriate.The following proposition addresses the �rst 
ase, namely, for weak solutions in whi
hthe metri
 is Lips
hitz 
ontinuous, the �rst Einstein equation (3.1) redu
es to anidentity on solutions of (3.2)-(3.3), so long as (3.1) is satis�ed by the intial data.Theorem 3.2. Assume that A;B 2 C0;1 and T 2 L1 solve (3.2), (3.3) strongly,and solve divT = 0 weakly. Then if A;B; and T satisfy (3.1) at t = 0; then A, B,and T also solve (3.1) for all t > 0:Proof. We �rst give the proof for the 
ase when A; B and T are assumed to be
lassi
al smooth solutions of (3.2), (3.3) and divT = 0: This is followed by severallemmas ne
essary for the extension of this to the weak formulation, whi
h is given inthe �nal proposition. So to start, assume that A;B; and T are all smooth fun
tions,and thus solve divT = 0 strongly. For the proof in this 
ase, de�neH ij � Gij � �T ij :(3.13)Be
ause (3.2) and (3.3) hold, H01 � H11 � 0. Sin
e by assumption T ij;i = 0 and sin
eGij;i = 0 for any metri
 tensor as a 
onsequen
e of the Bian
hi identities, it followsthat 0 = H ij;i = H ij;i + �iikHkj + �jikH ik :(3.14)In parti
ular, setting j = 0,0 = H i0;i = H i0;i + �iikHk0 + �0ikH ik:(3.15)By hypothesis, H i0 = 0 when i 6= 0. In addition, the 
onne
tion 
oeÆ
ients �0ik arezero unless i or k equal 0 or 1: Therefore, (3.15) redu
es to the linear ODE0 = H00;0 + ��ii0 + �000�H00;(3.16)at ea
h �xed r. By hypothesis, H00 is initially zero, and sin
e we assume that H00 isa smooth solution of (3.16), it follows that H00 must 
ontinue to be zero for all t > 0:Next, assume only that A;B 2 C0;1 and T 2 L1 so that (3.2), (3.3) hold strongly,(that is, in a pointwise a.e. sense), but that divT = 0 is only known to hold weakly.In this 
ase, the argument above has a problem be
ause when g 2 C0;1; the Einsteintensor G; viewed as a se
ond order operator on the metri
 
omponents A and B;
an only be de�ned weakly when A and B are only Lips
hitz 
ontinuous. It followsthat the Bian
hi identities, and hen
e the identity divG = 0; (whi
h involves �rstorder derivatives of the 
omponents of the 
urvature tensor), need no longer be valideven in a weak sense. Indeed, G 
an have delta fun
tion sour
es at an interfa
e atwhi
h the metri
 is only Lips
hitz 
ontinuous, 
.f. [15℄. However, the above argumentonly involves the 0'th 
omponent of divG = 0; and the 0'th 
omponent of divG =0 involves only derivatives of the 
omponents Gi0; and as observed in (3.1), (3.2),these 
omponents only involve �rst derivatives of A and B: Spe
i�
ally, the weakformulation of G0i;i = 0 is given by,0 = Z 1r0 Z 10 ���iGi0 + � ��iikGk0 + �0ikGik�	 drdt(3.17) � Z 1r0 �(r; 0)G00(r; 0)dr � Z 10 �(r0; t)G10(r0; t)dt;
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e, by (3.1), (3.2), Gi0 involves only �rst order derivatives of A and B; itfollows that the integrand in (3.17) is a 
lassi
al fun
tion de�ned pointwise a.e. whenA;B 2 C0;1: But (3.17) is identi
ally zero for all smooth A and B be
ause divG = 0is an identity. Thus, when A;B 2 C0;1; we 
an take a sequen
e of smooth fun
tionsA�; B� that 
onverge to A and B in the limit � ! 0; (
.f. Theorem 3.4 below), su
hthat the derivatives 
onverge a.e. to the derivatives of A and B: It follows that we
an take the limit �! 0 (3.17) and 
on
lude that (3.17) 
ontinues to hold under thislimit. Putting this together with the fa
t that divT = 0 is assumed to hold weakly,we 
on
lude that H0i;i = (G0i � T 0i) ;i = 0;in the weak sense, whi
h means that H00 is in L1 and satis�es the 
ondition0 = Z 1r0 Z 10 ���0H00 + � ��ii0 + �000�H00	 drdt(3.18) � Z 1r0 �(r; 0)G00(r; 0)dr � Z 1r0 �(r; 0)H00(r0; t)dr:Therefore, to 
omplete the proof of Theorem 3.2, we need only show that if A, Band T solve (3.2), (3.3) 
lassi
ally and divT = 0 weakly, then a weak L1 solutionH00; (i.e., that satis�es (3.18)), of (3.16) must be zero almost everywhere if it is zeroinitially. Thus it suÆ
es to prove the following proposition:Proposition 3.3. Assume that H; f 2 L1lo
(R � R): Then every L1lo
 weaksolution to the initial value problemHt + fH = 0H(x; 0) = H0(x):(3.19)with initial data H0 � 0 is unique, and identi
ally equal to zero a.e., for all t > 0:Proof. We use the following standard theorem, [4℄,Theorem 3.4. Let U be any open subset of Rn: Then u 2W 1;1lo
 (U) if and onlyif u is lo
ally Lips
hitz 
ontinuous in U; in whi
h 
ase the weak derivative of u agreeswith the 
lassi
al pointwise a.e derivative as a fun
tion in L1lo
(U):Corollary 3.5. Let u and f be real valued fun
tions, u; f : R ! R; su
h thatu; f 2 L1[0; T ℄; and u is a weak solution of the initial value problemut + fu = 0;u(0) = 0;(3.20)on the interval [0; T ℄: Then u(t) = 0 for all t 2 [0; T ℄:Proof of Corollary. Statement (3.20) says that the distributional derivative utagrees with the L1 fun
tion fu on the interval [0; T ℄; and thus we know that u 2W 1;1lo
 (0; t): Therefore, by Theorem 3.4, u is lo
ally Lips
hitz 
ontinuous on (0; T );and the weak derivative ut agrees with the pointwise a.e. derivative of u on (0; T ):Thus it follows from (3.20) that on any sub-interval [a; b℄ of [0; T ℄ on whi
h u 6= 0; wemust have ddt [lnu℄ = utu = �f; a:e:(3.21)
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e u is Lips
hitz 
ontinuous, both u and ln(u) are absolutely 
ontinuouson [a; b℄; so we 
an integrate (3.21) to see thatu(t) = u(a)e�R t0 f(�)d�;(3.22)for all t 2 [a; b℄: But u is 
ontinuous, so (3.22) applies in the limit that a de
reasesto the �rst value of t = t0 at whi
h u(t0) = 0: Thus (3.22) implies that u(t) = 0throughout [a; b℄; and hen
e we must have u(t) = 0 for all t 2 [0; T ℄; and the Corollaryis true.The proof of Proposition 3.3 now follows be
ause it is easy to show that if His an L1 weak solution of (3.19), then H(x; �) is a weak solution of the s
alar ODEHt + fH = 0 for almost every x. (Just fa
tor the test fun
tions into produ
ts of theform �1(t)�2(x):)Using Proposition 3.3, we see that if equation (3.1) holds on the initial data fora solution of (3.2), (3.3), and divT = 0, then equation (3.1) will hold for all t. By asimilar argument, it follows that if (3.2) holds for the boundary data of a solution to(3.1), (3.3), and divT = 0, then (3.2) will hold for all r and t. We re
ord this in thefollowing theorem:Theorem 3.6. Assume that A;B 2 C0;1 and T 2 L1 solve (3.1), (3.3) strongly,and solve divT = 0 weakly, in r � r0; t � 0. Then if A;B; and T satisfy (3.2) atr = r0; then A, B, and T also solve (3.1) for all r > r0:4. The Spheri
ally Symmetri
 Einstein Equations Formulated as a Sys-tem of Hyperboli
 Conservation Laws with Sour
es. Conservation of energyand momentum is expressed by the equations0 = (divT )j = T ij;i= T ij;i + �iikT kj + �jikT ik;whi
h, in the 
ase of spheri
al symmetry, 
an be written as the system of two equa-tions: 0 = T 00;0 + T 01;1 + �iikT k0 + �0ikT ik(4.1) 0 = T 01;0 + T 11;1 + �iikT k1 + �1ikT ik:(4.2)Substituting the expressions (3.11) for the 
onne
tion 
oeÆ
ients (2.6) into (4.1) and(4.2), gives the equivalent system0 = T 00;0 + T 01;1 + 12 �2AtA + BtB �T 00 + 12 �3A0A + B0B + 4r�T 01(4.3) +Bt2AT 110 = T 01;0 + T 11;1 + 12 �AtA + 3BtB �T 01 + 12 �A0A + 2B0B + 4r�T 11(4.4) + A02BT 00 � 2 rBT 22:Now if one 
ould use equations to eliminate the derivative terms At; A0; Bt and B0 in(4.3) and (4.4) in favor of of expressions involving the undi�erentiated unknowns A; B



804 J. M. GROAH AND B. TEMPLEand T , then system (4.3), (4.4) would take the form of a system of 
onservation lawswith sour
e terms. Indeed, T 00 and T 01 serve as the 
onserved quantities, T 10 and T 11are the 
uxes, and what is left, written as a fun
tion of the undi�erentiated variables(A;B; T 00; T 01), would play the role of a sour
e term. (For example, in a fra
tionalstep s
heme designed to simulate the initial value problem, the variables A and B
ould be \updated" to time tj +�t by the supplemental equations (3.1) and (3.3) or(3.2) and (3.3) after the 
onservation law step is implemented using the known valuesof A and B at time tj : The authors will 
arry this out in detail in a subsequent paper.)The system then 
loses on
e one writes T 11 as a fun
tion of (A;B; T 00; T 01). Thereis a problem here, however. Equations (3.1)-(3.3) 
an be used to eliminate the termsAr; Bt and Br; but (4.3) and (4.4) also 
ontain terms involving At, a quantity that isnot given in the initial data and is not dire
tly evolved by equations (3.1)-(3.3). Theway to resolve this is to in
orporate the At term into the 
onserved quantities. Forgeneral equations involving At; this is not possible. A natural 
hange of T variablesthat eliminates the At terms from (4.3), (4.4), is to write the equations in terms ofthe values that T takes in 
at Minkowski spa
e. That is, de�neT 00 = AT 00M ;T 01 = pABT 01M ;(4.5) T 11 = BT 11M ;where the subs
ript denotes Minkowski. In the 
ase of a perfe
t 
uid, TM takes theform T 00M = �(p+ �
2) 
2
2 � v2 � p� ;T 01M = (p+ �
2) 
v
2 � v2 ;(4.6) T 11M = �(p+ �
2) v2
2 � v2 + p� ;where v denotes the 
uid speed as measured by an inertial observer �xed with re-spe
t to the radial 
oordinate r: (We dis
uss (4.6) in more detail in the last se
tion.)Substituting (4.5) into (4.3), (4.4), the At terms 
an
el out, and we obtain the system0 = �T 00M 	;0 +(rABT 01M);1 + 12 BtB �T 00M + T 11M �(4.7) +12rAB �A0A + B0B + 4r�T 01M0 = �T 01M 	;0 +(rABT 11M);1 + 12rAB �2 BtpABT 01M +�B0B + 4r�T 11M(4.8) +A0A T 00M � 4rT 22� :The following proposition states that system (4.7), (4.8) is equivalent, (in the weaksense), to the original system divT = 0:Proposition 4.1. If A and B are given Lips
hitz 
ontinuous fun
tions de�nedon the domain r � r0; t � 0; then TM is a weak solution of (4.7) and (4.8) if andonly if T is a weak solution of divT = 0 in this domain.
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ity, and without loss of generality, take the weak formulationwith test fun
tions 
ompa
tly supported in r > r0; t > 0; so that the boundaryintegrals do not appear in the weak formulations. (Managing the boundary integralsis straightforward.) The variables T ijM solve (4.7) weakly if0 = Z 1r0 Z 10 (�T 00't �rABT 01'r+"12 BtB �T 00 + T 11�+ 12rAB �A0A + B0B + 4r�T 01#') dr dt= Z 1r0 Z 10 ��T 00MA't � T 01MA'r(4.9) + �12 BtB �AT 00M +BT 11M �+ 12A�A0A + B0B + 4r�T 01M �'� dr dt:Set  = A', whereby A't =  t � AtA  . Using this 
hange of test fun
tion, (4.9)be
omes0 = Z 1r0 Z 10 ��T 00 t + T 00AtA  � T 01 0 + T 01A0A  (4.10) + �12 BtB �T 00 + BAT 11�+ 12 �A0A + B0B + 4r�T 01� � dr dt:= Z 1r0 Z 10 ��T 00 t � T 01 0 + �12 �2AtA + BtB �T 00+12 �3A0A + B0B + 4r�T 01 + Bt2AT 11� � dr dt;whi
h is the weak formulation of (4.3). We dedu
e that TM solves (4.7) for everyLips
hitz 
ontinuous test fun
tion ' if and only if T solves (4.10), (the weak form ofT 0i;i = 0), for all Lips
hitz 
ontinuous test fun
tions  : That weak solutions of (4.8)are weak solutions of T 1i;i = 0 follows by a similar argument.It is now possible to use equations (3.1)-(3.3) as identities to substitute for deriva-tives of metri
 
omponents A and B; thereby eliminating the 
orresponding derivativesof A and B from the sour
e terms of equations (4.7), (4.8). Doing this, we obtain thefollowing system of equations:�T 00M 	;0 +(rABT 01M);1 = �2rrABT 01M ;(4.11) �T 01M 	;0 +(rABT 11M);1 = �12rAB �4r T 11M + B � 1r (T 00M � T 11M )(4.12) +2�rB �T 00M T 11M � (T 01M )2�� 4rT 22	 :However, depending on the 
hoi
e of equation to drop, either (3.1) or (3.2), it is not
lear that if we use the dropped equation to substitute for derivatives in (4.7), (4.8),that the resulting system of equations will imply that divT = 0 
ontinues to hold, theassumption we based the substitution on in the �rst pla
e. The following theoremstates that (4.11), (4.12) is equivalent to divT = 0 in the weak sense:



806 J. M. GROAH AND B. TEMPLETheorem 4.2. Assume that A;B are Lips
hitz 
ontinuous fun
tions, and thatT 2 L1; on the domain r � r0; t � 0: Assume also that (3.1) holds at t = 0; andthat (3.2) holds at r = r0: Then A;B; T are weak solutions of (3.1), (3.2), (3.3) anddivT = 0 if and only if A;B; TM are weak solutions of either system (3.1), (3.3),(4.11), (4.12), or system (3.2), (3.3), (4.11), (4.12).Proof. Without loss of generality, we 
onsider the 
ase when we drop equation(3.2), and use (3.1), (3.3) and divT = 0 to evolve the metri
, and we ask whether we
an take the modi�ed system (4.11) and (4.12) in pla
e of divT = 0: In this 
ase, wemust justify the use of (3.2) in eliminating the Bt terms in going from divT = 0 tosystem (4.11) and (4.12). That is, it remains only to show that equations (3.1) and(3.3) together with system (4.11) and (4.12) imply that (3.2) holds, assuming (3.2)holds at r = r0. (If so, then by substitution, it then follows that divT = 0 also holds.)Note that we 
an almost re
onstru
t (4.3), the �rst 
omponent of divT = 0; byreverse substituting (3.1), (3.3) into (4.11). To see this, �rst note that we 
an add(3.1) and (3.3) to obtain A0A + B0B � rB�(T 00M + T 11M ) = 0:(4.13)Equation (4.13) is an identity that we may add to (4.11) to obtain0 = �T 00M 	;0 +(rABT 01M);1 � 12rpAB� �T 00M + T 11M �T 01M+12rAB �A0A + B0B + 4r�T 01M :(4.14)Adding and subtra
ting 12 BtB �T 00M + T 11M �(4.15)to the RHS of (4.14) and usingH01 = �BtrB �pAB�T 01M ;(4.16)(
.f. (3.2) and (3.13)), we have0 = �T 00M 	;0 +(rABT 01M);1 + 12rAB �A0A + B0B + 4r�T 01M+12 BtB �T 00M + T 11M �+ 12r �T 00M + T 11M �H01:(4.17)Note that all but the last term on the RHS of (4.17) is equal to the �rst 
omponentof divT; and so T 0i;i = �12r �T 00M + T 11M �H01:Therefore, if A, B, and TM are solutions to (3.1), (3.3), (4.17), and (4.4), it followsthat H i0;i = Gi0;i � �T i0;i(4.18) = �rB2T 112 H01;
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ause Gi0;i = 0 is an identity. But H00 � 0 holds be
ause we assume (3.1), andhen
e (4.18) implies that H01;1 + fH01 = 0;where f � �ii1 + 2�101 � � rB2T 112 2 L1. Sin
e we assume that H01 = 0 on theboundary r = r0; it follows from Corollary 3.5 that H01 � 0.It remains to identify 
onditions under whi
h T 11M is a fun
tion of (T 00M ; T 01M )assuming that T has the form of a stress tensor for a perfe
t 
uid, (4.6). A 
al
ulationshows that, in this 
ase, the following simpli�
ations o

ur:T 00M � T 11M = �
2 � p;(4.19) T 00M T 11M � (T 01M )2 = p�
2:(4.20)Using (4.19) and (4.20) we see that only the �rst terms on the RHS of (4.11), (4.12)depend on v; and the only term that is not linear in � and p is the third term on theRHS of (4.12). We state and prove the following theorem:Theorem 4.3. Assume that 0 < p < �
2; 0 < dpd� < 
2: Then T 11M is a fun
tionof T 00M and T 01M so long as (�; v) lie in the domain D = f(�; v) : 0 < �; jvj < 
g:Proof. We may write (4.19) and (4.20) in the formT 00M � T 11M = f1(�);(4.21) T 00M T 11M � (T 01M )2 = f2(�):(4.22)Sin
e df1d� = 
2 � p0 � 
2 � �2 > 0, it follows that the fun
tion f1 is one-to-one withrespe
t to �: Also, df2d� = p0�
2 + p
2 � p
2 > 0, so the fun
tion f2 is also one-to-onein �: Consequently, the fun
tion h = f2 � f�11 is one-to-one, and thusT 00M T 11M � (T 01M )2 = h(T 00M � T 11M ):(4.23)Now introdu
e the linear and invertible 
hange of variablesx = T 00M � T 11M ; y = T 01M , z = T 11M , whereby (4.23) be
omes(x + z)z � y2 = h(x):(4.24)Equation (4.24) is quadrati
 in z, and so we may solve it dire
tly, obtainingz = �x�px2 + 4(y2 + h(x))2 :(4.25)From (4.25), we 
on
lude that for any (x; y), there are two values of z, though onlyone of these will 
orrespond to values of � and v in the domain D. That is, sin
ex = T 00M � T 11M = �
2 � p > 0;(4.26)and z = T 11M > 0, it follows that there is at most one solution of (4.25) in the domainD, namely z = �x+px2 + 4(y2 + h(x))2 :(4.27)
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on
lude that if (�; v) lies in the domain D, then for ea
h value of T 00M and T 01M ;there exists pre
isely one value of T 11M .A 
al
ulation shows that in the 
ase p = �2�; � = 
onstant; the formula for T 11Min terms of (T 00M ; T 01M ) is given byT 11M = 1 + 2K2K (T 00M �s(T 00M )2 � 4K(1 + 2K)2 �K(T 00M )2 + (T 01M )2�)(4.28)where K = �2
2(
2 � �2)2 :(4.29)5. Statement of the General Problem. Our results 
on
erning the weak for-mulation of the Einstein equations (3.1)-(3.4) assuming spheri
al symmetry given inTheorem 4.2 
an be summarized as follows. Assume that A;B are Lips
hitz 
ontin-uous fun
tions, and that T 2 L1; on the domain r � r0; t � 0: Then (3.1)-(3.4) areequivalent to two di�erent systems whi
h take the form of a system of 
onservationlaws with sour
e terms. In the �rst 
ase, we have shown that weak solutions of thesystem (3.1), (3.3) together with equations (4.7), (4.8) (for divT = 0), will solve (3.1)-(3.4) weakly, so long as (3.2) holds at r = r0: This redu
es the Einstein equationswith spheri
al symmetry to a system of equations of the general formut + f(u;A;B)x = h1(u;A;B;A0; Bt; B0; x);(5.1) Ax = h2(u;A;B; x);(5.2) Bx = h3(u;A;B; x);(5.3)where u = (T 00M ; T 01M ) agree with the 
onserved quantities that appear in the 
onser-vation law divTM = 0 in 
at Minkowski spa
e. (Here \prime" denotes ��x sin
e weare using x in pla
e of r:) It is then valid to use equations (3.1)-(3.3) to eliminateall derivatives of A and B from the RHS of system (5.1), by whi
h we obtain thesystem (3.1), (3.3), (4.11), (4.12), a system that 
loses to make a nonlinear system of
onservation laws with sour
e terms, taking the general formut + f(u;A;B)x = h1(u;A;B; x);(5.4) Ax = h2(u;A;B; x);(5.5) Bx = h3(u;A;B; x):(5.6)Weak solutions of (5.4) will satisfy (3.2) so long as (3.2) is satis�ed on the boundaryr = r0:In the se
ond 
ase, we have shown that weak solutions of the system (3.2), (3.3)together with equations (4.7), (4.8) (for divT = 0), will solve (3.1)-(3.4) weakly,so long as (3.1) holds at t = 0: This redu
es the Einstein equations with spheri
alsymmetry to an alternative system of equations of the general formut + f(u;A;B)x = h1(u;A;B;A0; Bt; B0; x);(5.7) Ax = h2(u;A;B; x);(5.8) Bt = h3(u;A;B; x):(5.9)It is then valid to use equations (3.1)-(3.3) to eliminate all derivatives of A and Bfrom the RHS of system (5.7), by whi
h we obtain the system (3.2), (3.3), (4.11),
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loses to make a nonlinear system of 
onservation laws withsour
e terms, taking the general formut + f(u;A;B)x = h1(u;A;B; x);(5.10) Ax = h2(u;A;B; x);(5.11) Bt = h3(u;A;B; x):(5.12)Weak solutions of (5.10) will satisfy (3.1) so long as (3.1) is satis�ed at t = 0:6. Wave Speeds. In this se
tion we 
on
lude by 
al
ulating the wave speeds as-so
iated with system (4.11)-(4.12). Be
ause A and B enter as undi�erentiated sour
eterms, it follows from (4.11)-(4.12) that for spheri
ally symmetri
 
ow, the only wavespeeds in the problem will be the 
hara
teristi
 speeds for the 
uid. Loosely speak-ing, the gravitational �eld is \dragged along" passively by the 
uid when spheri
alsymmetry is imposed. From this we 
on
lude that there is no lightlike propagation,(that is, no gravity waves), in spheri
al symmetry, even when there is matter present.(This is the 
on
lusion of Birko�'s theorem for the empty spa
e equations, [20℄.)The easiest way to 
al
ulate the wave speeds for the 
uid is from the Rankine-Hugoniot jump 
onditions in the limit as the sho
k strength tends to zero. To start,note that the 
omponents of the 4-velo
ity for a spheri
ally symmetri
 
uid (2.7) areu0 = dtds , u1 = drds , u2 = u3 = 0. Sin
e �1 = g(u; u), the 
omponents u0 and u1 arenot independent, and in parti
ular, �1 = �(u0)2A+ (u1)2B. We de�ne 
uid speed vas the speed measured by an observer �xed in (t; r) 
oordinates. That is, the speed isthe 
hange in distan
e per 
hange in time as measured in an orthonormal frame withtimelike ve
tor parallel to �t and spa
elike ve
tor parallel to �r: It follows that thespeed is given by v = x=a; whereu = a �tp�g00 + x �rpg11 :(6.1)Taking the inner produ
t of u with �t and then with �r, we �nd that a = u0p�g00and x = u1pg11, and hen
e v = u1u0rBA ;(6.2)whereby, (u0)2 = 1A(
2 � v2) :(6.3)Using (6.2) and (6.3) in (2.7), it follows that the 
omponents of the energy-momentumtensor take the following simpli�ed form, whi
h is valid globally in the (t; r) 
oordinatesystem: T 00 = 1A �(p+ �
2) 
2
2 � v2 � p�T 01 = 1pAB (p+ �
2) 
v
2 � v2T 11 = 1B �(p+ �
2) v2
2 � v2 + p� :
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omponents are equal to the 
omponents of the stress tensor in 
atMinkowski spa
e, times fa
tors involving A and B that a

ount for the fa
t that thespa
etime is not 
at. SettingT 00M = �(p+ �
2) 
2
2 � v2 � p� ;T 01M = (p+ �
2) 
v
2 � v2 ;T 11M = �(p+ �
2) v2
2 � v2 + p� ;it follows that T 00 = T 00M =A;T 01 = T 01M =pAB;(6.4) T 11 = T 11M =B:The Rankine-Hugoniot jump 
onditions ares[T 00M ℄ =rAB [T 01M ℄;(6.5) s[T 01M ℄ =rAB [T 11M ℄:(6.6)From (6.5)-(6.6), we dedu
e that wave speeds for the system (4.11)-(4.12) are pA=Btimes the wave speeds in the Minkowski metri
 
ase, and this holds globally through-out the (t; r) 
oordinate system. (See [14℄.) Eliminating s from (6.5) and (6.6), yields[T 01M ℄2 = [T 00M ℄[T 11M ℄:(6.7)Now take the left 
uid state on a sho
k 
urve to be (�l; vl), and the right 
uid stateto be (�; v). For a spheri
ally symmetri
 perfe
t 
uid, (6.7) de�nes the right velo
ityv as a fun
tion of the right density �. Then to obtain the 
uid wave speeds, justsubstitute this fun
tion into (6.5), solve for s, and take the limit as �! �l: Followingthis pro
edure, (6.7) simpli�es to(v � v0)2(
2 � v2)(
2 � v20) = [p℄[�℄(p+ �
2)(p0 + �0
2) :(6.8)Note that equation (6.8) 
an be written as a quadrati
 in v, and hen
e there are twosolutions. The `+'solutions will yield the 2-sho
ks, and the `-' the 1-sho
ks. Dividingboth sides of (6.8) by (�� �0)2 and taking the limit as �! �0, we see thatdpd� = (p+ 
2�)2(
2 � v2)2 �dvd��2 :(6.9)Solving (6.6) for s we obtain,s =rAB h(p+ �
2) v2
2�v2 + pih(p+ �
2) 
v
2�v2 i ;(6.10)



A SHOCK-WAVE FORMULATION OF THE EINSTEIN EQUATIONS 811and taking the limit as �! �0, we obtain�� =rAB h(p0 + 
2) v2
2�v2 + (p+ �
2) 2vv0(
2�v2)+2v3v0(
2�v2)2 + p0ih(p0 + 
2) 
v
2�v2 + (p+ �
2) 
v0(
2�v2)+2
v2v0(
2�v2)2 i ;=rAB h(p0 + 
2) v2
2�v2 + (p+ �
2) 2
2vv0(
2�v2)2 + p0ih(p0 + 
2) 
v
2�v2 + (p+ �
2) 
v0(
2+v2)(
2�v2)2 i :(Here the plus/minus on RHS is determined by the two possible signs of v0 = dv=d�as allowed by (6.9).) After substituting for dv=d� using (6.9), and simplifying, weobtain �� =rAB �(p0 + 
2) v2
2�v2 � 2
2vpp0(
2�v2) + p0��(p0 + 
2) 
v
2�v2 � 
(
2+v2)pp0(
2�v2) � ;=rAB �(p0 + 
2)v2 � 2
2vpp0 + p0(
2 � v2)��(p0 + 
2)
v � 
(
2 + v2)pp0� ;= 
rAB �v2 � 2vpp0 + p0��vp0 � (
2 + v2)pp0 + 
2v� ;= 
rAB �v �pp0�2�v �pp0� �
2 � vpp0� :This gives the wave speeds as: �� = 
rAB pp0 � vvpp0 � 
2 :(6.11)(For example, the formula for �� results from 
hoosing `-' in (6.8).) The followingtheorem demonstrates that the system (4.11)-(4.12) is stri
tly hyperboli
 wheneverthe parti
les are moving at less than the speed of light:Proposition 6.1. Assume that jvj < 
;so that the parti
le traje
tory has a timelike tangent ve
tor. Then wave speeds for thegeneral relativisti
 Euler equations (4.11)-(4.12) satisfy �� < �+:Proof. To determine where the wave speeds are equal, set �� equal to �+ andsolve for v to obtain v2 = 
2. Next, substitute v = 0 into �� and �+ to verify that�� < �+ when v2 < 
2A=B. Proposition 6.1 follows dire
tly.As a �nal 
omment, we note that Proposition 6.1 is true be
ause it is true in a lo
allyinertial 
oordinate system 
entered at any point P in spa
etime. Indeed, in su
h a
oordinate system, the 
onne
tion 
oeÆ
ients vanish at P; and the metri
 
omponentsmat
h those of the Minkowski metri
 to �rst order in a neighborhood of P: As aresult, the general relativisti
 Euler equations redu
e to the 
lassi
al relativisti
 Eulerequations at P: Sin
e it is known in spe
ial relativity that the Euler equations are
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tly hyperboli
 for timelike parti
les, [14℄, it follows that the same must be truein general relativity. Other pointwise properties, su
h as genuine nonlinearity andthe Lax entropy inequalities, [13, 10℄, 
an be veri�ed for the spheri
ally symmetri
general relativisti
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