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794 J. M. GROAH AND B. TEMPLEequations based on a modi�ed Glimm method, [6℄. An analysis of the large timebehavior of solutions to these equations would, in partiular, address the issue ofblak-hole formation in general relativity.2. Preliminaries. In Einstein's theory of general relativity, all properties of thegravitational �eld are determined by an inde�nite Lorentzian metri g; of signature(�1; 1; 1; 1), de�ned on a four dimensional manifold M alled Spaetime. In generalrelativity, gravitational\fores" are identi�ed with spaetime urvature, (as measuredby the Riemann urvature tensor of the metri g), and the energy and momentumdensities and their uxes are the soures of spaetime urvature. In 1915, Albert Ein-stein began the subjet of general relativity by introduing the Einstein gravitational�eld equations|the equations that desribe the simultaneous evolution of the gravi-tational metri g together with the soures. The Einstein equations an be expressedin the ompat form [20℄, G = �T:(2.1)Here G denotes the Einstein urvature tensor for metri g, and T denotes the stress-energy tensor, the soure of the gravitational �eld. Both G and T are symmetritensors of rank 2: The omponents of the Einstein urvature tensor are given in termsof the omponents Rijkl of the Riemann urvature tensor byGij = Rij � 12Rgij ;(2.2)where Rij denotes the Rii tensor Rij = R�i�j ;(2.3)and R denotes the Rii salar urvatureR = R���� :(2.4)The omponents of the Riemann urvature tensor in a given oordinate system xare determined from seond order derivatives of the metri tensor gij(x) through theformulas Rijkl = �ijl;k � �ijk;l + ���jl�i�k � ��jk�i�l	 ;(2.5)where the Christo�el symbols, (onnetion oeÆients), involve �rst order derivativesof the metri, given by �ijk = 12g�i f�gjk;� + g�j;k + gk�;jg :(2.6)(We assume the Einstein summation onvention whereby repeated up-down indiesare to be summed from 0-3, and indies are raised and lowered by the metri, .f.[20℄.) In the ase of a perfet uid, the stress tensor takes the speial formTij = (�+ p)uiuj + pgij ;(2.7)where p denotes the pressure,� the mass-energy density (as measured in the Lorentzianframe moving with the partile), and u is the 4-veloity of the uid. The four veloityu; (in the tangent spae TM), is the unit vetor tangent to the partile path at a



A SHOCK-WAVE FORMULATION OF THE EINSTEIN EQUATIONS 795given point{that is, the omponents of u are equal to the derivative of the oordinateparameterization of the partile path taken with respet to arlength, and hene u isa unit vetor relative to the spaetime metri g at eah point:g(u; u) � gijuiuj = �1:(2.8)The Einstein tensor G is onstruted so that divG = 0 holds identially as aonsequene of the Bianhi identities of geometry, [20℄, and thusdivT = 0;(2.9)is a onsequene of the Einstein equations (2.1) alone. Here we take the ovariantdivergene so that it agrees with the lassial divergene at the enter of a loallyinertial oordinate system, [15℄:divT = T ij;i(2.10) = T ij;i + �iikT kj + �jikT ik:As usual, the omma denotes ordinary partial derivative, and semiolon denotes o-variant derivative. It follows from (2.6) that �ijk = 0 in at Minkowski spae, or toleading order in a loally inertial oordinate system, (that is, a oordinate systementered at a point where gij = diag(�1; 1; 1; 1); gij;k = 0; for all i,j,k). In theselimits, the ovariant divergene redues to the lassial divergene, and (2.9) reduesto the lassial relativisti ompressible Euler equations when T is given by (2.7),[15℄. It follows that the ompressible Euler equations are a subsystem of the Einsteinequations (2.1), (2.7). It is well known that the theory of the initial value problem forthe ompressible Euler equations is inomplete unless shok waves are inorporatedinto the solutions, [5, 13℄, and this strongly suggests that the same must be true forthe Einstein equations for a perfet uid. In this paper we derive a weak (shok wave)formulation of (2.1), (2.7) that applies to spherially symmetri solutions written inthe standard oordinate gauge.A spaetime metri g is said to be spherially symmetri if it takes the generalform, [20, 19, 7, 11℄,ds2 = gijdxidxj � �A(r; t)dt2 +B(r; t)dr2 + 2D(r; t)dtdr + C(r; t)d
2:(2.11)Here the omponents A; B; C and D of the metri are assumed to be funtions ofthe radial and time oordinates r and t alone, d
2 � d�2 + sin2(�)d�2 denotes theline element on the 2-sphere, and x � (x0; :::; x3) � (t; r; �; �); denotes the underlyingoordinate system on spaetime. (To keep trak of units, we put fators of  in, butto redue the proliferation of symbols, we also use the onvention t � x0 instead ofthe usual t = x0: This an be interpreted as  = 1:) In this ase we assume that the4-veloity u is radial, by whih we mean that the x-omponents of u are given byui = (u0(r; t); u1(r; t); 0; 0); i = 0; :::; 3; respetively;(2.12)for some funtions u0 and u1:Now it is well known that in general there exists a oordinate transformation(r; t) ! (�r; �t) that takes an arbitrary metri of form (2.11) over to one of form, .f.,[20℄, ds2 = gijdxidxj � �A(r; t)dt2 +B(r; t)dr2 + r2d
2:(2.13)



796 J. M. GROAH AND B. TEMPLEA metri of form (2.13) is said to be in the standard oordinate gauge, and it is ourpurpose here to establish the weak formulation of the Einstein equations for metrisof the form (2.13) in the ase when A and B are �nite, and satisfy AB 6= 0: It followsfrom our formulation that the Einstein equations together with the assumption (2.13)imply that the metri omponents A and B are only Lipshitz ontinuous at shokwaves, that is, A and B are one degree less smooth than the general theory suggeststhey should be.The general problem of making sense of gravitational metris that are only Lips-hitz ontinuous at shok surfaes was taken up in [16℄. The analysis there identi�esonditions that must be plaed on the metri in order to insure that onservationholds at the shok, and that there do not exist delta-funtion soures at the shok,[8℄. When these onditions are met, the methods in [16℄ imply the existene of a C1;1oordinate transformation that improves the level of smoothness of the metri om-ponents from C0;1 up to C1;1 at the shok. However, the results in [16℄ apply only tosmooth interfaes that de�ne a single shok surfae for whih G = �T holds identiallyon either side. For general shok wave solutions of the form (2.13), (that an ontainmultipliities of interating shok waves), it is an open question whether there existsa oordinate transformation, (say to a metri in the more general lass (2.11)), thatan inrease the level of smoothness of the metri omponents by one order. For thisreason, we now show that the mapping (r; t) ! (�r; �t) that takes an arbitrary metriof form (2.11) over to one of form (2.13), implies a loss of one order of di�erentiabilityin the metri omponents when shok waves are present. This argues that our resultsare onsistent with the existene of suh a smoothing oordinate transformation, butstill leaves open the problem of the existene of suh a transformation.Thus we now review the onstrution of the mapping (r; t) ! (�r; �t) that takesan arbitrary metri of form (2.11) over to one of form (2.13), .f., [20℄. To start, onemust assume that the metri omponent C(t; r) in (2.11) satis�es the ondition thatfor eah �xed t, C inreases from zero to in�nity as r inreases from zero to in�nity,and that ��rC(r; t) 6= 0:(2.14)(These are not unreasonable assumptions onsidering that C measures the areas ofthe spheres of symmetry.) De�ne �r =pC(r; t):(2.15)Then the determinant of the Jaobian of the mapping (r; t)! (�r; t) satis�es������r�r ���� = ��rpC(r; t) 6= 0;in light of (2.14). Thus the transformation to (�r; t) oordinates is a nonsingulartransformation, and in (�r; t) oordinates the metri (2.11) takes the formds2 = �A(r; t)dt2 +B(r; t)dr2 + 2E(r; t)dtd�r + r2d
2:(2.16)(Here we have replaed �r by r and A; B and E stand in for the transformed ompo-nents.) It is easy to verify that, to eliminate the mixed term, it suÆes to de�ne thetime oordinate �t so that, f. [20℄,d�t = �(r; t) fA(r; t)dt �E(r; t)drg :(2.17)



A SHOCK-WAVE FORMULATION OF THE EINSTEIN EQUATIONS 797In order for (2.17) to be exat, so that �t really does de�ne a oordinate funtion, theintegrating fator � must be hosen to satisfy the (linear) PDE��r f�(r; t)A(r; t)g = � ��t f�(r; t)E(r; t)g :(2.18)But we an solve (2.18) for �(r; t) from initial data �(r; t0), by the method of hara-teristis. From this it follows that, (at least loally), we an transform metris of form(2.11) over to metris of form (2.13) by oordinate transformation. To globalize thisproedure, we need only assume that Cr(t; r) 6= 0; and that C takes values from zeroto in�nity at eah �xed t: Now note that in general �(r; t); the solution to (2.18), willhave the same level of di�erentiability as A(r; t) and E(r; t); and so it follows that theomponents of dt and dr in (2.17) will have this same level of di�erentiability. Thisimplies that the �t transformation de�ned by (2.17) preserves the level of smoothnessof the metri omponent funtions. On the other hand, the �r transformation in (2.15)redues the level of di�erentiablility of the metri omponents by one order. Indeed,the level of smoothness of the transformed metri omponent funtions are in generalno smoother than the Jaobian that transforms them, and by (2.15), the Jaobian ofthe transformation ontains the terms Cr and Ct whih will in general be only C0;1when C 2 C1;1: Thus, if we presume, (motivated by [15℄), that for general spheriallysymmetri shok wave solutions of G = �T; that there exists a oordinate system inwhih the metri takes the form (2.11), and the omponents of g in these oordinatesare C1;1 funtions of these oordinates, then it follows that we annot expet thetransformed metris of form (2.13) to be better than C0;1; that is, Lipshitz ontin-uous. The equations we derive below allow for metris in the smoothness lass C0;1;but in general they do not admit solutions smoother than Lipshitz ontinuous. Itremains an open question whether solutions to these equations an be smoothed byoordinate transformation when shok waves are present.In Setion 3 we verify the equivalene of several weak formulations of the Ein-stein equations that allow for shok waves, and that are valid for metris of form(2.13), in the smoothness lass C0;1: In Setion 4, we show that these equations areweakly equivalent to a system of onservation laws with time dependent soures. In afuture paper, the authors will give an existene theory for these equations with gen-eral Cauhy data of bounded variation, thereby demonstrating the onsisteny of theEinstein equations for weak (shok wave) solutions within the lass of C0;1 metris.3. The Einstein Equations for a Perfet Fluid with Spherial Symme-try. In this setion we study the system of equations obtained from the Einsteinequations under the assumption that the spaetime metri g is spherially symmet-ri. So assume that the gravitational metri g is of the form (2.11), and to start,assume that T ij is any arbitrary stress tensor. To obtain the equations for the metriomponents A and B implied by the Einstein equations (2.1), plug the ansatz (2.13)into the Einstein equations (2.1). The resulting system of equations is obtained usingMAPLE: Ar2B �rB0B +B � 1� = �A2T 00(3.1) �BtrB = �ABT 01(3.2) 1r2 �rA0A � (B � 1)� = �B2T 11(3.3)



798 J. M. GROAH AND B. TEMPLE� 1rAB2 fBtt �A00 +�g = 2�rB T 22:(3.4)Here \prime" denotes partial di�erentiation with respet to r; and the quantity � inthe last equation is given by,� = �BAtBt2AB � B2 �BtB �2 � A0r + AB0rB+A2 �A0A �2 + A2 A0A B0B :Equations (3.1)-(3.4) represent the (0,0), (0,1), (1,1) and (2,2) omponents of Gij =�T ij ; respetively, (as indexed by T on the RHS of eah equation). The (3,3) equationis a multiple of the (2,2) equation, and all remaining omponents are identially zero.(Note that MAPLE de�nes the urvature tensor to be minus one times the urvaturetensor de�ned in (2.5).) It is sometimes onvenient to make the hange of variableA = eÆ, B = 1=(1� 2M=r); [1℄. In these variables, the Einstein equations (3.1), (3.2),and (3.3) are equivalent to �M�r = r22 A�T 00;(3.5) �M�t = �r22 A�T 01;(3.6) �Æ�r = rB�T 11 + B � 1r :(3.7)HereM(r; t) is interpreted as the total mass inside radius r at time t; and if the energydensity T 00 � 0; then (3.5) implies that M is a monotone inreasing funtion of r:We are interested in solutions of (3.1)-(3.4) in the ase when shok waves arepresent. A shok wave in the ompressible Euler equations leads to disontinuitiesin the uid density, pressure and veloity, and thus in light of (2.7), it follows that ashok wave would produe a disontinuity in the stress tensor T at a shok. But whenT is disontinuous, equations (3.1)-(3.3) above imply immediately that derivatives ofthe metri omponents A and B are disontinuous at shoks. Moreover, if A and Bhave disontinuous derivatives when shok waves are present, it follows that (3.4),being seond order, annot hold lassially, and thus equation (3.4) must be takenin the weak sense, that is, in the sense of the theory of distributions. To get theweak formulation of (3.4), multiply through by rAB2 to lear away the oeÆient ofthe highest (seond) order derivatives, then multiply through by a test funtion andintegrate the highest order derivatives one by parts. It follows that if the test funtionis in the lass C1;10 ; (that is, one ontinuous derivative that is Lipshitz ontinuous,the subsript zero denoting ompat support), and if the metri omponents A andB are in the lass C0;1; and T ij is in lass L1; then all terms in the integrand of theresulting integrated expression are at most disontinuous, and so all derivatives makesense in the lassial pointwise a.e. sense.In order to aount for initial and boundary onditions in the weak formulation,it is standard to take the test funtion � to be nonzero at t = 0 or at the spei�edboundary. In this ase, when we integrate by parts to obtain the weak formulation,the boundary integrals are non-vanishing, and their inlusion in the weak formulationrepresents the ondition that the boundary values are taken on in the weak sense.Thus, for example, if the boundary is r = r0 � 0; we say � 2 C1;10 (r � r0; t � 0) to



A SHOCK-WAVE FORMULATION OF THE EINSTEIN EQUATIONS 799indiate that � an be nonzero initially and at the boundary r = r0, thereby impliitlyindiating that boundary integrals will appear in the weak formulation based on suhtest funtions.We presently onsider various equivalent weak formulations of equations (3.1)-(3.4), and we wish to inlude the equivalene of the weak formulation of boundaryonditions in the disussion. Thus, in order to keep things as simple as possible,we now restrit to the ase of weak solutions of (3.1)-(3.4) de�ned on the domainr � r0 � 0; t � 0; and we always assume that test funtions � lie in the spae� 2 C1;10 (t � 0; r � r0), so that initial and boundary values are aounted for in theweak formulation. (This is the simplest ase in whih to rigorously demonstrate theequivalene of several weak formulations of initial boundary value problems. Moregeneral domains an be handled in a similar manner.)Note that beause (3.1)-(3.3) involve only �rst derivatives of A and B; and A;B 2C0;1; it follows that (3.1)-(3.3) an be taken in the strong sense, that is, derivativesan be taken in the pointwise a.e. sense. The ontinuity of A and B imply also thatthe initial and boundary values are taken on strongly in any C0;1 weak solution of(3:1)�(3:3): On the other hand, equation (3.4) involves seond derivatives, and so thislast equation is the only one that requires a weak formulation. The weak formulationof (3.4) is thus obtained on domain t � 0; r � r0 � 0 by multiplying through by a testfuntion � 2 C1;10 (r � r0; t � 0) and integrating by parts. This yields the followingweak formulation of (3.4):0 = Z 1r0 Z 10 �� Bt�trAB2 � Bt�r �� AtA2B2 � 2BtAB3�+ A0�0rAB2(3.8) + A0��� 1r2AB2 � A0rA2B2 � 2B0rAB3�+ �rAB2� + 2�rB �T 22� drdt� Z 1r0 Bt(r; 0)�(r; 0)rA(r; 0)B2(r; 0)dr + Z 10 A0(r0; t)�(r0; t)r0A(r0; t)B2(r0; t)dtOur �rst proposition states that the weak formulation (3.8) of equation (3.4) may bereplaed by the weak formulation of the onservation laws divT = 0, so long as A andB are in C0;1 and T ij 2 L1:Proposition 3.1. Assume that A;B 2 C0;1(r � r0; t � 0); T ij 2 L1(r � r0; t �0), and assume that A; B and T solve (3.1)-(3.3) strongly. Then A; B and T solveT 1i;i = 0; (the 1-omponent of divT = 0), weakly if and only if A; B and T satisfy(3.8).Proof. The proof strategy is to modify (3.8) and the weak form of onservationusing (3.1)-(3.3) as identities, and then observe that the two are idential at an inter-mediate stage. To begin, substitute for Bt and A0 in several plaes in (3.8) to obtainthe equivalent ondition0 = Z 1r0 Z 10 ��T 01't + �T 11'0 + ��r �' (B � 1)r2B2 �+ ' �� ��r �B � 1r2B2 �(3.9) +Btr � AtA2B2 + 2BtAB3�+A0 �� 1r2AB2 � A0rA2B2 � 2B0rAB3�+ 1rAB2�+ 2�rB T 22�� dr dt+� Z 1r0 T 01(r; 0)'(r; 0) dr + � Z 10 '(r0; t) �T 11(r0; t)B(r0; t)� 1r20B2(r0; t) � dt



800 J. M. GROAH AND B. TEMPLE= Z 1r0 Z 10 ��T 01't + �T 11'0 + ' �B0(B � 2)r2B3 + 2(B � 1)r3B2+Btr � AtA2B2 + 2BtAB3�+A0 �� 1r2AB2 � A0rA2B2 � 2B0rAB3�+ 1rAB2�+ 2�rB T 22�� dr dt+� Z 1r0 T 01(r; 0)'(x; 0) dr + � Z 10 '(r0; t)T 11(r0; t) dt:Now, the weak form of onservation of energy-momentum is given by0 = Z 1r0 Z 10 �T 01't + T 11'0 � ��ii0T 01 + �ii1T 11(3.10) +�100T 00 + 2�101T 01 + �111T 11 + 2�122T 22�'	 drdt+ Z 1r0 T 01(r; 0)'(x; 0) dr + Z 10 '(r0; t)T 11(r0; t) dt:Here, we have used the fat that T 22 = sin2 �T 33, T ij = 0 if i 6= j = 2 or 3; and�133 = sin2 ��122. Next, we alulate the onnetion oeÆients �ijk using (2.6) toobtain, �ii0 = 12 �AtA + BtB � �ii1 = 12 �A0A + B0B + 4r��000 = At2A �001 = A02A�011 = Bt2A �022 = 0 = �033�100 = A02B �101 = Bt2B�111 = B02B �122 = � rB�133 = � r sin2 �B :(3.11)Substituting the above formulas for �ijk into (3.10) and using (3.1)-(3.3) as identitiesto eliminate some of the T ij in favor of expressions involving A; B and r; we see that(3.10) is equivalent to:0 = Z 1r0 Z 10 �T 01't + T 11'0 + '� �12 �AtA + 3BtB � BtrAB2�12 �A0A + 2B0B + 4r� 1r2B2 �rA0A � (B � 1)�(3.12) � A02r2AB �rB0B + (B � 1)�+ 2� rBT 22�� drdt+ Z 1r0 T 01(r; 0)'(r; 0) dr + Z 10 '(r0; t)T 11(r0; t) dt:After some simpli�ation, it is lear that (3.9) is equal to (3.12). This ompletes theproof of Proposition 3.1.We next show that the Einstein equations (3.1)-(3.3) together with divT = 0 areoverdetermined. Indeed, we show that for weak solutions with Lipshitz ontinuousmetri, either (3.1) or (3.2) may be dropped in the sense that the dropped equationwill redue to an identity on any solution of the remaining equations, so long as the



A SHOCK-WAVE FORMULATION OF THE EINSTEIN EQUATIONS 801dropped equation is satis�ed by either the initial or boundary data, as appropriate.The following proposition addresses the �rst ase, namely, for weak solutions in whihthe metri is Lipshitz ontinuous, the �rst Einstein equation (3.1) redues to anidentity on solutions of (3.2)-(3.3), so long as (3.1) is satis�ed by the intial data.Theorem 3.2. Assume that A;B 2 C0;1 and T 2 L1 solve (3.2), (3.3) strongly,and solve divT = 0 weakly. Then if A;B; and T satisfy (3.1) at t = 0; then A, B,and T also solve (3.1) for all t > 0:Proof. We �rst give the proof for the ase when A; B and T are assumed to belassial smooth solutions of (3.2), (3.3) and divT = 0: This is followed by severallemmas neessary for the extension of this to the weak formulation, whih is given inthe �nal proposition. So to start, assume that A;B; and T are all smooth funtions,and thus solve divT = 0 strongly. For the proof in this ase, de�neH ij � Gij � �T ij :(3.13)Beause (3.2) and (3.3) hold, H01 � H11 � 0. Sine by assumption T ij;i = 0 and sineGij;i = 0 for any metri tensor as a onsequene of the Bianhi identities, it followsthat 0 = H ij;i = H ij;i + �iikHkj + �jikH ik :(3.14)In partiular, setting j = 0,0 = H i0;i = H i0;i + �iikHk0 + �0ikH ik:(3.15)By hypothesis, H i0 = 0 when i 6= 0. In addition, the onnetion oeÆients �0ik arezero unless i or k equal 0 or 1: Therefore, (3.15) redues to the linear ODE0 = H00;0 + ��ii0 + �000�H00;(3.16)at eah �xed r. By hypothesis, H00 is initially zero, and sine we assume that H00 isa smooth solution of (3.16), it follows that H00 must ontinue to be zero for all t > 0:Next, assume only that A;B 2 C0;1 and T 2 L1 so that (3.2), (3.3) hold strongly,(that is, in a pointwise a.e. sense), but that divT = 0 is only known to hold weakly.In this ase, the argument above has a problem beause when g 2 C0;1; the Einsteintensor G; viewed as a seond order operator on the metri omponents A and B;an only be de�ned weakly when A and B are only Lipshitz ontinuous. It followsthat the Bianhi identities, and hene the identity divG = 0; (whih involves �rstorder derivatives of the omponents of the urvature tensor), need no longer be valideven in a weak sense. Indeed, G an have delta funtion soures at an interfae atwhih the metri is only Lipshitz ontinuous, .f. [15℄. However, the above argumentonly involves the 0'th omponent of divG = 0; and the 0'th omponent of divG =0 involves only derivatives of the omponents Gi0; and as observed in (3.1), (3.2),these omponents only involve �rst derivatives of A and B: Spei�ally, the weakformulation of G0i;i = 0 is given by,0 = Z 1r0 Z 10 ���iGi0 + � ��iikGk0 + �0ikGik�	 drdt(3.17) � Z 1r0 �(r; 0)G00(r; 0)dr � Z 10 �(r0; t)G10(r0; t)dt;



802 J. M. GROAH AND B. TEMPLEand sine, by (3.1), (3.2), Gi0 involves only �rst order derivatives of A and B; itfollows that the integrand in (3.17) is a lassial funtion de�ned pointwise a.e. whenA;B 2 C0;1: But (3.17) is identially zero for all smooth A and B beause divG = 0is an identity. Thus, when A;B 2 C0;1; we an take a sequene of smooth funtionsA�; B� that onverge to A and B in the limit � ! 0; (.f. Theorem 3.4 below), suhthat the derivatives onverge a.e. to the derivatives of A and B: It follows that wean take the limit �! 0 (3.17) and onlude that (3.17) ontinues to hold under thislimit. Putting this together with the fat that divT = 0 is assumed to hold weakly,we onlude that H0i;i = (G0i � T 0i) ;i = 0;in the weak sense, whih means that H00 is in L1 and satis�es the ondition0 = Z 1r0 Z 10 ���0H00 + � ��ii0 + �000�H00	 drdt(3.18) � Z 1r0 �(r; 0)G00(r; 0)dr � Z 1r0 �(r; 0)H00(r0; t)dr:Therefore, to omplete the proof of Theorem 3.2, we need only show that if A, Band T solve (3.2), (3.3) lassially and divT = 0 weakly, then a weak L1 solutionH00; (i.e., that satis�es (3.18)), of (3.16) must be zero almost everywhere if it is zeroinitially. Thus it suÆes to prove the following proposition:Proposition 3.3. Assume that H; f 2 L1lo(R � R): Then every L1lo weaksolution to the initial value problemHt + fH = 0H(x; 0) = H0(x):(3.19)with initial data H0 � 0 is unique, and identially equal to zero a.e., for all t > 0:Proof. We use the following standard theorem, [4℄,Theorem 3.4. Let U be any open subset of Rn: Then u 2W 1;1lo (U) if and onlyif u is loally Lipshitz ontinuous in U; in whih ase the weak derivative of u agreeswith the lassial pointwise a.e derivative as a funtion in L1lo(U):Corollary 3.5. Let u and f be real valued funtions, u; f : R ! R; suh thatu; f 2 L1[0; T ℄; and u is a weak solution of the initial value problemut + fu = 0;u(0) = 0;(3.20)on the interval [0; T ℄: Then u(t) = 0 for all t 2 [0; T ℄:Proof of Corollary. Statement (3.20) says that the distributional derivative utagrees with the L1 funtion fu on the interval [0; T ℄; and thus we know that u 2W 1;1lo (0; t): Therefore, by Theorem 3.4, u is loally Lipshitz ontinuous on (0; T );and the weak derivative ut agrees with the pointwise a.e. derivative of u on (0; T ):Thus it follows from (3.20) that on any sub-interval [a; b℄ of [0; T ℄ on whih u 6= 0; wemust have ddt [lnu℄ = utu = �f; a:e:(3.21)



A SHOCK-WAVE FORMULATION OF THE EINSTEIN EQUATIONS 803Moreover, sine u is Lipshitz ontinuous, both u and ln(u) are absolutely ontinuouson [a; b℄; so we an integrate (3.21) to see thatu(t) = u(a)e�R t0 f(�)d�;(3.22)for all t 2 [a; b℄: But u is ontinuous, so (3.22) applies in the limit that a dereasesto the �rst value of t = t0 at whih u(t0) = 0: Thus (3.22) implies that u(t) = 0throughout [a; b℄; and hene we must have u(t) = 0 for all t 2 [0; T ℄; and the Corollaryis true.The proof of Proposition 3.3 now follows beause it is easy to show that if His an L1 weak solution of (3.19), then H(x; �) is a weak solution of the salar ODEHt + fH = 0 for almost every x. (Just fator the test funtions into produts of theform �1(t)�2(x):)Using Proposition 3.3, we see that if equation (3.1) holds on the initial data fora solution of (3.2), (3.3), and divT = 0, then equation (3.1) will hold for all t. By asimilar argument, it follows that if (3.2) holds for the boundary data of a solution to(3.1), (3.3), and divT = 0, then (3.2) will hold for all r and t. We reord this in thefollowing theorem:Theorem 3.6. Assume that A;B 2 C0;1 and T 2 L1 solve (3.1), (3.3) strongly,and solve divT = 0 weakly, in r � r0; t � 0. Then if A;B; and T satisfy (3.2) atr = r0; then A, B, and T also solve (3.1) for all r > r0:4. The Spherially Symmetri Einstein Equations Formulated as a Sys-tem of Hyperboli Conservation Laws with Soures. Conservation of energyand momentum is expressed by the equations0 = (divT )j = T ij;i= T ij;i + �iikT kj + �jikT ik;whih, in the ase of spherial symmetry, an be written as the system of two equa-tions: 0 = T 00;0 + T 01;1 + �iikT k0 + �0ikT ik(4.1) 0 = T 01;0 + T 11;1 + �iikT k1 + �1ikT ik:(4.2)Substituting the expressions (3.11) for the onnetion oeÆients (2.6) into (4.1) and(4.2), gives the equivalent system0 = T 00;0 + T 01;1 + 12 �2AtA + BtB �T 00 + 12 �3A0A + B0B + 4r�T 01(4.3) +Bt2AT 110 = T 01;0 + T 11;1 + 12 �AtA + 3BtB �T 01 + 12 �A0A + 2B0B + 4r�T 11(4.4) + A02BT 00 � 2 rBT 22:Now if one ould use equations to eliminate the derivative terms At; A0; Bt and B0 in(4.3) and (4.4) in favor of of expressions involving the undi�erentiated unknowns A; B



804 J. M. GROAH AND B. TEMPLEand T , then system (4.3), (4.4) would take the form of a system of onservation lawswith soure terms. Indeed, T 00 and T 01 serve as the onserved quantities, T 10 and T 11are the uxes, and what is left, written as a funtion of the undi�erentiated variables(A;B; T 00; T 01), would play the role of a soure term. (For example, in a frationalstep sheme designed to simulate the initial value problem, the variables A and Bould be \updated" to time tj +�t by the supplemental equations (3.1) and (3.3) or(3.2) and (3.3) after the onservation law step is implemented using the known valuesof A and B at time tj : The authors will arry this out in detail in a subsequent paper.)The system then loses one one writes T 11 as a funtion of (A;B; T 00; T 01). Thereis a problem here, however. Equations (3.1)-(3.3) an be used to eliminate the termsAr; Bt and Br; but (4.3) and (4.4) also ontain terms involving At, a quantity that isnot given in the initial data and is not diretly evolved by equations (3.1)-(3.3). Theway to resolve this is to inorporate the At term into the onserved quantities. Forgeneral equations involving At; this is not possible. A natural hange of T variablesthat eliminates the At terms from (4.3), (4.4), is to write the equations in terms ofthe values that T takes in at Minkowski spae. That is, de�neT 00 = AT 00M ;T 01 = pABT 01M ;(4.5) T 11 = BT 11M ;where the subsript denotes Minkowski. In the ase of a perfet uid, TM takes theform T 00M = �(p+ �2) 22 � v2 � p� ;T 01M = (p+ �2) v2 � v2 ;(4.6) T 11M = �(p+ �2) v22 � v2 + p� ;where v denotes the uid speed as measured by an inertial observer �xed with re-spet to the radial oordinate r: (We disuss (4.6) in more detail in the last setion.)Substituting (4.5) into (4.3), (4.4), the At terms anel out, and we obtain the system0 = �T 00M 	;0 +(rABT 01M);1 + 12 BtB �T 00M + T 11M �(4.7) +12rAB �A0A + B0B + 4r�T 01M0 = �T 01M 	;0 +(rABT 11M);1 + 12rAB �2 BtpABT 01M +�B0B + 4r�T 11M(4.8) +A0A T 00M � 4rT 22� :The following proposition states that system (4.7), (4.8) is equivalent, (in the weaksense), to the original system divT = 0:Proposition 4.1. If A and B are given Lipshitz ontinuous funtions de�nedon the domain r � r0; t � 0; then TM is a weak solution of (4.7) and (4.8) if andonly if T is a weak solution of divT = 0 in this domain.



A SHOCK-WAVE FORMULATION OF THE EINSTEIN EQUATIONS 805Proof. For simpliity, and without loss of generality, take the weak formulationwith test funtions ompatly supported in r > r0; t > 0; so that the boundaryintegrals do not appear in the weak formulations. (Managing the boundary integralsis straightforward.) The variables T ijM solve (4.7) weakly if0 = Z 1r0 Z 10 (�T 00't �rABT 01'r+"12 BtB �T 00 + T 11�+ 12rAB �A0A + B0B + 4r�T 01#') dr dt= Z 1r0 Z 10 ��T 00MA't � T 01MA'r(4.9) + �12 BtB �AT 00M +BT 11M �+ 12A�A0A + B0B + 4r�T 01M �'� dr dt:Set  = A', whereby A't =  t � AtA  . Using this hange of test funtion, (4.9)beomes0 = Z 1r0 Z 10 ��T 00 t + T 00AtA  � T 01 0 + T 01A0A  (4.10) + �12 BtB �T 00 + BAT 11�+ 12 �A0A + B0B + 4r�T 01� � dr dt:= Z 1r0 Z 10 ��T 00 t � T 01 0 + �12 �2AtA + BtB �T 00+12 �3A0A + B0B + 4r�T 01 + Bt2AT 11� � dr dt;whih is the weak formulation of (4.3). We dedue that TM solves (4.7) for everyLipshitz ontinuous test funtion ' if and only if T solves (4.10), (the weak form ofT 0i;i = 0), for all Lipshitz ontinuous test funtions  : That weak solutions of (4.8)are weak solutions of T 1i;i = 0 follows by a similar argument.It is now possible to use equations (3.1)-(3.3) as identities to substitute for deriva-tives of metri omponents A and B; thereby eliminating the orresponding derivativesof A and B from the soure terms of equations (4.7), (4.8). Doing this, we obtain thefollowing system of equations:�T 00M 	;0 +(rABT 01M);1 = �2rrABT 01M ;(4.11) �T 01M 	;0 +(rABT 11M);1 = �12rAB �4r T 11M + B � 1r (T 00M � T 11M )(4.12) +2�rB �T 00M T 11M � (T 01M )2�� 4rT 22	 :However, depending on the hoie of equation to drop, either (3.1) or (3.2), it is notlear that if we use the dropped equation to substitute for derivatives in (4.7), (4.8),that the resulting system of equations will imply that divT = 0 ontinues to hold, theassumption we based the substitution on in the �rst plae. The following theoremstates that (4.11), (4.12) is equivalent to divT = 0 in the weak sense:



806 J. M. GROAH AND B. TEMPLETheorem 4.2. Assume that A;B are Lipshitz ontinuous funtions, and thatT 2 L1; on the domain r � r0; t � 0: Assume also that (3.1) holds at t = 0; andthat (3.2) holds at r = r0: Then A;B; T are weak solutions of (3.1), (3.2), (3.3) anddivT = 0 if and only if A;B; TM are weak solutions of either system (3.1), (3.3),(4.11), (4.12), or system (3.2), (3.3), (4.11), (4.12).Proof. Without loss of generality, we onsider the ase when we drop equation(3.2), and use (3.1), (3.3) and divT = 0 to evolve the metri, and we ask whether wean take the modi�ed system (4.11) and (4.12) in plae of divT = 0: In this ase, wemust justify the use of (3.2) in eliminating the Bt terms in going from divT = 0 tosystem (4.11) and (4.12). That is, it remains only to show that equations (3.1) and(3.3) together with system (4.11) and (4.12) imply that (3.2) holds, assuming (3.2)holds at r = r0. (If so, then by substitution, it then follows that divT = 0 also holds.)Note that we an almost reonstrut (4.3), the �rst omponent of divT = 0; byreverse substituting (3.1), (3.3) into (4.11). To see this, �rst note that we an add(3.1) and (3.3) to obtain A0A + B0B � rB�(T 00M + T 11M ) = 0:(4.13)Equation (4.13) is an identity that we may add to (4.11) to obtain0 = �T 00M 	;0 +(rABT 01M);1 � 12rpAB� �T 00M + T 11M �T 01M+12rAB �A0A + B0B + 4r�T 01M :(4.14)Adding and subtrating 12 BtB �T 00M + T 11M �(4.15)to the RHS of (4.14) and usingH01 = �BtrB �pAB�T 01M ;(4.16)(.f. (3.2) and (3.13)), we have0 = �T 00M 	;0 +(rABT 01M);1 + 12rAB �A0A + B0B + 4r�T 01M+12 BtB �T 00M + T 11M �+ 12r �T 00M + T 11M �H01:(4.17)Note that all but the last term on the RHS of (4.17) is equal to the �rst omponentof divT; and so T 0i;i = �12r �T 00M + T 11M �H01:Therefore, if A, B, and TM are solutions to (3.1), (3.3), (4.17), and (4.4), it followsthat H i0;i = Gi0;i � �T i0;i(4.18) = �rB2T 112 H01;



A SHOCK-WAVE FORMULATION OF THE EINSTEIN EQUATIONS 807beause Gi0;i = 0 is an identity. But H00 � 0 holds beause we assume (3.1), andhene (4.18) implies that H01;1 + fH01 = 0;where f � �ii1 + 2�101 � � rB2T 112 2 L1. Sine we assume that H01 = 0 on theboundary r = r0; it follows from Corollary 3.5 that H01 � 0.It remains to identify onditions under whih T 11M is a funtion of (T 00M ; T 01M )assuming that T has the form of a stress tensor for a perfet uid, (4.6). A alulationshows that, in this ase, the following simpli�ations our:T 00M � T 11M = �2 � p;(4.19) T 00M T 11M � (T 01M )2 = p�2:(4.20)Using (4.19) and (4.20) we see that only the �rst terms on the RHS of (4.11), (4.12)depend on v; and the only term that is not linear in � and p is the third term on theRHS of (4.12). We state and prove the following theorem:Theorem 4.3. Assume that 0 < p < �2; 0 < dpd� < 2: Then T 11M is a funtionof T 00M and T 01M so long as (�; v) lie in the domain D = f(�; v) : 0 < �; jvj < g:Proof. We may write (4.19) and (4.20) in the formT 00M � T 11M = f1(�);(4.21) T 00M T 11M � (T 01M )2 = f2(�):(4.22)Sine df1d� = 2 � p0 � 2 � �2 > 0, it follows that the funtion f1 is one-to-one withrespet to �: Also, df2d� = p0�2 + p2 � p2 > 0, so the funtion f2 is also one-to-onein �: Consequently, the funtion h = f2 � f�11 is one-to-one, and thusT 00M T 11M � (T 01M )2 = h(T 00M � T 11M ):(4.23)Now introdue the linear and invertible hange of variablesx = T 00M � T 11M ; y = T 01M , z = T 11M , whereby (4.23) beomes(x + z)z � y2 = h(x):(4.24)Equation (4.24) is quadrati in z, and so we may solve it diretly, obtainingz = �x�px2 + 4(y2 + h(x))2 :(4.25)From (4.25), we onlude that for any (x; y), there are two values of z, though onlyone of these will orrespond to values of � and v in the domain D. That is, sinex = T 00M � T 11M = �2 � p > 0;(4.26)and z = T 11M > 0, it follows that there is at most one solution of (4.25) in the domainD, namely z = �x+px2 + 4(y2 + h(x))2 :(4.27)



808 J. M. GROAH AND B. TEMPLEWe onlude that if (�; v) lies in the domain D, then for eah value of T 00M and T 01M ;there exists preisely one value of T 11M .A alulation shows that in the ase p = �2�; � = onstant; the formula for T 11Min terms of (T 00M ; T 01M ) is given byT 11M = 1 + 2K2K (T 00M �s(T 00M )2 � 4K(1 + 2K)2 �K(T 00M )2 + (T 01M )2�)(4.28)where K = �22(2 � �2)2 :(4.29)5. Statement of the General Problem. Our results onerning the weak for-mulation of the Einstein equations (3.1)-(3.4) assuming spherial symmetry given inTheorem 4.2 an be summarized as follows. Assume that A;B are Lipshitz ontin-uous funtions, and that T 2 L1; on the domain r � r0; t � 0: Then (3.1)-(3.4) areequivalent to two di�erent systems whih take the form of a system of onservationlaws with soure terms. In the �rst ase, we have shown that weak solutions of thesystem (3.1), (3.3) together with equations (4.7), (4.8) (for divT = 0), will solve (3.1)-(3.4) weakly, so long as (3.2) holds at r = r0: This redues the Einstein equationswith spherial symmetry to a system of equations of the general formut + f(u;A;B)x = h1(u;A;B;A0; Bt; B0; x);(5.1) Ax = h2(u;A;B; x);(5.2) Bx = h3(u;A;B; x);(5.3)where u = (T 00M ; T 01M ) agree with the onserved quantities that appear in the onser-vation law divTM = 0 in at Minkowski spae. (Here \prime" denotes ��x sine weare using x in plae of r:) It is then valid to use equations (3.1)-(3.3) to eliminateall derivatives of A and B from the RHS of system (5.1), by whih we obtain thesystem (3.1), (3.3), (4.11), (4.12), a system that loses to make a nonlinear system ofonservation laws with soure terms, taking the general formut + f(u;A;B)x = h1(u;A;B; x);(5.4) Ax = h2(u;A;B; x);(5.5) Bx = h3(u;A;B; x):(5.6)Weak solutions of (5.4) will satisfy (3.2) so long as (3.2) is satis�ed on the boundaryr = r0:In the seond ase, we have shown that weak solutions of the system (3.2), (3.3)together with equations (4.7), (4.8) (for divT = 0), will solve (3.1)-(3.4) weakly,so long as (3.1) holds at t = 0: This redues the Einstein equations with spherialsymmetry to an alternative system of equations of the general formut + f(u;A;B)x = h1(u;A;B;A0; Bt; B0; x);(5.7) Ax = h2(u;A;B; x);(5.8) Bt = h3(u;A;B; x):(5.9)It is then valid to use equations (3.1)-(3.3) to eliminate all derivatives of A and Bfrom the RHS of system (5.7), by whih we obtain the system (3.2), (3.3), (4.11),



A SHOCK-WAVE FORMULATION OF THE EINSTEIN EQUATIONS 809(4.12), a system that loses to make a nonlinear system of onservation laws withsoure terms, taking the general formut + f(u;A;B)x = h1(u;A;B; x);(5.10) Ax = h2(u;A;B; x);(5.11) Bt = h3(u;A;B; x):(5.12)Weak solutions of (5.10) will satisfy (3.1) so long as (3.1) is satis�ed at t = 0:6. Wave Speeds. In this setion we onlude by alulating the wave speeds as-soiated with system (4.11)-(4.12). Beause A and B enter as undi�erentiated soureterms, it follows from (4.11)-(4.12) that for spherially symmetri ow, the only wavespeeds in the problem will be the harateristi speeds for the uid. Loosely speak-ing, the gravitational �eld is \dragged along" passively by the uid when spherialsymmetry is imposed. From this we onlude that there is no lightlike propagation,(that is, no gravity waves), in spherial symmetry, even when there is matter present.(This is the onlusion of Birko�'s theorem for the empty spae equations, [20℄.)The easiest way to alulate the wave speeds for the uid is from the Rankine-Hugoniot jump onditions in the limit as the shok strength tends to zero. To start,note that the omponents of the 4-veloity for a spherially symmetri uid (2.7) areu0 = dtds , u1 = drds , u2 = u3 = 0. Sine �1 = g(u; u), the omponents u0 and u1 arenot independent, and in partiular, �1 = �(u0)2A+ (u1)2B. We de�ne uid speed vas the speed measured by an observer �xed in (t; r) oordinates. That is, the speed isthe hange in distane per hange in time as measured in an orthonormal frame withtimelike vetor parallel to �t and spaelike vetor parallel to �r: It follows that thespeed is given by v = x=a; whereu = a �tp�g00 + x �rpg11 :(6.1)Taking the inner produt of u with �t and then with �r, we �nd that a = u0p�g00and x = u1pg11, and hene v = u1u0rBA ;(6.2)whereby, (u0)2 = 1A(2 � v2) :(6.3)Using (6.2) and (6.3) in (2.7), it follows that the omponents of the energy-momentumtensor take the following simpli�ed form, whih is valid globally in the (t; r) oordinatesystem: T 00 = 1A �(p+ �2) 22 � v2 � p�T 01 = 1pAB (p+ �2) v2 � v2T 11 = 1B �(p+ �2) v22 � v2 + p� :



810 J. M. GROAH AND B. TEMPLENote that these omponents are equal to the omponents of the stress tensor in atMinkowski spae, times fators involving A and B that aount for the fat that thespaetime is not at. SettingT 00M = �(p+ �2) 22 � v2 � p� ;T 01M = (p+ �2) v2 � v2 ;T 11M = �(p+ �2) v22 � v2 + p� ;it follows that T 00 = T 00M =A;T 01 = T 01M =pAB;(6.4) T 11 = T 11M =B:The Rankine-Hugoniot jump onditions ares[T 00M ℄ =rAB [T 01M ℄;(6.5) s[T 01M ℄ =rAB [T 11M ℄:(6.6)From (6.5)-(6.6), we dedue that wave speeds for the system (4.11)-(4.12) are pA=Btimes the wave speeds in the Minkowski metri ase, and this holds globally through-out the (t; r) oordinate system. (See [14℄.) Eliminating s from (6.5) and (6.6), yields[T 01M ℄2 = [T 00M ℄[T 11M ℄:(6.7)Now take the left uid state on a shok urve to be (�l; vl), and the right uid stateto be (�; v). For a spherially symmetri perfet uid, (6.7) de�nes the right veloityv as a funtion of the right density �. Then to obtain the uid wave speeds, justsubstitute this funtion into (6.5), solve for s, and take the limit as �! �l: Followingthis proedure, (6.7) simpli�es to(v � v0)2(2 � v2)(2 � v20) = [p℄[�℄(p+ �2)(p0 + �02) :(6.8)Note that equation (6.8) an be written as a quadrati in v, and hene there are twosolutions. The `+'solutions will yield the 2-shoks, and the `-' the 1-shoks. Dividingboth sides of (6.8) by (�� �0)2 and taking the limit as �! �0, we see thatdpd� = (p+ 2�)2(2 � v2)2 �dvd��2 :(6.9)Solving (6.6) for s we obtain,s =rAB h(p+ �2) v22�v2 + pih(p+ �2) v2�v2 i ;(6.10)



A SHOCK-WAVE FORMULATION OF THE EINSTEIN EQUATIONS 811and taking the limit as �! �0, we obtain�� =rAB h(p0 + 2) v22�v2 + (p+ �2) 2vv0(2�v2)+2v3v0(2�v2)2 + p0ih(p0 + 2) v2�v2 + (p+ �2) v0(2�v2)+2v2v0(2�v2)2 i ;=rAB h(p0 + 2) v22�v2 + (p+ �2) 22vv0(2�v2)2 + p0ih(p0 + 2) v2�v2 + (p+ �2) v0(2+v2)(2�v2)2 i :(Here the plus/minus on RHS is determined by the two possible signs of v0 = dv=d�as allowed by (6.9).) After substituting for dv=d� using (6.9), and simplifying, weobtain �� =rAB �(p0 + 2) v22�v2 � 22vpp0(2�v2) + p0��(p0 + 2) v2�v2 � (2+v2)pp0(2�v2) � ;=rAB �(p0 + 2)v2 � 22vpp0 + p0(2 � v2)��(p0 + 2)v � (2 + v2)pp0� ;= rAB �v2 � 2vpp0 + p0��vp0 � (2 + v2)pp0 + 2v� ;= rAB �v �pp0�2�v �pp0� �2 � vpp0� :This gives the wave speeds as: �� = rAB pp0 � vvpp0 � 2 :(6.11)(For example, the formula for �� results from hoosing `-' in (6.8).) The followingtheorem demonstrates that the system (4.11)-(4.12) is stritly hyperboli wheneverthe partiles are moving at less than the speed of light:Proposition 6.1. Assume that jvj < ;so that the partile trajetory has a timelike tangent vetor. Then wave speeds for thegeneral relativisti Euler equations (4.11)-(4.12) satisfy �� < �+:Proof. To determine where the wave speeds are equal, set �� equal to �+ andsolve for v to obtain v2 = 2. Next, substitute v = 0 into �� and �+ to verify that�� < �+ when v2 < 2A=B. Proposition 6.1 follows diretly.As a �nal omment, we note that Proposition 6.1 is true beause it is true in a loallyinertial oordinate system entered at any point P in spaetime. Indeed, in suh aoordinate system, the onnetion oeÆients vanish at P; and the metri omponentsmath those of the Minkowski metri to �rst order in a neighborhood of P: As aresult, the general relativisti Euler equations redue to the lassial relativisti Eulerequations at P: Sine it is known in speial relativity that the Euler equations are
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