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A SHOCK-WAVE FORMULATION OF THE EINSTEIN EQUATIONS*

JEFFREY M. GROAH! AND BLAKE TEMPLE?}

Abstract. We derive a weak (shock wave) formulation of the Einstein equations for a perfect
fluid assuming spherical symmetry. Our purpose is to provide a framework for the weak equations
that makes them amenable to mathematical methods developed for the study of shock waves in
nonlinear conservation laws.

1. Introduction. We derive a weak formulation of the Einstein equations for
a perfect fluid under the assumption of spherical symmetry. The weak formulation
is required in order to allow for the presence of shock wave discontinuities in the
fluid variables. We assume the standard gauge, and we show that in the resulting
coordinates, the weak formulation of the initial value problem for the Einstein equa-
tions is valid for metrics that are only Lipschitz continuous: that is, valid for metrics
that lie in the space C%', the space of continuous functions with bounded difference
quotients, (and hence Holder exponent one, [13]). Moreover, we show that in the
standard gauge, the metric can in general be no smoother than Lipschitz continuous
when shock waves are present. To clarify this, note that if T is discontinuous across a
smooth 3-dimensional surface X, then the Einstein equations G = kT imply that the
curvature tensor G will also have discontinuities across the surface. Since G involves
second derivatives of the metric tensor g, one expects that g should be continuously
differentiable at shock waves, with bounded second derivatives on either side, (that is,
g € CH1), in order that the equation G = T will hold in the classical, pointwise a.e.
sense at the shocks. However, it is known that shock-wave solutions of the Einstein
equations make sense under the assumption that the metrics match only Lipschitz
continuously at a shock surface, that is, ¢ € C%!'. But in this case, the Lipschitz
continuous matching of the metric alone is not enough to guarantee conservation at
a shock, and an additional condition must be imposed to rule out the possibility that
there are delta function sources in T on the shock surface, [8, 15].

Our analysis shows that for spherically symmetric solutions of G = &7, it is in
general not possible to have metrics smoother than Lipschitz continuous, (that is,
smoother than C%! at shocks), when the metric is written in the standard gauge. In
this paper, we show that the weak formulation is nonetheless consistent for metrics
in the lower smoothness class C%!. This helps explain why the Oppenheimer-Snyder
solution, [12], and its shock wave generalizations, [15, 16], involve metrics that are
matched only Lipschitz continuously at an interface. Thus our results imply that
when shock-waves are present, we cannot expect metrics to be smoother than these
examples in the standard gauge.

The aim of this paper is to formulate the Einstein equations as a system of
conservation laws with source terms. For this reason, the discussion is written to
be accessible to experts in the mathematical theory of shock waves and conservation
laws, [9, 5, 13]. The work here is preparatory for a subsequent paper in which the
authors will give a rigorous local existence theory for shock wave solutions of these
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equations based on a modified Glimm method, [6]. An analysis of the large time
behavior of solutions to these equations would, in particular, address the issue of
black-hole formation in general relativity.

2. Preliminaries. In Einstein’s theory of general relativity, all properties of the
gravitational field are determined by an indefinite Lorentzian metric g, of signature
(-1,1,1,1), defined on a four dimensional manifold M called Spacetime. In general
relativity, gravitational “forces” are identified with spacetime curvature, (as measured
by the Riemann curvature tensor of the metric g), and the energy and momentum
densities and their fluxes are the sources of spacetime curvature. In 1915, Albert Ein-
stein began the subject of general relativity by introducing the Einstein gravitational
field equations—the equations that describe the simultaneous evolution of the gravi-
tational metric g together with the sources. The Einstein equations can be expressed

in the compact form [20],
(2.1) G = kT.

Here G denotes the Einstein curvature tensor for metric g, and 7' denotes the stress-
energy tensor, the source of the gravitational field. Both G and T are symmetric
tensors of rank 2. The components of the Einstein curvature tensor are given in terms
of the components ;kl of the Riemann curvature tensor by

1
(2.2) Gij = Rij — 5193
where R;; denotes the Ricci tensor

(2.3) Ri; = R?

0]
and R denotes the Ricci scalar curvature
(2.4) R=R].

The components of the Riemann curvature tensor in a given coordinate system x
are determined from second order derivatives of the metric tensor g;;(z) through the
formulas

(2.5) i = U — Dy + {F}Tl ok — ?krfrl} )
where the Christoffel symbols, (connection coefficients), involve first order derivatives

of the metric, given by

. 1 .
(2.6) ;k = 59“ {—9jk.oc + Gojk + Gio,j}-

(We assume the Einstein summation convention whereby repeated up-down indices
are to be summed from 0-3, and indices are raised and lowered by the metric, c.f.
[20].) In the case of a perfect fluid, the stress tensor takes the special form

(2.7) Tij = (p + p)uiuj + pgij,

where p denotes the pressure, p the mass-energy density (as measured in the Lorentzian
frame moving with the particle), and u is the 4-velocity of the fluid. The four velocity
u, (in the tangent space T'M), is the unit vector tangent to the particle path at a
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given point—that is, the components of u are equal to the derivative of the coordinate
parameterization of the particle path taken with respect to arclength, and hence u is
a unit vector relative to the spacetime metric g at each point:

(2.8) g(u,u) = giju'u? = —1.

The Einstein tensor G is constructed so that divG = 0 holds identically as a
consequence of the Bianchi identities of geometry, [20], and thus

(2.9) divT = 0,

is a consequence of the Einstein equations (2.1) alone. Here we take the covariant
divergence so that it agrees with the classical divergence at the center of a locally
inertial coordinate system, [15]:

(2.10) divT =T
=TY + T4, T + T T,

As usual, the comma denotes ordinary partial derivative, and semicolon denotes co-
variant derivative. It follows from (2.6) that F;k = 0 in flat Minkowski space, or to
leading order in a locally inertial coordinate system, (that is, a coordinate system
centered at a point where g;; = diag(—1,1,1,1), g;jx = 0, for all i,j,k). In these
limits, the covariant divergence reduces to the classical divergence, and (2.9) reduces
to the classical relativistic compressible Euler equations when T is given by (2.7),
[15]. Tt follows that the compressible Euler equations are a subsystem of the Einstein
equations (2.1), (2.7). It is well known that the theory of the initial value problem for
the compressible Euler equations is incomplete unless shock waves are incorporated
into the solutions, [5, 13], and this strongly suggests that the same must be true for
the Einstein equations for a perfect fluid. In this paper we derive a weak (shock wave)
formulation of (2.1), (2.7) that applies to spherically symmetric solutions written in
the standard coordinate gauge.

A spacetime metric g is said to be spherically symmetric if it takes the general
form, [20, 19, 7, 11],

(2.11) ds® = gijdz'dx’ = —A(r,t)dt* + B(r,t)dr* + 2D(r,t)dtdr + C(r, t)dQ>.

Here the components A, B, C' and D of the metric are assumed to be functions of
the radial and time coordinates r and t alone, dQ? = df? + sin®(#)d¢> denotes the
line element on the 2-sphere, and x = (2°,...,23) = (¢, 7,6, ¢), denotes the underlying
coordinate system on spacetime. (To keep track of units, we put factors of ¢ in, but
to reduce the proliferation of symbols, we also use the convention ¢ = z° instead of
the usual ¢t = 20. This can be interpreted as ¢ = 1.) In this case we assume that the
4-velocity w is radial, by which we mean that the z-components of u are given by

(2.12) u’ = (u®(r,t),u (r,1),0,0), i=0,..,3, respectively,

3

for some functions u® and u'.
Now it is well known that in general there exists a coordinate transformation

(r,t) — (7,t) that takes an arbitrary metric of form (2.11) over to one of form, c.f.,

(2.13) ds® = gijdz'dr? = —A(r,t)dt* + B(r,t)dr* + r*dQ*.
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A metric of form (2.13) is said to be in the standard coordinate gauge, and it is our
purpose here to establish the weak formulation of the Einstein equations for metrics
of the form (2.13) in the case when A and B are finite, and satisfy AB # 0. It follows
from our formulation that the Einstein equations together with the assumption (2.13)
imply that the metric components A and B are only Lipschitz continuous at shock
waves, that is, A and B are one degree less smooth than the general theory suggests
they should be.

The general problem of making sense of gravitational metrics that are only Lips-
chitz continuous at shock surfaces was taken up in [16]. The analysis there identifies
conditions that must be placed on the metric in order to insure that conservation
holds at the shock, and that there do not exist delta-function sources at the shock,
[8]. When these conditions are met, the methods in [16] imply the existence of a C'!
coordinate transformation that improves the level of smoothness of the metric com-
ponents from C%! up to C!+! at the shock. However, the results in [16] apply only to
smooth interfaces that define a single shock surface for which G = 7" holds identically
on either side. For general shock wave solutions of the form (2.13), (that can contain
multiplicities of interacting shock waves), it is an open question whether there exists
a coordinate transformation, (say to a metric in the more general class (2.11)), that
can increase the level of smoothness of the metric components by one order. For this
reason, we now show that the mapping (r,t) — (7,%) that takes an arbitrary metric
of form (2.11) over to one of form (2.13), implies a loss of one order of differentiability
in the metric components when shock waves are present. This argues that our results
are consistent with the existence of such a smoothing coordinate transformation, but
still leaves open the problem of the existence of such a transformation.

Thus we now review the construction of the mapping (r,t) — (r,%) that takes
an arbitrary metric of form (2.11) over to one of form (2.13), c.f., [20]. To start, one
must assume that the metric component C(t,7) in (2.11) satisfies the condition that
for each fixed ¢, C increases from zero to infinity as r increases from zero to infinity,

and that
(2.14) 20(7‘ t)#£0
' or ’ '

(These are not unreasonable assumptions considering that C' measures the areas of
the spheres of symmetry.) Define

(2.15) P = \/C(r1).

Then the determinant of the Jacobian of the mapping (r,t) — (7, t) satisfies

= %\/C(nt) #0,

in light of (2.14). Thus the transformation to (r,¢) coordinates is a nonsingular
transformation, and in (7,¢) coordinates the metric (2.11) takes the form

or
or

(2.16) ds> = —A(r,t)dt> + B(r,t)dr® + 2E(r, t)dtdr + r*dQ>.

(Here we have replaced 7 by r and A, B and E stand in for the transformed compo-
nents.) It is easy to verify that, to eliminate the mixed term, it suffices to define the
time coordinate ¢ so that, cf. [20],

(2.17) dt = ¢(r,t) {A(r,t)dt — E(r,t)dr} .
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In order for (2.17) to be exact, so that ¢ really does define a coordinate function, the
integrating factor ¢ must be chosen to satisfy the (linear) PDE

(2.18) A0, DA, )} = 2 {6, OB, 1)}

But we can solve (2.18) for ¢(r,t) from initial data ¢(r,#g), by the method of charac-
teristics. From this it follows that, (at least locally), we can transform metrics of form
(2.11) over to metrics of form (2.13) by coordinate transformation. To globalize this
procedure, we need only assume that C,(t,7) # 0, and that C takes values from zero
to infinity at each fixed t. Now note that in general ¢(r,t), the solution to (2.18), will
have the same level of differentiability as A(r,t) and E(r,t); and so it follows that the
components of dt and dr in (2.17) will have this same level of differentiability. This
implies that the ¢ transformation defined by (2.17) preserves the level of smoothness
of the metric component functions. On the other hand, the 7 transformation in (2.15)
reduces the level of differentiablility of the metric components by one order. Indeed,
the level of smoothness of the transformed metric component functions are in general
no smoother than the Jacobian that transforms them, and by (2.15), the Jacobian of
the transformation contains the terms C, and C; which will in general be only C°!
when C' € C"'. Thus, if we presume, (motivated by [15]), that for general spherically
symmetric shock wave solutions of G = kT, that there exists a coordinate system in
which the metric takes the form (2.11), and the components of g in these coordinates
are Cb! functions of these coordinates, then it follows that we cannot expect the
transformed metrics of form (2.13) to be better than C%!, that is, Lipschitz contin-
uous. The equations we derive below allow for metrics in the smoothness class C%!,
but in general they do not admit solutions smoother than Lipschitz continuous. It
remains an open question whether solutions to these equations can be smoothed by
coordinate transformation when shock waves are present.

In Section 3 we verify the equivalence of several weak formulations of the Ein-
stein equations that allow for shock waves, and that are valid for metrics of form
(2.13), in the smoothness class C%'. In Section 4, we show that these equations are
weakly equivalent to a system of conservation laws with time dependent sources. In a
future paper, the authors will give an existence theory for these equations with gen-
eral Cauchy data of bounded variation, thereby demonstrating the consistency of the
Einstein equations for weak (shock wave) solutions within the class of C%! metrics.

3. The Einstein Equations for a Perfect Fluid with Spherical Symme-
try. In this section we study the system of equations obtained from the Einstein
equations under the assumption that the spacetime metric g is spherically symmet-
ric. So assume that the gravitational metric g is of the form (2.11), and to start,
assume that 7% is any arbitrary stress tensor. To obtain the equations for the metric
components A and B implied by the Einstein equations (2.1), plug the ansatz (2.13)
into the Einstein equations (2.1). The resulting system of equations is obtained using
MAPLE:

A B’ )
1 — S r— 4+ B-1} =gA>T
(3.1) Yz {TB + } K
B,
2 — = = kABT™
(3.2) B

(3.3) = {r’%’ — (B - 1)} kB*T'
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W .
(By — A"+ @) = 222

(3.4) -

- rAB?

Here “prime” denotes partial differentiation with respect to r, and the quantity ® in
the last equation is given by,

BA,B; B<Bt>2 A AB

T~ 24B 2 \B B
+A A 2+AA’B’
2\ A 2AB"

Equations (3.1)-(3.4) represent the (0,0), (0,1), (1,1) and (2,2) components of G¥ =
kT, respectively, (as indexed by T on the RHS of each equation). The (3,3) equation
is a multiple of the (2,2) equation, and all remaining components are identically zero.
(Note that MAPLE defines the curvature tensor to be minus one times the curvature
tensor defined in (2.5).) It is sometimes convenient to make the change of variable
A=¢’ B=1/(1-2M/r),[1]. In these variables, the Einstein equations (3.1), (3.2)

and (3.3) are equivalent to

3

OM 12
. T = _ARTY,
(3.5) or 2 e
oM 2
. = —— AgTY
(3.6) 5 5 ART,
(3.7) 9 _ L perm 4 B1
or

Here M (r,t) is interpreted as the total mass inside radius r at time ¢, and if the energy
density 7°° > 0, then (3.5) implies that M is a monotone increasing function of 7.
We are interested in solutions of (3.1)-(3.4) in the case when shock waves are
present. A shock wave in the compressible Euler equations leads to discontinuities
in the fluid density, pressure and velocity, and thus in light of (2.7), it follows that a
shock wave would produce a discontinuity in the stress tensor T' at a shock. But when
T is discontinuous, equations (3.1)-(3.3) above imply immediately that derivatives of
the metric components A and B are discontinuous at shocks. Moreover, if A and B
have discontinuous derivatives when shock waves are present, it follows that (3.4),
being second order, cannot hold classically, and thus equation (3.4) must be taken
in the weak sense, that is, in the sense of the theory of distributions. To get the
weak formulation of (3.4), multiply through by rAB? to clear away the coefficient of
the highest (second) order derivatives, then multiply through by a test function and
integrate the highest order derivatives once by parts. It follows that if the test function
is in the class Cé’l (that is, one continuous derivative that is Lipschitz continuous,

the subscript zero denoting compact support), and if the metric components A and
B are in the class C%', and T¥ is in class L°°, then all terms in the integrand of the
resulting integrated expression are at most discontinuous, and so all derivatives make
sense in the classical pointwise a.e. sense.

In order to account for initial and boundary conditions in the weak formulation,
it is standard to take the test function ¢ to be nonzero at ¢ = 0 or at the specified
boundary. In this case, when we integrate by parts to obtain the weak formulation,
the boundary integrals are non-vanishing, and their inclusion in the weak formulation
represents the condition that the boundary values are taken on in the weak sense.
Thus, for example, if the boundary is r = 7y > 0, we say ¢ € Cé’l(r > rg,t > 0) to
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indicate that ¢ can be nonzero initially and at the boundary r = rg, thereby implicitly
indicating that boundary integrals will appear in the weak formulation based on such
test functions.

We presently consider various equivalent weak formulations of equations (3.1)-
(3.4), and we wish to include the equivalence of the weak formulation of boundary
conditions in the discussion. Thus, in order to keep things as simple as possible,
we now restrict to the case of weak solutions of (3.1)-(3.4) defined on the domain
r>ry > 0,t > 0, and we always assume that test functions ¢ lie in the space
o€ C’é’l(t > 0,7 > rg), so that initial and boundary values are accounted for in the
weak formulation. (This is the simplest case in which to rigorously demonstrate the
equivalence of several weak formulations of initial boundary value problems. More
general domains can be handled in a similar manner.)

Note that because (3.1)-(3.3) involve only first derivatives of A and B, and A, B €
C%1, it follows that (3.1)-(3.3) can be taken in the strong sense, that is, derivatives
can be taken in the pointwise a.e. sense. The continuity of A and B imply also that
the initial and boundary values are taken on strongly in any C%! weak solution of
(3.1)—(3.3). On the other hand, equation (3.4) involves second derivatives, and so this
last equation is the only one that requires a weak formulation. The weak formulation
of (3.4) is thus obtained on domain ¢ > 0, r > rq > 0 by multiplying through by a test
function ¢ € C’é’l(r > rg,t > 0) and integrating by parts. This yields the following
weak formulation of (3.4):

([ Bi¢p: B¢ Ay 2B, Al
(38 0= /TO /0 { rAB? r ( 5 Ap) A
1 A 2B’ ) 2kr
Ao - - - P+ - pT?2
* ¢< 2AB?  rA2B? rAB3> tapEtt }drdt

> Bt(’l“70)¢(7“,0) o A’(To,t)¢(ro7t)
_/ro WdH/o roA(ro, ) B2 (ro, )

Our first proposition states that the weak formulation (3.8) of equation (3.4) may be
replaced by the weak formulation of the conservation laws divT' = 0, so long as A and
B are in C%! and T¥ € L.

PROPOSITION 3.1. Assume that A, B € C%'(r > rg,t > 0), T € L™(r > ro,t >
0), and assume that A, B and T solve (3.1)-(3.3) strongly. Then A, B and T solve
T{Z = 0, (the 1-component of divT = 0), weakly if and only if A, B and T satisfy
(3.8).

Proof. The proof strategy is to modify (3.8) and the weak form of conservation
using (3.1)-(3.3) as identities, and then observe that the two are identical at an inter-
mediate stage. To begin, substitute for B; and A’ in several places in (3.8) to obtain
the equivalent condition

oo oo o [ (B-1) o (B-1
_ 01 11, _ -
(3-9)0—/T0 /0 {"‘T ot T+ 5 <“0 2 B2 )Jﬂp[ 6r<r2B2)

LB A 2B 1 Al 2B’
r \A2B?2 AB3 r2AB?2 rA2B2? rAB3

1 2Kr o
P _TZZ
g ”drdt
B t)—1
(T07 ) :| dt

+n/r T%(r,0)¢(r, 0) dr + "‘,/0 #ro.) [Tu(ro’t) rg B2 (ro.t)

ZTo
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R e B'(B -2 B-1
:/ / {HTGl(pt+I€T11§OI+(p|: ( )+2( )
T0 J0

T2B3 TSBZ
B, [ A 2B 1 A 2B
s e 2 W _ _
o <A2B2 Taps )t PAB?  rA’B?  rADS
1 2KT
&+ T\ b drdt
At T B H g

+KZ/ T (r,0)p(z,0) dr + n/ @(ro, )T (1o, 1) dt.
r J0

ZTo

Now, the weak form of conservation of energy-momentum is given by

(3.10) 0= / / {T% + T" ' — (T} T + T T
T0 0
+00oT% + 200, T°" + I}, T + 203, T%) ¢} drdt

+/ T (r, 0)(z, 0) dr+/ @(ro, )T (ro, t) dt.
T 0

0

Here, we have used the fact that 722 = sin?@73% T% = 0if i # j = 2 or 3, and

I}, = sin®@l},. Next, we calculate the connection coefficients I', using (2.6) to
obtain,

i 1 (A By pi =1 (A B 4
Lio =5 (% + %) Fil_Q(A+B+r
0 _ A 0o _ A
o T
— Di p— p—
(3.11) Fll—ﬁ 5 =0=1%;
F(1]0:2AI Ftlnng_é
1 _ B 1 r
Iy =35 Iy =—5
Fl _7rsin29
33 = B -

Substituting the above formulas for F;k into (3.10) and using (3.1)-(3.3) as identities

to eliminate some of the T% in favor of expressions involving A, B and r, we see that
(3.10) is equivalent to:

S 1 /4, 3B\ B
— 701 iy L P2 (A, 25 t
0 /0/0{ vrier s \a Tt B ) A
1 /A 2B 4\ 1 [ A
(3.12) 2 <Z+7+F> =y (TZ(BI)>
A B’ r
- — +(B-1 2k —T*
2r2AB<TB+( ))—l— K g }}drdt

+/ TOl(T,O)(p(T,O) dr-l—/ (p(To,t)Tll(T(],t) dt.
T 0

0

After some simplification, it is clear that (3.9) is equal to (3.12). This completes the
proof of Proposition 3.1. O

We next show that the Einstein equations (3.1)-(3.3) together with divT = 0 are
overdetermined. Indeed, we show that for weak solutions with Lipschitz continuous
metric, either (3.1) or (3.2) may be dropped in the sense that the dropped equation
will reduce to an identity on any solution of the remaining equations, so long as the
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dropped equation is satisfied by either the initial or boundary data, as appropriate.
The following proposition addresses the first case, namely, for weak solutions in which
the metric is Lipschitz continuous, the first Einstein equation (3.1) reduces to an
identity on solutions of (3.2)-(3.3), so long as (3.1) is satisfied by the intial data.

THEOREM 3.2. Assume that A, B € C%! and T € L* solve (3.2), (3.3) strongly,
and solve divT = 0 weakly. Then if A, B, and T satisfy (3.1) at t = 0, then A, B,
and T' also solve (3.1) for all t > 0.

Proof. We first give the proof for the case when A, B and T are assumed to be
classical smooth solutions of (3.2), (3.3) and divT = 0. This is followed by several
lemmas necessary for the extension of this to the weak formulation, which is given in
the final proposition. So to start, assume that A, B, and T are all smooth functions,
and thus solve divT = 0 strongly. For the proof in this case, define

(3.13) HY = GY — gTY.

Because (3.2) and (3.3) hold, H°' = H'! = (. Since by assumption T“l = 0 and since
G”l = 0 for any metric tensor as a consequence of the Bianchi identities, it follows
that

(3.14) 0=H"Y =HY + T, HY +TJ H*.
In particular, setting j = 0,
(3.15) 0=HYS =H?Y+ T, H +T) H".

By hypothesis, H® = 0 when i # 0. In addition, the connection coefficients I'Y, are
zero unless i or k equal 0 or 1. Therefore, (3.15) reduces to the linear ODE

(3.16) 0=HY + (I'jy + ) H™,

at each fixed r. By hypothesis, H is initially zero, and since we assume that H% is
a smooth solution of (3.16), it follows that H° must continue to be zero for all ¢ > 0.

Next, assume only that A, B € C%' and T € L™ so that (3.2), (3.3) hold strongly,
(that is, in a pointwise a.e. sense), but that divT = 0 is only known to hold weakly.
In this case, the argument above has a problem because when g € C%!, the Einstein
tensor G, viewed as a second order operator on the metric components A and B,
can only be defined weakly when A and B are only Lipschitz continuous. It follows
that the Bianchi identities, and hence the identity divG = 0, (which involves first
order derivatives of the components of the curvature tensor), need no longer be valid
even in a weak sense. Indeed, G can have delta function sources at an interface at
which the metric is only Lipschitz continuous, c.f. [15]. However, the above argument
only involves the 0’th component of divG = 0, and the 0’th component of divG =
0 involves only derivatives of the components G, and as observed in (3.1), (3.2),
these components only involve first derivatives of A and B. Specifically, the weak
formulation of Gofi = ( is given by,

(3.17) 0= / / {—¢:G™ + ¢ (T4, G" + T9,G™) } drdt
To 0

— /00 #(r,0)G (r, 0)dr — /00 B(ro, )G (1o, t)dt,
o JO
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and since, by (3.1), (3.2), G involves only first order derivatives of A and B, it
follows that the integrand in (3.17) is a classical function defined pointwise a.e. when
A, B € C%!. But (3.17) is identically zero for all smooth A and B because divG = (
is an identity. Thus, when 4, B € C%!, we can take a sequence of smooth functions
A, B, that converge to A and B in the limit ¢ — 0, (c.f. Theorem 3.4 below), such
that the derivatives converge a.e. to the derivatives of A and B. It follows that we
can take the limit ¢ — 0 (3.17) and conclude that (3.17) continues to hold under this
limit. Putting this together with the fact that divl = 0 is assumed to hold weakly,
we conclude that

H% = (G~ T%) =0,

in the weak sense, which means that H% is in L> and satisfies the condition
(3.18) 0= / / {~doH™ + ¢ (Lly + L) H } drdt
T0 J0

— /OO é(r,0)G(r, 0)dr — /00 o (r,0)H (rg, t)dr.

Therefore, to complete the proof of Theorem 3.2, we need only show that if A, B
and T solve (3.2), (3.3) classically and divT = 0 weakly, then a weak L* solution

H% (i.e., that satisfies (3.18)), of (3.16) must be zero almost everywhere if it is zero
initially. Thus it suffices to prove the following proposition:

PROPOSITION 3.3. Assume that H, f € L. (R x R). Then every L. weak
solution to the initial value problem

Hy+ fH=0

(3.19) H(z,0) = Ho(z).

with initial data Hy = 0 is unique, and identically equal to zero a.e., for all t > 0.
Proof. We use the following standard theorem, [4],
THEOREM 3.4. Let U be any open subset of R™. Then u € W' (U) if and only

loc
if uw is locally Lipschitz continuous in U, in which case the weak derivative of u agrees
with the classical pointwise a.e derivative as a function in LS. (U).

COROLLARY 3.5. Let u and f be real valued functions, u, f : R — R, such that
u, f € L*[0,T], and u is a weak solution of the initial value problem

uy + fu =0,
(3.20) tu(O) =0,

on the interval [0,T]. Then u(t) =0 for all t € [0,T].

Proof of Corollary. Statement (3.20) says that the distributional derivative u;
agrees with the L™ function fu on the interval [0,T], and thus we know that u €

W,>°(0,t). Therefore, by Theorem 3.4, u is locally Lipschitz continuous on (0,T),

loc
and the weak derivative u; agrees with the pointwise a.e. derivative of u on (0,T).

Thus it follows from (3.20) that on any sub-interval [a,b] of [0,7] on which u # 0, we
must have
Ut

(3.21) %[ln u] = = —f, a.e.



A SHOCK-WAVE FORMULATION OF THE EINSTEIN EQUATIONS 803

Moreover, since u is Lipschitz continuous, both u and In(u) are absolutely continuous
on [a,b], so we can integrate (3.21) to see that

(3.22) u(t) = u(a)e fotf(g)dé,

for all ¢t € [a,b]. But u is continuous, so (3.22) applies in the limit that a decreases
to the first value of ¢ = ty at which u(tg) = 0. Thus (3.22) implies that u(t) = 0
throughout [a, b], and hence we must have u(t) = 0 for all ¢ € [0, T], and the Corollary
is true.

The proof of Proposition 3.3 now follows because it is easy to show that if H
is an L™ weak solution of (3.19), then H(z,-) is a weak solution of the scalar ODE
H; + fH = 0 for almost every z. (Just factor the test functions into products of the
form 61 (£)s (x).

Using Proposition 3.3, we see that if equation (3.1) holds on the initial data for
a solution of (3.2), (3.3), and divT = 0, then equation (3.1) will hold for all . By a
similar argument, it follows that if (3.2) holds for the boundary data of a solution to
(3.1), (3.3), and divT = 0, then (3.2) will hold for all r and ¢. We record this in the
following theorem:

THEOREM 3.6. Assume that A, B € C%! and T € L* solve (3.1), (3.3) strongly,
and solve divT = 0 weakly, in v > ro, t > 0. Then if A, B, and T satisfy (3.2) at
r =rg, then A, B, and T also solve (3.1) for all v > ry.

4. The Spherically Symmetric Einstein Equations Formulated as a Sys-
tem of Hyperbolic Conservation Laws with Sources. Conservation of energy
and momentum is expressed by the equations

0= (divT)’ =T,
=TY + T4, T + T, T,

which, in the case of spherical symmetry, can be written as the system of two equa-
tions:

(4.1) 0="Tg + T +T5T" + 13,1
(4.2) 0=T9 + Ty +TLTH + T}, T".

Substituting the expressions (3.11) for the connection coefficients (2.6) into (4.1) and
(4.2), gives the equivalent system

o v () (A
+QB_;1T11
N
+om ™ - 2%T22_

Now if one could use equations to eliminate the derivative terms A;, A’, B; and B’ in
(4.3) and (4.4) in favor of of expressions involving the undifferentiated unknowns A, B
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and T, then system (4.3), (4.4) would take the form of a system of conservation laws
with source terms. Indeed, T°° and T°! serve as the conserved quantities, 7'° and 7!
are the fluxes, and what is left, written as a function of the undifferentiated variables
(A, B,T% T, would play the role of a source term. (For example, in a fractional
step scheme designed to simulate the initial value problem, the variables A and B
could be “updated” to time t; + At by the supplemental equations (3.1) and (3.3) or
(3.2) and (3.3) after the conservation law step is implemented using the known values
of A and B at time ¢;. The authors will carry this out in detail in a subsequent paper.)
The system then closes once one writes T as a function of (4, B, T%,T%). There
is a problem here, however. Equations (3.1)-(3.3) can be used to eliminate the terms
A,, By and B,., but (4.3) and (4.4) also contain terms involving A;, a quantity that is
not given in the initial data and is not directly evolved by equations (3.1)-(3.3). The
way to resolve this is to incorporate the A; term into the conserved quantities. For
general equations involving A;, this is not possible. A natural change of T' variables
that eliminates the A; terms from (4.3), (4.4), is to write the equations in terms of

3

the values that T takes in flat Minkowski space. That is, define

T% = ATY?,
(4.5) T = VABTY,,
T'' = BT},

where the subscript denotes Minkowski. In the case of a perfect fluid, Th; takes the
form

2
00 _ 2 ¢
TM_{(p+pC )C2U2_p}=

sy CU
(4.6) TS = (p + pt)
cc —v
11 2y V2
Ty = {(P+PC )m +P}:

where v denotes the fluid speed as measured by an inertial observer fixed with re-
spect to the radial coordinate r. (We discuss (4.6) in more detail in the last section.)
Substituting (4.5) into (4.3), (4.4), the A; terms cancel out, and we obtain the system

A 1B
47 0={T},+ {\/ET}S}} + EEt (T + T41)

1

s

1 [A/A4 B 4
- - - - - T(]l
*3 B<A+B+r> M

A 1 [A B B' 4
48) 0={T% —ri R ey ) Wi I, \0) S 7 o
(4.8) {M}70+{ B M 1+2 B \/EM+ B Ty)u

s

A" oo 22
The following proposition states that system (4.7), (4.8) is equivalent, (in the weak
sense), to the original system divT = 0.

ProPOSITION 4.1. If A and B are given Lipschitz continuous functions defined
on the domain r > ro, t > 0, then Ty is a weak solution of (4.7) and (4.8) if and
only if T is a weak solution of divT = 0 in this domain.
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Proof. For simplicity, and without loss of generality, take the weak formulation
with test functions compactly supported in r > 7o, ¢ > 0, so that the boundary
integrals do not appear in the weak formulations. (Managing the boundary integrals
is straightforward.) The variables T} solve (4.7) weakly if

[e.e] o0 A
0= / / _Toowt - V _T0190r
T0 0 { B

1B 1 /JA/A B 4
+ t (TOO Tll) 4+ = - <_+_+;) TOl

2B 2VB\A B

<p} dr dt
(4.9) =/ / {-Tat Aps — Tif A,
T 0
i A B

1B, 4
AT 4 BT + a4 (24 82 T :
+[23( o+ M)+ <A+B+>M}<p}drdt

Set v = Ap, whereby Ap; = 9y — —1/) Using this change of test function, (4.9)
becomes

oo o A AI
(4.10) 0:/ / {T0°¢t+T°0—th°1zp’+T01—zp
JTro 0 A A
1 B, B 1 /A B 4
TOO Tll - - - _ TOl .
+{QB< 2 )+2<A+B+r> ]1/)}drdt
< 24, B
— 00 01 t t 00
[ fre e (5 5)T

1 /34 B 4 B
+—< +—+—> T + tT“}@/J}drdt,
r

2\ A B 24

which is the weak formulation of (4.3). We deduce that Ty solves (4.7) for every
Lipschitz continuous test function ¢ if and only if T" solves (4.10), (the weak form of
T?ﬁ = 0), for all Lipschitz continuous test functions . That weak solutions of (4.8)
are weak solutions of T} = 0 follows by a similar argument. 0

It is now possible to use equations (3.1)-(3.3) as identities to substitute for deriva-
tives of metric components A and B, thereby eliminating the corresponding derivatives
of A and B from the source terms of equations (4.7), (4.8). Doing this, we obtain the
following system of equations:

[A 2 [A
00 01 _ 01
(4.11)  {Ty} o+ { ETM} =\ 5T

s

A 1 /A (4 B-1
(4.12) {T]?}}70+{\/§T]%4}} =3 E{;T}v}ﬂLT(T}\)}]—Tﬁ)

s

+26r B (TRTA — (T9)?) — 41T}

However, depending on the choice of equation to drop, either (3.1) or (3.2), it is not
clear that if we use the dropped equation to substitute for derivatives in (4.7), (4.8),
that the resulting system of equations will imply that divT = 0 continues to hold, the
assumption we based the substitution on in the first place. The following theorem
states that (4.11), (4.12) is equivalent to divT = 0 in the weak sense:
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THEOREM 4.2. Assume that A, B are Lipschitz continuous functions, and that
T € L, on the domain r > rqg, t > 0. Assume also that (3.1) holds at t = 0, and
that (3.2) holds at r = ro. Then A, B,T are weak solutions of (3.1), (3.2), (3.3) and
divT = 0 if and only if A, B, Ty are weak solutions of either system (8.1), (3.8),

(4.11), (4.12), or system (3.2), (3.3), (4.11), (4.12).

Proof. Without loss of generality, we consider the case when we drop equation
(3.2), and use (3.1), (3.3) and divT = 0 to evolve the metric, and we ask whether we
can take the modified system (4.11) and (4.12) in place of divT = 0. In this case, we
must justify the use of (3.2) in eliminating the B; terms in going from divT = 0 to
system (4.11) and (4.12). That is, it remains only to show that equations (3.1) and
(3.3) together with system (4.11) and (4.12) imply that (3.2) holds, assuming (3.2)
holds at r = r¢. (If so, then by substitution, it then follows that divT = 0 also holds.)

Note that we can almost reconstruct (4.3), the first component of divT = 0, by
reverse substituting (3.1), (3.3) into (4.11). To see this, first note that we can add
(3.1) and (3.3) to obtain

! !
(4.13) AZ + % —rBr(Ty +T4) = 0.

Equation (4.13) is an identity that we may add to (4.11) to obtain

0={Tw'},+ {\/%TJ?}} - ér ABk (Tyf +Tag ) Thp
1

(4.14) LA (AL B Y
' 2VB\A " B )M

Adding and subtracting

1B,
(4.15) SE (T3? +Tar)
to the RHS of (4.14) and using
B
(4.16) HO = ——1; — VABKTY},
T

(c.f. (3.2) and (3.13)), we have

[A 1 /A A B 4
7700 701 01
0—{1\/1}70"‘{ B 1\4}1"‘5 —B<—+—B+;> M

1B 1
(4.17) +§§t (T3 +Thf) + 5 (T8 + Th) H'.

Note that all but the last term on the RHS of (4.17) is equal to the first component
of divT, and so

1% = L (g + i) O

—r
2
Therefore, if A, B, and Ty are solutions to (3.1), (3.3), (4.17), and (4.4), it follows
that

(4.18) H", =G — kT")
TB2T11

— H01
Ii72 y
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because G = 0 is an identity. But H°® = 0 holds because we assume (3.1), and

1

hence (4.18) implies that

H’O11 +fH01 — 0}

where f = '}, + 21}, — /-@”BzzTu € L. Since we assume that H%' = 0 on the
boundary r = 7y, it follows from Corollary 3.5 that H°!' = 0. O

It remains to identify conditions under which 71} is a function of (T9,7%)
assuming that T has the form of a stress tensor for a perfect fluid, (4.6). A calculation

shows that, in this case, the following simplifications occur:

(4.19) Ty = Ta = pc® = p,
(4.20) T3 Ty — (T3))° = ppc®.

Using (4.19) and (4.20) we see that only the first terms on the RHS of (4.11), (4.12)

depend on v, and the only term that is not linear in p and p is the third term on the
RHS of (4.12). We state and prove the following theorem:

THEOREM 4.3. Assume that 0 < p < pc?, 0 < Z—g < 2. Then T3} is a function
of TV and TV} so long as (p,v) lie in the domain D = {(p,v) : 0 < p,|v| < c}.

Proof. We may write (4.19) and (4.20) in the form

(4.21) Ty —Tar = filp),
(4.22) TTy — (Thi)* = fa(p).

Since Z—; =c2—p' > — 0% >0, it follows that the function f; is one-to-one with

respect to p. Also, ‘fif—; = p'pc® + pc® > pc® > 0, so the function f; is also one-to-one

in p. Consequently, the function h = f5 - ffl is one-to-one, and thus
(4.23) T (192 = h(TS — ).

Now introduce the linear and invertible change of variables
=T —Ti, y=T, 2 ="T3! whereby (4.23) becomes

(4.24) (x4 2)z —y* = h(z).

Equation (4.24) is quadratic in z, and so we may solve it directly, obtaining

—z =+ \/m2 +4(y? + h(x))
5 )

(4.25) z=

From (4.25), we conclude that for any (z,y), there are two values of z, though only
one of these will correspond to values of p and v in the domain D. That is, since

(4.26) r=Ty —Tif = pc* —p>0,

and z = T} > 0, it follows that there is at most one solution of (4.25) in the domain
D, namely

-z + \/m2 +4(y? + h(x)) _

(4.27) z= 5
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We conclude that if (p,v) lies in the domain D, then for each value of T%f and T},
there exists precisely one value of T}j}. O

A calculation shows that in the case p = 0?p, 0 = constant, the formula for T}
in terms of (T'V, Th}) is given by

(28) 1ff = 128 {T}&? - \/ T - g (K2 + <T}a}>2)}

where

o%c?

(4.29) K =

5. Statement of the General Problem. Our results concerning the weak for-
mulation of the Einstein equations (3.1)-(3.4) assuming spherical symmetry given in
Theorem 4.2 can be summarized as follows. Assume that A, B are Lipschitz contin-
uous functions, and that T' € L*°, on the domain r > rq, ¢t > 0. Then (3.1)-(3.4) are
equivalent to two different systems which take the form of a system of conservation
laws with source terms. In the first case, we have shown that weak solutions of the
system (3.1), (3.3) together with equations (4.7), (4.8) (for divT = 0), will solve (3.1)-
(3.4) weakly, so long as (3.2) holds at r = ry. This reduces the Einstein equations
with spherical symmetry to a system of equations of the general form

(5.1) us + f(u, A, B), = hy(u, A, B, A, B, B', x)
Az :hQ(U7A,B,$)
B, :hg(U,A,B,.’E)

3

where u = (T, Ty ) agree with the conserved quantities that appear in the conser-
vation law divTy = 0 in flat Minkowski space. (Here “prime” denotes % since we

are using z in place of r.) It is then valid to use equations (3.1)-(3.3) to eliminate
all derivatives of A and B from the RHS of system (5.1), by which we obtain the

system (3.1), (3.3), (4.11), (4.12), a system that closes to make a nonlinear system of
conservation laws with source terms, taking the general form

(54) ut+f(u7A:B)w :hl(U,A7B71‘)7
(5.5) A, = ha(u, A, B, ),
(5.6) B, = h3(u, A, B, ).

Weak solutions of (5.4) will satisty (3.2) so long as (3.2) is satisfied on the boundary
r=Tp.

In the second case, we have shown that weak solutions of the system (3.2), (3.3)
together with equations (4.7), (4.8) (for divT = 0), will solve (3.1)-(3.4) weakly,
so long as (3.1) holds at ¢ = 0. This reduces the Einstein equations with spherical
symmetry to an alternative system of equations of the general form

(57) ut+f(u7AaB)Z :hl(u7A7B7A’7BtaB,7x)7
(5.8) A, = ho(u, A, B, ),
(59) Bt = h3(’U,,A7B71‘).

It is then valid to use equations (3.1)-(3.3) to eliminate all derivatives of A and B
from the RHS of system (5.7), by which we obtain the system (3.2), (3.3), (4.11),

3
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(4.12), a system that closes to make a nonlinear system of conservation laws with
source terms, taking the general form

(5.10) us + f(u, A, B)y = hi(u, A, B, ),
(5.11) A, = ho(u, A, B, ),
(5.12) B; = h3(u, A, B, z).

Weak solutions of (5.10) will satisfy (3.1) so long as (3.1) is satisfied at ¢t = 0.

6. Wave Speeds. In this section we conclude by calculating the wave speeds as-
sociated with system (4.11)-(4.12). Because A and B enter as undifferentiated source
terms, it follows from (4.11)-(4.12) that for spherically symmetric flow, the only wave
speeds in the problem will be the characteristic speeds for the fluid. Loosely speak-
ing, the gravitational field is “dragged along” passively by the fluid when spherical
symmetry is imposed. From this we conclude that there is no lightlike propagation,
(that is, no gravity waves), in spherical symmetry, even when there is matter present.
(This is the conclusion of Birkoff’s theorem for the empty space equations, [20].)

The easiest way to calculate the wave speeds for the fluid is from the Rankine-
Hugoniot jump conditions in the limit as the shock strength tends to zero. To start,
note that the components of the 4-velocity for a spherically symmetric fluid (2.7) are
wl =2 gl =22 =43 = 0. Since —1 = g(u,u), the components u® and u' are
not independent, and in particular, —1 = —(u%)? A4 + (u')2B. We define fluid speed v
as the speed measured by an observer fixed in (¢,r) coordinates. That is, the speed is
the change in distance per change in time as measured in an orthonormal frame with
timelike vector parallel to 0; and spacelike vector parallel to 0,. It follows that the
speed is given by v = z/a, where

(6.1) u=a

Taking the inner product of u with 8; and then with &,, we find that a = u®/—goo
and z = u'y/g11, and hence

u' |B
2 N
(6.2) v=\V T
whereby,
. 1
0\2 _
(6.3) (u’)* = AE o)

Using (6.2) and (6.3) in (2.7), it follows that the components of the energy-momentum
tensor take the following simplified form, which is valid globally in the (¢,7) coordinate
system:

oo _ 1 (p+ c%i_
_A p p 0277)2 p

1
01 __ 2
= \/E(p+pc Vo=
1 V2
T = E{(PWLPCQ)W +p}-
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Note that these components are equal to the components of the stress tensor in flat
Minkowski space, times factors involving A and B that account for the fact that the
spacetime is not flat. Setting

2
g C
T = {(IH‘PCz)ﬁ—p}:
cc —v
cv

— 2’

T = (p+pc*)

2
1 _ 2y U
T —{(P+PC )m*‘ﬁ}:

it follows that

T = TH/A,
(6.4) T =13 /VAB,
™' =1T;}/B.

The Rankine-Hugoniot jump conditions are

(65) ) = A,
(66) TR E )

From (6.5)-(6.6), we deduce that wave speeds for the system (4.11)-(4.12) are /A/B
times the wave speeds in the Minkowski metric case, and this holds globally through-
out the (¢,7) coordinate system. (See [14].) Eliminating s from (6.5) and (6.6), yields

(6.7) [Th)* = [T [T ]-

Now take the left fluid state on a shock curve to be (p;,v;), and the right fluid state
to be (p,v). For a spherically symmetric perfect fluid, (6.7) defines the right velocity
v as a function of the right density p. Then to obtain the fluid wave speeds, just
substitute this function into (6.5), solve for s, and take the limit as p — p;. Following
this procedure, (6.7) simplifies to

65) (-w? _ [

(> =v?)(¢* —vg)  (p+pc®)(po + poc®)

Note that equation (6.8) can be written as a quadratic in v, and hence there are two
solutions. The ‘+’solutions will yield the 2-shocks, and the ‘-’ the 1-shocks. Dividing
both sides of (6.8) by (p — po)? and taking the limit as p — po, we see that

dp _ (p+c2p)? (dv)?
. i ieor (@)

Solving (6.6) for s we obtain,

(6.10) 5= \/% [(p ) “’}

[(p + pcz)ﬁ]
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and taking the limit as p — pg, we obtain
y 2 . - ’ 27 2 . 3

A \/X[(p’ + &)t + (o + e 2 +p']

:k = p—

B

« . Hp2 __p2 b 2,/
[(p’ +e?) e+ (p+ pcz)%]

2 9.2 I
[T [0+ ) 2 + 0+ 0 5% + 1]

D cv 9y cv’ (c2+v2
[(p’ +) 2%+ (0 + pcz)ﬁ]

(Here the plus/minus on RHS is determined by the two possible signs of v' = dv/dp
as allowed by (6.9).) After substituting for dv/dp using (6.9), and simplifying, we
obtain

v2 2c21)\/17

[(pl +) 2 =) —|—p’}

6271)2

{(p’+c2) = i“(”“”’g)\/ﬂ

Ay =

22 (c@—2)
[(p' + ?)v? £ 2%0/p" + p'(¢? — v?)]
B [(p + )ev £ (e + v2) /D ’
A [v? &+ 20D + ']
¢ B [vp’ + (2 +02)/p + 021}] ’
A

A e
B v+ P [ o]

= =

This gives the wave speeds as:

A VP £
“NVB NV R
(For example, the formula for A_ results from choosing ‘-’ in (6.8).) The following

theorem demonstrates that the system (4.11)-(4.12) is strictly hyperbolic whenever
the particles are moving at less than the speed of light:

(6.11) At

PROPOSITION 6.1. Assume that
v| <,

so that the particle trajectory has a timelike tangent vector. Then wave speeds for the
general relativistic Euler equations (4.11)-(4.12) satisfy A\_ < Ay.

Proof. To determine where the wave speeds are equal, set A_ equal to Ay and
solve for v to obtain v? = ¢. Next, substitute v = 0 into A_ and A, to verify that
A~ < A4 when v? < ¢?A/B. Proposition 6.1 follows directly. O
As a final comment, we note that Proposition 6.1 is true because it is true in a locally
inertial coordinate system centered at any point P in spacetime. Indeed, in such a
coordinate system, the connection coefficients vanish at P, and the metric components
match those of the Minkowski metric to first order in a neighborhood of P. As a
result, the general relativistic Euler equations reduce to the classical relativistic Euler
equations at P. Since it is known in special relativity that the Euler equations are
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strictly hyperbolic for timelike particles, [14], it follows that the same must be true
in general relativity. Other pointwise properties, such as genuine nonlinearity and
the Lax entropy inequalities, [13, 10], can be verified for the spherically symmetric

3

general relativistic equations in a similar manner.
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