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SYSTEMS OF CONSERVATION LAWS
WITH INVARIANT SUBMANIFOLDS
BY
BLAKE TEMPLE'

ABSTRACT. Systems of conservation laws with coinciding shock and rarefaction
curves arise in the study of oil reservoir simulation, muiticomponent chromatogra-
phy. as well as in the study of nonlinear motion in elastic strings. Here we
characterize this phenomenon by deriving necessary and sufficient conditions on the
geometry of a wave curve in order that the shock wave curve coincide with its
associated rarefaction wave curve for a system of conservation laws. This coinci-
dence is the one dimensional case of a submanifold of the state variables being
invariant for the system of equations, and the necessary and sufficient conditions are
derived for invariant submanifolds of arbitrary dimension. In the case of 2 X 2
systems we derive explicit formulas for the class of flux functions that give rise to the
coupled nonlinear conservation laws for which the shock and rarefaction wave
curves coincide.

Introduction. Systems of conservation laws which have coinciding shock and
rarefaction curves arise in the study of oil reservoir simulation, nonlinear wave
motion in elastic strings, as well as in multicomponent chromatography
[1,4,5,6,9,11,12]. These systems have many interesting features. The Riemann
problem for these equations can be explicitly solved in the large, and wave
interactions have a simplified structure, even in the presence of a nonconvex flux
function. For this reason, these systems represent some of the few examples for
which the Cauchy problem has been solved for arbitrary data of bounded variation.
Also, hyperbolic degeneracies appear in each of these systems. In the present paper
we are concerned with characterizing the phenomenon of coinciding shock and
rarefaction curves. This phenomenon turns out to be a special case of the general
phenomenon of a submanifold of R” being invariant for weak solutions of a given
system of n conservation laws. Invariant manifolds of higher dimension also appear
in physical conservation equations in which the conserved quantities represent
concentrations; i.e., when the concentrations C, of any of the species vanish, the
system must reduce to a lower order system that expresses the conservation of the
remaining species. Thus C, = 0 defines a manifold which is invariant in the sense
that solutions that start on the manifold, remain there for all time. Moreover, such
an invariant manifold of dimension n — | is the boundary of an n-dimensional
invariant region in the sense of Chueh, Conley and Smoller {14]. In the case of

Received by the editors December 20, 1982.

1980 Mathematics Subject Classification. Primary 35165, 35L80; Secondary 76505, 76T05.

'"Research done in part while author was an NSF Postdoctoral Research Fellow visiting Rockefeller
University (grant MCS8017157) and in part while author was a visiting member of the Courant Institute.

©1983 American Mathematical Society
0002-9947,/83 $1.00 + $.25 per page

781



782 BLAKE TEMPLE

concentration equations, this implies that 0 < C, < 1 is a bounded invariant region
for general solutions. In §3 we give necessary and sufficient conditions for a
submanifold to be invariant for weak solutions of a general system of conservation
laws. The main result here is that an invariant manifold must be an affine linear
space whenever no contact fields appear. For one-dimensional manifolds this implies
that a shock curve can coincide with a rarefaction curve if and only if the rarefaction
curve is either a straight line or the level curve of the corresponding wave speed. In
§2 we use these general results to explicitly write down the class of 2 X 2 conserva-
tion laws which have shock and rarefaction curves that coincide.

1. Preliminaries. A system of conservation laws in one space dimension is a set of
partial differential equations of the form

(1A) U+ S(U), = 0.

Here -o0 <x < oo, t=0, and U and ¢ are vector-valued functions U =
(Upseoou,) = U(x, 1), SU) = (fi(U),.... LU, where U" denotes the trans-
pose of the vector U. We write %F(U), = dTU, where d% denotes the matrix
derivative of ¢ with respect to U. The Cauchy problem is the natural problem to
pose for system (1), and it is commonly known that discontinuities can form in the
solutions of (1). For this reason we look for weak solutions U(x, t); i.e., solutions
" that satisfy the following integral equation 7] for any smooth function Y(x, 7) with
compact support:

(1B) [l un+sww, + [ U(x.0)9(x.0) dx = 0.
—p e o

Two important systems of conservation laws arise in applications, and have been
studied in [1, 4,5, 6,9, 11, 12].

(2) u, + {up(u,v)} =0,
o, + {ve(u,v)} =0,
u Ju—
() u’+{‘l+u+v},\~“0’
KU _
ot {_l+u+v}_\~_0'

System (2) arises in problems of oil reservoir simulation, as well as in elasticity
theory [4,6,9,12]. For example, in the reservoir simulation problem [4,6], « is the
saturation of water in the reservoir and v is the concentration of a polymer in the
water, so that 0 <u <1, 0 <ov < 1. The system i1s determined by specifying the
function ¢(u, v), but the structure of the solutions is determined by qualitative
properties of ¢ which can be verified experimentally.

System (3) arises in the study of two component chromatography [1, 5, 11]. Here u
and v are transformations of the concentrations of the two solutes, and x and ¢ are
transformations of the actual space and time variables (see Aris and Amundson [1,
p-268]). The domains of the variables # and v can be taken to be u = 0, v = 0, and
k € (0, 1) is determined by adsorption properties of the stationary phase.
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Systems (2) and (3) are remarkable because for both systems, the shock curves and
rarefaction curves coincide. This leads us to study the phenomenon of coinciding
shock and rarefaction curves in general. To say this precisely, assume first that
system (1) is hyperbolic; i.e., that the eigenvalues (wave speeds) of dF are real but
not necessarily distinct. Let A denote an eigenvalue, and 9% a corresponding eigenvec-
tor of d¥. We call (A,R) a “characteristic family,” or “characteristic field,” for
system (1) if MU), (U ) are defined and C? in some neighborhood 9N of U-space.
Let M C N be the integral curve of R through some point U, € 9. 9N is called the
A-rarefaction curve of U, in 9. Rarefaction curves are the one-dimensional sets that
smooth solutions to system (1) can take values on. For example, if the range of a
smooth solution U(x, 1) of system (1) lies on a one-dimensional curve in U-space,
then that curve must be a rarefaction curve. An analagous one-dimensional curve in
U-space applies to the study of discontinuous solutions of (1). The Hugoniot locus of
a point {, is defined to be the set of points U such that

(4) o[U] =[%(V)]

for some scalar o = o(U, ), (U] = U — Uy, [F(U)] = FU) — F(U,). A state U, is
in the Hugoniot locus of U, if and only if the discontinuous function

U, forx<ot,
(5) Ulx, 1) = {U, for x > ot
satisfies the weak form (1B) of system (1) [2,7]. Under very general conditions, there
corresponds to each family (A, R ) a one parameter subset of the Hugoniot locus of
U, that has C? contact with the integral curve of R at U, (cf. Lemma 3.1). This is
called the A-shock curve. (This term is often reserved for that portion of the curve
that determines the physically acceptable solutions in (5).)

DEFINITION 1. We say that the A-shock curve coincides with the A-rarefaction
curve on I if the Hugoniot locus of each point on 9N contains 9N

A curve I on which the A-shock and A-rarefaction curves coincide is also a
one-dimensional manifold that is invariant for weak solutions of the given system of
conservation laws.

DEFINITION 2. We say that 9 is a k-dimensional invariant manifold for system
(1) (or equivalently that system (1) reduces to a k X k system of conservation laws
on M) if, in a neighborhood 9 of each point on 9N, there exists a coordinate
system

(6) o:RSR', uwU,
and a k X k strictly hyperbolic conservation law

(7) u, + F(u), =

such that, for

(8) U(x, 1) = ¢(u(x, 1)) C N,

U(x, 1) is a weak solution of (1) if and only if u(x, 1) is a weak solution of 2), (3).
We assume only that system (7) is strictly hyperbolic (i.e. at each u the matrix d F(u)
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1s assumed to have k real and distinct eigenvalues) so that system (1) can have
hyperbolic degeneracies.

Note that if I is a manifold on which system (1) reduces to a lower order system
for all weak solutions, then any data Uyx) = U(x,0) given on M at ¢t = 0, can be
continued by (3) to a solution that remains on M for all time, so long as system (2)
has solutions. This explains the term invariant manifold.

In §3 we state and prove Theorem 1 which gives necessary and sufficient
conditions for a k-dimensional manifold Y to be invariant for a given system of
conservation laws. These general results imply the following theorem which char-
acterizes the phenomenon of coinciding shock and rarefaction curves,

THEOREM 2. The Jfollowing statements are equivalent regarding a A-rarefaction curve
N
(1) The A-shock and A-rarefaction curves coincide on V..
(1) Either N is constant on M, or N is a straight line in U-space.
(11i) System (1) reduces to a scalar conservation law on N . In this case weak
solutions of (1) whose values lie on are given by (8), where u(x, t) is a weak solution
of the scalar conservation law

9 | u, + No(u))u, = 0,

and ¢ is a parameterization of W with respect to some component of U.

We call (A, ) a “contact” family if A is constant on each integral curve of ¢,
and we call (A, % ) a “line” family if each integral curve of 4} is a straight line in
U-space. In the next section we derive the class of 2 X 2 equations that have either a
contact or a line family. (In this case we let U =(u, v) and for convenience we
assume that a contact family satisfies ¢\ = (dA/0u, 0N /8v) # 0 in N, and that a
line family satisfies Vg # 0 in 0, where ¢(u, v) is the slope dv/du of the integral
curve of R through (u, v). Weaker assumptions can be made.) All of the characteris-
tic families in systems (2) and (3) are then seen to be either line or contact families,
In this way the phenomenon of comnciding shock and rarefaction curves is observed
from the explicit form of the equations.

2. Coinciding shock and rarefaction curves for 2 X 2 systems. Consider an arbij-
trary system of 2 X 2 conservation laws

(2.1) u,+ flu,v), =0, o, +glu,v), =0,

where we take U =(u,v), "= (f, g). We now locate the class of such 2 x 2
equations that have either a contact or a line field in a region 9 of U-space. These
are generically the only fields that have coinciding shock and rarefaction curves, as
indicated by Theorem 2. The proof of Theorem 2 is postponed until the next section.

We let ¢ = g(u, v) denote a Riemann invariant for a contact or a line field in 9.
A Riemann invariant for a family (A, %) is a function which is constant on the
integral curves of . We assume that vg # 0, and because it suffices to prove our
results locally, we always assume that 9 = const determines a unique integral curve
of ¢ in X, which has a finite slope dv /du.
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First assume that g(u, v) is the wave speed of a contact field for a system of 2 X 2
equations, Vg # 0. The function q is thus a Riemann invariant for the contact field
givenby A = g, R = (—q¢,,¢q,) = vq" . Since (A, R ) is a contact field in “X , we have
by Theorem 2 that the A-shock curves coincide with the A-rarefaction curves in 9 . so
the curve ¢ = const must be contained within the Hugoniot locus of every point on
that curve. Thus by (4), if [¢] = g(U) — q(U,) = 0, then also

(2.2) olul =[f], ofv] =gl

and in the contact case, 0 = o(U, U,)) = q(Uy) (cf. [7]). Conversely, if (2.2) holds in
N when [g] = 0 for some smooth function q(u,v), vqg# 0, then (o(U,, U,),
vq* (U,)) must be a characteristic field for d5. To see this, note that (2.2) implies
that

—tim o Le] du
O(UOqU()) - Ull—-nllj,, [u] —fu+' ® du - l}inz}) [U] = & +g“dv’

where the vector (1, dv/du) is parallel to vg(U, ).

Therefore, we can verify that

~ do\" - dv

(2.3) d‘*'("},}) —o(U(,,UO)(l,E).
Thus the statement that (2.2) holds with ¢ = 4 when [g] = 0 in 9L, is equivalent to
the statement that (A, R ) = (g, vg) is a contact field in 9. But (2.2) holds when
[g] = 0if and only if
(2.4) [f~ugl=0, [g-1vq]=0,
when [g] = 0; and (2.4) holds if and only if f=ug + F(q) and g = vg + G(q) for
some smooth functions F and G. We have the following

THEOREM 3. A system of 2 X 2 conservation laws (2.1) has a contact field in a
domain X of uv-space if and only if f and g satisfy
(2:5) flu.0) =uqg+ Flq),  glu.v) =vg+ G(q),
in X, for some smooth functions q, Fand G, vq # 0. In this case q(u, v) = X where \
is the wave speed of the contact family.

Next assume that (A, R ) is a line family for a system of 2 X 2 equations defined
in a region X of U-space. Let g(u, v) be the siope dv/du of the integral curve of 4
through the point (u, v) € M, vq # 0. The function ¢ 1s a Riemann invariant of ..
Moreover, g is a smooth nonconstant solution to Burger’s equation

(2.6) 4, t qq, =0,

since Vq is orthogonal to the vector (1, ) at every point in 9. Since (A, %) is a line
field, Theorem 2 again implies that a curve defined by ¢ = const contains the
Hugoniot locus of each point on that curve. Thus, when [g] =0,

oful =[f].  ofo] =[g].

Dividing we obtain that, when [¢g] = 0,

(2.7) g=1lol/[u]l=1g]/[/].
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so that

(2.8) [fa—g]=0.

By (2.3) this is equivalent to the statement that (A, “}.) is a line field in Y. But (2.8)
holds if and only if g = fg + H(q) for some smooth function H. We have proven the
following.

THEOREM 4. A system of 2 X 2 conservation laws has a line family in I if and only if
f and g satisfy
(2.9) g=fq+ H(q)

in N, for some smooth function H, where q(u, v) is a smooth solution to Burger’s
equation (2.6) with g # 0. In this case q is a Riemann invariant for the line family.

Theorem 3 applies to system (2) with F = G =0, and thus (¢, V¢~) must be a
contact family for system (2). Since system (2) also satisfies

glu,v) = vo(u,v) = (v/u)f(u.v),

and v/u i1s a smooth solution to Burger’s equation in 4 >0, v > 0, we have by
Theorem 4 that g(u, v) = v/u is the Riemann invariant of a line family for system
(2). Moreover, we can use Theorems 3 and 4 to locate the class of 2 X 2 equations
that have both a line and a contact field; i.e., we say that system (1) has both a
contact and a line field in “X if system (1) has two Riemann invariants ¢ and p that
satisfy Theorems 3 and 4 respectively, such that ¥ and v are smooth functions of
( p. q) off a closed set of measure zero in 9. By Theorems 3 and 4,

(2.10) vq + G(q) = ugp + F(q)p + H(p).
Formally differentiating (2.10) with respect to 4 and holding p fixed yields
(2.11) v+ G(q)=u + F(q)p

since (0/du)v(u, p) = p because p is a smooth solution of (2.6). Differentiating
(2.10) with respect to ¢ and holding p fixed gives

J , d ,
(2.12) —a—qv(p.q)+v+0(q)=up+a—qu(p,q)qp+F(q)p-
Therefore, substituting (2.11) into (2.12) we obtain
d 9
(2.13) a—‘;v(p,q)-paqu(p,q)-
Now differentiate (2.11) with respect tc g holding p fixed and obtain
a d
s ) s rr f— —_— 14
(2.14) 57 0(pa) + G7(q) =pgulp.q) + F'(q)p.
which by (2.13) is
(2.15) G"(q) = F'(q)p.
Finally, differentiating (2.15) with respect to p and holding g fixed, we conclude
(2.16) F’(q) = G"(q) =0,
or

(2.17) F(q) = aq + c, G(q)=bg+d
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for some constants a, b, ¢, d. The assumptions made in (2.11)—(2.17) are that v is a
differentiable function of (u, p), (0/0u)q(u, p) # 0, and ¢ + 0. But by (2.6) these
must hold off a closed set of measure zero in 91, so (2.17) must hold everywhere in
. Moreover, since the addition of a constant to the flux functions f and g in (2.1)
does not affect the solutions, we can take ¢ = d = 0. Substituting (2.17) into (2.11)
then gives p = p(u, v) = (v + b) /(u + ¢), and the constraint in (2.10) yields

(2.18) H(p) = -bp.

We have thus proven the following.

COROLLARY 1. System (2.1) has both a line und a contact field if and only if
(2.19) f=(u+a)g, g=(v+b)y.

for some smooth function g = q( u, v), and some constants a and b. In this case q is the
wave speed of the contact family, and

(2.20) p=(v+b)/(u+a)
is the Riemann invariant of the line field satisfying (2.6),
Now consider an arbitrary 2 X 2 system that has two distinct line families. By

Theorem 3, there exist two distinct solutions p and g of Burger’s equation such that
(2.9) holds; i.e., such that

(2.21) | g=Jp+ H(p),
(2.22) 8 =Jq+ Hy(q),
for some smooth functions H, and H,. Equating (2.10) and (2.11) gives
f= H(p) - Hy(q)
q—p

This proves the following.

COROLLARY 2. System (2.1) has two line Jamilies if and only if

(2.23) f= H‘“’;:fz("), g = 8”1(1’3:;’112((1)’

where p and q are smooth solutions of (2.6).

For system (3) one can verify that

u____H(p)— H(q) Ko _ qH(p) — pH(q)
(2.24) = , = ,
l+u+o q-—p l+u+o q—7p
where
_z Kz
(2.25) H(z)= Pl
and p, q are the two solutions of Burger’s equation which satisfy
(2.26) uzt + {k(u+1) — (v + D}z—xkv=0

n z, and are smooth in > 0, v > 0. This verifies that system (3) has a pair of line
families with integral curves given by p = const and q = const.
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Finally, note that a system of 2 X 2 equations generically has two characteristic
families. The functions f and g given in (2.5) and (2.9) involve explicitly a Riemann
invariant of one family. The following result, which is easily verified, determines
both characteristic families given a Riemann invariant of one family. This general
result is simple and explains many of the calculations in [4, 12].

THEOREM 5. Let g = ¢(u,v) be a Riemann invariant for a system of 2 X2
conservation laws (2.1), and let f(u.q) = f(u, v) and g(v,q) = g(u. v) be smooth.
Then (AR ). i = 1.2, are characteristic fields for the system, where

(2.27) AN =f. R, =vgt,
A2:ﬁ4+f:/qzl+§iqu" (RZZ (j;[’gq)'

3. In this section we prove Theorems 1 and 2 which give necessary and sufficient
conditions on the geometry of M for M to be an invariant manifold for system (1).
Note that Definition 2 is local and locally O can be parameterized by k coordinates
of U, say u = (uy,...,u)"

G U=(uyou) = (upoug, ol ... e, Xy )N = o(u).

We assume that the transformation in (6) is given by (3.1), and that the flux function
i (7) is given by

(3.2) (u) = first k rows of {5-o(u)}.

This 1s reasonable since solutions of (1) must satisfy this k X k system in the first k
equations. That it actually represents no loss of generality can be shown by carrying
out the following analysis with a general transformation ¢.

We say that I is invariant for smooth solutions of systems (1) if Definition 2
holds for all smooth solutions U(x, 1) = ¢(u(x, 1)) of system (1). The first lemma
gives necessary and sufficient conditions for W to be invariant for smooth solutions
of system (1).

LeMMA 3.0. W is a k-dimensional manifold which is invariant Jor smooth solutions of
system (1) if and only if M is an integral manifold of k eigenvectors for distinct
eigenvalues of d*¥.

PrOOF. First assume that I is an integral manifold of k linearly independent
eigenvectors R ..., “, of dF. We show that for U(x, )= o(u(x. 1)), Uis a
smooth solutlon of (1) if and only if u is a smooth solution of (7), where F is defined
in (3.2).

Let 4 be the n X k matrix given by

|1
(3.3) do = A _[1;],

where /; is the k X k identity matrix. Let 4,,..., ,A, be the columns of 4. Each 4,
lies in the span of the A eigenvectors of the matrix d“f at each value of u. Define the
n X k matrix R by

(3.4) R=[R,,....4,].
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Since each A, is in the span of %R |,..., %R, there exists a k X k nonsingular matrix D
such that

(3.5) AD = R.

Finally, define the & X k matrix A by

A 0
(3.6) A= - :

0 A,
where A|,... A, are the k eigenvalues of R |,.... % ,, respectively. Then we can write
(3.7) d9%A =d5RD' = RAD' = ADAD .

We show first that the matrix D satisfies
(3.8) d5 = DAD',

so that the columns of D are eigenvectors of the matrix d: i.e.. d% is the k X k
matrix given by the first k rows of the n X k matrix

(3.9) d(5(o(u))) = dFde = dFA.
But by (3.7) we have
(3.10) dA = ADAD™".

Since A is the identity in the first k rows,
(3.11)  dF = Ist k rows of {dFA} = Istk rows of {ADAD™') = DAD"',
verifying (3.8).
Now U(x, 1) = ¢(u(x, t)) satisfies system (1) if and only if u(x, t) satisfies
(3.12) Au, + dS5Au, =0,
or by (3.7), (3.8), if and only if
(3.13) Alu, + d5u ) =0,
which holds if and only if
(3.14) u, + 5(u), =0

since the rank of A4 is k.
Conversely, now assume that for U = ¢(u), U(x, t) is a smooth solution of (1)f
and only if u(x, t) is a smooth solution of the k X k strictly hyperbolic system

(3.15) u, +F(u), =0,
where ¢ is a smooth map
(3.16) ¢: R - R".

We show that 9 = {U: U = ¢(u)} is an integral manifold of k eigenvectors of d.
Again let 4 denote the n X k matrix

(3.17) A=do,
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and let /,,...,/, be the k independent left eigenvectors of d%. Define the k X k
matrix L by

(3.18) L=

Since A, L have rank k, there exists an n X k matrix £ and a k X n matrix E~! such
that

(3.19) A=FL
and
(3.20) E''A=1L.

Since smooth solutions U(x, 1) = ¢(u(x, 1)) satisfy system (1) if and only if u(x, 1)
satisfies system (2), we must have that smooth functions u(x, t) satisfy

(3.21) Au, + d%5Au =0

if and only if they also satisfy

(3.22) Au, + AdSu_= 0.

This implies that

(3.23) d5A = AdY.

From (20) and (21) we obtain

(3.24) Ad% = ELdV = EAL = ENE'A.

Here A is the matrix given in (3.8) where the A, are the eigenvalues associated with
eigenvectors /,. Substituting into (3.23) we obtain

(3.25) (d5 — ENE™)4 = 0.
Muitiplying (3.25) on the left by E-' we have
(3.26) (E-'d% — NE")A4 = 0.

But (E-'d55—~AE™") is a (k X n) matrix, and (3.26) gives k independent linear
combinations of the columns of this matrix that are zero. Thus

(3.27) rank( E-'d5 — AE~") =0,

so we must have

(3.28) E-'d5—AE'=0.

Multiplying (3.28) on the left and right by the n X k matrix D yields
(3.29) dYE = EX,

so the k columns of E are k independent eigenvectors of dF. By (3.19) and (3.20),
the columns of A4 lie in the span of the columns of E. Therefore, since A = d¢, M,
the image of ¢, must be an integral manifold for k independent eigenvectors of dF.
This completes the proof of Lemma 3.0.
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We are now interested in obtaining necessary and sufficient conditions on the
geometry of I in order that 9N be an invariant submanifold for weak solutions of
system (1). Such an Y must first be invariant for smooth solutions of (1), so without
loss of generality we assume that 9 is the integral manifold for k independent
eigenvectors R ,,.... %, of dF. In this case, from (3.8) we have that R}, = d¢®,,
where R ; is the eigenvector of dF associated with the eigenvalue A;. Thus, letting
‘R ,(u, ) denote the integral curve of @L, through u, € R*, we have that ¢ - } (u, ) is
the integral curve of A, through U, = ¢(u, ). We now study the Hugoniot loci for
the k& X k strictly hyperbolic system (7). Lemma 3.1 gives a local characterization of
this loci (cf. [7, 13]).

LEMMA 3.1. In a neighborhood of each point in R¥, the Hugoniot locus of each state
u, consists of k smooth curves S,(u,), i = 1,... k, such that S,(u; ) makes C? contact
with the integral curve R (u, ) at u, . '

We call S(u,;) the i-shock curve and we call % ,(u,) the i-rarefaction curve
associated with the point u,. For such curves we let S;(£) denote some regular
parameterization of S,(u, ) with S;(0) = u,, and we let X;(£) be the value of A, at
S;(&). If S(u;) =R (u,), then we say that the i-shock and rarefaction curves
coincide, and if further dX,(£¢)/d¢ = 0, then we call S,(U,) a contact curve. It is
easily verified that if dX,(£)/d¢ = 0 for ¢ € (a, b) where (a, b) 1s any open interval
in the domain of £, then S;(¢) simply parameterizes that rarefaction curve R (a)
between S;(a) and S} (b).

Now let S(U, ) denote any smooth curve through U, € R” such that S(U,) is a
subset of the Hugoniot locus of U, for system (1), and let S, (£) denote a regular
parameterization of this curve, S,(0) = U,.

LeMMA 3.2. If S(U; ) C M in a neighborhood N of U, , then in N, both
(3.30) S(U.) = ¢ ° S(u,)
Jor somei € {1,...,k}, and

(331) {;,"—gx‘L(s)} {(8.(6) ~ U)o N) =0

for every N € {T;JU}*, where {T, DM }* denotes the orthogonal complement of the
tangent space of M at U = §,(¢).

Statement (3.31) states simply that whenever A, is not constant on S(U,), the
vector (§,(£) — U, ) must lie in the tangent space of I at S;(§).

PROOF. Assume that S(U, ) C 9. Then each point U, € S(U,) is in the Hugoniot
locus of U, for the system (1), and U, is also in the Hugoniot locus of U, for the
system (7) which is just the first k equations in system (1). Therefore, by Lemma 3.1,
S(U.) = ¢ © §;(u, ) in some neighborhood of U,, some i = 1,. .. ,k. Without loss of
generality, assume that values of U lie in a neighborhood 9 of U-space where the
shock curve S;(u, ) is regularly parameterized by u, = §, and write

(3.32) Si(€) = (& H(¢), x(¢, H(%))) = o(&, H(¢)),
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where H = (H,,...,H,) and u;, = H(&),i = 2,... .k, defines the curve S,(u; ) in the
first k variables. Let
(3.33) fE) =1(o(& H(E))). (&) =¢(¢&, H(E)).
Then for U on S(U, ) we must have
(3.34) o[Ul=[5).  o=[r]/[£].
where [U] = U — U, .[%F] = F(U) — “F(U, ), etc. Thus
oy :_[_fl

(3.35) [+7] ] [¢].
Differentiating both sides of (3.35) with respect to £ gives

(el , /1, [/1[e] .
3.36 ! + — = =dY g,
(30 GG LRI

where f* = f'(£), ¢’ = ¢'(£), and d'F is evaluated at $(£). Now let {N,....N, ,} be
an orthonormal basis for the orthogonal complement of the tangent space of Y at
U = ¢(§). Since ¢’ by assumption lies in T, we have N -¢"=0forj=1,...,
n — k. Moreover

(3.37) N - (d5¢) =N - (MCR |, + -+ +A,CAR, ) = 0,

where ¢'(§) = C,AR (U) + - +CR (U) gives ¢ as a linear combination of the
eigenvectors R (U ). Thus from (3.36) we obtain

(3.38) (/1 =71e1H{N, - [o]) =0
forj=1.....n — k. If[f] — f[£] = 0, then

(3.39) [71/1¢l=r

and so from (3.36) we obtain

(3.40) [ = dSe’,

in which case ¢’ must be an eigenvecior of dF with eigenvalue f’. But S (§)=¢ -
S;(¢) has C? contact with W, =¢- R, at £ = 0. Therefore, in the case of (3.40),
¢’ =R and ' = A, near U, . Statement (3.39) then reads

(3.41) N (&) =171/1£].

which, when differentiated, yields

Y — _f_l_f_[f_]/ﬂ =
(3.42) N8 = ] 0.

Substituting back into (3.38) yields
d ..
(3.43) {BZXL“)} : {N, (S.(¢) — UL)} =0

which proves Lemma 3.2. The first application of Lemma 3.2 characterizes invariant
manifolds in the case when 9T is the integral manifold of  eigenvectors Ro..... R,
none of which is a contact field.
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THEOREM . Assume that VA, - R, = 0 on at most a set of measure zero on each
integral curve of R, i=1,...,k. Then the following statements are equivalent
regarding an integral manifold O of the eigenvectors R |,..., R ,:

(i) For every U, = ¢(u;) € I, the curves ¢ - S;(u,) lie in the Hugoniot locus of
U, = ¢(u,) for system (1).

(1) “W is a k-dimensional affine linear space in U-space.

(iii) M reduces to the k X k system (7) on I (i.e., M is a k-dimensional invariant
manifold).

PROOF. First we show that (i) implies (ii). So assume (i) and suppose that 9N is not
an affine linear space in U-space. Note first that by Lemma 3.1, the k vectors
{(dS}(£)/d¢) span R* at ¢ = 0 for every u; = R¥. Thus the vectors {d¢ - dS;(0)/d¢)}
span the tangent space of O at each U, = ¢(u, ). Thus if IM is not an affine linear
space, then there must exist a point U, and an i € {1,...,k} such that S(§) = ¢ -
S/ (&) satisfies

(3.44) $7(0) - N #0

for some nonzero vector N € {T,, I } + . Let N(£) denote a smoothly varying vector
on ¢ such that N(0) = N and N(§) € {TM)@K)l . Then by continuity we have that

5'(§) — (S(§) ~ 5(0)) /¢

(3.45) : “N(£)#0
in a neighborhood of ¢ = 0. Since S'(£) - N(§¢) = 0, we conclude that
(3.46) [S(¢) — S(0)] - N(¢) =0

in some deleted neighborhood of ¢ = 0. This contradicts Lemma 3.2 since
dXN;(§)/d§ = 0 only on a set of measure zero. Therefore we have that (i) implies (ii).

Now assume (ii). Then U = Au defines the map ¢, where A is a constant & X n
matrix of the form (3.3), where B is a constant k X (n — k) matrix. Thus by (3.13),
system (1) is equivalent to the two systems

3.47 u, +d5(u)u, =0,
t X
(3.48) Bu, + Bd%(u)u, =0,

where ‘?(u) is given in (3.2). Since B is constant, weak solutions of (3.47) satisfy
(3.48) weakly, which verifies that U is a weak solution of (1) if and only if u is a
weak solution of (7). This is (ii).

Finally, (1) immediately follows from (iii) since the curves S,(u,) determine weak
solutions of system (7) of the form (5). This completes the proof of Theorem 1.

PROOF OF THEOREM 2. Let ¢: [§, £,] —» 9N be a local parametrization of the
integral curve I of R ; with respect to some coordinate u, = u = £. Let A(£) be the
corresponding eigenvalue. We show first that (i) implies (ii). So assume that (i) holds.
By Lemma 3.2 we have that

(3.49) N(E) - {(o(8) — (&) - N} =0,
for every &, &, € [£,, §,] and every vector N satisfying
(3.50) N.-¢'(§)=0.
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Note that if the term in brackets in (3.49) vanishes on an open set in [§,, §,], then
¢” = 0 on that set. Suppose now that it is not the case that either ¢y =0 or A" =0
in [£,, &,], where ¢ denotes the component of ¢ normal to the curve 9. Then by

(3.49) there must exist a point § and an open interval 4, in [£, £,] such that
(3.51) N(&) #0,  N(&)=0,
(3.52) $"(£) =0,  ¢u(é) #0

for all ¢, € §,. Statement (3.52) implies that {(¢(§) — ¢(§,)) - N} # 0 for some
¢, € %, N € Span{¢'(£)}*. This contradicts (3.44) since we also have A'(§) # 0.
Thus (i) implies (i1).

Now assume (ii). If O is a straight line then we are in the case of Theorem 2. So
assume A is constant on 9. Since u = u,,

du". =d% . ¢’ - !
E‘f o(u) =dT - ¢'(u) = Ap'(u),

and since A is constant, (u) = A¢(u) + const. By substituting ¢(u(x, 1)) for U in
(1) we have that U(x, t) is a weak solution of (1) if and only if u(x, ) weakly
satisfies

(3.53) o(u(x,1)), + A(u(x, 1)), = 0.

This is a linear equation in ¢, and so each component of (3.53) is weakly equivalent
to the linear scalar conservation law u, + Au, = 0, which appears in the ith
component. This verifies that (i) implies (i1). Statement (i) follows from (iii) as in
Theorem 1, so this completes the proof of Theorem 2.
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