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Abstract

In 1915, Albert Einstein wrote down his famous field equations of
general relativity, and in 1965, James Glimm gave his theory of wave
interactions. Here we discuss the issues in our forthcoming paper Shock
wave solutions of the Einstein equations: existence and consistency for
the initial value problem, in which we put these two theories together
by introducing a locally inertial Glimm scheme for spherically symmetric
spacetimes. The result produces the first analysis of weak solutions of
the Einstein equations for a perfect fluid, (in the PDE sense of the word
“analysis”).

1 Introduction

In Einstein’s theory of General Relativity [2], all properties of the gravitational

field are determined by the gravitational metric tensor g, a Lorentzian met-

ric that describes a continuous field of symmetric bilinear forms of signature

(−1, 1, 1, 1), defined at each point of a four dimensional manifold M called

“spacetime.” Freefall paths through the gravitational field are the geodesics of

the metric; the non-rotating vectors carried by an observer in free fall are those

vectors that are parallel transported by the metric connection determined by g;

spatial lengths of objects correspond to the lengths of the spacelike curves that

define their shape—length measured by the metric g; and time changes for an

observer are determined by the length of the observer’s timelike curve through

spacetime, as measured by the metric g.

In a given coordinate system x on spacetime, the length of a spacetime curve

can be computed by integrating the element of arclength
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ds2 = gijdx
idxj, (1)

where gij are the x-components of the spacetime metric. Here all indexed ob-

jects are assumed to tranform like tensors, and we adopt the Einstein summa-

tion convention whereby repeated up-down indices are assumed summed from

0 to 3. The metric components gij are smoothly varying, and transform like a

symmetric bilinear form under coordinate transformation. It follows that, in

a neighborhood of any point, there exist locally inertial, or locally Lorentzian

coordinates. That is, coordinates such that gij = diag(−1, 1, 1, 1), and gij,k = 0

at the point, i, j, k = 0, ..., 3. The notion of geodesic motion and parallel trans-

lation have a very natural physical interpretation in General Relativity in terms

of the locally inertial coordinate frames. Indeed, General Relativity makes con-

tact with (the flat spacetime theory of) Special Relativity by identifying the

locally Lorentzian frames at a point as the “locally non-rotating” inertial coor-

dinate systems in which spacetime behaves as if it were locally flat. Physically,

the non-rotating vector fields carried by an observer in free fall are the vector

fields that are locally constant in the locally inertial coordinate frames defined

at each point along the curve. (Here, locally constant means constant to within

higher order errors whose sum tends to zero under refinement of the coordinate

charts.) In fact, a vector field is parallel translated along a curve (in the sense

that ∇XY = 0 along a curve, c.f. [1, 21, 14, 22]), if and only if its components

are (locally) constant in the locally inertial coordinate frames defined at each

point along the curve. Thus, the non-rotating vector fields carried by an ob-

server in free fall are exactly the vectors that are parallel transported by the

unique symmetric connection determined by the gravitational metric g. Simi-

larly, the geodesics of the metric g are just the curves that are “locally straight

lines” in the locally inertial coordinate frames, c.f. [21, 22].

The fundamental tenet of General Relativity is the principle that there is

no apriori global inertial coordinate system on spacetime. Rather, in General

Relativity, inertial coordinate systems are local properties of spacetime in the

sense that they change from point to point. For example, if there were a global

Newtonian absolute space, then there would exist global coordinate systems

in which free falling objects do not accelerate, and any two such coordinate

systems would be related by transformations from the 10 parameter Galilean

Group–the set of coordinate transformations that do not introduce accelera-
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tions. Thus, the spacetime metric can then be viewed as a book-keeping device

for keeping track of the location of the local inertial reference frames as they

vary from point to point in a given coordinate system–diagonalize the metric

to find the local inertial frames. Thus, the earth moves “unaccelerated” in each

local inertial frame, but these frames change from point to point, thus produc-

ing apparent accelerations in a global coordinate system in which the metric

is not everywhere diagonal. The fact that the earth moves in a periodic orbit

through the time independent gravitational field of the Sun gives a topological

proof that there is no coordinate system that globally diagonalizes the metric,

and this is an expression of the fact that gravitational fields produce non-zero

spacetime curvature. Indeed, in an inertial coordinate frame, when a gravita-

tional field is present, one cannot in general eliminate the second derivatives of

the metric components at a point by any coordinate transformation, and the

nonzero second derivatives of the metric that cannot be eliminated, represent

the gravitational field. These second derivatives are measured by the Riemann

Curvature Tensor associated with the Riemannian metric g, [22]. Our analysis

of the initial value problem by Glimm’s method exploits the locally flat nature

of spacetime by approximating spacetime by a Minkowski flat metric in each

grid rectangle, the connection between neighboring coordinates being accounted

for by discontinuities at the grid boundaries. Thus our goal is to construct and

analyze a locally inertial Glimm Scheme, [3].

Now not every metric can be a gravitational field. In 1915, Einstein intro-

duced his gravitational field equations, which can be written in the compact

form

G = κT. (2)

The Einstein equations (2) describe the time evolution of the spacetime metric g,

and provide the constraint that a gravitational metric must meet in order to be

a physical gravitational field. Here G, (a 2-tensor constructed from the Riemann

curvature tensor), is the Einstein curvature tensor, T is the stress energy tensor,

(the source of the gravitational field), and κ = 8πG
3c4
, is a universal constant that

ensures correspondence with the Newtonian theory, G = Newton’s constant. In

a given coordinate system x, the field equations (2) take the component form

Gij(x) = κT ij(x), (3)
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where Gij denote the x-components of the Einstein curvature tensor, and T ij

denote the x-components of the stress energy tensor, as a function of the coor-

dinate position x. The components of the stress energy tensor give the energy

density and i-momentum densities and their fluxes at each point of spacetime,

i = 0, ..., 3. When the sources are modeled by a perfect fluid, T is given by

T ij = (ρc2 + p)wiwj + pgij, (4)

where w denotes the unit 4-velocity vector of the fluid, (the tangent vector to

the world line of the fluid particle), ρc2 denotes the energy density, (as measured

in the inertial frame moving with the fluid, c=speed of light), and p denotes

the fluid pressure, [22]. It follows that in Einstein’s theory of gravity, the time

evolution of the gravitational metric is determined simultaneously with the time

evolution of the sources through system (2), and all of the components of the

stress tensor directly influence the components of the gravitational field gij.

Since the 0-column of the stress-energy tensor (4) gives the energy and

momentum densities, and the i-column gives the corresponding i-fluxes, (in the

relativistic sense), it follows that conservation of energy-momentum in curved

spacetime reduces to the statement

Div(T ) = 0, (5)

where (capital) Div denotes the covariant divergence for the metric g, so that

it agrees with the ordinary divergence in each local inertial coordinate frame,

c.f. [22]. In this way equations (5) reduce to the relativistic compressible Euler

equations in flat Minkowski spacetime. In Einstein’s theory, (5) follows as an

identity from (2), because the Einstein tensor Gij is chosen to satisfy DivG = 0

as a consequence of the Bianchi identities of Riemannian geometry, c.f., [22]).

In a given coordinate system, the Einstein equations (2) determine a hyper-

bolic system of equations that simultaneously describe the time evolution of the

gravitational metric, as well as the time evolution of the fluid according to (5).

Since GR is coordinate independent, we can always view the time evolution (2)

in local inertial coordinates at any point in spacetime, in which case (5) reduces

to the classical relativistic Euler equations at the point, [12]. This tells us that,

heuristically, shock-waves must form in the time evolution of (2) because one
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could in principle drive a solution into a shock while in a neighborhood where

the equations remained a small perturbation of the classical Euler equations. It

follows that shock-waves are as fundamental to the time evolution of solutions

of the Einstein equations for a perfect fluid, as they are for the time evolution

of the classical compressible Euler equations. At a shock wave, the fluid vari-

ables ρ, w and p are discontinuous. Notice that (2) implies that the Einstein

curvature tensor G will be discontinuous at any point where T is discontinuous.

Since G involves second derivatives of the metric tensor g, the only way (2)

can hold in the classical pointwise a.e. sense at the shock is if the component

functions gij are continuously differentiable at the shock, with bounded deriva-

tives on either side, that is, if gij ∈ C1,1. Thus we expect from (2) that the

spacetime metric g should be C1,1 at shock waves. However, we now show that

for a spherically symmetric metric in standard Schwarzschild coordinates, the

best one can expect is that g ∈ C0,1.

A spacetime metric g is spherically symmetric if it takes the general form

ds2 = −A(r, t)dt2 +B(r, t)dr2 + 2D(r, t)drdt+ C(r, t)dΩ2, (6)

where A,B,C,D are arbitrary, smooth, positive functions of spherical coordi-

nates (t, r, θ, φ), and dΩ2 = dθ2 + sin2(θ)dφ2 denotes the standard line element

on the unit 2-sphere. Now the planets follow geodesics of the gravitational met-

ric generated by the Sun, (approximated by the Schwarzschild metric outside

the surface of the Sun, and by the Tolman-Oppenheimer-Volkoff (TOV) metric

inside the surface of the Sun), and according to the standard theory of cosmol-

ogy, the galaxies follow geodesics of the Friedmann-Robertson-Walker (FRW)

metric. The Schwarzschild line element is given by,

ds2 = −
(

1− 2GM0

r

)
dt2 +

(
1− 2GM0

r

)−1
dr2 + r2dΩ2, (7)

the FRW line element is given by

ds2 = −B(r)dt2 +

(
1− 2GM(r)

r

)−1
dr2 + r2dΩ2, (8)

and the TOV line element is given by,
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ds2 = −dt2 +R(t)2
(

dr2

1− kr2
+ r2dΩ2

)
. (9)

(Here M0 denotes the mass of the Sun (or a star), M(r) denotes the total mass

inside radius r, (a function that tends smoothly to M0 at the star surface), B(r)

is a function that tends smoothly to 1− 2GM0/r at the star surface, H = Ṙ(t)
R(t)

is the Hubble “constant”, and sign(k) determines the sign of the curvature of

3-space in the cosmological FRW universe, [22].) Each of the metrics (7)-(9) is

a special case of a general spherically symmetric spacetime metric of the form

(6). We now discuss the authors’ results in [6] in which we give the first general

existence theorem for shock wave solutions in spherically symmetric spacetimes.

2 Our Results

It is well known that for a general time dependent spherically symmetric metric

of form (6), there exists a coordinate transformation to standard Schwarzschild

coordinates in which the metric takes the simpler form

ds2 = −A(r, t)dt2 +B(r, t)dr2 + r2dΩ2, (10)

c.f. [22, 20]. Thus we always assume a metric of form (10). Using MAPLE to

put the metric ansatz (10) into the Einstein equations (2) produces the following

system of four coupled partial differential equations, (c.f. (3.20)-(3.23) of [5]),

A

r2B

{
r
B′

B
+B − 1

}
= κA2T 00 (11)

−Bt

rB
= κABT 01 (12)

1

r2

{
r
A′

A
− (B − 1)

}
= κB2T 11 (13)

− 1

rAB2
{Btt − A′′ + Φ} =

2κr

B
T 22, (14)

where the quantity Φ in the last equation is given by,
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Φ = −BAtBt

2AB
− B

2

(
Bt

B

)2

− A′

r
+
AB′

rB

+
A

2

(
A′

A

)2

+
A

2

A′

A

B′

B
.

Here “prime” denotes ∂/∂r, “dot” denotes ∂/∂t, κ = 8πG
c4

is the coupling

constant, G is Newton’s gravitational constant, c is the speed of light, T ij,

i, j = 0, ..., 3 are the components of the stress energy tensor, and A ≡ A(r, t),

B ≡ B(r, t) denote the components of the gravitational metric tensor in stan-

dard Schwarzschild coordinates x = (x0, x1, x2, x3) ≡ (t, r, θ, φ). The mass func-

tion M is defined through the identity

B =

(
1− 2M

r

)−1
, (15)

and M ≡ M(r, t) is interpreted as the mass inside radius r at time t. In terms

of the variable M, equations (11) and (12) are equivalent to

M ′ = 1
2
κr2AT 00, (16)

and

Ṁ = −1
2
κr2AT 01, (17)

respectively. Equations (11)-(14) are obtained by plugging metric ansatz (10)

into the Einstein equations (3), assuming a perfect fluid (4). Using (10) in (4),

the components T ij satisfy

T 00 =
1

A
T 00
M , (18)

T 01 =
1√
AB

T 01
M , (19)

T 11 =
1

B
T 11
M , (20)

where T ijM denote the components of T in flat Minkowski spacetime. To keep

things as simple as possible, we assume the equation of state



8 J. Groah B. Temple

p = σ2ρ, 0 < σ < c, (21)

where σ, the sound speed, is assumed to be constant.3 When p = σ2ρ, the

components of TM are given by

T 00
M =

c4 + σ2v2

c2 − v2
ρ, (22)

T 01
M =

c2 + σ2

c2 − v2
cvρ, (23)

T 11
M =

v2 + σ2

c2 − v2
ρc2, (24)

c.f., [18, 5, 4]. Here v, taken in place of w, denotes the fluid velocity as measured

by an observer fixed with respect to the radial coordinate r. It follows from (16)

together with (22)-(24) that, if r ≥ r0 > 0, then

M(r, t) = M(r0, t) +
κ

2

∫ r

r0

T 00
M (r, t)r2 dr; (25)

it follows from (3) together with (22)-(24) that the scalar curvature R is pro-

portional to the density,

R = (c2 − 3σ2)ρ; (26)

and it follows directly form (22)-(24) that

|T 01
M | < T 00

M , (27)

σ2

c2+σ2T
00
M < T 11

M < T 00
M . (28)

This defines the simplest possible setting for shock wave propagation in the

Einstein equations.

We prove that shock-wave solutions of (11)-(14), (4) and (21), defined out-

side a ball of fixed total mass, exist up until some positive time T > 0, and

3This simplifying assumption, as well as insuring that wave speeds are bounded by the
speed of light for arbitrarily strong shock waves, also prevents the formation of vacuum states,
and allows us to exploit special properties of the relativistic compressible Euler equations
derived in [15, 16, 18, 12].
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we prove that the total mass M∞ = limr→∞M(r, t) is constant throughout the

time interval [0, T ). A local existence theorem is all that we can expect for

system (11)-(14) in general because black holes are singularities in standard

Schwarzschild coordinates, B = 1
1− 2M

r

→ ∞ at a black hole, and black holes

can form in finite time. For these solutions, the fluid variables ρ, p and w,

and the components of the stress tensor T ij, are discontinuous, and the metric

components A and B are Lipschitz continuous, at the shock waves, c.f. (11) and

(13). Since (14) involves second derivatives of A and B, it follows that these

solutions satisfy (11)-(14) only in the weak sense of the theory of distributions.

Thus our theorem establishes the consistency of the initial value problem for

the Einstein equations at the weaker level of shock-waves.

To be precise, assume the initial boundary conditions

ρ(r, 0) = ρ0(r), v(r, 0) = v0(r), for r > r0,

(29)

M(r0, t) = Mr0 , v(r0, t) = 0, for t ≥ 0,

where r0 and Mr0 are positive constants, and assume the no black hole and

finite total mass conditions,

2M(r, t)

r
< 1, lim

r→∞
M(r, t) = M∞ <∞, (30)

hold at t = 0. For convenience, assume further that

lim
r→∞

r2T 00
M (r, t) = 0, (31)

holds at t = 0, c.f., (25), (30). Our main result in [6] can be stated as follows:

Theorem 1 Assume that the initial boundary data satisfy (29)-(31), and as-

sume that there exist positive constants L, V and v̄ such that the initial velocity

and density profiles v0(r) and ρ0(r) satisfy

TV[r,r+L] ln ρ0(·) < V, TV[r,r+L] ln

(
c+ v0(·)
c− v0(·)

)
< V, |v0(r)| < v̄ < c, (32)

for all r0 ≤ r <∞, where TV[a,b]f(·) denotes the total variation of the function

f over the interval [a, b]. Then a bounded weak (shock wave) solution of (11)-

(14), satisfying (29) and (30), exists up to some positive time T > 0. Moreover,
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the metric functions A and B are Lipschitz continuous functions of (r, t), and

(32) continues to hold for t < T with adjusted values for V and v̄ that are

determined from the analysis.

Note that the theorem allows for arbitrary numbers of interacting shock waves,

of arbitrary strength. Note that by (11), (13), the metric components A and

B will be no smoother than Lipschitz continuous when shocks are present,

and thus since (14) is second order in the metric, it follows that (14) is only

satisfied in the weak sense of the theory of distributions. Note finally that

limr→∞M(r, t) = M∞ is a non-local condition.
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2.1 The Proof Strategy

In previous work [5], the authors show that when the metric components A and

B are Lipschitz continuous, and T is bounded in L∞, (when viewed as functions

of the coordinate variables (t, r, θ, φ)), system (11)-(14) is weakly equivalent to

the following system of equations obtained by replacing (12) and (14) with the

0- and 1-components of (covariant) DivT = 0,

{
T 00
M

}
,0

+

{√
A

B
T 01
M

}
,1

= −2

x

√
A

B
T 01
M , (33)

{
T 01
M

}
,0

+

{√
A

B
T 11
M

}
,1

= −1

2

√
A

B

{
4

x
T 11
M +

(B − 1)

x
(T 00

M − T 11
M ) (34)

+2κxB(T 00
M T

11
M − (T 01

M )2)− 4xT 22
}
,

B′

B
= −(B − 1)

x
+ κxBT 00

M , (35)

A′

A
=

(B − 1)

x
+ κxBT 11

M . (36)

This is the system of equations that we work with here. (Cf. (4.67), (4.68)

together with (3.20), (3.22) of [5].) Here, “, i” denotes ∂/∂xi, and TM is defined

in (22)-(24).

System (33),(34),(35),(36) forms a system of conservation laws with source

terms which we write in the compact form, (c.f. [5]),

ut + f(A, u)x = g(A, u, x), (37)

A′ = h(A, u, x), (38)

where

u = (T 00
M , T

01
M ) ≡ (u0, u1), (39)

A = (A,B), (40)

f(A, u) =

√
A

B

(
T 01
M , T

11
M

)
, (41)

and
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g(A, u, x) =
(
g0(A, u, x), g1(A, u, x)

)
, (42)

h(A, u, x) =
(
h0(A, u, x), h1(A, u, x)

)
, (43)

where

g0(A, u, x) = −2

x

√
A

B
T 01
M , (44)

g1(A, u, x) = −1

2

√
A

B

{
4

x
T 11
M +

(B − 1)

x
(T 00

M − T 11
M ) (45)

+2κxB(T 00
M T

11
M − (T 01

M )2)− 4xT 22
}
,

and

h0(A, u, x) =
(B − 1)A

x
+ κxABT 11

M , (46)

h1(A, u, x) = −(B − 1)B

x
+ κxB2T 00

M . (47)

The vector h(A, u, x) is just obtained by solving (11) and (13) for A′ and B′.

Note that we have set x ≡ x1 ≡ r, and we use x in place of r in the analysis to

follow since this is standard notation in the literature on hyperbolic conservation

laws. Note also that we write t when we really mean ct, in the sense that t must

be replaced by ct whenever we put dimensions of time, i.e., factors of c, into

our formulas. We interpret this as taking c = 1 when convenient.

A new twist in formulation (37), (38) is that the conserved quantities are

taken to be the the energy and momentum densities u = (u0, u1) = (T 00
M , T

01
M )

of the relativistic compressible Euler equations in flat Minkowski spacetime–

quantities that, unlike the entries of T, are independent of the metric. Note

that, (remarkably), all time derivatives of metric components cancel out from

the equations when this change of variables is made, c.f. [5]. We take advantage

of this formulation in the numerical method that we introduce here for the study

of the initial value problem.
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Our proof of Theorem 1 is based on a new fractional step Glimm scheme,

c.f. [13, 11, 12]. The fractional step method employs a Riemann problem step4

that simulates the source free conservation law ut+f(A, u)x = 0, (A ≡ Const),

followed by an ODE step that accounts for the sources present in both f and

g. Our idea for the numerical scheme is to stagger discontinuities in the metric

with discontinuities in the fluid variables so that the conservation law step, as

well as the ODE step of the method, are both generated in grid rectangles on

which the metric components A = (A,B), (as well as x), are constant. At the

end of each time step, we solve A′ = h(A, u, x) and re-discretize, to update

the metric sources. Part of our proof involves showing that the ODE step

ut = g(A, u, x) − ∇Af · A′, with h substituted for A′, accounts for both the

source term g, as well as the effective sources that are due to the discontinuities

in the metric components at the boundaries of the grid rectangles.

By our formulation (37), (38), only the flux f in the conservation law step,

depends on A. From this we conclude that the only effect of the metric on the

Riemann problem step of the method is to change the wave speeds, but not the

states of the waves that solve the Riemann problem. Thus, on the Riemann

problem step, when we assume p = σ2ρ, we can apply the estimates obtained

in [19], which were originally derived for flat Minkowski spacetime A = (1, 1).

Applying these results, it follows that the Riemann problem is globally solvable

in each grid cell, and the total variation in ln ρ is non-increasing in time on the

Riemann problem step of our fractional step scheme, [19]. Thus we need only

estimate the increase in total variation of ln ρ for the ODE step of the method,

in order to obtain a local total variation bound, and hence compactness of the

numerical approximations up to some time T > 0.

One nice feature of our method is that the ODE that accomplishes the ODE

step of the method, turns out to have surprisingly nice properties. Indeed,

a phase portrait analysis shows that ρ > 0, |v| < c is an invariant region for

solution trajectories. (Since x and A are taken to be constant on the ODE step,

the ODE’s form an autonomous system at each grid cell.) We also show that

even though the ODE’s are quadratic in ρ, solutions of the ODE’s do not blow

up, but in fact remain bounded for all time. It follows that the fractional step

4The Riemann problem is the initial value problem when the initial data is a pair of
constant states centered by a jump discontinuity. For a pure conservation law of the form
ut + f(u)x = 0, the solution, which typically only exists for constant states in restricted
regions of u-space, consists of elementary waves, c.f. [10, 17].
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scheme is defined and bounded so long as the Courant-Freidrichs-Levy (CFL)

condition is maintained, [17]. We show that the CFL bound depends only

on the supnorm of the metric component ‖B‖∞, together with the supnorm

‖S‖∞, where S ≡ S(x, t) = xρ(x, t). We go on to prove that all norms in

the problem are bounded by a function that depends only on ‖B‖∞ ‖S‖∞,
and ‖TVL ln ρ(·, t)‖∞, where the latter denotes the sup of the total variation

over intervals of L. By this we show that the solution can be extended up

until the first time at which one of these three norms tends to infinity. (Our

analysis rules out the possibility that v → c before one of these norms blows

up.) The condition B → ∞ corresponds to the formation of a black hole, and

ρ→∞ corresponds to the formation of a naked singularity, (because the scalar

curvature satisfies R = {c2 − 3σ2}ρ). It is known that black holes can form

in solutions of the Einstein equations, and it is an open problem whether or

not naked singularities can form (in the time evolution of a perfect fluid), or

whether we can have ‖S‖∞ →∞, or ‖TVL ln ρ(·, t)‖∞ →∞, in some other way.

The main technical problem is to prove that the total massM∞ = κ
2

∫∞
r0
ρr2 dr

is bounded. The problem is that, in our estimates, the growth of ρ depends on

M and the growth of M depends on ρ, and M is defined by a non-local integral.

Thus, an error estimate of order ∆x for ∆ρ after one time step, is not sufficient

to bound the total mass M∞ after one time step.

As a final comment, we note that we can view this fractional step method

as a locally inertial version of Glimm’s method in the sense that it exploits

the locally flat character of spacetime. That is, the Riemann Problem step

solves the equations ut + f(A, u)x = 0 inside grid rectangles Rij. Now each

grid rectangle is an “inertial reference frame” because A ≡ Const. implies

the metric is flat in Rij. The boundaries between these local inertial reference

frames are the discontinuities that appear along the top, bottom and both sides

of the grid rectangles. The term −∇Af · A′ on the RHS of the ODE step

ut = g(A, u, x) − ∇Af · A′, accounts for the discontinuities in A along the

sides of the grid rectangles Rij, and the term g in the ODE step, together

with the imposition of the constraint A′ = h(A, u, x) at the end of each time

step, account for the discontinuities in A at the top and bottom of each Rij.

It follows that once the convergence of an approximate solution is established,

one can just as well replace the true approximate solution by the solution of

the Riemann problem in each grid rectangle Rij–the two differ by only order

∆x. The resulting approximation scheme converges to a weak solution of the
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Einstein equations, and has the property that it solves the compressible Euler

equations exactly in local inertial coordinate frames, (grid rectangles), and the

transformations between neighboring coordinate frames are accounted for by

discontinuities at the coordinate boundaries. In this sense, the fractional step

Glimm method is a locally inertial numerical method. (Note that we could not

have a locally inertial method without incorporating shock waves, because the

Riemann problem essentially contains shock waves.)

2.2 The Smoothness Class of the Metric

The RHS of the Einstein equations Gij = κT ij involve the fluid variables ρ, p

and w, thus it follows that when shock waves are present, T is discontinuous.

Since the Einstein curvature tensor G on the LHS of (3) involves second deriva-

tive of the metric gij, one expects that, in general, the metric components gij(x)

should be at least C1,1 functions of the coordinates, (that is, in the smoothness

class of continuous functions with Lipschitz continuous first order derivatives),

in order that the LHS of (3) be free of delta function sources, c.f. [9, 19]. How-

ever, the metric components A and B in the solutions of (11)-(14) constructed

here, are only Lipschitz continuous. We know that these solutions are in fact

“free of delta function sources” as a consequence of the fact that they are gen-

uine weak solutions of (3). It remains an open problem whether or not there

exist coordinate transformations that smooth the metric components of these

solutions from the smoothness class C0,1 up to the class C1,1. In such coordi-

nates, (3) would hold in the pointwise sense at shock waves, and hence, such a

transformation would map weak solutions of the Einstein equations to strong

solutions. It was pointed out in [5], (see also [19]), that the transformation that

takes an arbitrary spherically symmetric metric over to a metric of form (10),

necessarily involves derivatives of the metric components, and so the existence

of such C1,1 coordinates would be consistent with the fact that the A and B

that solve (11)-(14) are only Lipschitz continuous at shock waves. Moreover, in

[19, 9] it was shown that for a general smooth shock surface in four dimensional

spacetime, such a coordinate transformation always exists, and can be taken

to be the Gaussian normal coordinates at the shock surface. But the solutions

constructed in [6] can contain arbitrary numbers of interacting shock-waves,

of arbitrary strength–and the Gaussian normal coordinate systems break down

at points where shock waves interact. With this in mind, we pose the follow-
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ing open question: Given a weak solution of the Einstein equations for which

the metric components are only C0,1 functions of the coordinate variables, does

there always exist a coordinate transformation that improves the regularity of

the metric components to C1,1 when the components are viewed as functions of

the transformed coordinate variables? In particular, we ask if this statement is

true for the C0,1 solutions that we have constructed in [6]?

We believe that this question goes to the heart of the issue of the regular-

ity of solutions of the Einstein equations. Indeed, the Einstein equations are

inherently hyperbolic in character; that is, there is finite speed of propagation

because all wave speeds are bounded by the speed of light. It follows that,

unlike Navier Stokes type parabolic regularizations of the classical compress-

ible Euler equations, incorporating the effects of viscosity and dissipation into

Einstein’s theory of gravity, cannot alter the fundamental hyperbolic character

of the Einstein equations themselves. Thus, even when dissipative effects are

accounted for, it is not clear apriori that the corresponding solutions of the Ein-

stein equations will in general be more regular than the solutions that we have

constructed in [6]. We also note that the singularity theorems in [8] presume

that metrics are in the smoothness class C1,1, one degree smoother than the

solutions we have constructed, c.f. [8], page 284.

In summary, if a transformation exists that improves the regularity of solu-

tions of the Einstein equations from the class C0,1 up to the class C1,1, then it

defines a mapping that takes weak solutions of the Einstein equations to strong

solutions. It then follows that in general relativity, the theory of distributions

and the Rankine Hugoniot jump conditions for shock waves need not be imposed

on the compressible Euler equations as extra conditions on solutions, but rather

must follow as a logical consequence of the strong formulation of the Einstein

equations by themselves. If such a transformation does not always exist, then

solutions of the Einstein equations are one degree less regular than previously

assumed.

For details we refer the reader to [5, 6], and to the authors’ forthcoming

book [7].
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