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1. Introduction

These notes address mathematical issues that arise when one attempts to incorporate shock
waves into Einstein’s theory of General Relativity. At the start, one is led to consider so-
lutions of the Einstein equations when the space—time metric is only Lipschitz continuous,
and this is the main topic of this article. In Section 1 (which is taken from [36]), we in-
troduce General Relativity and the Einstein equations, and then we begin the discussion in
Section 1.3 (taken from [9]). by writing down the Einstein equations for a perfect fluid as-
suming spherical symmetry. and assuming standard Schwarzschild coordinates. We point
out that the equations imply that the metric components of solutions can be at best Lipschitz
continuous functions of the coordinates when shock waves are present (that is, the metric
components, viewed as functions of the space—time coordinates, lie at best within the class
CV-} of functions that are continuous with Holder exponent |, [6]). We then write down a
system of conservation laws with source terms that is weakly equivalent to these equations,
and this helps explain the less than expected regularity of the metric. A rigorous derivation
of the equivalence of these equations is the topic of Section 5. Now the Lipschitz continuity
of the metric components is interesting because the curvature tensor, a quantity determined
by second derivatives of the metric tensor, must remain free of delta function sources in
order to be a bona fida weak solution of the equations. This motivates the discussion in
Section 2 (taken from [29]), which presents the general theory of matching space—time
metrics Lipschitz continuously across smooth shock surfaces. In Section 3 (which is taken
from |31.36]). we develop a theory for matching a Friedmann—Robertson—Walker metric
of cosmology. to a Tolman—Oppenheimer—Volkoff metric for a static fluid sphere, across
a shock wave interface, and in Section 4 (taken from [30]), we use this theory to derive
a class of exact shock wave solutions of the Einstein equations that model blast waves in
General Relativity. In these exact solutions, the Big Bang singularity of the FRW metric is
replaced by a shock wave explosion. and the outgoing shock wave lies at the leading edge
of what is interpreted as the expansion of the galaxies in the cosmological interpretation of
the FRW metric. The construction of these exact solutions takes advantage of being able to
work with metrics in the lower smoothness class of C%'. In Section 5 (taken from [9]), we
show that the spherically symmetric Einstein equations written in standard Schwarzschild
coordinates (that is, the equations which began the discussion in Section 1), are weakly
equivalent to a system of conservation laws with source terms. This reformulation of the
equations shows that we can expect solutions with shock waves to exist, and helps explain
the Lipschitz regularity of the metric components when shocks are present. The system
of equations derived in Section 5 is also the starting point for the existence theory given
in [10]. The main theorem in [10] is stated in Section 1.3. This result confirms what is
indicated by the equations derived in Section 5. and demonstrates rigorously that the initial
value problem for the Einstein equations (assuming perfect fluid and spherical symmetry),
is consistent for initial density and velocity profiles that are discontinuous functions that
are only locally of bounded total variation. Said differently, the result demonstrates that
the Einstein equations of General Relativity are meaningful in the presence of arbitrary
numbers of interacting shock waves, of arbitrary strength.

The class C"! is one derivative /ess smooth than the Einstein equations suggest the
metric components ought to be. and in fact, the singularity theorems in [11] presume that
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metrics are in the smoothness class C'!, one degree smoother, cf. [11, p. 284]. One of
the remarkable features of the results of Section 2 is that for smooth shock surfaces, there
always exist coordinate transformations that smooth the components of the gravitational
metric to C!>!| and these coordinates can be taken to be the Gaussian normal coordinates of
the surface. However, the Gaussian normal coordinates break down at points of interaction
of shock waves, and thus it remains an open problem whether general Lipschitz continuous
solutions of the Einstein equations can always be smoothed by coordinate transformation.
This leads to the following interesting dichotomy: If such a coordinate transformation does
not always exist, then solutions of the Einstein equations are one degree less smooth than
previously assumed; and if such a transformation does exist, then it defines a mapping that
takes weak solutions of the Einstein equations to strong solutions. In the latter case, it fol-
lows that the theory of distributions and the Rankine—Hugoniot Jump conditions for shock
waves need not be imposed as extra conditions on the relativistic compressible Euler equa-
tions in General Relativity, but rather must follow as logical consequences of the strong
formulation of the Einstein equations by themselves.

1.1. Spacetime and the gravitational metric tensor

In Einstein’s theory of General Relativity, all properties of the gravitational field are deter-
mined by the gravitational metric tensor g, a Lorentzian metric that describes a continuous
field of symmetric bilinear forms of signature (—1, 1, 1, 1), defined at each point of a four-
dimensional manifold M called “space—time”. Freefall paths through the gravitational field
are the geodesics of the metric; the non-rotating vectors carried by an observer in freefall
are those vectors that are parallel transported by the (unique symmetric) connection deter-
mined by g; spatial lengths of objects correspond to the lengths of the spacelike curves that
define their shape — length measured by the metric g; and time changes for an observer are
determined by the length of the observer’s timelike curve through space-time, as measured
by the metric g.

The length of a curve in space-time is computed by integrating the element of arclength
ds along the curve, where, in a given coordinate system on space—time, ds is defined by

ds2=g;jdxidxj. (1.1)

Here we adopt the Einstein summation convention whereby repeated up-down indices are
assumed to be summed from 0 to 3. A coordinate system on space-time is a regular map
that takes a neighborhood U, of space-time to R*, x:U, — R*. Since space—time is
a manifold, it can be covered by coordinate charts. We let x = (x%,x!, x2, x3) denote
both the coordinate map and the coordinates of a point x(P) € R*. The functions 8ij(x),
i,j=0,1,2,3, are the x-components of the metric g. At each point x, the matrix 8ij
determines the lengths of tangent vectors in terms of their components relative to the x-
coordinate basis {3/3x'}. That is, in x-coordinates, the tangent vector to a curve x(£) (as
parameterized in x-coordinates), is given by X (£) = %/ d—j—, (dot denotes d/d&), so that

along the curve x (&), the increment dx’ in the x’ -coordinate, in the direction of the curve,
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is given by dx' = &' d&. Thus, according to (1.1). the increment in arclength along a curve
X (&) 1s given in terms of the increment in the parameter & by

ds® = gt 47 dg = || X &)||” e,

so that. the length of an arbitrary vector X = X' =L is given by

ay!
- iy
XN~ =gi; X' X7,

where again we assume summation over repeated up-down indices. We conclude that the

length of a curve is just the mtegral of the g-length of its tangent vector along the curve.
) :
;»'w according to the

i

Under change of coordinates v — v, a vector X' ;_:7 transforms to X¢
- (r,
tensor transformation laws

A I R
X' =—X" — = ——. (1.2)
ax! ayv ave o'
(Our slightly ambiguous notation is that indices 7, j. k.... label components in x-

coordinates, and «. 8. y. ... label components in y-coordinates. So, for example, X' is
the x’'-component of the tangent vector X, X is the y¥-component of X, etc. This works
quite well, but tensors must be re-labeled when indices are evaluated.) It follows that the
metric tensor transforms according to the tensor transformation law

't g

ANKAL 13
v gy (1.3)

op = &
That is. at each point, ¢ transforms by the matrix transformation law
g=A'gA

for a bilinear form. because the matrix A = d.x/ /0" transforms the vector components of
the v-basis {8/9v“} over to their components relative to the x-basis {3/d.x'}). The Einstein
summation convention keeps track of the coordinate transtormation laws as in (1.2) and
(1.3) so long as we keep the indices on coordinate functions “up™ (as in x'), coordinate
basis indices “down™ (as in 9/0x"). indices on vector components “up” (as in X' so that
X=X %) indices on basis 1-forms “up” (as in dx’). and indices on components of 1-
forms down (as in w; so that w = w; dx'). In general, a tensor of type (k. /) is said to have
k-contravariant indices (up) and /-covariant indices (down) if the components in a given
coordinate system transform according to the tensor transformation law

i O AN A ax!

BroweBi = Lo v dxik gy “.8_\“’/'

Here the (matrix) Jacobian satisfies d.x/dv = (3v/d.x)~". and by letting

() =(eip)™".




506 J. Groah et al.

we can raise or lower an index by contracting the index with the metric; that is, for example,

T =T,;8%

raises the index i. In the modern theory of differential geometry, T}l‘ ''''''' ; ;‘ are viewed as the

components on the tensor products {573;1- ® --® B;L"k QAN Q.. ® dx/'} which form a
basis for the set of operators that act linearly on k copies of T*M and [ copies of T M,
cf. [4].

Freefall paths through a gravitational field are geodesics of the space~time metric g. For
example, the planets follow geodesics of the gravitational metric generated by the Sun (ap-
proximated by the Schwarzschild metric outside the surface of the Sun, and by a Tolman~
Oppenheimer—Volkoff (TOV) metric inside the surface of the Sun), and according to the
standard theory of cosmology, the galaxies follow geodesics of a Friedmann-Robertson—
Walker (FRW) metric. In spherical coordinates x = (1, r, 6, @), the Schwarzschild line el-
ement is given by

2 2 -1
ds2=_(1_—g—]‘@>dt2+(1— gMO) dr? +r2d02?, (1.4)
r r

the TOV line element is given by

2GM(r)

—1
ds? = —B(r)dr® + (1 - ) dr® +r%de?, (1.3)

and the FRW line element is given by

d 2
ds? = —dr? + R(1)? (ﬁ + rzd:z"—). (1.6)

The line element determines the metric components g;; through the identity (1.1). Here G
denotes Newton’s gravitational constant, Mo denotes the mass of the Sun (or a star), M (r)
denotes the total mass inside radius r (a function that tends smoothly to My at the star
surface), B(r) is a function that tends smoothly to 1 — 2GMy/r at the star surface, H =
R(t)/R(t) is the Hubble “constant”, and d2? = d92 + sin®(6) d¢? denotes the standard
line element on the unit 2-sphere. (Here 2GM = 2GM /c?. and we take ¢ = 1 . [41)

Each of the metrics (1.4)—(1.6) is a special case of a general spherically symmetric
space-time metric of the form

ds? = —A(r, 1)d® + B(r. 1) dr? + 2D(r, t)drdt + C(r, 1) d22, (1.7)

where A, B, C, D are arbitrary, smooth, positive functions. A spherically symmetric metric
is said to be in standard Schwarzschild coordinates (or the standard coordinate gauge), if it
takes the simpler form

ds? = —A(r, 1) dr? + B(r. 1) dr? + r2d Q2. (1.8)
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It is well known that, in general. there always exists a coordinate transformation that takes
an arbitrary metric of form (1.7) over to the simpler form (1.8), [42]. In Section 1.3 below
we carry out this reduction with an eye toward anticipating the regularity of the metric
components A and B, [42,9].

The geodesics of a metric are paths x (s) of extremal length, determined by the geodesic
equation

d>x’ o dxd dok
o gy o (1.9

where the so-called Christoffel symbols or connection coefficients F;k are defined by

| .
=8 =gjko + Lojk + Lho.j)- (1.10)

i

kT g
(Here, “k™ denotes the classical derivative in direction x*.) The Christoffel symbols I’;,\,
are the central objects of differential geometry that do not transform like a tensor. Indeed,
they fail to be tensorial by exactly the amount required to convert coordinate differentiation
of vector components into a tensorial operation. That is, for a vector field Y, let Y! denote
the x’-component of Y. The covariant derivative V is defined by

VaY=1Z,

a7

where, letting semicolon denote covariant differentiation, Z defines a vector field with x-
components

P i oy’
z ——Y:”:Bx"

— i yk, (1.11)
For arbitrary vector fields X and Y, one defines the covariant derivative Vy Y by

.0
VxY =XV, Y=XY —.
Er ax!

We say that a vector field Y is parallel along a curve whose tangent vector is X if
VxY =0,

all along the curve. It follows that the covariant derivative Vx Y measures the rate at which
the vector field Y diverges from the parallel translation of Y in the direction of X. In a
similar fashion, one can define the covariant derivative VT of any (k, /) tensor T as the
(k,! + 1) tensor with components
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For example, for a (1, 1) tensor 7,

T;;azT;qa—F,'UTjT—l-F;UTT'. (1.12)
More generally, to compute VT for a (k, /) tensor T » include a negative term for every
contravariant index (contract the index with I as above), and a positive term (as above)
for every covariant index in 7. We say that T is parallel along a curve with tangent vector
X if VxT =0 all along the curve. It follows that VxT measures the rate at which 7
diverges from the parallel translation of T in direction X. For a (2, 0) tensor T we define
the covariant divergence of T to be the vector field defined by

. o O '
d“’T:Tl?aW- (1.13)
The covariant derivative commutes with contraction and the raising and lowering of in-
dices, [42], and by (1:]2), V reduces to the classical derivative at any point where the
Christoffel symbols F;k vanish.

It follows from (1.10) that F;,\, =0 at a point in a coordinate system where 8ijk =0, all
I,j,k=0,...,3. The existence of such coordinate frames at a point follows directly from
the fact that the metric components g; j are smoothly varying, and transform like a symmet-
ric bilinear form under coordinate transformation. If in addition, g;; = diag(—1,1,1,1),
then such a coordinate system is said to be locally inertial, or locally Lorentzian at the
point. The notion of geodesics and parallel translation have a very natural physical inter-
pretation in General Relativity in terms of the locally inertial coordinate frames. Indeed,
General Relativity makes contact with (the flat space—time theory of) Special Relativity by
identifying the locally Lorentzian frames at a point as the “locally non-rotating” inertial
coordinate systems in which space—time behaves as if it were locally flat. Thus physically,
the non-rotating vector fields carried by an observer in freefall should be the vector fields
that are locally constant in the locally inertial coordinate Jframes defined at each point
along the curve. But since I“fk = 0 at the center of a locally inertial coordinate system,
it follows from (1.11) that a vector field is parallel translated along a curve (in the sense
that Vx Y = 0 along a curve), if and only if its components are (locally) constant in the lo-
cally inertial coordinate frames defined at each point along the curve. Thus we see that the
non-rotating vector fields carried by an observer in freefall are exactly the vectors that are
parallel transported by the unique symmetric connection (1. 10) determined by the gravita-
tional metric g. Similarly, the geodesics of the metric g are just the curves that are “locally
straight lines” in the locally inertial coordinate frames.

The fundamental tenet of General Relativity is the principle that there is no apriori global
inertial coordinate system on space—time. Rather, in General Relativity, inertial coordinate
systems are local properties of space—time in the sense that they change from point to
point. For example, if there were a global Newtonian absolute space, then there would
exist global coordinate systems in which freefalling objects do not accelerate, and any
two such coordinate systems would be related by transformations from the 10 parameter
Galilean Group — the set of coordinate transformations that do not introduce accelerations.
In Special Relativity, the existence of absolute space would presume the existence of global
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coordinate systems related by the transformations of Special Relativity; that is, in Special
Relativity, the 10 parameter Poincare group replaces the 10 parameter Galilean Group as
the set of transformations that introduce no accelerations. The Poincare Group is obtained
from the Galilean group by essentially replacing Euclidean translation in time by Lorentz
transformations, and this accounts for time dilation. The space—time metric can then be
viewed as a book-keeping device for keeping track of the location of the local inertial ref-
erence frames as they vary from point to point in a given coordinate system — the metric
locates the local inertial frames at a given point as those coordinate systems that diagonal-
ize the metric at that point, g;; = diag(—1. 1. 1, 1). such that the derivatives of the metric
components also vanish at the point. Thus, the earth moves “unaccelerated” in each local
inertial frame, but these frames change from point to point, thus producing apparent ac-
celerations in a global coordinate system in which the metric is not everywhere diagonal.
The fact that the earth moves in a periodic orbit around the Sun is proof that there is no
coordinate system that globally diagonalizes the metric. and this is an expression of the
fact that gravitational fields produce nonzero space—time curvature. Indeed, in an inertial
coordinate frame, when a gravitational field is present. one cannot in general eliminate
the second derivatives of the metric components at a point by any coordinate transforma-
tion, and the nonzero second derivatives of the metric that cannot be eliminated, represent
the gravitational field. These second derivatives are measured by the Riemann Curvature
Tensor associated with the Riemannian metric g.

Riemann introduced the curvature tensor in his inaugural lecture of 1854. In this lecture
he solved the longstanding open problem of describing curvature in surfaces of dimension
higher than two. Although the curvature tensor was first developed for positive definite
“spatial” metrics, Einstein accounted for time dilation by letting Lorentz transformations
play the role of rotations in Riemann’s theory, and except for this, Riemann’s theory car-
ries over essentially unchanged. The Riemann Curvature Tensor R’“(x) is a quantity that
involves second derivatives of g;;(x), but which transforms like a tensor under coordinate
transformation; that is. the components transform like a sort of four component version of
a vector field, even though vector fields are constructed essentially from first order deriva-
tives. The connection between General Relativity and geometry can be summarized in the
statement that the Riemann Curvature Tensor associated with the metric g gives an invari-
ant description of gravitational accelerations. The components of the Riemann Curvature
Tensor are given in terms of the Christotfel symbols by the formula, [41],

Ry = Tha = Tjes + AT Tox = Thlor ) (1.14)

One can interpret this as a “curl” plus a “commutator”

1.2. Introduction to the Einstein equations

Once one makes the leap to the idea that the inertial coordinate frames change from point
to point in space-time, one is immediately stuck with the idea that, since our non-rotating
inertial frames here on earth are also non-rotating with respect to the fixed stars, the stars
must have had something to do with the determination of our non-accelerating reference
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frames here on earth (Mach’s Principle). Indeed, not every Lorentzian metric can describe
a gravitational field, which means that gravitational metrics must satisfy a constraint that
describes how inertial frames at different points of space~time interact and evolve. In Ein-
stein’s theory of gravity, this constraint is given by the Einstein gravitational field equa-
tions. These field equations were first introduced by Albert Einstein in 1915 after almost
ten years of struggle.

The Einstein equations can be written in the compact form

G=«T. (1.15)
Here G denotes the Einstein curvature tensor, T the stress energy tensor (the source of the

gravitational field), and « is the gravitational constant. In a given coordinate system x, the
field equations (1.15) take the component form

Gij(x) =«T;(x), (1.16)
where
1
GijERC;oj—ERg:gij’ (1.17)

denotes the x-components of the Einstein curvature tensor, and T;; the x-components of
the stress energy tensor. We let 0 < i, j < 3 refer to components in a given coordinate
system, and again we assume the Einstein summation convention whereby repeated up-
down indices are assumed to be summed from 0 to 3. The components of the stress energy
tensor give the energy density and /-momentum densities and their fluxes at each point of
space~time. When the sources are modeled by a perfect fluid, 7 is given (in contravariant
form) by

TV = (o + pyw'w! + pg¥, (1.18)

where w denotes the unit 4-velocity vector of the fluid (the tangent vector to the world line
of the fluid particle), p denotes the energy density (as measured in the inertial frame mov-
ing with the fluid), and p denotes the fluid pressure. The velocity w has four components
w = dx’/ds when the fluid particle traverses a (timelike) path x(s) in x-coordinates, and
s 1s taken to be the arclength parameter (1.1) determined by the gravitational metric g. It
follows that w is a unit timelike vector relative to g, and thus only three of the four com-
ponents of w are independent. The constant « in (1.15) is determined by the principle that
the theory should incorporate Newton’s theory of gravity in the limit of low velocities and
weak gravitational fields (Correspondence Principle). This leads to the value

Kk =8rwG/c".

Again, c denotes the speed of light and G denotes Newton’s gravitational constant.
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Newton’s constant first appears in the inverse square force law

MM
,-3

Force =Ma= -G r. (1.19)
In (1.19). M is the mass of a planet, My is the mass of the sun, and r is the position
vector of the planet relative to the center of mass of the system. The Newtonian law (1.19)
starts looking like it is not really a “fundamental law™ once one verifies that the inertial
mass M on the LHS of (1.19) is equal to the gravitational mass M on the RHS of (1.19)
(Equivalence Principle). In this case, M cancels out, and then (1.19) (remarkably) becomes
more like a law about accelerations than a law about “forces™. That is, once M cancels
out, the force law (1.19) is independent of any properties of the object (planet) whose
motion it purports to describe. Thus, in Newton’s theory, the “gravitational force”, which
is different on different objects of different masses, miraculously adjusts itself perfectly so
that every object (subject to the same initial conditions). traverses exactly the same path.
Thus Einstein was led to suspect that the Newtonian gravitational force was some sort of
artificial device, and that the fundamental objects of the gravitational field were the “freefall
paths™, not the forces. From this point of view, the field equations (1.15) are more natural
than (1.19) because they are, at the start, equations for the gravitational metric, and the
gravitational metric fundamentally describes the paths of “freefalling” objects by means
of the geodesic equation of motion (1.9) — which just expresses “local non-acceleration in
locally inertial coordinate frames™. In Newton’s theory of gravity, the non-rotating frames
here on earth are aligned with the stars because there is a global inertial coordinate system
that connects us. In contrast, according to the modern theory of cosmology, which is based
on Einstein’s theory of gravity, the non-rotating inertial frames here on earth are aligned
with the stars because the FRW metric (1.15) maintains this alignment, and (1.15) solves
the Einstein equations for an appropriate choice of R(r). (This is still a bit unsatisfying!)

In the limit that a finite set of point masses tends to a continuous mass distribution with
density p, Newton’s force law is replaced by the Poisson equation for the gravitational
potential ¢.

—A¢p =41Gp. (1.20)

Indeed, in the case of a compactly supported density p(x), one can use the fundamental
solution of Laplacian to write the solution of (1.20) as

g 3
p= [ Zpmdy, (1.21)
g3 1 — vl
so the Newtonian acceleration at a point .x is given by
g 3
a=—-V¢= ——(x = ¥)p(m)d’y. (1.22)
RY X =¥

Thus we recover (1.19) from (1.22) by approximating p in (1.22) by a finite number of
point masses.
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The Einstein equations play the same role in General Relativity that the Poisson equa-
tion (1.20) plays in the Newtonian theory of gravity — except there is a very significant
difference: the Poisson equation determines the (scalar) gravitational potential ¢ given the
mass density p, but in Newton’s theory this must be augmented by some system of con-
servation laws in order to describe the time evolution of the mass density p as well. For
example, if we assume that the density evolves according to a perfect fluid with pressure
p and 3-velocity v, then the coupling of Newton’s law of gravity with the Euler equations
for a perfect fluid leads to the Euler-Poisson system

pr +div(pv) =0,
(,ov")t + div(pv'v + pe') = —pVg, (1.23)
—A¢p =4nGp.

The first four equations are the compressible Euler equations with the gravitational forcing
term on the RHS. The first equation, the continuity equation, expresses conservation of
mass, the next three express conservation of i-momentum, i = 1,2, 3 (for a perfect fluid
this really says that the time rate of change of momentum is equal to the sum of the force of
the pressure gradient plus the force of the gravitational field; e denotes the ith unit vector
in R?), and the last equation expresses the continuum version of Newton’s inverse square
force law. Note that for the fluid part of (1.23), information propagates at the sound (and
shock) speeds, but the gravitational potential ¢ is updated “instantaneously”, depending
only on the density p(x, 1), according to the formula (1.21). In contrast, for Einstein’s the-
ory of gravity, the time evolution of the gravitational metric is determined simultaneously
with the time evolution of the sources through system (1.15), and all of the components of
the stress tensor directly influence the components of the gravitational field g;;. This prin-
ciple is the basis for the discovery of the Einstein equations. Indeed, since the 0-column of
the stress—energy tensor (1.18) gives the energy and momentum densities, and the i -column
gives the corresponding i-fluxes (in the relativistic sense), it follows that conservation of
energy—momentum in curved space—time reduces to the statement

Div(T) =0, (1.24)

where (capital) Div denotes the covariant divergence for the metric g, so that it agrees
with the ordinary divergence in each local inertial coordinate frame. In this way equations
(1.24) reduce 10 the relativistic compressible Euler equations in flat Minkowski space-
time. Since the covariant derivative depends on the metric components, the conservation
equation (1.24) is essentially coupled to the equation for the gravitational field g. But
the stress tensor T is symmetric, Tij = Tj;, and so the tensor on the LHS of (1.16) must
also be symmetric, and therefore the Einstein equations (1.16) supply ten independent
equations in the ten independent unknown metric components g;;, together with the four
independent functions among p and the unit vector field w. (Here p is assumed to be
determined by an equation of state.) But (1.16) assumes no coordinate system, and thus in
principle we are free to give four further relations that tie the components of G and 7 to
the coordinate system. This leaves ten equations in ten unknowns, and thus there are no
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further constraints allowable to couple system (1.15) to the conservation laws (1.24). The
only way out is to let (1.24) follow as an identity from (1.15), and this determines the LHS
of (1.15). namely, the Einstein tensor G;; is the simplest tensor constructable from Rj.k,
such that (1.24) follows identically from the Bianchi identities of Riemannian geometry
(R;‘W.ml = 0, where [k/, m] denotes cyclic sum, cf. [42]).% Thus, the simplest and most
natural field equations of form (1.15) are uniquely determined by the equation count, [42].
The next simplest tensor for the LHS of (1.15) that meets (1.24) is

Gij + Agij,

for constant A. In these notes we always assume A = 0. One can show that in the limit
of low velocities and weak gravitational fields, the equations (1.24) reduce to the first four
equations of (1.23), and the (0. 0) component of the Einstein equations (1.16) reduces to
the Poisson equation (1.20), thus fixing the choice x = 8719/('4, [42]. This establishes the
correspondence of Einstein’s theory of gravity with the Newtonian theory.

1.3. Shock waves in general relativity and the Einstein equations in Schwarzschild
coordinates

In Einstein’s theory of gravity, based on (1.15), the conservation of energy and momentum
(1.24) are not imposed, but follow as differential identities from the field equations (1.15).
In a specified system of coordinates, (1.15) determines a hyperbolic system of equations
that simultaneously describes the time evolution and interaction of local inertial coordinate
frames, as well as the time evolution of the fluid according to (1.24). Since GR is coordinate
independent, we can always view the time evolution (1.15) in local inertial coordinates at
any point in space—time, in which case (1.24) reduces to the classical relativistic Euler
equations at the point. This tells us that, heuristically, shock waves must form in the time
evolution of (1.15) because one could in principle drive a solution into a shock while in
a neighborhood where the equations remained a small perturbation of the classical Euler
equations. (This is much easier to say than to demonstrate rigorously, and as far as we
know, such a demonstration remains a challenging task.) We conclude from this that shock
waves are as fundamental to the time evolution of solutions of the Einstein equations for a
perfect fluid, as they are for the time evolution of the classical compressible Euler equations
(1.23).

At a shock wave, the fluid variables p. w and p are discontinuous. Notice that (1.15)
implies that the Einstein curvature tensor G will be discontinuous at any point where T
is discontinuous. Since G involves second derivatives of the metric tensor g, the only
way (1.15) can hold in the classical pointwise a.e. sense at the shock is if the component
functions g;; are continuously differentiable at the shock, with bounded derivatives on
either side, that is, if g;; € C'-!. Thus we expect from (1.15) that the space—time metric g
should be C''! at shock waves. However, we now show that for a spherically symmetric
metric in standard Schwarzschild coordinates (1.8), the best one can expectis that g € co!.

3This is the simplest known route to the field equations (1.15). Of course. since (1.15) represents a new starting
point, it follows that there must be a “conceptual leap™ at some stage of any “derivation™ of (1.15).
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Using MAPLE to put the metric ansatz (1 .8) into the Einstein equations (1.15) produces
the following system of four coupled partial differential equations (cf. (3.20)—(3.23) of [9]),

A B’

ﬁE{rE—I-B—I}:KAZTOO, (1.25)
B

—-—':KABTO], (1.26)
rB

1 A’

—z{rx—(B—l)}zichT”, (1.27)

-

By — A"+ @) = 2 2 (1.28)
rAap2 oY B ’ .

where the quantity @ in the last equation is,

b =

2AB 2

7B T2

BA, B, B(B,)2 A" AB' A(A’>2 AA B
A

B 2AB

Here “prime” denotes 8/9r, and again k = 87 G /c* is the coupling constant, G is Newton’s
gravitational constant, ¢ is the speed of light, TV, i, J=0,...,3, are the components of
the stress energy tensor, and A = A(r, 1), B = B(r, 1) denote the components of the grav-
itational metric tensor (1.8) in standard Schwarzschild coordinates x = (x%, x!, x2, )=
(t,1,0,¢). The mass function M is defined through the identity

-1
B:(l—%—) ) (1.29)

’
In terms of the variable M, Equations (1.25) and (1.26) are equivalent to

M = %KrzA 7% and (1.30)

: 1
M=—§Kr2AT0], (1.31)

respectively. Using the perfect fluid assumption (1.18), the components T/ satisfy

1

T00=Z 1810’ (1.32)
] .
701 _ 701, (1.33)
JAB M

Ty (1.34)
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where T,i;l’ denote the components of 7 in flat Minkowski space-time. The components of
Ty are given by

4 79
¢ +ov
T =", (1.35)
= — v
) 7
(:— +O—~
T&] = ﬂ('l?p, (136)
3 o)
v-4+o- 5,
TAI,I| = mp('”, (137)

where 0> = p/p. cf. [28.9]. Here v, taken in place of w. denotes the fluid velocity as
measured by an observer fixed with respect to the radial coordinate r. It follows from
(1.30) together with (1.35)-(1.37) that, it r = r¢ > 0. then

,
Mr, 1) = M(ro. 1) +g/ T (r 1)r dr, (1.38)

Iy

and 1t follows directly form (1.35)—(1.37) that

1T | < To) (1.39)
o’c + (/7/,0)7",8,0 < TAI,,] < T,S,”, (1.40)

so long as o < ¢. Equation (1.38) shows that M (r, t) can be interpreted as the total mass
inside radius # at time 7.

Now we are interested in solutions of (1.25)—(1.28) in the case when shock waves are
present. A shock wave in the compressible Euler equations leads to discontinuities in the
fluid density, pressure and velocity, and thus in light of (1.18), it follows that a shock wave
would produce a discontinuity in the stress tensor 7' at a shock. But when T is discon-
tinuous, Equations (1.25)~(1.27) above imply immediately that derivatives of the metric
components A and B are discontinuous at shocks. Moreover, if A and B have discontin-
uous derivatives when shock waves are present. it follows that (1.28), being second order,
cannot hold classically, and thus Equation (1.28) must be taken in the weak sense, that is,
in the sense of the theory of distributions. From these considerations, we see that the met-
ric components A and B can be at best only Lipschitz continuous, that is, C*!. at shock
waves. That is, A and B are one degree less smooth than the general theory suggests they
should be, [11].

The general problem of making sense of gravitational metrics that are only Lipschitz
continuous at shock surfaces was taken up in [30]. The analysis there identifies conditions
that must be placed on the metric in order to ensure that conservation holds at the shock,
and that there do not exist delta-function sources at the shock, [12]. When these conditions
are met, the methods in [30] imply the existence of a C'! coordinate transformation (to
Gaussian normal coordinates), that improves the level of smoothness of the metric compo-
nents from C%! up to C'-! at the shock. All of this is the subject of Section 2.1. However,
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these results apply only to smooth interfaces that define a single shock surface for which
G = «T holds identically on either side. For general shock wave solutions of (1.25)-(1.28)
(that can contain multiplicities of interacting shock waves), it is an open question whether
there exists a coordinate transformation that can increase the level of smoothness of the
metric components by one order, because the Gaussian normal coordinate system for the
shock surface breaks down at points where shock waves interact.

We conclude this section by showing that the mapping (r, t) — (7, 7) that takes an arbi-
trary metric of form (1.7) over to one of form (1.8), implies a loss of one order of differ-
entiability in the metric components when shock waves are present. This argues that our
results are consistent with the existence of such a smoothing coordinate transformation,
but still leaves open the problem of the existence of such a transformation.

We review the construction of the mapping (r,t) — (7,7), [42,9] with an eye toward
keeping track of the smoothness class of the metric at each stage. To start, one must assume
that the metric component C(z, r) in (1.7) satisfies the condition that for each fixed ¢, C
increases from zero to infinity as r increases from zero to infinity, and that

—a~C(r,t);£0. (1.41)
or

(These are not unreasonable assumptions considering that C measures the areas of the
spheres of symmetry.) Define

r=+C(r1). (1.42)

Then the determinant of the Jacobian of the mapping (r, 1) — (7, t) satisfies

=%\/C(r,t)¢0,

or

or

in light of (1.41). Thus the transformation to (7, t) coordinates is (locally) a nonsingular
transformation, and in (7, t) coordinates the metric (1.7) takes the form

ds? = —A(r,1)d® + B(r, 1) dr? + 2E(r, t) dr dF + r* d$22. (1.43)

(Here we have replaced 7 by r and A, B and E stand in for the transformed components.)
Itis easy to verify that, to eliminate the mixed term, it suffices to define the time coordinate
f so that, cf. [42],

dt = (r,nN{A(r,1)dr — E(r,1)dr}. (1.44)

In order for (1.44) to be exact, so that 7 really does define a coordinate function, the inte-
grating factor ¢ must be chosen to satisfy the (linear) PDE

) )
5{¢(r, DA(r, 1)} =—§{¢(r, DEr,1)}. (1.45)
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But we can solve (1.45) for ¢ (r, t) from initial data ¢ (r, 1), by the method of character-
istics. From this it follows that (at least locally), we can transform metrics of form (1.7)
over to metrics of form (1.8) by coordinate transformation. To globalize this procedure, we
need only assume that C, (¢, ) % 0, and that C takes values from zero to infinity at each
fixed t. Now note that in general ¢ (1. 1), the solution to (1.45), will have the same level of
differentiability as A(r, 1) and E(r, t): and so it follows that the components of dr and dr
in (1.44) will have this same level of differentiability. This implies that the 7 transformation
defined by (1.44) preserves the level of smoothness of the metric component functions. On
the other hand, the r transformation in (1.42) reduces the level of differentiability of the
metric components by one order. Indeed, the level of smoothness of the transformed metric
component functions are in general no smoother than the Jacobian that transforms them,
and by (1.42), the Jacobian of the transformation contains the terms C, and C; which will
in general be only C%! when C € C'-!. Thus, if we presume (motivated by [29]), that for
general spherically symmetric shock wave solutions of G = « T, that there exists a coor-
dinate system in which the metric takes the form (1.7). and the components of g in these
coordinates are C'! functions of these coordinates, then it follows that we cannot expect
the transformed metrics of form (1.8) to be better than C"!, that is, Lipschitz continuous.

In Section 5 we show that when A and B are Lipschitz continuous functions of (7, r).
and T is bounded in L™, system (1.25)—(1.28) is weakly equivalent to the system obtained
by replacing (1.26) and (1.28) by the system Div T = 0 in the form,

A 2 /A
700 [Aporl _ = |2 o1 | 46
{Tu'to+ B'M V& (1.46)
A 1 /A4 (B-1)
0l 11 11 00 Tl
{TM}‘()+{\/ETM]]:—3 E{; Mt (T’ —Tw)

+ 2ex B(TOT = (TO) = 4x T2}
(1.47)

(We use x in place of r when the equations are expressed as a system of conservation laws.)
This is a nice formulation of Div T = () because the conserved variables i = (T, T,S,l) are
the Minkowski energy and momentum densities (cf. (1.35), (1.36)), and thus do not depend
on the metric components A = (A, B). Note that all terms involving A,, B, and B, in the
equation DivT = 0 have been climinated by substitution using Equations (1.25), (1.26)
and (1.27). However, Div T = 0 also contains terms that involve A, = 0, and there is no
A, equation among (1.25)—(1.28) — so some change of variables is required to eliminate
such terms from DivT = 0 in order to close the equations (cf. (5.21) (5.22) below). It
turns out that it suffices to choose T,{,’,O and T/(J,' as independent variables; that is, when we
substitute for T/{,),O and T,B,' in favor of the original conserved quantities 7% and 79!, all
terms involving A, in DivT = 0 (remarkably) cancel out, thus allowing the formulation
(1.46), (1.47).

When 7' and 722 are expressed in terms of i1 = W ul = (TOO, T,(V),') in (1.46),(1.47),
(1.25) and (1.27), the equations close, and what results is a system of conservation laws
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with source terms that takes the compact form

ur+ f(A, u)x =g(A, u,x), (1.48)
A" =h(A,u,x). (1.49)

The first equation in (1.49) is (1.46), (1.47), and the second equation is (1.25), (1.27), so
that

= (1.1 = (),

A =(A, B),

F= (11" = A 7).

and g = (g°, g') is determined from the RHS of (1.46), (1.47), while = (h°, ! ) is deter-
mined from the RHS of (1.27), (1.25) upon solving for (A’, B’), respectively (cf. (5.49) be-
low). Note that (1.48), (1.49) do indeed allow for C%! metrics with discontinuous density
and velocity based on the conservation law structure of these equations, and such solution
correspond to gravitational metrics that are in the smoothness class C%!. In general, they
do not admit solution metrics smoother than Lipschitz continuous.

Solutions to Equations (1.48), (1.49) have recently been constructed in [10] by a frac-
tional step Glimm scheme that is locally inertial. The main result of that work can be stated
as follows (we refer to [10] for details).

Assume that

p=0c?p, (1.50)

where o, the sound speed, is assumed to be constant, o < c. (Examples of this, including
the case o2 = 1/3, and the case of an isothermal sphere, are important physically, but here
we view (1.50) as a natural model problem for general relativity because (1.50) keeps wave
speeds subluminous, and prevents the formation of vacuum states, [10]. The assumption
of spherical symmetry together with (1.50) defines the simplest possible setting for shock
wave propagation in the Einstein equations.) The assumption (1.50) implies that the scalar
curvature R is proportional to the density,

R=(c*-30?)p. (1.51)
For the existence theorem, assume the initial boundary conditions

p(r,0) = po(r), v(r,0)=uvo(r), forr>rp,

M(ro,t) =M,,, v(ro,t) =0, fort>0, (1.52)

where ro and M,, are positive constants, and assume the no-black-hole and finite-total-
mass conditions,

2M(r, 1)
—_—

1, lim M(r,t) = My < o0, (1.53)
r r—oo
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hold at r = 0. For convenience, assume further that

lim 2730 1) =0, (1.54)

!

holds at r = 0. The main result of [ 10] can be stated as follows:

THEOREM 1. Assume that the initial boundary data satisfy (1.52)—(1.54), and assume
that there exist positive constants L. V., and v such that the initial velocity and density
profiles vo(r) and py(r) satisfy

TVirrsrynpo-) < V.
¢+ ()

> <V, ’v()(/‘)' < U < (. (1.55)
¢ —vp()

TVirrsr) ln(

Jorall ro <r < oo, where TV, 51 f () denotes the total variation of the function f over
the interval [a. b). Then a bounded weak (shock wave) solution of (1.25)—(1 .28), satisfving
(1.52) and (1.53), exists up to some positive time T > 0. Moreover; the metric functions A
and B are Lipschitz continuous functions of (r.t). and (1.55) continues to hold fort < T
with adjusted values for V. and v that are determined from the analysis.

Note that we cannot expect bounded weak solutions for all time T — oo because black
holes can form in finite time. and the metric component B = (I — ZQM/r)‘l — o0 ata
black hole r =2GM in standard Schwarzschild coordinates. By (1.51), the case p — oo
as t — T would correspond to the formation of a naked singularity. Note that by (1.25)
and (1.27), the metric components A and B will be no smoother than Lipschitz continuous
when shocks are present. and since (1.28) is second order in the metric, it follows that
(1.28) is only satisfied in the weak sense of the theory of distributions. Note finally that
(1.53) says that the total mass is constant in [0, T). consistent with the conclusion that
there do not exist delta function sources of mass at shock waves, or at points of shock wave
interaction, in these solutions.

Theorem | confirms what is indicated by Equations (1.48) and (1.49): that the Einstein
equations are consistent at the level of %! metrics. and are meaningful in the presence of
arbitrary numbers of interacting shock waves, of arbitrary strength. A careful derivation of
(1.48), (1.49) is given in Section 5. but Theorem 1 will not be discussed in these notes. The
interested reader should consult [ 10] for a detailed proot of Theorem 1.

2. Weak solutions of the Einstein equations when the metric is only Lipschitz
continuous across an interface

In this section we consider a general four-dimensional space—time manifold with metric
tensor g having signature 7;; = diag(—1. 1, 1. 1). We look to characterize solutions of
the Einstein field equations (1.16) that are only Lipschitz continuous across a smooth 3-
dimensional surface X. To start, recall that

Gij=Rij — (1/2)Rg;; (2.1)
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is the Einstein curvature tensor, where R;; and R denote the Ricci curvature tensor and
Ricci scalar curvature, respectively, formed from the Riemann curvature tensor of the met-
ric g. The Riemann curvature tensor, with components R;.kl, is given by

Rj‘kl = ka,z - Ffl,k + Féllﬁ - i (2.2)

and R;; and R are obtained by the contractions

Rij = R?

icj> and R=R7J.

The Einstein tensor G satisfies the condition div G = 0, where div denotes the covariant
divergence defined in terms of the covariant derivative V of the metric connection for g.
We reiterate that since divG = 0, it follows that for solutions of (1.16) we must have
div T = 0. The distinction here is that divG = 0 is a geometric identity, independent of the
Einstein equations, and holds as a consequence of the Bianchi identities, while divT = 0
relies on both the identity div G = 0 and the Einstein equations (1.16). In later sections we
will assume the stress tensor for a perfect fluid, which is given in covariant components as

Tij = (p+ pc®)uiu; + pgij. (2.3)

In the case of a barotropic equation of state, p is assumed to be given by a function of
p alone, p = p(p). In this case, divT =0 gives four additional equations which hold on
solutions of (1.16). In the case when shock waves are present, the Rankine-Hugoniot jump
conditions

[T;;1n' =0, j=0,...,3, (2.4)

express the weak formulation of conservation of energy and momentum across shock sur-
faces, see [28]. On solutions of the Einstein equations, (2.4) follows from the jump condi-
tions

[Gijln' =0, j=0,...,3. (2.5)

(From here on, [ -] always denotes the jump in a quantity on either side of an interface.)
The jump condition (2.4) involves the fluid variables, while the jump condition (2.5) is
independent of the fluid variable and involves the metric tensor g alone. In the following
sections we will generalize the Oppenheimer—Snyder model by matching two (metric) so-
lutions of the Einstein equations (1.16) in a Lipschitz continuous manner across a spherical
shock surface. It is not so easy to verify the Rankine—Hugoniot jump relations (2.4) directly
in these examples because (2.4) involves the fluid variables in (2.3), so a direct verification
of (2.4) requires using div 7 = 0, which is nor an identity, and so cannot be managed with-
out invoking the full Einstein equations (1.1 6). However, in the next section we bypass this
problem with a general theorem which implies that (2.4) follows as a geometric identity
from the corresponding identities divG = 0 together with geometrical constraints on the




Solving the Einstein equations by Lipschitz continuous metrics: Shock waves in general relativity 521

second fundamental form on the shock surface, once one knows that the metric is Lipschitz
continuous across the shock surface.

The second fundamental form K:Tx — Tx on a co-dimension one surface X' with
normal vector field n, imbedded in an ambient Riemannian space with metric tensor gij,
is a tensor field defined on the surface in terms of the metric g, and describes how the
surface is imbedded in the ambient space—time. Here, Tx denotes the tangent space of X.
The second fundamental form K is defined by the condition

K (X) =—Vxn, (2.6)

for X € Tx. When the metric is only Lipschitz continuous across a co-dimension one sur-
face, the second fundamental form K is determined separately from the metric values on
either side. In the next section we give necessary and sufficient conditions (the Israel condi-
tions) for conservation to hold at a Lipschitz continuous shock wave interface, the condition
being given in terms of geometric conditions on the jump in the second fundamental form
across the surface. The conditions are that

[tr(K?) — (rK)*] =0, 2.7)
[divK —d(trK)] =0, (2.8)

where tr denotes trace, div denotes covariant divergence, and d denotes exterior differenti-
ation in the surface. We conclude that the physical conservation laws (2.4) turn out to be a
consequence of geometrical constraints built a priori into the Einstein tensor, together with
geometrical constraints that describe how the shock surface is imbedded in the ambient
space-time manifold. We note that a sufficient condition for conservation is that [K] =0
everywhere across the surface. In fact, this implies that in Gaussian normal coordinates
the metric will then be in C' because Kij = gij.n in these coordinates, where n denotes
differentiation in the direction normal to the surface. (See [12,22,41,42].) As we point out
in the next section, the transformation to Gaussian normal coordinates is in general only
a C'! coordinate transformation, but once this transformation is made, the C* coordi-
nate transformations alone are sufficient to describe the locally Lorentzian properties of
the space-time. (Recall that by C'"! we mean C' with Lipschitz continuous derivatives.)
In the case of metrics that are only Lipschitz continuous, the natural class of coordinate
transformations is the class of C'-! transformations. Indeed, if the mapping x — v is ch!,
then dx/3y and dy/dx are Lipschitz continuous, and thus Lipschitz continuous tensors
are mapped to Lipschitz continuous tensors under the mapping x — v, and this is the
least smooth class of transformations that preserves this mapping. Note that by allowing
c'! ransformations, we allow derivatives of dx/dy and dy/dx to jump, and this allows
us to adjust the jump in the derivatives of tensors across a shock surface. For example, if
g=gt U gR, then

aya 8_\"H
8il = BB 5 T axi

so the jumps in the derivatives of dv¥/dx' change the jumps in the derivatives of g;; across
¥ . and Israel’s result states that within the class of C I.T transformations, we can match the
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derivatives in g across X' if and only if [K] = 0, the map to Gaussian normal coordinates
being C!:1. Now in the Einstein equations G;; = « T;;, Gy, is the image of a second order
differential operator on the metric entries g;;, and thus in general we expect metrics that are
Lipschitz continuous across X to have delta-function sources in G, and hence in the fluid
variables T, on X, It is natural to ask, first, when do such delta-function sources appear at
a shock wave X' given that the metric is only Lipschitz continuous across X, and secondly,
what is the physical significance of such delta-function sources when they do appear? For
the first question, we present a proof in the next section that if g = g& U g® is Lipschitz
continuous across X' in a coordinate system x, then delta-function sources appear in G
on X' in x-coordinates if an only if [K] 3 O (cf. [22]). For the physical interpretation of
the delta function sources in G, and hence in T, when [K] #0 at ¥, we comment that
the equivalence of the jump conditions [G’]n, =0= [TJ']n,, and the weak formulation
of divG = 0 at a point P in space-time is based on the existence of locally Lorentzian
coordinate frames at P; i.e., coordinates in which g;; i,k (P) = 0. In such coordinate frames,
space~time is locally flat, and the physical principles of special relativity can thus be iden-
tified locally. In particular, the covariant divergence agrees with the classical divergence in
locally Lorentzian frames, and the global physical conservation laws fa o = 0 of special
relativity can be reduced in local form to div T = 0 in curved space—time. (It is well known
that, except in special cases, global conservation laws in General Relativity do not exist.) In
the next section we show that, within the class of C!'! coordinate transformations, there do
not exist locally Lorentzian coordinate frames in a neighborhood of a point P € X where
Gij has a delta function source. Thus, space—time is not locally flat at points on a Lipschitz
continuous shock wave where G has delta function sources. In Section 5 we show that for
spherically symmetric shock waves, [G‘j?]n(7 = 0 implies [K] = 0, and thus conservation
implies that there are no delta function sources in the shock waves we construct as general-
izations of the Oppenheimer-Snyder case, and thus these solutions are locally Lorentzian
at each point on the shock. It is an interesting open question as to whether general Lipschitz
continuous shocks can evolve from smooth solutions in the time evolution of G =« T.

2.1. The general problem

In this section we give the proof that the jump conditions (2.5) hold at a Lipschitz
continuous shock surface if and only if (2.7) and (2.8) hold. We formulate the theo-
rem in n-dimensions for a nonsingular metric g of fixed signature n = diag(ey, ..., &)
where each g; = 1. Before stating the theorem, we introduce some notation. Thus let
y=(y',...,y") be a smooth coordinate system defined on an rn-dimensional manifold
M, y:M — R", and let X be a smooth hypersurface in M. Assume that X is given lo-
cally by ¥ (y) = 0, where v is a smooth function satisfying

. P .
n;dy' = a—'lfdy' £0. (2.9)
y

Let L and R (for “left” and “right”) denote the two sides of M defined by the surface X,
and let gL and g® denote smooth metncs deﬁned on the left and right side of X', respec-
tively. (It suffices to assume that g& and g® are at least C2, with derivatives uniformly
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bounded at £. and we assume this from here on out.) For completeness, we give a proof
of the following theorem due to Israel, see [12,22].

THEOREM 2. Let g = gt U g¥ denote a nonsingular metric of arbitrary signature whose
components gj in y-coordinates are smooth on the left and right sides of X, separately,
and Lipschitz continuous across the surface. Assume that X is given locally by ¢ =0,
where ¢ is smooth, assume that (2.9) holds, and assume that the normal vector n is non-
null relative to the metric g, so that (without loss of generality) we may take m to be a unit
vector g,:,-n"n-" = |. Then

(G5 (y(P)]ni(y(P)) =0 (2.10)
at a point P € X if and only if both

[(rK)* —tr(K?)]=0 and 2.11)
[divK —d(trK)] =0 (2.12)

hold. (Here, the invariant operations div, trace and d on K are restricted to the surface X))

Note that by a smooth transformation of the coordinates in a neighborhood of a point
P € X we may assume that the surface X is given by ¢ = y" =0, so that n=9/9y". In
this case, the invariant conditions (2.11) and (2.12) reduce in y-coordinates to

[(Ki(v(P))) = (K} (y(P))’] =0 and (2.13)
[Ki (v(P)) = K], (y(P))1=0, (2.14)

where the summation in (2.13) and (2.14) is assumed to run from I ton — 1.

The proof of Theorem 2 will follow as a consequence of several lemmas. The idea is to
construct Gaussian normal coordinates for the surface X, these being coordinates in which
the components of the second fundamental form take the simple form K;; = —%g,-j',,. We
then use this identity to write the Einstein curvature tensor G and the jump conditions
(2.5) in terms of the K;; and obtain (2.13) and (2.14), [12,22]. We will use the following
identities for the components of the curvature tensor G;. in an arbitrary coordinate system.

LEMMA 1. The components of G are given by

G;::— ZRIIZH i=1,....n, (2.15)
o.1F#i
Gi=) Rip i#J 2.16)
THELLf

where the brackets [-] around a set of indices indicate that summation is to be taken only
over the increasing sequences of indices occurring inside the brackets.
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PROOF. To prove (2.15), we have

, . 1 .
Gj = R} — 5 R5,. 2.17)

But

— RTI Z R
TH#Q

because R;‘g is antisymmetric in (¢8) and (y8). Moreover,

R=RI* =2R" " andso

[o7]°

[zi] [UT] lot]
Gi =Ry —Roj=-) R
o, TH#i

To prove (2.16) we have

i l'l [zi]
Gj =R; = R E R[Tj].
TH#LJ a

We now construct a Gaussian normal coordinate system (w!, ..., w") associated with
the surface X' in a neighborhood of Py € X, [41]. To this end, assume that g has y-
components g;;, and by making a smooth coordinate transformation we may assume with-
out loss of generality that X is defined (near Py) by y” = 0. For each P € X let y,(s)
denote the geodesic satisfying

yp(0)=P, yp(0)=n,

where n is the normal vector to X at P, s is arclength, and for convenience we assume
that n points into the right side of X. We define the w"-coordinate in a neighborhood of
Po € X' as the “distance from X as follows: if y,(s) = Q, then set w"(Q) = s. In this
way, w”" < 0 on the left side of X, and w” > 0 on the right side of X'. Now define the
w'-coordinates for i = 1,. -1, byw i(P) = y {(P) for P € X, and define w' in a
neighborhood of X by takmg w' to be constant along each yp(s); i.e.,

w' (Q) =w'(P) ifandonlyif Q=yp(s),

for some P and s, i =1,...,n. The coordinates w = (iffq, ..., w") are called Gaussian
normal coordinates in a neighborhood of Py € X. Note that the Gaussian normal coordi-
nates w are in general only C!! related to the original y-¢oordinates because the geodes-
ics normal to the surface X are in general only C! curves since the lek can in general
have jump discontinuities at ¥ when g is only L]pSChltZ continuous across X. (Indeed,
to see this, consider the curves y5(s) where y = Ol ..., y"~1) and (y,0) € R" is the co-
ordinate value of the point P on X such that yp(s) = Q has y-coordinates y35(s). Thus,
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v(P)y=w(P) for P € . But being constructed from families of geodesics on each side
of . vils) = @(¥.5) is a smooth function of ¥ and s on each side of X' separately. It
remains to check continuity of derivatives at v = 0. But. at s = 0.

v E).\"‘;, A
— = ——(5) =4, (2.18)
dwl v/ /
because v = (v. 0) at s = 0. Moreover.
— = ——(s)=n, (2.19
A’ as ) )

where n' denote the v-coordinates of the normal to X at P. Since the metric is continuous
at X, this latter derivative is continuous across X as well.)
Gaussian normal coordinates satisfy the following well-known lemma. cf. [29].

LEMMA 2. In Gaussian normal coordinates,
2 "y i /
ds” = d(w ) + gij dw’ dw’ . (2.20)
where the summation on i and j is from | ton — 1.
Note that Lemma | implies that the surfaces w' = const are orthogonal to the coordinate
directions d/dw’ . fori =1..... n—1.
For a smooth metric g. the components of the second fundamental form are given by the

following lemma:

LEMMA 3. In Gaussian normal coordinates,

|
Kij=—=58&ijn- (2.21)

PROOF. We have. for every vector field X'.

—KI X =(Vxn) =0 X"+ T X7 =T! X°. (2.22)
so that

KIX" =—TI! X7 (2.23)
But

. 4 |
i i it
Fm, = ;S’ {—8on.t + &ron + gnr.n} = ;3’ Sto.un- (2.24)
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Where we used the fact that in Gaussian normal coordinates, gink =0, i=1,...,n. Thus
Kioc = "‘Egia,n, 2.25)

as claimed. (]

In the Gaussian normal coordinates w associated with a given co-dimension one surface
X and a Lipschitz continuous metric g = g& U g® (where we assume as usual that g~ and
g® are smooth), the metric g is determined on X, but the first derivatives of the metric
suffer a jump discontinuity at X. Thus the second fundamental form K, which depends
on the first derivatives of the ambient metric g, also suffers a jump discontinuity at ¥ In
this case it follows from Lemma 2 that K~ and K %, the second fundamental forms on X
for the metrics g* and g®, respectively, are given by (2.25), for g = g, g&, respectively.
Thus the following corollary of Israel is immediate.

COROLLARY 1. The metric components of g = g* U gR in Gaussian normal coordinates
are C! functions of the coordinate variables if and only if [K]1= (KX — KL) =0 at each
point on the surface X.

The next lemma expresses the components of the connection coefficients for the ambi-
ent metric g in Gaussian normal coordinates in terms of quantities intrinsic to the shock
surface. We state this for a smooth metric, and see that it applies to each side g = g’ and
g =gk separately when the metric is only Lipschitz continuous.

LEMMA 4. The components in Gaussian normal coordinates of the connection coefficients
for a metric g at a point P € X' are given by

rk= F,’f i,j. k+#n, : (2.26)
f=Kgj, ij#n, (2.27)
rt=—kf, i k#n, (2.28)
rk=o. (2.29)

Here, I denotes the (n — 1)-dimensional connection coefficients computed from the intrin-
sic metric g on X with w-components g;;, i,j=1,...,n—1.

PROOF. To obtain (2.26), use (1.10) to write
K 1 ko
Ij = 8 {—8ij.o + 80i,j + &jo.i}- (2.30)
Since g’“’ = (0 when o = n and k # n, it follows that

k rk
k="

in’

(2.31)
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which is (2.26). Similarly, statement (2.27) follows from

1
r"; = Eg”a {‘—gij.a + &oi.j + &jo.i ) (2.32)

statement (2.28) follows from

1
Fil;z = EA’A”{—gm.a + &oin t+ &no.i ks (2.33)

and statement (2.29) follows from

1
,",I, = Eg,m {—8ino + goin + &no.it (2.34)

upon noting that in Gaussian normal coordinates w we have g"* = 0 unless @ = n, and
gan,ﬂ:OfOI‘Ol,ﬂ::l,...,n. 0

The next lemma uses Lemmas | and 4 to expresses the components in Gaussian normal
coordinates of the Riemann curvature tensor for the ambient metric g in terms of quantities
intrinsic to the shock surface (Gauss—Codazzi equations). Again we state this for a smooth
metric, and see that it applies to each side g = gL and g = g® separately when the metric
is only Lipschitz continuous.

LEMMA 5. The components in Gaussian normal coordinates of the Riemann curvature
tensor for a metric g at a point P € X' are given by

Rl =R+ K[ Kjx— KiKji, i, jkd#n, (2.35)
which is equivalent to

RV =RV 4 KiK] — KK, i jkI#n; (2.36)
Moreover,

Rl = Kicj — Kijko 1 J k#n, (2.37)

where in (2.37), the semicolon denotes covariant differentiation in the surface X . Statement
(2.37) is equivalent to

=Kl — Kl Ljk#En (2.38)
PROOF. For (2.35), write

i i i i o i o
Riy =T =i+ Tl — k-

ol
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Thus, since only o can be n, we have

i _ pi i pn __ pipn
Ry =R+, Iy — Iy Ly,

which by (2.26) gives (2.35). Statement (2.36) follows because g'” = 0 for i # n. For
(2.37), write

Ry =T ; — Tix+ I5i 0 — ToDg
which gives (2.37) on applying (2.27). In this case as before, (2.38) follows from (2.37)
because g = g’ wheni #n. 0O

The next lemma uses (2.36) and (2.38) to expresses the components in Gaussian normal
coordinates of the Einstein curvature tensor for the ambient metric g in terms of quantities
intrinsic to the shock surface. Again we state this for a smooth metric, and see that it applies
to each side g = gl and g = g separately when the metric is only Lipschitz continuous
(cf. [22]).

LEMMA 6. The components in Gaussian normal coordinates of the Einstein curvature
tensor for a metric g at a point P € X are given by

Gh = —;—{(trK)z —tr(K?)} - =R, (2.39)

N[ —

G! = —{(trK);; + (divK);}, (2.40)

where R denotes the curvature scalar for the metric g intrinsic to X, and the semicolon
denotes covariant differentiation in the surface X. ’

PROOF. To prove (2.39), use (2.22) to write

_ [o7]
Gp=— ) Rgq.

o, T#n
so that by (2.36)
Gi=- > R+ Y {klk?-klkD}, (2.41)
o, T#n o, T#n

where the sum must be taken over indices ¢ < 7. But by definition,

"’_"’ij___ Hlot]
R=Rj=2 Z R

7]
o, T#n
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and

(rK)? —t(K?) = (ki)’ — Kik{ =2 |KiKk] - KiK]}.

i<j

Using these in (2.41) yields (2.39)
To prove (2.40), use (2.23) to write

n—I|

G == 3 R =R (2.42)

T j=1
where we have applied the antisymmetry of the curvature tensor. Thus by (2.38),

n—1
61 =3 A, K 43

i=1
from which (2.40) follows at once. We can now give the

PROOF OF THEOREM 2. Assume that g = ¢ U gR, where the metric g is smooth on
either side of a co-dimension one shock surface X, and is Lipschitz continuous across the
surface. Let w denote the Gaussian normal coordinates associated with the surface X' and
the metric g. Then we can apply (2.39) and (2.40) of Lemma 6 to gL from the left and g*
from the right of X', respectively, to obtain

611 = Hoer =) ]

= KR (KR = 5 Lk h) = e((K1))), (2.44)

t\)l—-

and

[G!] = [{—(r k)i + (divK);}]
={—(r k), +(divk®),} - {-(w k"), + (divk"),}. (2.45)

Hele we use the fact that R and Z” I{K/\,g[’F/‘ —~ Kl\,g//F/ } are equal on X for gt and

R because they depend only on intrinsic properties of the metric g restricted to X', and
these agree because of the assumed continuity of g. But in Gaussian normal coordinates,
n = d/0w", and so the jump conditions (2.5) in Gaussian normal coordinates reduce to the
condition

[GL]=0. a=1,....n. (2.46)
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Now since G transforms like a tensor under arbitrary C!-coordinate transformations, the
conditions (2.46) are equivalent to the statement [G%]n, = O in the original y-coordmates
Thus, in light of (2.46), we conclude that (2.11) and (2.12) of Theorem 2 follow directly
from (2.44) and (2.45). O

In view of Corollary 1 of Lemma 3, we can also conclude the following corollary of
Theorem 2 (due to Israel), which gives a global criterion for conservation across X, [12,
22].

COROLLARY 2. If[K] =0 at each point of ¥, then the jump conditions. [G Ing = 0 must

hold at the point P. Moreover, since in this case the metric is C' in Gausszan normal
coordinates, the condition [K] = 0 is also a necessary and sufficient condition for the
original Lipschitz continuous metric components gqp in the y-coordinates to be equivalent
to a C' metric under a CV-transformation of the coordinate variables.

PROOF. The sufficiency is clear, and the necessity of this condition follows because, if the
metric is equivalent to a C! metric under some regular C'-! coordinate transformation, then
the mapping from these coordinates to the Gaussian normal coordinates is a C2 mapping,
and thus the metric in Gaussian normal coordinates will be C!, which implies that the
second fundamental form is continuous across the surface. (Note that [K] =0 at a point is
not sufﬁcient for conservation [Gi.]ni =0 at the point.) (]

We t now show that R;; and G;;, viewed as second order operators on the metric compo-
nents g;;, have delta function singularities at a point P € X if and only if [K]#0Oat P.
Thus, let g = gL U g® be Lipschitz continuous across a shock surface X in x-coordinates.
The strategy is as follows: we first do the case when x is a Gaussian normal coordinate
system defined in a neighborhood of P € X. We then show that delta function sources
appear at P € X in x-coordinates if and only if they appear in any coordinate system re-
lated to x by a C!'! coordinate transformation. Since any coordinate system in which g is
Lipschitz continuous is related to the Gaussian normal coordinates by a C!'! coordinate
transformation, it follows that delta functions appear if and only if [ K] # 0. We then show
that when delta-function singularities appear in G;; at P € X in a given coordinate system
x, the metric is not locally Lorentzian at P in sense that there does not exist a C!*! coor-
dinate transformation that takes x-coordinates to coordinates in which the metric is locally
Lorentzian at P, more specifically, such that g;; x (P) = 0. Finally, we show, surprisingly,
that delta-function singularities never appear in the scalar curvature R at any point on a
shock wave discontinuity on either side of which g is smooth, but across which g is Lip-
schitz continuous, and this is due to a cancellation of delta-functions in the sum RJ.

LEMMA 7. Let x be the Gaussian normal coordinates containing a point P € X, where
X is any smooth surface, so that 8/0n is the normal direction on X. Then the second order
n-derivatives of g;; that appear in the formula for the Ricci tensor R;j, occur only in the
terms Rij, i #n, j#n, andin R,,, and these are given by

1
Rij = —"igij,nn + lower order n-derivatives, i #n, j #n, 2.47)




Solving the Einstein equations by Lipschitz continuous metrics: Shock waves in general relativity 531

and

1
Ryn = Egaﬁgoeﬁ,nn + lower order n-derivatives, (2.48)

where the sum in the last formula is taken over o, B # n.
PROOF. From (2.29), assuming Gaussian normal coordinates, we have

ri,=0. (2.49)
Consider R;; = R{_., which is given by the formulas

iBj = f7ﬁ” b T el — T ligs (2.50)
Rij =R, =T =I5+ 5T — IS (2.51)

ijo io,j

Now, since g is Lipschitz continuous across X, and R;; involves second derivatives
of g, it follows that delta-functions in R;; can arise at P € X only in the second order
n-derivatives appearing in the formula for R;;. To see this, note that in Gaussian normal
coordinates, gin» = 8in, and g;; are arbitrary for i, j = 1 — 1. Thus the first derivatives
in k # n are Lipschitz continuous across X because gt = g on X, and thus g;; k» involves
at worst jump discontinuities for k # n. Now from (2.51), the second order n-derivatives
can come only from Fl‘j’ o Of 1"1“’7 i In the former, this can only happen when o = n, so
consider

|
Fl’; n= Ega"{"gij.on + &oi. jn t+ gjo,in}- (2.52)

But g?" = 0 unless o = n, which implies

1
F,Ijl n— 5{"gij,nn + &nijn + gjn,in}- (2.53)

Thus we conclude that when i = n or j = n, there are no nonzero second order n-
derivatives in ! , and when i, j # n, gives rise to only one second order n-

ijn’ 1/ o
derivative, namely, 38ijnns ie.,
F,C; o= Egi j.nn + lower order n-derivatives.
Consider now 1"1‘; .+ Which can have second order n-derivatives only for j = n:
1"*0 . l ot 2
ion — Eg {—8io,tn + &ri.on + &or.in}- (2.54)

The first two terms, gio.zn and grj.on. inside the braces in (2.54), can have second order n-
derivatives only when o = n or T = n, in which case o0 = n = t (because g;, = 0), which
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implies that both of these terms are zero because I, = 0. But the third term g, 1 ;5 in the
braces in (2.54) has second order n-derivatives only when i = n, and thus we have

1
rgy,n = Egaﬁ 8ap,nn + lower order n-derivatives,

and l‘(’, i is a lower order n-derivative if i % n or j # n. Thus we conclude that the second
order n-derivatives in the Ricci tensor occur only in the terms Rij,i #n,j#n, and in
Rpp, and these are given by (2.47) and (2.48). O

We now consider the scalar curvature R and the curvature tensors R;j and G;; as second
order distribution derivatives of the metric components g; ;j in Gaussian normal coordinates
when g is only Lipschitz continuous on X. In general we expect that second order distrib-
ution derivative of g will introduce delta-function singularities on . The following corol-
lary gives necessary and sufficient conditions for the appearance of such delta-function

singularities on X.

COROLLARY 3. Let g = gl U gR be any metric that is Lipschitz continuous across a
shock surface X, and smooth on either side of X. Then in Gaussian normal coordinates
the scalar curvature R, viewed as a second order distribution derivative of the metric
components g;j, has at worst a jump discontinuity at each P € X; the Ricci and Einstein
curvature tensors R;j and G;j have delta-function singularities at P € X if and only if
[K]#0at P.

PROOF. Assuming Gaussian normal coordinates, we have from (2.47) and (2.48) that
R=28""gornn — gij 8ij.nn + lower order n-derivatives,

and thus the formula for R in terms of g contains no second order n-derivatives in Gaussian
normal coordinates for any Lipschitz continuous shock wave, and hence R is at most dis-
continuous on X. Moreover, in Gaussian normal coordinates Kij = gijn, i,j #n, and
hence if [K]#0 at P € X, then g; j,n must suffer a jump discontinuity at P for some
(i, J), i,j # n. Thus by (2.47), R;; is given by the delta function &ij.nn Plus a discon-
tinuous function. Conversely, if [K] =0 at P ¢ %, then g;j nn is at most discontinuous
at P, and thus R;; is at most discontinuous at P. Since Gij = R;j — %Rg,-j, and R is at
most discontinuous, we conclude that in Gaussian normal coordinates, R; j and G;; contain
delta-function singularities if and only if [K] % 0. ad

Now let R = Rj.kl denote the components of the full Riemann curvature tensor in x-

coordinates, and let R = I?gy s denote the components in a coordinate system y related to

x by a C!'! coordinate transformation. Note that in any coordinate system, the components
of the curvature tensor are given by (2.50), and hence are determined by the same second
order differential operator L on the metric components, thus R = L{g], and R = Lig]. We
note that the highest order derivative terms in L are of the form a function of the unknowns
gij times linear second order differential operators. Thus it is possible to define solutions
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g that have only weak (distributional) derivatives of second order. The following lemma
demonstrates that curvature tensors defined from L in the weak sense continue to transform
by the tensor transformation laws under arbitrary C!:! transformations of the coordinates.

LEMMA 8. Let R be a weak solution of R = L[g] in x-coordinates. Then R = R— isa

weak solution of R = L[g) for any coordinate system y related to x by a C"! coordinate
transformation, where we use the shorthand notation

RO _ i dx/ axk ax! ay®

dy  KayB ayr 9y axi’

and multiplication by a function is taken in the weak sense.

PROOF. For smooth g and smooth test functions ¢, let

fL[g]<p=/ L*[g, o],
R4 R4

where L*[g, ¢] denotes the expression obtained from L[g] by integrating the second order
derivatives in g once by parts. Since the second order derivatives in L are given by*

Riyy =T} =Tl +Lot (2.55)
= (8" {—8j1.o + 8oji + &0.j}) 4 (2.56)

— (8" {—8jko + 8oju + 8ko.j}) , + 1oL (2.57)

= &' 7 {—gjL.ok + 8lojk + &jk.al — Gka.j1} +1.0L, (2.58)

i.e., are of the form g""g,; 4, it follows that L*[g, ¢] contains at worst products of the
metric entries g;;, the test function ¢, and their first derivatives. Thus the integral in the
weak formulation fR“ L*[g, ¢] is finite for any Lipschitz continuous metric g and any
Lipschitz continuous test function ¢ (of compact support).

Now assume that K = Rijk, is a weak solution of R = L[g], i.e., R is a linear functional
on the space of Lipschitz continuous test functions (a distribution), that solves

(R.o) = R<p=/ L*[g, ¢l,
R4 R4

for every Lipschitz continuous test function ¢. Note that if dx/dy is Lipschitz continuous,
then the derivatives are bounded, and thus if we let g = g—g—% be shorthand notation for

- ax' ox/ ox
8 =8a = gija—am gg?

then L* [gg—'f,, @] is bounded for any Lipschitz continuous test function ¢.

4Here “l.0.t.” denotes “lower order terms”, i.e., terms that contain lower order n-derivatives.
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--Soto prove the lemma, let g be an arbitrary (non-degenerate) Lipschitz continuous met-
ric, let @ be an arbitrary Lipschitz continuous test function, and assume that the coordinate
systems x and y are related by a C!'! coordinate transformation (so that in particular, both
dx/dy and dy/dx are regular, Lipschitz continuous maps). Let g denote a smooth regu-
larization of the metric g, and let x°(y) denote a regularization of the coordinate map
x(y) so that x®(y) is smooth and has a smooth inverse. We can clearly choose these reg-
ularizations so that g5, — gup in C*!, x(y) - x(y) in C11, %&yi(y) — g—;(y) in C%1,
and 2 (x*) — 2 (x) in C%1. Then

)
g =3 —> g and g -
a £
in C%!. Define
R*=L(g°), and (2.59)
—_— By
RE =RE—. 2.60
Py (2.60)

Now, it follows directly from definitions that

dy — 3)’
e__’ — 8, — L*| of , 2.61
<R P ¢> (R®, o) /R \ [ p w] (2.61)

But (2.61) simply says that 725 is the curvature tensor for the metric g° a Y, and since
everything in (2.61) is smooth we know from the fact that the curvature transforms as
a tensor that R® must be the curvature tensor for the metric g°; i.e., since everything in
(2.61) is smooth, we know that (2.61) holds for every ¢ € CY%1 if and only if

(R, 0)= /R RAY (2.62)

holds for every ¢ € C%!. Since g¢ — g in C%!, (2.62) implies that, as ¢ — 0, R* tends in
the sense of distributions to the distribution 7', where T satisfies

(T, @)= / L*[g, ¢l (2.63)
R4

Therefore (2.63) demonstrates that T = R as a distribution. Thus, in the limit ¢ — 0, we
conclude from (2.63) that R — R, from (2.61) that R€ — R, and hence from (2.60) that
R = R—X in the sense of distributions. This completes the proof of the lemma. N

THEOREM 3. Assume that g = g- U gR is smooth on either side of a 3-dimensional shock
surface X, and is Lipschitz continuous across X. Then the scalar curvature R, when
viewed as a second order operator (in the weak sense) on the metric components g; s
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produces at most a jump discontinuity (i.e., no delta-function singularities) at P € X, and
the curvature tensors R’/. i~ Rij. and Gij produce no 8-function singularities at P € X' if
and only if the jump in the second fundamental form K satisfies [K] =0 at P.

PROOF. By Corollary I, the theorem is true in Gaussian normal coordinates x, and thus
by Corollary 3 and Lemma 8 it holds in any coordinate system y which is C'! related to
x. Since for any metric g = gL U ¢® which is smooth on either side of X and Lipschitz
continuous across X the transformation to Gaussian normal coordinates is an invertible
C'! coordinate transformation, the theorem follows at once. O

As a direct corollary of Theorem 3 we see that there exists a locally Lorentzian coordi-
nate frame in a neighborhood of a point P on a Lipschitz continuous shock surface X' if
and only if [ K] =0 at P; namely, we have

COROLLARY 4. Assume that g = ¢t U ¢® is smooth on either side of a 3-dimensional
shock surface X, and is Lipschitz continuous across X in a coordinate system y defined
in a neighborhood of P € X. Then there exists a regular C LU coordinate transformation
v — x such that x is locally Lorentzian for g at P (g;; = nij and gij x =0 at P), if and
onlyif [K]=0at P.

PROOF. Assume [K] =0 at P, and choose locally Lorentzian coordinates at P for the
smooth metric obtained by restricting g to the surface X' in a neighorhood of P in the
surface X'. Extend these coordinates to Gaussian normal coordinates x based on these
surface coordinates, the x coordinates being defined in an n-dimensional neighborhood of
P. Then in x-coordinates the metric components g;; satisfy g;; = n;; and K;; = gij.n =
0 at P, and so x is locally Lorentzian at P. Conversely, assume that [K] # 0, but that
there exists a coordinate transformation y — x such that, in x-coordinates, g;; = n;; and
gij.k =0 at P. Then in x-coordinates, g is C! at P, and hence there are no delta-function
singularities in the components g;; of g in x-coordinates. Thus by Theorem 3, [K] =0,
and hence the locally Lorentzian coordinates x cannot exist when [ K] # 0. O

The next result partially validates the statement that real shock waves cannot form in so-
lutions of the source free Einstein equations R;; =0, or equivalently G;; = 0, by demon-
strating that “shock waves” in solution metrics are only coordinate anomalies in the sense
that they can be transformed away by coordinate transformation. Note that the theorem al-
lows for the possibility that discontinuities can form in solutions (which we expect because
the equations are nonlinear quasilinear in nature), but asserts that if the solution metric is
Lipschitz continuous across a smooth surface, but smooth on either side, then there is a
coordinate transformation such that in the new coordinates the metric is smooth across the
surface.

COROLLARY 5. Assume that the components of g = g4 U gR in a coordinate system y are
Lipschitz continuous across a smooth 3-dimensional shock surface X, are C K functions of
v on either side of X, and assume that all k derivatives are continuous up to the boundary
X from either side of X'. Assume also that g is a weak solution of Ryg =0 or Gag = 0 when
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viewed as second order operators on the metric components 8ap- Then in Gaussian normal
coordinates x (which are C'! related 10 the original coordinates), the metric components
gij are actually C* functions of x across X

PROOF. Assume first that ¢ = g% U ¢¥ is a weak solution of Rop = 0. But R;; =0 in the
weak sense across X implies that there are no §-function sources in R;; on X and thus
by the previous theorem, | K| = 0 across X. Thus Israel’s result implies that g;; x are all
continuous across X, and since G;; = 0. the jump conditions are automatically satisfied
across X It follows from (2.47) and (2.48) that in Gaussian normal coordinates.

1 . . .
R = =5 &ijn + lower order nn-derivatives. i #n, j#n. and (2.64)

Ry, = %(Qi'i&’ij.nn + lower order n-derivatives. (2.65)
But since the g;; + are continuous across X, it follows that the lower order terms in (2.64)
and (2.65) must be continuous functions across X. our assumptions implying that the
derivatives of g in the surface X are the same for g% and ¢*. But since R;j = 0 for both el
and ¢®. we can solve for Lij.an 10 (2.64) and (2.65) in terms of lower order derivatives that
are continuous across X, and conclude that &ij.nn Must also be continuous across X' for
all ivj=1..... n. (Recall that g,; = const in Gaussian normal coordinates.) This shows
us that kth order derivatives of g;; which are up to second order in x” are. in fact. continu-
ous functions of x across X in Gaussian normal coordinates. Now differentiate (2.64) and
(2.65) with respect to x". Then the differentiated lower order terms in (2.64) and (2.65)
are continuous across X. and hence again we can solve for &ij.ann 1N terms of functions
that are continuous across X'. Thus we conclude that kth order derivatives of gij which
are up to second order in x”' are. in fact, continuous functions of x across X in Gaussian
normal coordinates x. Continuing. we see that all the kth order derivatives of gij are contin-
uous across X" in Gaussian normal coordinates. Since, by Corollary 3. the scalar curvature
never contains delta-function singularities on X. the result for R;; implies the same result
for G,“,'. O

The same argument establishes the following more general version of this corollary.

COROLLARY 6. Assume that g = g* U ¢ is smooth on either side of a 3-dimensional
shock surface X. and is Lipschitz continuous across X in some coordinate svstem y. As-
sume that g is a weak solution of Gop = K Top that coniains no delta-function singularities
on X. Then in Gaussian normal coordinates the meltric components g;; are C 2 functions
of x if and only if |G} =0 across X.

Summary.  The results of this section are summarized in the following theorem.
THEOREM 4. Ler X denote a smooth, 3-dimensional shock surface in space—time with

spacelike normal vector n. Assume that the components g; i of the gravitational metric g
are smooth on either side of X (continuous up 1o the boundary on either side separately),




Solving the Einstein equations by Lipschitz continuous metrics: Shock waves in general relativity 537

and Lipschitz continuous across X in some fixed coordinate system. Then the following
statements are equivalent:
(1) [K]1=0 at each point of X
(i) The curvature tensors Rj. wand Gij, viewed as second order operators on the met-
ric components g;;, produce no delta-function sources on X.
(iii) For each point P € X there exists a C .Y coordinate transformation defined in
a neighborhood of P, such that, in the new coordinates (which can be taken to be
the Gaussian normal coordinates for the surface), the metric components are C L
functions of these coordinates.
(iv) For each P € X, there exists a coordinate frame that is locally Lorentzian at P,
and can be reached within the class of C'*! coordinate transformations.
Moreover, if any of these equivalencies hold, then the Rankine~Hugoniot jump condi-
tions, [G1Y ng = 0 (which express the weak form of conservation of energy and momentum
across ¥ when G =« T), hold at each point on X.

Here [ K] denotes the jump in the second fundamental form (extrinsic curvature) K across
X (this being determined by the metric separately on each side of X' because gi; is only
Lipschitz continuous across X'), and by C 1.1 e mean that the first derivatives are Lipschitz
continuous. Theorem 4 should be credited mostly to Israel, [12], who obtained results (i)~
(ii) in Gaussian normal coordinates. Our contribution was to identify the covariance class
of C!} transformations, and to thereby obtain precise coordinate independent statements
for (ii) and (iii), as well as the equivalence with (iv). As a consequence of this, we obtain
the result that the Ricci scalar curvature R never has delta-function sources at a Lipschitz
continuous matching of the metrics, as well as the results in Corollaries 5 and 6 which
validate the statement that shock wave singularities in the source-free Einstein equations
Rij =0 or G;j =0 can only appear as coordinate anomalies, and can be transformed
away by coordinate transformation. Note that when there are delta-function sources in G
on a surface X, the surface should be interpreted as a surface layer (because G =«T),
and not a true fluid dynamical shockwave, [12,22]. In Theorem 5 below, we show that
for spherically symmetric solutions, [Glsrn°n" = 0 alone implies the absence of surface
layers (and hence the other equivalencies in Theorem 4), so long as the areas of the spheres
of symmetry match smoothly at . We use this result in our construction of the shock
waves that extend the Oppenheimer-Snyder model to the case of nonzero pressure. The
following counter-example shows that in general the above equivalences can fail even when
[G{Ins = 0 holds at each point on poR

For the counter-example it suffices to show that there exist Lipschitz continuous shock
waves which satisfy the Israel jump relations (2.11) and (2.12) across a shock wave inter-
face, but which cannot be transformed to a metric that is C' in a neighborhood of each
point on the shock. By Corollary 1, it suffices to construct a shock wave interface across
which the Israel conditions are satisfied, but such that the second fundamental form K is
not continuous across the interface. To this end, let g;; denote the coordinates of a metric in

5See [12] where such an example is given in which G = 0 on both sides of X




538 J. Groah et al.

Gaussian normal coordinates, such that the spacelike normal to the shock surface is given
by n=29/dx", and g;; is of the form

hii 0
gijz[(’)’ 1]. (2.66)

Assume now that the h;; are given by

_ymij taijix" ifx">0
hij = {ﬂij +bijx" ifx"<0f’ (2.67)

where a;; and b;; are constants to be determined. Thus by Lemma 3, the second funda-
mental forms K~ and K ® on the left and right of the shock surface are given by K ilj' = a;j

and K,.’; =bjj, i,j=1,...,n— 1. Since KiI; and KI.’; are constant,
K’y =(trK); =0,

for K = K%, KR Thus the Israel jump conditions (2.11) and (2. 12) reduce to
[(rK)* —u(k?)] =0.

Hence to satisfy the Israel jump conditions it suffices to find a = g; j and b = b;; satisfying
(ra)® — tr(a®) = 0 = (trb)? — tr(b?).

But in the simplest case where a and b are 2 x 2 matrices,

tra=aj; +ar; and
2y _ 2 2
tr(a®) =aj, + 2a21a12 +a3,, andso

(tra)? — tr(a®) = 2 det(a).

Thus we can satisfy the Israel jump conditions by choosing a and b to be any 2 x 2 ma-
trices with zero determinant. If in addition a; j # bij, then [K]= K R_ gt # 0, and so
by Theorem 4, conservation [G;’] = 0 holds across the interface x” = 0, but, in view of
Corollary 1, the metric cannot be transformed to a metric that is globally C! across the
shock.

2.2. The spherically symmetric case
In this section we restrict to spherically symmetric metrics. The theorem to follow states

that in the special case of spherical symmetry, the jump conditions [G¥ n;n j =0 that
express the weak form of conservation across a shock surface, actually are implied by a
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single condition, so long as the shock is non-null, and the areas of the spheres of symmetry
match smoothly at the shock and change monotonically as the shock evolves. Note that
in general, assuming that the angular variables are identified across the shock, we expect
conservation to entail two conditions, one for the time and one for the radial components.
Thus the fact that the smooth matching of the spheres of symmetry reduces conservation
to one conditions can be interpreted as an instance of the general principle that smoothness
in the metric implies conservation of the sources.

THEOREM 5. Assume that g and g are two spherically symmetric metrics that match Lip-
schitz continuously across a three-dimensional shock interfuce X to form the matched
metric g U g. That is, assume that g and g are Lorentzian metrics given by

ds® = —a(t, r) dr? + b1, r) dr? + (1, r) d2? and (2.68)
452 = —a(i, F) dr* + b(7. F) di* + &(7, 7) d2°, (2.69)

and that there exists a smooth coordinate transformation W :(t,r) — (1,F), defined in
a neighborhood of a shock surface X given by r = r(t), such that the metrics agree on X
(We implicitly assume that € and ¢ are continuous across the surface.) Assume that

c(t,r) :E(llf(r,r)), (2.70)

in an open neighborhood of the shock surface X, so that, in particular, the areas of the
2-spheres of symmetry in the barred and unbarred metrics agree on the shock surface.
Assume also that the shock surface r = r(t) in unbarred coordinates is mapped to the
surface F = (1) by (f,7(f)) = W (t, r(t)). Assume, finally, that the normal n to X' is non-
null, and that

n(c) #0 (2.71)

where n(c¢) denotes the derivative of the function ¢ in the direction of the vector n.% Then
the following are equivalent to the statement that the components of the metric g U g in
any Gaussian normal coordinate system are C LY functions of these coordinates across the
surface X

[G/]ni =0, (2.72)
(G ]nin; =0, (2.73)
[K]=0. (2.74)

Here, [ f1= f — [ denotes the jump in the quantity f across X, and K is the second
Sfundamental form on the shock interface defined by (2.6).7

61.e.. we assume that the areas of the 2-spheres of symmetry change monotonically in the direction normal to
the surtace. E.g.. it ¢ = 2. then %( = (), so the assumption n(c¢) # 0 is valid except when n = 3/9¢, in which
case the rays of the shock surface would be spacelike. Thus the shock speed would be faster than the speed of
light rays if our assumption n(¢) # O failed in the case ¢ = .

TThis does not contradict the spherical shell example of Israel in [12] because (2.70) fails in that example.
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PROOF. Let (w!, w?, w?) = (7,0, %) be a smooth coordinate system on X, and let 7 =
0, ..., z%) denote the extension of these coordinates to a Gaussian normal coordinate
system in a neighborhood of X (where we let 3/8z° = d/0z" when we restrict to space—
time, cf. [29]). Then by Lemma 2, n = 8/820, and T = a/az' is tangent to the shock
surface. Now in light of Corollary 2 of Theorem 2 it suffices to verify that (2.73) implies
(2.74). By Theorem 2, in w-coordinates we have

[GY ]nin; =[G™] = [ur(Kk?) — (r k). (2.75)

But in Gaussian normal coordinates the metric g U g is diagonal on the surface X. To see
this, note that the restriction of the metric (g U g) to the surface X is diagonal because
the off diagonal ¢ and 6 components are zero in both (2.68) and (2.69), and the metric
components (g U £)o;, for j # 0, are zero throughout any Gaussian normal coordinate
frame in a whole neighborhood of X. Thus, by Lemma 3,

1
Kij = ~58ij.0- (2.76)

Therefore, since g U g is diagonal on ¥, K is also diagonal, and so the only nonzero
components of K are

]

K= ~ 58110, (2.77)
1

Ky = ~ 58220, and (2.78)
1

K33 = —5833.0- (2.79)

But, since ¢ and ¢ (defined in (2.68) and (2.69)) transform like functions under arbitrary
(r, r)-transformations, (2.70) implies that ¢ and ¢ define the same invariant function in
a neighborhood of X'. Thus, by (2.70) and the fact that ¢ = g2 =C=gy on X, we see
that g20 0 =n(c) = g22.0 # 0 and 233.0 = n(c) sin? 6 = 833.0 # 0 on the surface X, and
hence

[K22]=0 and (2.80)
[K33]1=0 (2.81)

across X'. Now we have
0=1[Gijlninj =[Gool = [tr(K?) — (tr K)?] = =2[K11)(K22 + K33),  (2.82)

and since (K22 + K33) #0 (by the assumption n(c) # 0), we conclude that (2.73) and
(2.82) imply

[K1;]1=0. (2.83)
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Since Kj; is diagonal. (2.80)., (2.81). and (2.83) imply (2.74), so (2.73) implies (2.74). and
we are done. O

3. Matching an FRW to a TOV metric across a shock wave

In this section we apply the theory of Section 2 to the general problem of matching a
Friedmann-Robertson—-Walker metric (FRW) 1o a Tolmann—Oppenheimer—Volkoft (TOV)
metric Lipschitz continuously across a radial shock wave. We will first show that given
any such metrics. one can always in principle construct a coordinate mapping between the
FRW and the TOV coordinates such that. under this coordinate identification, the FRW
and TOV metrics match Lipschitz continuously across an interface that is implicitly de-
termined. In order for the matching to describe a true shock wave. the further constraint
of conservation must be imposed. and this restricts the possible FRW and TOV metrics
that can be matched across a shock wave. An application of Theorem 5 demonstrates that
the conservation constraint reduces to a single condition. and this allows for the possibil-
ity of nontrivial examples. (The constraint can be viewed as a restriction on the possible
equations of state on either side of the shock.) The conservation constraint 1s shown to
reduce (o a quartic equation in the densities and pressures on either side of the shock. An
application of MAPLE shows that the quartic factors, and we use this to show that two
possible types of pressure jumps are allowed. and one of them can be ruled out by physical
considerations. We use this formulation of the conservation constraint in the next section
1o construct a simple class of exact FRW=TOV shock wave solutions under the assump-
tion that the FRW and TOV equations of state are each of the form p = op. where o is
constant. (That is. in these examples. we assume that the sound speed /o is (a different)
constant on either side of the shock wave.)

3.1. The general FRW=TOV matching problem

The FRW metric describes a spherically symmetric space—time that is homogeneous and
maximally symmetric at each fixed time, [42]. In coordinates, the FRW metric is given by,

ds” = —dr’ + R*(1) dr? +r2de . (3.1)

I —kr?

where 1 =10, r=x'. 0 =17 =13 R = R(1) is the "‘cosmological scale factor’, and
d2? = d#? + sin” @ dy” denotes the standard metric on the unit 2-sphere. The constant k
can be normalized to be either +1.—1. or O by appropriately rescaling the radial variable,
and each of the three cases is qualitatively different. This induces a rescaling of R(7), and
so alternatively, R(r) can be rescaled to any positive value at a fixed time (say R =1 at
present time), in which case only the sign of k is unchanged. The sign of k gives the sign of
the curvature in the constant curvature surfaces at each fixed 7. and so from (3.1) it is clear
that the 3-space at + = const is unbounded when & < 0. and when k > 0, r = 1/+/k marks
the outer boundary of the coordinate system in (3.1). In standard theory of cosmology,
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the case k = 0 corresponds to critical expansion, k > 0 to a closed universe, and & < 0 to
an open universe. Current estimates of the Hubble constant H = R /R argue for an open
universe.

To obtain the equation for R(7) implied by the Einstein equations, assume that the stress—
energy tensor is of the form

T = pg" + (p+ pyu'u’ (3.2)
for a perfect fluid, and that the fluid is co-moving wit_h the metric, [42]. The fluid is said to
be co-moving relative to a background metric gijifu' =0,i=1,2,3, sothat g is diagonal
and g;ju'u’ = —1 imply that

u® = /= gop. (3.3)

Substituting (3.1) into the Einstein equations (1.16), and making the assumption that

the fluid is perfect and co-moving with the metric, yields the following constraints on the
unknown functions R(z), p(t), and p(t) [42,30]:

3R=—4nG(p +3p)R, (3.4)

RR+2R> 4+ 2k =47 G(p — p)R2, (3.5)
together with

- p3 d 3

PR =E{R (p+m). (3.6)

Equation (3.6) is equivalent to

=—p— —. 3.7
p Y (3.7

Substituting (3.4) into (3.5) we get

. 8
R2+k=”Tng2. (3.8)
Since p and p are assumed to be functions of ¢ alone in (3.1), Equations (3.7) and (3.8)
give two equations for the two unknowns R and p under the assumption that the equation
of state is of the form p = p(p). It follows from (3.7)—(3.8), cf. [30], that (R(1), p(2)) is
a solution if and only if (R(—1), p(—1)) is a solution, and that

PR < 0. (3.9)

Thus to every expanding solution there exists a corresponding contracting solution, and
conversely.
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The TOV metric describes a time-independent. spherically symmetric solution that mod-
els the interior of a star. In coordinates the components of the metric are given by

ds? = —B(H)di2 4+ A"V di? + P2 dR2. (3.10)

We write this metric in bar-coordinates so that it can be distinguished from the unbarred
coordinates when the metrics are matched. When M (r) = My =const and B = A_, the
metric reduces 1o the (empty space) Schwarzschild metric, and the singularity at r = 2G M
is referred to as the Schwarzschild radius for the mass M. and represents the edge of a
black hole. (See |33.34] for proof that black holes cannot form in smooth TOV metrics
that solve the Einstein equations with nonzero sources.) Assuming the stress tensor is that
of a perfect fluid which is co-moving with the metric. and substituting (3.10) into the field
equations (1.16), yields (cf. [42])

JM
A(F):(l-—zg_ ) (3.11)

Iz

where M = M(r), p = p(r). and p = p(r) satisfy the following system of ordinary differ-
ential equations in the unknown functions (p(r), p(r), M(r)):

dM -
—— =47, (3.12)
dr
dp 5 4 p 26M |
29 _gmplig 2 ey 29V (3.13)
dr 0 M r

Equation (3.13) is called the Oppenheimer—Volkoff equation. and is referred to by Wein-
berg as the fundamental equation of Newtonian astrophyvsics. 142, p. 301].

In this section we assume the case of a barotropic equation of state p = p(p), in which
case Equations (3.12). (3.13) yield a system ot two ODEs in the two unknowns (o, M ). We
always assume that

O<=—=pu<l.

=i

and that the sound speed is less than the speed of light ¢ = 1.

d

—~—
!

O<ao

I
|

< L.

joN
i

The total mass M inside radius 7 is then defined by

M () =/ 4 E25(E) dE. (3.14)

0
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The metric component B = B(F) is determined from p and M through the equation

B'(r) 5 p'(r)
B p+p

(3.15)

In the special case when the density o is assumed to be constant, one can solve the
Oppenheimer—Volkoff equations for the pressure, and the resulting solution, first discussed
by Schwarzschild, is referred to as the Interior Schwarzschild metric.

We remark that for any given FRW and TOV metrics, there are maximal domains of
definitions for the variables. We assume that the FRW metric is defined on the maximal
mmterval 1 <7 <ty and0<r_ <r < I+, and the TOV metric is defined on the maximal
interval 0 <7 <7 < 7. For example, if k > 0, then we must have r < 1/3/k, 1 must be
restricted so that p(¢) and R(r) are positive, and by (3.8) we must require &’igp(t)R(t)z -
k> 0. )

We now construct a coordinate mapping (¢, r) — (f,7), such that, under this coordinate
identification, the FRW metric (3.1) matches the TOV metric (3.10) Lipschitz continuously
across an interface r = r(t) that arises implicitly from the matching procedure. That is, we
define a coordinate mapping that takes the unbarred frame of the FRW metric over to a
barred TOV coordinate system that leaves fixed the 6 and ¢ coordinates. In order to apply
Theorem 5 of Section 2, we require that the areas of the 2-spheres of symmetry of the FRW
(3.1) metric agree with the areas of the 2-spheres of symmetry of the TOV metric (3.10).
Thus to start, assume that

F2d2? = R dR?,
so that

Rr. (3.16)

’7

That is, we define the first component of the coordinate mapping (¢, r) — (1, F) by

r(t,r) = R()r. (3.17)

;.‘

Note that at this stage the transformation 7 = Rr is defined globally, which is important in
order to apply Theorem 5 of Section 2, which requires that (3.16) hold not just at the shock
surface, but in an open neighborhood of the shock surface.

We next use (3.16) to rewrite the FRW metric in (t, r)-coordinates. We have from (3.16)
that

dr = Rdr + Rrdr. (3.18)

SO

1 R
dr = —dr — —rdr, (3.19)
R R
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and thus

50

| ) R~ 5 R _ _
dr-+ —r-dr- — Zk—;rdt dr. (3.20)

dr? = —
R? R*

Thus. the FRW metric (3.1) is given in (¢, r)-coordinates by

ds” LS P LS _2RRT_ dr dF + 72 d$2>
5§ = — - dar- — r+r- -,
R> — ki2 R? — ki2 R2 — kP2
(3.21)
which. using
k e} LN P 8 o]
IR — ki? — R} = R”ln —~ —ngR ,3}
becomes
] n Sﬂg N 9 4
ds? = ——-— 1 — R 1 = —=ZpR?*r ) dr’
TR { ( 3 PN )
+ R2AFT —2RRi 1 df-} + 72 deR. (3.22)

We can now complete the definition of the coordinate identification (7, ) — (f, ) by defin-
ing 7 =1(1.r) so as to eliminate the cross term dr dr in (3.22). We do this first for a general
metric of the form

di’ = —CG.")di? + D(t.F)diZ + 2E(r. 7y drdr. (3.23)

It is not hard to verify that if v = (¢, 1) 1s chosen to satisfy the equation

J 3
L WO = ——(YE). (3.24)
or ot
then
di =y (. F){Cu.rydr — E(r.7)dr} (3.25)

is an exact differential. Since (3.25) defines the coordinate r as a function of (¢, /), and
we already have i = R(r)r. it follows that (3.25) defines 7 = 1(r. r). thus completing the
definition of the sought after coordinate transformation (7. r) — (1, ). Assuming (3.25),
the (7. ) line element for (3.23) becomes

di? = —(y2C7 ") di* + (D+5Ci> dr?. (3.26)
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Now in terms of the metric
~2 2 8”9 2.2 2
ds“=—R°|1 - 3 PRr dr? + R%?dr? — 2RR7F d7 dr, (3.27)

which appears in (3.22), C, D, and E are given by

C=R2[1 ’;g R2r 2} (3.28)
D=R? and (3.29)
E = —RRF. (3.30)

Thus, using (3.27), the FRW metric in (7, )-coordinates becomes

2 ! 20\ 472 E2\ 2] | 2402
ds* = 7= —(¥°C)  dr +<D+? dr” ¢ + 77 ds”. (3.31)
But from (3.28)—(3.30) we obtain
E2 R2R2_2 5 R2R2r2
D+ —=R>+ =R — (3.32)
C R2(1 - 828 pr2) — 1 — 89 5R2y2

Now, equating the dr? coefficients in the TOV solution (3.10) and the FRW solution (3.31)
and using (3.32), we obtain the equation for the shock surface:®

26M\ ! RZR?y2
2 12 _ _ p2 s
(R* — k7 )(1 - ) =R+ Py (3.33)
which, using (3.8), simplifies to
4
M) = —3’5,0(0;3. (3.34)

Hence (3.34) defines the shock surface, and the shock surface in (7, r)-coordinates can
be obtained from (3.34) by making the substitution 7 = R(f)r. (Of course, additional as-
sumptions are required to insure that the shock surface as defined implicitly by (3.34) is
reasonable, for example, stays within the domain of definition of the FRW metric, namely,
1 —kr? >0, when k > 0, etc. ) It remains only to determine ¥ from (3.24) so that the dr?

terms in the TOV and FRW metric agree on this surface. To obtain ¥, which determines
the coordinate 7 in terms of the (¢, r) coordinates of the FRW metric in a neighborhood
of the shock surface, we solve Equation (3.24) subject to initial data on the shock surface

8Note that, interestingly, the di2 coefficients are independent of .
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which is forced upon us by the condition that the d7 > terms match on the shock surface.
So. equating the dr 2 terms in (3.10) and (3.31), our assumption is that

I I
RY — ki y2C

= B(r) (3.35)

holds on the shock surface (3.34). Rewrite (3.24) in the form of a first-order linear partial
differential equation for v,

Cyr + EVy = f(1.7. ). (3.36)

Here. C and E are functions of + and r given by (3.28) and (3.30), and thus we can solve
the initial value problem (3.36) in (7. 7)-coordinates with initial data (3.35) given on the
shock surface (3.34), provided that the shock surface is non-characteristic for (3.36).

Now the characteristics for (3.36) are given by

A= d—’ = g (3.37)
dE
so that the function s is obtained by solving the ODE
d
W Fu o). (3.38)
du

starting with initial values on the shock surface (3.34). where d/du denotes differentiation
in the (£. C)-direction in (7.7 )-coordinates. Solving (3.35) for ¥ gives the initial values
of ¥ to be met on the shock surface: namely,

. 1
1 . 3.39
V= BRI 539

Thus, it dr/dt denotes the speed of the shock surface in (7, 7)-coordinates, then the condi-
tion that the shock surface be non-characteristic at a point is, by (3.37). that

d-.
dr, ¢ (3.40)
dt F

If (3.40) holds at a point on the shock surface (3.34). then we can solve (3.36) uniquely
for ¥ in a neighborhood of the point, thereby matching the FRW and TOV solutions in a
Lipschitz continuous manner in a neighborhood of such a point on the surface in the (r, )-
coordinate system. Since we need orly to define local coordinate systems in order to define
a space—time manifold, the shock surface (3.34) defines a complete Lipschitz matching
of the metrics FRW and TOV at each point of the surface where the non-characteristic
condition (3.40) holds. It is interesting to observe that one need not explicitly solve the
PDE (3.36) for ¢ in order to determine the shock surface equation (3.34), and the solution
of (3.34) can be calculated even when we do not have a closed form expression for 1
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as a function of ¢ and r. That is, we find it somewhat remarkable that, other than it’s
existence, we do not require any detailed information about the transformation 7 = 7 (t,r)
in the subsequent developments.

We shall discuss the condition (3.40) further below in Propositions 2 and 3, but first
we discuss the equation for the shock surface (3.34). This is necessary in order to obtain
an expression for the shock speed, and to motivate the conditions in Propositions 2 and
3 below. Note first that we have not made any choice regarding whether the FRW metric
is on the “inside” or the “outside” of the TOV solution. For the case of a star, the FRW
metric is on the inside (at small values of 7 within the shock surface), and the TOV is on
the outside of the shock surface. For definiteness, we will only consider this case, although
the discussion we give below applies equally well to the case when the FRW metric is on
the outside.

The shock position is defined implicitly by (3.34). Note that (3.34) allows an interpreta-
tion of a global principle of conservation of mass in the special coordinate 7. Indeed, M ()
is the total mass that would appear inside the radius 7y were the Tolman-Oppenheimer—
Volkoff solution continued to values of 7 < 7. Thus, M () represents the total mass that is
generating the TOV solution outside the radius 7 = 7. This describes the left-hand side of
(3.34). The right-hand side of (3.34) can be interpreted as the total mass inside the sphere
of radius ry at a fixed time 7 in the Freidmann—Robertson—Walker solution. That is, if we
interpret 471,0R(t)3r3 as the total mass behind the shock at fixed ¢ in the FRW metric, then
(3.34) says that this is equal to the mass M (ry) observed by the TOV metric outside the
shock, when the shock is at position 7o = R(1)rg. Thus (3.34) says that the “total mass” is
conserved as the shock propagates outward. Therefore, the total mass in the TOV solution
that an observer sees out at infinity is fixed, and this equals the total mass in the inside
FRW metric plus the total mass in the outside TOV metric. As an application of this global
conservation of mass principle, we note that since in a “physically relevant” model for a
star, the density p(7) for the TOV metric should be a decreasing function of 7, the global
conservation principle cannot hold when p — p = [p] = 0 across the shock surface. Indeed,
if dp/dr < 0 for 7 < 7o, and p(19) = p(7p), then

4 4 Fo
—;1;)<r<))r'~3 - —31500)::3 < /0 47 p(E)E dE = M (7o), (3.41)

and so by (3.34), the point (19, 7o) cannot lie on the shock surface: the global conservation
of mass principle implies that if d5/d7 < 0. then [p] 5 0 across the shock.

With this motivation, we can now calculate the shock speed under the condition [p] # 0.
Indeed, by the implicit function theorem, the shock surface (3.34) is given by 7 = (1)
provided that

dm 5
P 4p(t)r= #0. (3.42)

But, using (3.12), (3.42) becomes

47t (p — p) #0, (3.43)
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at a point on the shock surface. Thus, as we have shown above, if we assume that dp/dr <
0. this condition is always valid on the shock surface. We can now calculate the speed of
the shock s = F (where “dot” denotes d/dr). Using (3.34), which we write in the form

4
Mﬁmﬁrgmmmﬁ. (3.44)

and differentiating with respect to 1. we find

[ (3.45)

I

Since |p} < 0 (we are assuming that dp/dr < 0). the shock speed is negative if o > 0 and
positive if p < 0. Observe that. from (3.37). the condition on the shock speed (3.45) that
cuarantees that the surface be non-characteristic at a point is (ct. (3.39))

.- ) CQ (Sﬂg ".2_])2
LI DI . (3.46)
3lp] E- Y52 g2

where we have used (3.8), (3.16). (3.28), (3.30). Note that in the classical theory of shock
waves, the stable shock waves always advance toward the side of the shock where the fluid
pressure is lower, and the corresponding shock waves that move into the higher pressure
side are unstable. and are referred to as rarefaction shocks, |27]). This means that if dp /dr >
0. then the shock is stable it s > 0 (6 < 0), and unstable if s < 0 (p > 0). We remark that all
of the above development is independent of the equations of state p = p(p) and p = p(p).
The famous example of Oppenheimer and Snyder [25] is obtained in the limit when the
pressure p = 0. and the TOV solution is replaced by the Schwarzschild metric, (3.10)
assuming a constant mass function M(7) = M = const. B = A~'. In this case the FRW
solution satisfies p(1)R(1)* = p(0). and so for a particular solution satistying R(0) = 1,
R(0) = 0. (3.8) implies that k = 87G/3. Thus (3.34) reproduces the well-known result
that the radius of the star ¢ at time 1 = 0 in the Oppenheimer-Snyder model is given by the
relation (see [42, p. 346])

4 1
M = T,o(())a‘ .

Note that in the Oppenheimer—Snyvder limit. the interface must be interpreted as a contact
discontinuity rather than a shock wave because «¢ = const and thus no energy or momentum
is transported across the interface.

The following proposition gives identities that hold at the shock surface as a conse-
quence of (3.34) and the coordinate identification (1, r) — (1. 7). These will be useful in
later developments.

PROPOSITION 1. On the shock surface (3.34), the following identities hold

—131+AE2 —BU ki?) (3.47)
- cr )T al T -

Y2 (2
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C = R?A, (3.48)
E _ —Rr (3.49
C A 49)
E?Z A4+ (1—kr?)

7= 3 , (3.50)
R =-A+(1-k?). (3.51)

PROOF. The transformation ¥ that maps the (r, r)-coordinates of the FRW metric to the
(t, 7)-coordinates of the TOV metric is given by

dF = Rrdr + Rdr,
di =y Cdi —yEdr = (yC - YERr)dt — y ERdr,

where we have used (3.25) together with the fact that 7 = Wy (t, r) = R(t)r. From these it
follows that

0¥ _[yC—yERr —yERT
57 = [ B R j , (3.52)
where in this section we use the notation x = (t,r), X = (7, r), and X = (¢,7), and we
supress the (6, ¢) coordinates. (Here, the upper i and lower j on the right-hand side of

(3.52) denote the (i, J)-entry of the matrix.) From these relations it follows easily that

% 1 07 ‘
ox! 1 EY

— = | ¥C C . .
ox/ [ 0 1 ]j (3.54)

Now in the tr-coordinate plane, the FRW and TOV metrics have components g;{W and gfg
in x- and X-coordinates given, respectively, by

.. —1 0 i

g,’ng[o ]_krz] . and (3.55)
R2

L. _B—] 0 ij

gl = [ d A] | (3.56)

where A =1 — 2GM/F, B satisfies (3.15), and the upper ij denote the (i, j) entry of the
matrix. Now on the shock surface M — %’1 073, the metrics grw and gjs agree, by which

we mean that

aff ox“ ij Bxﬂ
8RW = 57815 57
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Rather than calculate this out directly. we use the fact that the FRW and TOV metrics must
have components that agree on the shock surface in the X-coordinates. Thus we calculate

i AP — —Rr of
gg&/ = Tx-'_-gk’w—- = [ } . and (3.57)
(

ox/ —Rr =R+ (1 —ki?)
NS NS 2 E B
~aff ax“ i ()Xﬂ _ ————1//3(1'31)’ + A({: A? “
s = T8 s T = . . (3.58)
: axt o ox/ 4(_1 A

(Again, the superscript ofp on the RHS of (3.57) and (3.58) denotes the (a. B) entry of
the matrix.) Equating the (0. I)-entries in (3.57) and (3.58) we obtain (3.49). Equating
the (1. D-entries in (3.57) and (3.58) we obtain (3.51). and this together with (3.49) gives
(3.50). Equating the (0. 0)-entries in (3.57) and (3.58) gives the first equality in (3.47), and
applying (3.51) gives the second. Finally. (3.48) follows from (3.49) together with (3.30),
E = —RRr. This concludes the proof of Proposition 1. U

Alternatively, we can derive (3.47)—(3.51) directly from (3.11), (3.8), and (3.34), to-
gether with the expressions (3.28), (3.30). and (3.35) for C. E. and B, respectively. To
obtain (3.51), solve (3.34) for p. solve (3.11) for M, and substitute these into (3.8). To
obtain (3.48). multiply (3.8) by . solve for \”GpR R?. and substitute this into (3.28).
Using (3.48) together with (3.30) gives (3.49). The ldentlty (”‘5 49) tO"CIhCl with (3.51)

yields (3.50). Statement (3.35) together with (3.48) gives l/ﬁ( s = (I —kr- ) Using (3.48)

together with (3.30) and (3.51), in the expression | + AE?/C? gives the last equality in
(3.47).

We end this section by giving conditions under which the shock surface is non-
characteristic: i.e.. that (3.39) holds. We assume here that the shock surface lies within
the domain of definition of the FRW metric if & > 0. The first proposition gives conditions
on the equation of state p(p) that guarantees the shock surface (3.34) is non-characteristic
provided it does not intersect the Schwarzschild radius, A =1 —2GM /r =0, of the TOV
solution.

PROPOSITION 2. If the equation of state p(p) satisfies the condition

dp
>0, and A#0
dp

everyvwhere on the shock surface (3.34), then the shock suface is nowhere characteristic.

PROOF. We already have (cf. (3.37), (3.30)) that

C C

A= — = —_—. and (359)
I R(—R)r
oF

(3.60)




552 J. Groah et al.

From the Oppenheimer—Volkoff equation (3.13) for dj/dF, we see that the sign of
dp/dr is positive inside the Schwarzschild radius and negative outside. Thus sign([p]) =
sign(dp/dr) = sign(dp/dF) = — sign(A). But on the shock surface, we also have by (3.48)

C = R*A,
and so sign(A) = sign(C). Finally, we also have from (3.9) that Rp < 0. Thus.

sign(A) — sign(s) = sign(C) — sign([p])

:—{sign(j—?) +sign([p])} £ 0. (3.61)

We shall also need the following proposition:

PROPOSITION 3. If R =0 and A # 0 at a point on the shock surface (3.34) (i.e., the point
is not on the Schwarzschild radius) then, if the shock speed is Jfinite at the point, the shock
surface is also non-characteristic at the point.

PROOF. By (3.36), the characteristic surfaces satisfy

dr ) 3
— = (C = R“A, — =FE=—R"R,

ds ds
where we have used (3.48) and (3.49). Therefore. if R = 0. the characteristic is tangent to
1 =const, and thus any finite speed s = d7 /d is a non-characteristic speed. O

Summary.  The results of this section can be summarized as follows. Let 3.1y and (3.10)
denote arbitrary FRW and TOV metrics that solve the Einstein equations for a perfect fluid.
(We make no restriction on the equation of state at this point.) Then we have identified the
following conditions under which there exists a smooth regular coordinate transformation

Vit r) — (I_, f‘).

and a corresponding shock surface r = r(r) in FRW (z. r)-coordinates (which maps to the
curve ' = (1) in TOV barred coordinates by (7, 7(7)) = W (1. r(1))), such that, when writ-
ten in the same coordinates, the metrics (3.1) and (3.10) agree and are Lipschitz continuous
across the shock surface which is given implicitly by the equation M = 47 pi?. For exam-
ple. the metrics agree on the shock surface when both are written in either the barred or
unbarred coordinates. We summarize most of the results of this section in the following
theorem:

THEOREM 6. Assume that the shock surface r = r(t) is defined implicitly by

M@F) = 4T”pr-3 (3.62)
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i a neighborhood of a point (1y. o) thar satisfies (3.62). Assume that
F=Wn(r.ry= R{1)r

so that the spheres of symmetry agree in the barred and unbarred frames, and the shock
surface in (t1.r)-coordinates ts given by r(1) =i (1)/R(1). Assume finally that both

| —kr(1) > 0. (3.63)
A(Fp) # 0. (3.64)

and the non-characteristic condition

dr C _ Rr

(3.65)

@ T ET A

holdatt =1y (¢f-(3.28),(3.30) and (3.49)). Then the coordinate t = ¥ (1, 1) can be defined
smoothly and in such a way that ¥ = (Y ) is one-10-one and regular in a neighbor-
hood of the point (1g. ro) (¢f. (3.36)). and the metrics (3.1) and (3.10) match in a Lipschitz
continuous fashion across the shock surfuce r = r(1) in a neighborhood of (1y, 1y).

By the implicit function theorem, a sufficient condition for (3.34) to define a surface
locally through (7. 7o) is that

i 4
.L_:M_T”,—)#o_ (3.66)

- =1

ar

By differentiating (3.34) directly. we obtain the alternative sufficient condition.

lol#0. (3.67)

3.2, The conservation constraint

Assume for this section that we are given smooth FRW (3.1) and a TOV (3.10) solutions
of the Einstein equations (1.16) such that Theorem 6 and (3.62)—(3.65) hold for all 7 €
U—vig).reGorg).andr =7(1)/R@) € (r—.ry). Thatis. assume that the shock surface
r=7(r) 1s defined by (3.34) and that the metrics agree on this surface throughout this
range of variables. when the unbarred coordinates (3.1) and barred coordinates (3.10) are
identified by the transformation (7.7) — (r.r) constructed in the last section. Thus i =

r(r.r)is given by
= R(t)r. (3.68)

and the transformation 7 = (7. 1) is assumed to exist throughout this interval in light of
the non-characteristic assumption (3.65). Other than it’s existence. we do not require any
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detailed information about the 1 transformation in the subsequent development. The fol-
lowing theorem gives conditions under which the matched FRW and TOV metrics define
a true shock wave solution of the Einstein equations: that is, a weak solution such that all
of the equivalencies (i)—(iv) of Theorem 4, Section 2, are true, and conservation of energy
and momentum hold at the interface.

THEOREM 7. Let g U g denote a metric obtained by matching an FRW metric g and
a TOV metric g Lipschitz continuously across the interface defined implicitly by (3.34),
such that Theorem 6 holds. Assume that at each point of the interface the condition

2

i - o (I=kr?y o 11—k
[T"]n,-n_,-=(p+p)r'—(,0+p)—/—4—RT—r —f-(/?—p)—~—R2 =0. (3.69)

where i, i denote the shock speeds dr /di,dr /d1, respectively, differentiation being taken
with respect to the unbarred FRW time coordinate 1, holds: and [ - | denotes the FRW-TOV
Jump in a quantity across the interface, as calculated in the same coordinate svstem. Then
the resulting metric g U g defines a true shock wave solution of the Einstein equations in

the sense that all of the equivalencies of Theorem 4 hold, and these imply that the Rankine—
Hugoniot jump conditions

[Tijln' =0, i=0.....3.
hold at the shock.

PROOF. Because © = R(1)r holds in a neighborhood of the shock surface, conditions
(2.70) and (2.71) of Theorem 5 is met. Thus, according to Theorem 5, all of the equiv-
alencies of Theorem 4 follow from the single (invariant) condition

[GijIn'n/ =0, (3.70)
which is equivalent to
[T;;n'n’ =0, (3.71)

in light of the fact that both the FRW and TOV metric are assumed to satisty the field
equations G;; = « T;; on either side of the shock. We emphasize that the indices i, J must
refer to components in the same coordinate system, where coordinates on either side of the
shock are identified through the coordinate transformation (r, r) — (t,7). To start, use the
Einstein equation G = « T, the condition [Gij]l1f77.j = 0 for conservation across the shock
(cf. Theorem 5), and the assumption that the source fluid is co-moving with respect to the
metrics on either side of the shock (cf. (3.2)), to rewrite the condition for conservation as

ij <32 ST [
[T ]n,-n_,- =@ —=p)nl~+(p+ pnj—(p+ 1))—B— =0. (3.72)
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Here n; and i2; denote the i -components of the normal vector n to the shock surface (3.34)
in unbarred (FRW) and barred (TOV) coordinates, respectively, and In|’> = gi~"/1;11.,. (Note
that ' = 8{, in (FRW) coordinates, ut = B_'/QS{) in (TOV) coordinates, thus giving rise
to the factor B.) Since n; =0 =7;, i = 2.3. we need only pay attention to the 0- and
I-components of n. To verify (3.72). note that. for example. in the (FRW) unbarred frame.
(3.2) gives

T’t"n,'n‘,- = /)g"-"/mzj +(p+ ,())(u"n,-)2 = plnl2 +(p+ ,0)(11())2.

Moreover. we need not choose the vector n to be of unit length, so long as n; and n; are
the components of the same vector. Since the LHS of (3.72) is an invariant scalar, so is
the RHS. In order to evaluate n; and 2. let (3.34) (formally) define the surface r = r (1),
which we can write as the level curve of the scalar ¢(r,r) =+ — r(r) = 0. Then we can
choose nj dx’ = dg, so that

do =nodr +n(dr = —rdr +dr,
which yields

ng=—r, and (3.73)
ny=1. (3.74)

To obtain s7;. we write the function ¢ in (7, rF)-coordinates:

r

P = (7)), 3.75
(1. 7) RO r(r(r.7)) (3.75)
Then
do(i.7) SN B il di + 71, dF (3.76)
Iy = — —_— — ' — 1 = ———— ", .
¢ FER T T i Ror o Tmd
so that
; o (377
1 = — =, .
0= TR0 )

But using the fact that
= R,
together with (3.25),

df =y (. H{Cr. 7ydr — EG.F)dr}.
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we have
1=, E
C
which implies

a—’—(cr‘
af_‘/’ '

Putting this into (3.77) yields

r
0 = — . 3.78
no RUC ( )

Using the identity (3.47) of Proposition 1 we obtain

g = g(] — kr?)i?, (3.79)

where —B and A~ = (1 — 2GM /7)~" are the coefficients of dr2 and d72 in the TOV
metric (3.10). Finally, using the FRW metric (4.57) to compute |n|?, we obtain

Now substituting (3.73), (3.79), and (3.80) into (3.72) yields
[ﬂmmq=m+ww?4ﬁ+mgifgﬁﬁup—m]—?2=0 (3.81)
AR R
which is Equation (3.69). O

Equation (3.69) gives the additional constraint imposed by conservation across the shock
in terms of the quantities = r(¢) (the shock position), and the values that p, p, p, p and
R take on the shock surface. The following proposition explains why the pressure in the
Oppenheimer—-Snyder model must be taken zero:

LEMMA 9. If p = p = O identically (so that the TOV solution reduces to the Schwarzschild
solution), and p > 0 and p > 0 evervwhere, then (3.69) implies p = 0 and r(t) = const all
along the shock.

PROOF. When p = p =0, (3.69) reduces to

. 1 —kr?
pr% + P e =0
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. el 2] . . -
Since (1 —kr-)/ R~ > 0 in the FRW metric. the lemma follows at once. O
We now derive an equivalent formulation of the conservation constraint (3.69).

LEMMA 10. The conservation constraint (3.69) has the equivalent formulation

9

O==6)p+p)p+p)
, N , ) -
+(1 ——é)(/)—f-p)(p—i-/))”+(P—l))(/>‘[))_- (3.82)
where

A

| — kr?

(3.83)

Before giving a proof of (3.82). we first note that. assuming (3.63) and (3.64) hold, the
condition 0 < 6 < | is equivalent to the condition

. 81 G

R’ = —z—p/e2 — k=0 (3.84)
that is. equivalent to the condition that the shock surface lies within the coordinate restric-
tion of the FRW metric. To see this, use the shock surface equation M = 4xpi3 to simplify
(3.84) as follows:

R = 8];ng3 — k= ’-17{ 279—, — /\'rz}. and so (3.85)

R =—A+ (1 —ki?). (3.86)
This can be written as

R*r? = (1 = kr?)(1 —6). (3.87)
Thus the condition

0<6<1 (3.88)

is equivalent to (3.84), in view of our assumptions (3.63) and (3.64). Moreover, since we
are assuming (3.62)—(3.65) hold throughout, it is clear that (3.88) is equivalent to (3.84)
when k& < 0. as well. When making general statements about FRW-TOV shock waves, we
always assume that (3.88) holds.

PROOF OF LEMMA 10. Differentiating (3.34) with respect to 7 and applying (3.12) yields

)O:

1] w2

(p— p)F. (3.89)

~
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Solving for p in (3.7) yields
. 3R |
p=—7(p+p)- (3.90)

Combining (3.89) and (3.90) thus gives

f___Rr(p‘i‘]f). (3.91)
(p—p)
Differentiating 7 = Rr with respect to 1, using (3.91), and solving for 7 we get
R . -
p=frletp) (3.92)
R (p—p)

Substituting (3.91) and (3.92) into (3.81), we obtain the following equation, which is equiv-
alent to the conservation condition [T/ n;n ; = 0:

_ ] _ —2_1- - 2
O_(m)(erP)(l)er) S0t p)otp)

+ (p—p)p—p)>. (3.93)

r2R2
Equation (3.93) expresses conservation at the shock surface (3.34). But by (3.91),
R =—A+(1—kr?) (3.94)

holds on the shock surface, and using this we can transform (3.93) into the final form
(3.82). d

For convenience, we summarize the results of this section in the following theorem:

THEOREM 8. Assume that FRW and TOV metrics are given such that match Lipschitz
continuously across the shock surface (3.34) and that (3.62)—-(3.65) hold. Then (i)-(iv) of
Theorem 4 hold on the shock surface if and only if cither (3.69) or (3.82) holds on the
shock surface.

We now use the conservation constraint to solve for p as a function of p, 5, and p.
Solving (3.82) for p we obtain

SH=(5+ )2 +20 = 1)pp+20 + H)phpr 25 — Dpp £ 50)

piz — + =
1=0)p+Q—-0—Dp+1—3)p
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where

2

12

SQ=(60"p" =4p’p—4p7p+ p* + 57) " = (p - p)’. (3.96)

Thus we conclude that every TOV solution determines two possible FRW pressures at the
shock through the conservation constraint. Since the FRW pressure is constant on the 1 =
const surfaces, these implicitly determine the FRW equations of state p = p(p) tfrom the
TOV density and pressure. Now the terms in the numerator of (3.95) combine as follows:

R | _ 3

—(p+ p)” +2(H + g)pp T (p—p)°

I ,
:—2<2~(~)—5)/),5——{2(,0—[))‘}_. (3.97)

where we use the notation that the brace {-}_ is taken zero unless we take the minus sign
in (3.95) (and correspondingly minus sign in (3.97)). Using (3.97) in (3.95) gives

0= Dpp+ (5= Dpp— Q=60 byps—(p - p)2)-
(1=0p+Q2—-0=hp+t=1p

P+ =

_ —U=0)pp—pp}+ (= DIpp + 05} = {(p = p))-
(I =)o+ ph— (3 — Wip+p)

~(1=0pp+P) + (5= Dp(p+5) = lp = p))-
_ U000+ P+ G = P+ P~ = PP (3.98)

(I—=O){p+p}— (= Dip+p)

which upon multiplying the numerator and denominator by /(1 — 0) yields

_H' T N nH
o= pp +_/7) + /z(p T /))‘ (3.99)
o+ py—(o+p)
—0p(p + Py +p(p+ P)— {7550 — p)?)
Y B— — .
! Op+p)—(p+p)

(3.100)
We can further simplify pp_ as follows. First, we can verify the identity

_ . - 0 _
—0pp )+ p(p+p) = (P = p)

1 [)+/3>< ,0) .
=——IV6-— - o—=Z )+ p)p.
l—9< p+p 5) TP

Substituting this into the numerator of (3.100) yields

ptp

- p+p _ .
(/O+/))(9“—p+l‘7) l (7)

lL:(&ﬁ@—iixw—%m+ﬁm:95-p
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Thus, if we define the variable

®=y0, (3.10H)
where
Pty (3.102)
p+p

then the pressures p and p_ take the similar forms

Op—p
= . 3.103
P+ 1 - ( )
0p—p
= . 3.104
p —a ( )

In Section 5 we will prove that

p=p- or p>p,

which leads to dp/dp < 0, and so can be ruled out as physically unlikely possibilities.
An easy calculation gives the equivalent formulation of (3.103) in terms of the TOV pres-
sure p,

0o
p=tPFr (3.105)
1 -6y
where
sl (3.106)
p+p

The following two theorems follow directly from (3.103).

Let us now interpret an FRW-TOV shock wave as the leading edge of an explosion in
which the FRW solution is on the inside, expanding outward into the static TOV solution.
In this case, we can take p/p < 1 as an entropy condition for such a shock wave; that is,
the density should be greater behind the shock. The following theorem states that 5/p < 1
implies p > p as well, when we take the pressure to be p = p1 in (3.103), and there is a
constraint on the allowable values of 6.

THEOREM 9. Assume (3.62)—(3.65), assume that
i=p/p<l,

and assume

i

il

i
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Then py > 0 if and only if p — p > 0. and this holds if and only if 8; <0 < | at the
shock, where

YRR

! (3.107)
vy p+p 1+ '

01 =01(z. 1)

I

Since the FRW pressure is determined by the TOV solutions according to (3.103), we
now ask what possible pressure jumps can be assigned at an FRW-TQOV shock wave at a
aiven position. The final theorem of this section shows that all possible pressure jumps can
be assigned as we vary the value of 6. The pressure jumps that can be assigned at a point
can be viewed as possible initial conditions for the subsequent dynamics of an FRW-TOV
shock wave solution.

THEOREM 10. Assume (3.62)—(3.65) and that = < 1. Then for every choice of positive
values for p. p.and p. the pressure py monotonically takes on every value from [ p, 4+00).
and the pressure difference (py — p) monotonically takes on every value from [0, +00),
as B ranges monotonically from |1, 0y).

PROOF. When p > p. it follows immediately form (3.102) and (3.103) that p4 > 0 if and
only if 6 > 8. To see this, note that the numerator in (3.103) is always negative because

when z < . Thus by (3.103), p+ > 0 if and only if y6 > 1. Furthermore, if p, p, and p
are fixed, then p varies monotonically from p o oo as 6 varies from +1 to 8, because
po < 0. and when ¢ =1,

pEP =
e L
— = p.

)L = -
P+ _ptp

pEp

We can perform a similar analysis on the ditference (p4 — p), because, as is easily shown,

- 1 -6 - -
P+ —p=\—0—7 |+ py.
vy — 1

This completes the proofs of the Theorems 9 and 10. O

Another direct consequence of (3.103), (3.104) is that if A > 0 and € < | then, when
© > p. the only shock waves with positive pressure must satisfy p = py and

G =y0>1. (3.108)

In this case, (3.102) implies

1 |
p>§p+<]+5>ﬁ‘ (3.109)
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4. A class of solutions modeling blast waves in GR

In this section we use the theory developed in Section 3 to construct a class of exact, spher-
ically symmetric, shock wave solution of the Einstein equations for a perfect fluid. The
solutions are obtained by matching a Friedman—Roberson—Walker metric (3.1) to a static
Tolman-Oppenheimer—Volkoff metric (3.10) across a shock wave interface. This is in the
spirit of the Oppenheimer—Snyder solution, except, in contrast to the Oppenheimer—Snyder
model, the pressure p is nonzero. These shock wave solutions can be interpreted as simple
models for the general relativistic version of an explosion into a static, singular, isothermal
sphere. It is interesting to keep in mind that shock waves introduce time-irreversibility, loss
of information, decay, dissipation, and increase of entropy into the dynamics of a perfect
fluid in general relativity.

The FRW metric is a uniformly expanding (or contracting) solution of the Einstein grav-
itational field equations. which is generally accepted as a cosmological model for the uni-
verse. The TOV solution is a time-independent solution which models the interior of a star.
Both metrics are spherically symmetric, and both are determined by a system of ODEs that
close when an equation of state p = p(p) for the fluid is specified. In the solutions that
we construct below, one can imagine the FRW metric as an exploding inner core (of a star
or the universe as a whole), and the boundary of this inner core is a shock surface that is
driven by the expansion behind the shock into the outer, static, TOV solution which we
imagine as the outer layers of a star, or the outer regions of the universe. In these solutions,
the shock wave emerges from 7 = 0 at the initial (Big Bang) singularity in the FRW met-
ric and so, broadly speaking, one can interpret these examples as providing a scenario by
which the Big Bang begins with a shock wave explosion.

The outer static TOV solutions that appear beyond the shock wave in the examples be-
low, are the general relativistic version of a sratic isothermal sphere because the metric
entries are time-independent, and the constant sound speed can be interpreted as modeling
a gas at constant temperature. It is singular because it has an inverse—square density pro-
file, and thus the density and pressure tend to 0o at the center of the sphere. The Newtonian
version of a static singular isothermal sphere is well known, and is relevant to theories of
how stars form from gaseous clouds, [2]. The idea in the Newtonian case goes as follows:
a star begins as a diffuse cloud of gas which slowly contracts under its own gravitational
force by radiating energy out through the gas cloud as gravitational potential energy is con-
verted into kinetic energy. This contraction continues until the gas cloud reaches the point
where the mean free path for transmission of light is smail enough so that light is scattered,
instead of transmitted, through the cloud. The scattering of light within the gas cloud has
the effect of equalizing the temperature within the cloud. At this point the gas begins to
drift toward the most compact configuration of the density that balances the pressure when
the equation of state is isothermal: namely, it drifts toward the configuration of a static, sin-
gular, isothermal sphere. Since this solution in the Newtonian case is also inverse—-square
in the density and pressure, the density tends to infinity at the center of the sphere, and
this ignites thermonuclear reactions. The result is a shock wave explosion emanating from
the center of the sphere, and this signifies the birth of the star. One can interpret the exact
solutions constructed below as general relativistic versions of such shock wave explosions.
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Fig. I. Aplotof & vs. o,

In the construction we assume that the FRW and TOV solutions both have isothermal
equations of state, but at different temperatures. That is. we assume p = op in the FRW
solution, and p = o p in the TOV solution. where both the inner FRW sound speed /o
and the outer TOV sound speed /& are assumed to be constant. Here p denotes the fluid
pressure and p the mass—energy density, and again we let the unbarred and barred vari-
ables refer to the standard coordinate systems for the FRW and TOV metrics (3.1 ). (3.10).
respectively. We assume throughout that the speed of light ¢ = 1. The construction is based
on exact solutions of FRW and TOV type that exist for these special equations of state. In
Section 3. (3.34), we showed that in general the shock position 7 = 7(r) is given implicitly
by the equation M (r) = '%7/)(7)7'3. where M () denotes the total TOV mass inside radius
r.and p(r) is the FRW density at the shock. For the exact solutions with constant sound
speed constructed here. the shock surface condition implies that p = 35 across the shock.
Moreover. in order that conservation of energy and momentum hold across the shock. we
show that the sound speeds must be related by an algebraic equation of the form & = H (o).
where H'(o) > 0. H0)= 0, and H(o) < o. cf. Figure 1. Since, at the shock. the inner
FRW sound speed and density exceed the outer TOV sound speed and density, we con-
clude that the outgoing shock wave is the stable one. and the larger sound speed in the
FRW meuwric is interpreted as modeling an isothermal equation of statc at a higher lemper-
ature (consistent with the heating of the fluid by the shock wave). In the limit ¢ — 0. the
model recovers the Newtonian limit of low velocities and weak gravitational fields.

We verify that there exist two distinguished values of 0. 0} ~ 0.458 < 0 = +/5/3 ~
0.745. such that. if 0 < & < I. then the Lax characteristic condition (that characteristics
impinge on the shock, [14]) is satistied if and only it 0 < ¢ < oy: and the shock speed is
less than the speed of light if and only if 0 < o < 02. A calculation gives &) = H(o) &
0.161. and 62 = H(02) =~ 0.236. We conclude that for o between o and o». a new type
of shock wave appears in which the shock is supersonic relative to the fluid on both sides
of the shock. Thus. in this theory. a fluid with a sound speed no larger than Vo2~ +/0.745
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can drive shock waves with speeds all the way up to the speed of light. The time-reversal
and stability properties of these shocks when o) < o < 02 remain to be investigated.

Since Lax type shock waves are time-irreversible solutions of the equations due to the
increase of entropy (in a generalized sense, cf. [27]) and consequent loss of information
(effected by the impinging of characteristics on the shock), we infer from the mathematical
theory of shock waves that when 0 < o < g, many solutions must decay time asymptoti-
cally to the same shock wave. Thus, in contrast to the pure FRW solution, in these models
one should not expect a unique time reversal of the solution all the way back to the initial
Big Bang singularity when the sound speed lies in the range 0 < o < 0.

Note that the TOV solution when p = G is, by itself, of limited physical value because
p =00 at i = 0. One can interpret this as saying that this exact solution is unstable be-
cause it requires an infinite pressure at 7 = 0 to “hold it up”. In contrast, the shock wave
solution here removes the singularity at 7 = 0 (for times after some initial time), and so the
construction demonstrates that a shock wave in the core can supply the pressure required
to stabilize a TOV solution by holding it up.

4.1. An exact solution of TOV type

We now construct exact solutions of TOV type which represent the general relativistic
version of static, singular isothermal spheres. First assume the equation of state

p=aop (4.1)
for the TOV metric, and assume that the density is of form

=2, (42)

~

for some constant y. In this case, an exact solution of TOV type was first found by Tolman®
[40]; namely, by (3.14),

M(@GF)=4nyr. (4.3)

Putting (4.1)—(4.3) into (3.13) and simplifying, yields the identity

1 G
- . 4.4
Y 2ng<1+65+52> @.4)

From (3.11), we obtain

A=1-8rGy. 4.5)

%In the case & = 1/3. this solution was re-discovered by Misner and Zapolsky, cf. [42, p. 320].
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To solve for B. start with (3.15) and write

I dBdp 26 dp
o e B e e e (4.0)
B dp dr (1 +a)p dr
which simplifies to
dB 26 dp
@ __ 2 9 (4.7)

B~ (+6)p
This equation has the explicit solution

26 40

/—5 |40 ’— T+0 )
B:B()(—__) =B()(t-> . (4.8)
£0 g

By rescaling the time coordinate., we can take By = | at 7y = 1. in which case (4.8) reduces

to

4o

B =i+, (4.9)

We conclude that when (4.4) holds. (4.1)—(4.5) and (4.8) provide an exact solution of the
Einstein field equations (1.16) of TOV type. Note that since /@ is the sound speed of the
fluid. (4.1)—(4.3) provide exact solutions for any sound speed 0 < o < 1. Note also that.
when o = 1/3. the extreme relativistic limit for free particles [42], (4.4) yields y = ;—6;’{—0
(cf. 142. Equation (11.4.13)]). These exact solutions by themselves are not so interesting
physically because the density and pressure are infinite at /7 = 0 at every value of time. Our
shock wave construction. given below, removes the singularity at ¥ = 0 in these solutions.
after some initial time.

4.2. An exact solution of FRW type

We now construct exact solutions of FRW type. We restrict to the case k =0 1n (3.1). so
that the metric takes the simple (conformally flat) form

ds™ = —di= + R {dr= + 1~ ds27}. (4.10)

Now assume an arbitrary equation of state of the form p = p(p). We will obtain a closed-
form solution of the Einstein equations (1.16) in this case. By (3.7)~(3.8), it suffices to
solve the system of two ODEs

B2 8 G

pR>. and (4.11)

T3
Rp

=—p— —=. 4.12
P(p) 0 3R ( )
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Rewrite (4.11) as

8 Gp

R=+
3

R, (4.13)

and substitute into (4.12) to obtain
pP=—pF _*p—‘-
V24nGp’

(The upper/lower plus—minus signs will always correspond to the two cases represented
by the upper/lower plus—minus signs in (4.13).) The point to be noted here is that when
p = p(p) is assigned, (4.14) is independent of R, and thus we can integrate it explicitly;
namely, since

(4.14)

dp
dt =+ . 4.15
! (0 + p)/24nGp @
we obtain
p de¢
r—tg=4 - . (4]6)
’ /,) (& + p(§)v24n CE

Formula (4.16) gives 1 as a function of p, and we can use this, together with (4.11), to
obtain a closed-form expression for R as a function of p. Thus since

. dpdR dR
R=-LZ — 2o+ p)y/2anGp . (4.17)
dt dp dp \
if we combine this with (4.11), we get
dR —d
=S % (4.18)
R 3(p+p)
which has the explicit solution
S N 4.19
R = Ryex / d§. (4.19)
Y 3E T p@)

4.3. A class of exact shock wave solutions of the Einstein equations

We now use the theory developed in [30] to match the above TOV and FRW type metrics at
a spherical interface across which the metrics join Lipschitz continuously, and such that the
conservation constraint (3.34) holds at the interface. The resulting solution is interpreted
as a fluid dynamical shock wave in which the increase of entropy in the fluid drives a
time-irreversible gravitational wave.
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Assume now that the equation of state for the TOV metric is taken to be

p=0p

for some constant &, and that the fixed TOV solution is given by (4.2)—(4.5) and (4.8).
Then, given an arbitrary FRW metric. our results in [30] imply that we can construct a
coordinate mapping (1.7) — (1.r) such that the FRW metric matches the TOV metric
Lipschitz continuously across the shock surface (3.34). This applies. in principle, to any
equation of state p = p(p) chosen for the FRW metric. Using (4.3) and solving for p on
the shock surface 7 (1) = r(1)R(1) gives:

3 M 3y _ \
= — =——=23p. 4.20
e (3 F()? p ( )

To meet the additional conservation condition, we restrict FRW metrics to k = 0, and we
use (3.82) to determine the pressure. Substituting ® = A = | — 871Gy = const into (3.82),
we see that the resulting equation is homogeneous of degree three in the p, 6 and p, p
variables. Since p =& p. and

on the shock surface, it is clear from homogeneity that (3.82) can be met if and only
if p=op for some constant o. Substituting this into (3.82) gives the following relation
between o and & (cf. Figure 1):

| 37 ‘
6:;\/9(72+54a+49~30-—EEH(U). (4.21)

Alternatively, we can solve for o in (4.21) and write this relation as

o (o +7
o= 20T (4.22)
3(1 —o)
This guarantees that conservation holds across the shock surface, and thus Theorem 5
holds. uind the results of Theorem 4 apply. Note that H(0) = 0. and to leading order,

3 5
0=H(o)=zZ0 + Ofo ). (4.23)

as o — 0. It is easy to verify that within the physical region 0 < 0.6 < 1, H'(¢) > 0 and
0 < o. as would be expected physically because p = 35 > / at the shock surface. One can
verify that when o = 1/3, we have

0=~17—-4=0.1231....
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and when o = 1, we have

112
6=T—S=0.2915....

We now obtain formulas for p(z), R(r), and the shock positions r(t) and r(r) =
r(t)R(r). Substituting p = op into (4.15) and (4.18) yields

dr ::t\/z_é&_g](] +a)p"3/2dp, | (4.24)
and
dTR:_z»(lLa)d_pe' (42
Using (4.20) we obtain
3/2 2 A
0 dp = — Ner dr. (4.26)
Putting this into (4.24) gives
dt=F ] : dr. (4.27)
(1+0) /187Gy
" Integrating Equation (4.27) gives the formula for the shock position:
F(1) = +/187Gy (1 +0)(t — 10) + 7. (4.28)
Thus (4.20) gives p in terms of ¢:
P = fjry)i’- T (/870 (] ji)(, —10)+ 02 (429
Finally, we can use (4.25) to obtain R(¢) and the shock position r(t) = FOR@)™:
R(1) = R()(£>—l/(3(l+a)) = RO(FE—I))NWHO)), (4.30)
00 ro
r()=r@ORMO™ =FNRy' <’:,_%)>_2/(3“+0)) =roR;" (%) “+30)/(3+3a).

(4.31)
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Differentiating (4.28) and (4.31) gives the speeds of the shock i and F in the (r.7)- and
(1. r)-coordinate systems. respectively:

. &
=31 S — 4.32
N TG 15 (452)
X _
PR (4.33)
R(1) 1 +60+o0-

where again, 6 = H (o) is given in (4.21).

Note that the solution (4.28)—(4.3 1) contains two arbitrary constants, ig. Ro or ry. Ry, as
it should from the initial value problem (4.13). (4.14). Note also that for an outgoing shock
wave, we choose the plus sign in (4.13) and (4.28). and in this case there is a singularity in
backward time

-~

50
1H — :
v V18 Gy (l 4+ o)

As 1 — 1. itis clear that 7 — 0, p. 2. p. p all tend to infinity, and R, r tend to zero. If we
take this as a cosmological model. then 1 = 1, represents the initial Big Bang singularity in
which a shock wave emerges from 7 = (.

We summarize these results in the following theorem:

(4.34)

1y =

THEOREM 1. Assume an equation of state of the form p =& p for the TOV metric, and
p =op for the FRW metric assume (4.21) holds, and take k = 0. Then the TOV solution
given by (4.2), (4.3), (4.5), (4.8) will maich the FRW solution given by (4.29), (4.30) across
the shock surfuce (4.28), such that conservation of energy and momentin hold across the
surface. The coordinate identification (t.r) — (1.7) is given by i = Rr, together with
smooth function 1 = 1(1, 1) whose existence (in a neighborhood of the shock surface) is
demonstrated in |30].

By Theorem 5. all of the equivalencies in Theorem 4 hold across the shock surface. In
the next section we show that the shock speeds are less than the speed of light, and we
determine when the Lax characteristic conditions hold.

4.4. The Lax shock conditions

To complete the analysis of our shock wave solution discussed in the last section, it remains
to analyze the shock speed and characteristic speeds on both sides of the shock. In classical
eas dynamics. characteristics (in the same family of a shock) impinge on the shock from
both sides, leading to an increase of entropy and consequent loss of information. This
is also the source of the well-known time-irreversibility, as well as the stability, of gas
dynamical shock waves. This interpretation carries over to a general system of hyperbolic
conservation laws. Indeed, this characteristic condition has been proposed by Lax, |14,
27]. as a stability criterion for shock waves in settings other than gas dynamics. This “Lax
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characteristic condition” can be easily applied in general systems where either a physical
entropy is difficult to work with, or it has not been identified {27]. Since in gas dynamics
the density and pressure are always larger behind (stable) shock waves, and in our example
p = 3p (cf. (4.20)), we restrict our attention to the case of an outgoing shock wave in
which the FRW metric is on the inside and the TOV metric is on the outside of the shock.
This is equivalent to taking the plus sign in (4.13) (and the corresponding upper sign in
Equations (4.14)—(4.16)).

The goal of this section is to show that, in this case, there exist values 0 < 0] < 07 < 1
(o) = 0.458, 07 = \/5/3 ~ (.745) such that, for 0 < ¢ < 1, the Lax characteristic con-
dition holds at the shock if and only if 0 < o < o; and the shock speed is less than the
speed of light if and only if 0 < o < 07. We conclude that our gravitational shock wave
represents a new type of fluid dynamical shock wave when 02 < o < 1. For the outgoing
shock waves with o in this interval, the shock speed exceeds all of the characteristic speeds
on either side of the shock, because both the fast and slow characteristics cross the shock
wave from the TOV side to the FRW side of the shock. Our first result is the following
lemma:

LEMMA 11. For0 <o < 1, the shock speed, relative to the FRW fluid particles, is given

by
[ & N
§ = ] 3 —— =, S 435
s = (1 +30) (165532 s(o) (4.35)

where s(a) is the function of o obtained by substituting (4.21) for & in (4.35).
The function s(o) is plotted in Figure 2. By numerical calculation we obtain that
I — s(0) is monotone for 0 < o < 1, and becomes negative above o = o7, where, using

computer algebra, we find

02 =+/5/320.745. (4.36)

08 / ]

0.6 //
///
0.4 //
02 ) //
B
o 0z 0.4 0.6 08 1

Fig. 2. A plot of the shock speed s vs. o.
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Therefore, by general covariance. the following theorem is a consequence of Lemma 11:

THEOREM 12, For O <o < | the shock speed is less than the speed of light if and onlv if
o < on.

To prove Lemma 11. we recall that the “speed”™ of a shock is a coordinate-dependant
quantity that can be interpreted in a special relativistic sense at a point P in coordinate
systems for which g;;(P) = diag(—1.1.1.1). (We call such coordinate frames “locally
Minkowskian™ to distinguish from “locally Lorentzian™ frames in which Lijk(P)=0as
well. Since we are dealing only with velocities and not accelerations, we do not need to
invoke the additional condition Lij.k(P) =0 for alocal Lorentzian coordinate trame in or-
der to recover a special relativistic interpretation for velocities.) In such coordinate frames,
a“speed” at P ransforms according to the special relativistic velocity transformation law
when a Lorentz transformation is performed. We now determine the shock speed at a point
P on the shock in a locally Minkowskian frame that is co-moving with the FRW metric.
To this end. let (1. r)-coordinates correspond to the FRW metric with A = 0 in (4.10). Let
(1. 7)-coordinates correspond to a locally Minkowskian system obtained from (7. r) by a
transformation of the form r = ¢(7). so that

ds™ = —dr? + R(1)? ((¢")? 47 + ¢° d£27).

2 ~7 I ~
a - - R R-( / )
dr:('?—j(——ﬂdl"—}———(Ldl "d.QZ).
r- 2 -
Choose ¢ so that (pz/f' =1 and R*( 7 /¢ =1 at the point P:ie.at P = P(1.r), sel
wr)y=rand ¢'(r) = 1/R(1). Thus. in lhe (1. r)-coordinates,

dy 2:——LII"—I—d/ + - 4R

at the pomnt P, and so the (1.7)-coordinates represent the class of locally Minkowskian
coordinate frames that are fixed relative to the fluid particles of the FRW metric at the
point £. (That is. any two members of this class of coordinate frames will differ by higher
order terms that do not affect the calculation of velocities at P.) Therefore. the speed d7 /dr
of a particle in (7. F)-coordinates gives the value of the speed of the particle relative to the
FRW fluid in the special relativistic sense. Since

dr  drdr ,dr I dr
—=m— =g — = — (4.37)
dr dr dr dr R di
we conclude that if the speed of a particle in (1. r)-coordinates is dr /dr. then its geometric
speed relative to observers fixed with the FRW fluid (and hence also fixed relative to the
radial coordinate r of the FRW metric because the fluid is co-moving) is equal to R‘(Jl’,
Now consider the shock wave (4.31). which moves with speed (cf. (4.33))

dr . | + 30 o
— =)= — (4.38)
ds R(r) l+60 +06-
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Then by (4.37), the speed of the shock s relative to the FRW fluid particles must be given
by (4.35). A graph of s(o) is given in Figure 2, from which we conclude that the shock
speed moves with a speed less that one relative to the FRW fluid if and only if 0 < o7
holds; and for 0 < 0 < 1, s(o) =1 if and only if o = o7 holds, where numerical symbolic
algebra gives 02 = +/5/3 & 0.745. This completes the proof of Lemma 11.

We next determine when the Lax characteristic condition holds at the shock. To this end,
we first determine the speed of the characteristics relative to the fixed FRW fluid particles.
By (4.37), the characteristic speeds on the FRW side of the shock must equal the sound
speeds +./o in the (t, F)-coordinate frame, because the FRW fluid is co-moving with
respect to the (1, r)-coordinates. (The characteristic speed is obtained from the fluid speed
and sound speed by the special relativistic summation formula for velocities [29].) We
conclude that the FRW characteristic speeds, X;RW, X;RW (the speeds of the characteristics
relative to the FRW fluid) are given, respectively, by the formula

dr

Mw = t =20, (4.39)

By (4.37),
I Vo

+  _ 3+ _
ARw = Aprw p = T
Thus, since the (7, r)-coordinates are also co-moving with the fluid, the sound waves in the
(1, r)-coordinates of the FRW metric must move at coordinate speed

dr :t\/g

d R’

We refer to the —, + characteristics as being in the 1, 2-characteristic families, respec-
tively. Now in the one space-one time-dimensional theory of conservation laws, the Lax
characteristic condition states that the characteristic curves in the family of the shock im-
pinge upon the shock from both sides, while all other characteristic curves cross the shock,
cf. [27]. Since in our example, the shock is outward-moving with respect to r and 7, it
follows that on the FRW side only the 2-characteristic can impinge on the shock, and thus
we must identify the shock wave as a 2-shock. Thus the Lax characteristic condition must
be interpreted meaning that the following inequalities hold:

5 < ):;RW, and (4.40)

Moy <. (4.41)

Here 5‘:1&0\/ refers to the speed of the faster characteristic on the TOV side of the shock
as measured in the (7, 7)-coordinate system, which is related to the (r, 7)-coordinate sys-
tem through the (z,r) — (7, 7) coordinate identification. By (4.35) and (4.39), (4.40) is
equivalent to the condition

T o
)‘;RW_S(U)EA(U)=«/E—(1+30),/m>0. (4.42)
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A=Trows | e
ansq /S
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Q

Fig. 3. A plot of the dillerence between the inner characteristic speed Aprw and the shock speed 5. as functions
of o.

A numerical plot of the function A(a), given in Figure 3, shows that A(o) changes from
positive 1o negative at the unique point ¢ = gy, where

o) ~ 0.458. (4.43)
We are now ready to prove the following theorem:

THEOREM 13. ForQ <o < 1, the Lax characteristic conditions (4.40), (4.41) hold across
the shock if and only if 0 <o < 0oy.

Since (4.40) follows from (4.42) and (4.43), the proof of Theorem 13 will be complete
once we prove the following lemma which immediately implies (4.41).
LEMMA 12. The inequality

Ay < AT

TOV Tov <9 (4.44)

holds for all 0 <a < 1.
The next theorem is another immediate consequence of Lemma 4.4:
THEOREM 14. If o < o < o>, then the following inequalities hold:

S‘ERW < X;RW < s{o) and (4.45)

)1;0\, < )LFOV < s(o). (4.46)

Note that when 0] < 0 < 01, (4.45). (4.46) describe a new kind of shock wave in which
the 1- and 2-characteristics both cross the shock because the shock speed exceeds the
characteristic speeds on both sides of the shock. This occurs even though the sound speed
and shock speed all remain less than the speed of light. In words. Theorem 14 states that
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in General Relativity, a sound speed /o = +/0.744 can drive the shock speed all the way
up to the speed of light.

It remains only to give the proof of Lemma 4.4. Let u denote the velocity vector for
the fluid on the TOV side of the shock, and let « = 0, 1 refer to components in the (¢, 7)-
coordinate frame, and i = 0, 1 to components in the (f, r)-coordinate frame. Then a veloc-
ity vector tangent to the particle paths of the fluid on the TOV side of the shock is given by
@°, #") = (1, 0) in barred coordinates, because the fluid is co-moving relative to the barred
coordinate system on the TOV side of the shock; for brevity we write #® = (1, 0)*. (Since
our aim is to compute the characteristic speed, which is a ratio of two vector components,
a tangent vector of any length will suffice.) Let x' =(,r) and ¥* = (1,7)*. Then

Coaxt_, axt_y  ox
Lll = ﬁu = ﬁu = *axTO (447)

Thus the speed of the TOV fluid as measured in the FRW coordinates (7, r) is given by
u' ax'/ex0 AP

“E 0T 0 g (449

But,
ar . 1
—(1,7) = ——, (4.49)
o1 8(1,7)
SO
or . o1 ar
E—‘:I,-'_t,_:"—’,_- 4.50
! 81( ") 8r( ") 81( ") (430
Since
(1,r)= a
r(t,r)y= RGO’
and this holds in a neighborhood of the shock surface, we have
LA d T PR (4.51)
= —(t,r)=— = ——. .
Y 0 R(1) R
But by (4.30),
. 2 o)
R = —, (4.52)
rOV 1465 +02
SO
Fo 2 o
u=s———Rt)y=—5,/ ———- (4.53)

R(1)? RV 1466 +02
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Thus by (4.37).
- o (4.54)
= — —_— T n
| 4+ 65 +0°

and this gives the TOV fluid speed in the locally Minkowskian frame
the FRW fluid particles. But

which is fixed with
V& is the sound speed for the TOV met
sound speed as measured in the frame obtained from the

ric; thus \/g is the
transformation for 1. Therefore. to obtain the TOV

(1, 7) coordinates by a Lorentz
characteristic speed )‘Tov in the frame
(f.7). we use the relativistic addition of velocities formula:

- dr

Moy = i+ /6 (4.55)
1 l + u\/—
and this imphies that
At _dr = l_[’.i_\/_g_ (4.56)
TOV ™ d R ~ =" *
! |+ &
We now calculate 5\?0\,

By (4.54). we have

e — V1465 +05°
*TOV

Vo =it (o)
JI+66 +62-26 TOV

where

(4.57)
again we use (4.21) 10 eliminate & in favor of o. A numerical plot of )‘"I()V(U) VS. 0
is given in Figure 4. This verifies that )‘TO

V((r < 0 for 0 <o < 1. and thus completes the
proof of Lemma 4.4 in light of the inequality )‘T()V < }‘TOV

’X()—Ti

0s 15
1]

b
3
y

5 5
s

~0.05

-n14]

—0159

I Y

Fig. 4. A plot of the outer characteristic speed as a function of @
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4.5. Concluding remarks

Note that these examples provide a theory of inherently strong shock waves because the
condition p = 3 implies that [p] — 0 iff p — 0, the latter being a singular limit, cf. [27)].

Note also that when k > 0, the FRW-TOV shock-wave solutions described in Section 3
reduce to the well-known model of Oppenheimer and Snyder (O-S) when p = 0. It is
interesting to note, however, that the O-S model reduces to flat Minkowski space when
we take k — 0 in the O-S solution (see Weinberg, [42, p. 344], Equations (11.9.23) and
(11.9.21)). Moreover, when we take & — 0 in our solution (4.28)—(4.31), we also get flat
Minkowski space. However, the first limit is singular (because R = 0 implies R = const
when k = 0, cf. [42, p. 344], Equation (11.9.22)): the second limit is the only way to impose
p = 0. Indeed, we can obtain a new, time-reversible O-S type contact discontinuity for the
case k = 0 by noting first from (3.82) that p = 0 = p implies p = 0, and thus we can
integrate (4.16) and (4.19) in the case p = 0 to obtain the formulas

1

p(t) = — (4.58)
(VO G(t —19) + m)“
-1/3
P0
The shock surface is then given by
3 M\
Fty={ ——— . 4.60
(1) (47”)(1)) (4.60)

where M = const when we assume empty space, o = 0 = p. We conclude that (4.58)—
(4.60) define a non-trivial, time-reversible general relativistic model that corresponds to
the exact shock wave solution given in (4.28)—(4.31), and thus define a new O-S type
model of gravitational collapse, cf. [42, p. 345], Equation (11.9.25).

We note also that once values for o and 6 = H (o) are specified, the formulas (4.28)-
(4.31) determine a unigue shock wave solution despite the appearance of two free parame-
ters, say Rg and ry. To see this. note that after fixing the shock position 7y, the freedom in
Ry 1s only a coordinate freedom due to the fact that R(r) — o~ R(¢) under the coordinate
rescaling r — ar in the FRW metric (4.10) when k = 0.

S. A shock-wave formulation of the Einstein equations

5.1. Introduction

In this section we show that Einstein equations (1.25)—(1.28) are weakly equivalent to the
system of conservation laws with time-dependent sources (1.48), (1 .49), so long as the met-
ric is in the smoothness class C*!, and T is in L. Inspection of Equations (1.25)—(1.28)
shows that it is in general not possible to have metrics smoother than Lipschitz contin-
uous (that is, smoother than C%! at shocks), when the metric is written in the standard
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gauge. Indeed. at a shock wave where T is discontinuous, A,. B, and B, all have jump
discontinuities.

As stated in Section 1, a space—time metric g is said to be spherically symmetric it it
takes the general form [42.41.11,22],

2

ds? = g;; dx’ dx/

A D dIr+ By dr? 2D 1y dr dr 4+ C(r 1) d27, (5.1)

where the components A, B. C. and D of the metric are assumed to be functions of the ra-
dial and time coordinates » and 1 alone, d$22 = d#? + sin”(0) d¢> denotes the line element
on the 2-sphere. and x = (x"., .. ., x3) = (1.1, 6. ¢). denotes the underlying coordinate sys-
tem on space—time. In this case we assume that the 4-velocity w is radial, by which we
mean that the x-components of w are given by

w' = (w“(r. 1. w' (1), 0. 0), i=0,....3. (5.2)

respectively, for some functions w" and w'.

Now in Section 1 we showed that, in general, there always exists a coordinate trans-
formation (r,¢) — (r.17) that takes an arbitrary metric of form (5.1) over to one of the
form [42],

ds” = 8ij dy’dy/ = —A(r, I)dr2 + B(r. 1) dr + A2 (5.3)

A metric of form (5.3) is said to be in the standard Schwarzschild coordinates (or standard
coordinate gauge). and it is our purpose here to establish the weak formulation of the
Einstein equations (1.25)—(1.28) for metrics of the form (5.3) in the case when A and B
are finite and satisty AB # 0.

In Sections 2 and 3 we introduce and verify the equivalence of several weak formulations
of the Einstein equations that allow for shock waves, and that are valid for metrics of form
(5.3), in the smoothness class C"!. In Section 4, we show that these equations are weakly
equivalent to the system (1.48), (1.49) of conservation laws with time-dependent sources.
This is the starting point for the existence theory set out in [10].

5.2. The Einstein equations for a perfect fluid with spherical symimetry

In this section we study the system of equations obtained from the Einstein equations under
the assumption that the space~time metric g is spherically symmetric. So assume that the
gravitational metric g is of the form (5.3). and to start. assume that T'/ is any arbitrary
stress tensor. To obtain the equations for the metric components A and B implied by the
Einstein equations (1.15), plug the ansatz (5.3) into the Einstein equations (1.15). The
resulting system of Equations (1.25)-(1.28) is obtained using MAPLE. Equations (1.25)-
(1.28)represent the (0. 0). (0. 1), (1. 1), and (2. 2) components of G/ =k T/, respectively
(as indexed by T on the RHS of each equation). The (3, 3) equation is a multiple of the




578 J. Groah et al.

(2,2) equation, and all remaining components are identically zero. (Note that MAPLE
defines the curvature tensor to be minus one times the curvature tensor defined in (1.14).)

We are interested in solutions of (1.25)—(1.28) in the case when shock waves are present.
Since A and B have discontinuous derivatives when shock waves are present, it follows
that (1.28), being of second order, cannot hold classically, and thus Equation (1.28) must
be taken in the weak sense, that is, in the sense of the theory of distributions. To get the
weak formulation of (1.28), multiply through by A B? to clear away the coefficients of the
highest (second) order derivatives, then multiply through by a test function and integrate
the highest order derivatives once by parts. It follows that if the test function is in the class
C(;'] (that 1s, one continuous derivative that is Lipschitz continuous, the subscript zero
denoting compact support), and if the metric components A and B are in the class C%!,
and TV is in class L, then all terms in the integrand of the resulting integrated expression
are at most discontinuous, and so all derivatives make sense in the classical pointwise a.e.
sense.

In order to account for initial and boundary conditions in the weak formulation, it is
standard to take the test function ¢ to be non-zero at r = 0 or at the specified boundary. In
this case, when we integrate by parts to obtain the weak formulation, the boundary integrals
are non-vanishing, and their inclusion in the weak formulation represents the condition that
the boundary values are taken on in the weak sense. Thus, for example, if the boundary is
r=ro=0, wesay ¢ € C(l)'l (r = ro. 1 2 0) to indicate that ¢ can be non-zero initially and
at the boundary r = ry. thereby implicitly indicating that boundary integrals will appear in
the weak formulation based on such test functions.

We presently consider various equivalent weak formulations of Equations (1.25)—(1.28),
and we wish to include the equivalence of the weak formulation of boundary conditions in
the discussion. Thus, in order to keep things as simple as possible, we now restrict to the
case of weak solutions of (1.25)—(1.28) defined on the domain r > rg > 0, t > 0, and we
always assume that test functions ¢ lie in the space ¢ € CS‘I (t 2 0,r > rg) so that initial
and boundary values are accounted for in the weak formulation. (This is the simplest case
rigorously demonstrating the equivalence of several weak formulations of initial boundary
value problems. More general domains can be handled in a similar manner.)

Note that because (1.25)—(1.27) involve only first derivatives of A and B, and A, B €
%1 it follows that (1.25)—(1.27) can be taken in the strong sense, that is, derivatives can
be taken in the pointwise a.e. sense. The continuity of A and B imply also that the initial
and boundary values are taken on strongly in any C%! weak solution of (1.25)—(1.27). On
the other hand, Equation (1.28) involves second derivatives, and so this last equation is the
only one that requires a weak formulation. The weak formulation of (1.28) is thus obtained
on domain ¢t > 0, r > rg > 0, by multiplying through by a test function ¢ € Cé’l (r=
ro. t = 0) and integrating by parts. This yields the following weak formulation of (1.28):

o [Z[C|_Bo _Bé( A 2B\ AY
- TooaAp2 o\ T a2pr T 3 + 2
ro JO rAB ’ A’B AB rAB

A’ 2B’
r?AB? rA?B? rAB3

+A’¢<—




Solving the Einsiein equations by Lipschitz continuous metrics: Shock waves in general relativity 579

+-? o 2 2]y
FAB2 5 ? '
 B(r.0)¢((r.0 Ay Do (ro.t
_/ / </>7(' ) r+/ I )¢(7,() ) (5.4)
v FAOYB2(r, ) 0o roA(ro,1YB-{rg,1)

Our first proposition states that the weak formulation (5.4) of Equation (1.28) may be
replaced by the weak formulation of the conservation laws div 7 = 0.solongas A and B
arein C%""and T € 1.2

PROPOSITION 4. Assume that A, B € C"! (r >rg. t20). TV e L (r =rg, 1t 20)
and that A, B, and T solve (1.25)—(1 27) strongly. Then A, B, and T solve T'l’ =0 (the
[-component of DivT = 0) weakly if and only if A, B, and T satisfv (5.4).

PROOF. The proof strategy is to modify (5.4) and the weak form of conservation using
(1.25)-(1.27) as identities, and then observe that the two are identical at an intermediate

stage. To begin, substitute for B; and A’ in several places in (5.4) to obtain the equivalent
condition

0= il e 701 w9/ (B=1)
= KT +kT 0 + — | 9p——=—
o 0 ()I‘ I'“B”
N 9 (B -1 N B [ A, N 2B,
4 Y F \A2g2 T AB3
o I A’ 2B’
r2AB?  rA2BY2  ;AB3

i o 2 g
FAB> B !

(2%

o0
+ K / T (r. 0)(r, 0) dr
I

0

o0 B(ro, 1) — 1
+K/ w(l‘o,f)[T”(l‘o,f)—f’L—)——J dr
0

)‘632()‘0, t)
(e eyl e]
) 0

"(B — — B
+¢[B(B 2)+2(B 1) ﬁ( A, 2,)

r2 B3 r3RB2 A’B>  AB3
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[o @] o0
+k / T (r, 0)p(x,0)dr +« / o(ro, NT " (ro, 1) dr. (5.5)
r( 0

0

Now, the weak form of conservation of energy—-momentum is given by

o0 o0 . .
0___/ / {TO](p[+Tll(p/_(ﬂbT0]+ﬂllT1]
ro J0

+ My TO + 25, 7% + 1\ T + 25, T%) g} dr di
o0

o0
+/ TO](r,O)w(x.O)dr+_/ o(ro. DT (ro, 1) dr. (5.6)
o 0

Here, we have used the fact that 722 = sin? @733, T =0if i i =2or3, and I'};, =
/ J 33
sin? 9F2'2. Next, we calculate the connection coefficients F]fk using (1.10) to obtain,

F,._l A,+B, F,-_l A/+B’+4
07 2\A " B) h=a\Aa "B r)

A, A B;
1«0:__’ F()z——, 0______,
00 = 54 01 = 54 =354
/ (5.7
A B
e —o=ro Flz_’ l:_L7
22 33 0= 5p 01= 5p
B’ r rsin@
F] = —, F,,] = ——, Fl —_
n=5g 22 B 33 B

Substituting the above formulas for F}k into (5.6) and using (1.25)—(1.27) as identities to

eliminate some of the T in favor of expressions involving A, B, and r, we see that (5.6)
is equivalent to:

0o oo 1/A, 3B\ B

0= T()l +T” ’ f _(_I _I !
/,0/0{ v vre12\a T B )raBe

L(A 2B 4\ 1 (A B

—_— — —— P — — "____ —_—
2\ A B r/riRB2 A

A (B o)+l darar

2248\ B “B d

o0 o0
+f T (r, 0)p(r, 0) dr +/ @(ro, )T (ro, ) dr. (5.8)
ro 0

After some simplification, it is clear that (5.5) is equal to (5.8). This completes the proof
of Proposition 4. O
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We next show that the Einstein equations (1.25)-(1.27), together with DivT =0, are
overdetermined. Indeed, we show that for weak solutions with Lipschitz continuous met-
ric. either (1.25) or (1.26) may be dropped in the sense that the dropped equation will
reduce to an identity on any solution of the remaining equations, so long as the dropped
equation is satisfied by either the initial or boundary data, as appropriate. The following
proposition addresses the first case, namely. for weak solutions in which the metric is Lip-
«chitz continuous. the first Einstein equation (1.25) reduces to an identity on solutions of
(1.26), (1.27), so long as (1.25) is satisfied by the initial data.

THEOREM 15. Assume that A, B € COV and T e L solve (1.26), (1.27) strongly, and
solve DivT = 0 weakly. Then if A, B. and T satisfy (1.25)att =0, then A, B, and T also
solve (1.25) for all t > 0.

PROOE. We first give the proof for the case when A. B.and T are assumed to be classical
smooth solutions of (1.26). (1.27), and DivT = 0. This is followed by several lemmas
necessary for the extension of this to the weak formulation, which is given in the final
proposition. So to start, assume that A. B. and T are all smooth functions, and thus solve
Div T = 0 strongly. For the proof in this case, define

Hi =Gl —kTV. (5.9)

Because (1.26) and (1.27) hold, HO' = H'"' = 0. Since by assumption T'C = 0 and since

G"_”. = 0 for any metric tensor as a consequence of the Bianchi identities, it follows that

0=H" =K+ i 0" + rH" (5.10)
In particular, setting j = 0.
0= Hi:(,') — H.I',_O + Iﬂil;’(Hk() + n(zHik- (5] 1)

By hypothesis, Hi% =0 when i # 0. In addition, the connection coefficients 1“,(,)\ are zero
unless i or k equal O or 1. Therefore, (5.11) reduces to the linear ODE

0=HY + (I + M) H” (5.12)

at each fixed r. By hypothesis, HY% js initially zero, and since we assume that H% is a
smooth solution of (5.12), it follows that HY% must be zero for all 1 > 0. O

Next, assume only that A, B € COVand T e L so that (1.26), (1.27) hold strongly
(that is, in a pointwise a.e. sense), but that Div T = 0 is only known to hold weakly. In this
case, the argument above has a problem because when g € C%! the Einstein tensor G,
viewed as a second-order operator on the metric components A and B, can only be defined
weakly when A and B are only Lipschitz continuous. It follows that the Bianchi identities,
and hence the identity DivG =0 (which involves first order derivatives of the components
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of the curvature tensor), need no longer be valid even in a weak sense. Indeed, G can have
delta-function sources at an interface at which the metric is only Lipschitz continuous,
cf. [29]. However, the above argument involves only the Oth component of Div G = 0, and
the Oth component of Div G = 0 involves only derivatives of the components G'© and, as
observed in (1.25), (1.26), these components involve only the first derivatives of A and B.
Specifically, the weak formulation of G();ii =0 is given by

0:/ / {=6:G® + ¢(I,G* + riG™*)} drdr
ro 40
~/ ¢(r,0)GOO(r,O)dr——/ & (ro, NG '%(rg, 1) dt, (5.13)
ro 0

and since, by (1.25), (1.26), G'° involves only first order derivatives of A and B, it follows
that the integrand in (5.13) is a classical function defined pointwise a.e. when A, B € C%!.
But (5.13) is identically zero for all smooth A and B because Div G = 0 is an identity. Thus,
when A, B € C%!, we can take a sequence of smooth functions A,, B, that converge to
A and B in the limit ¢ — 0 (cf. Theorem 16 below), such that the derivatives converge
a.e. to the derivatives of A and B. It follows that we can take the limit ¢ — 0 (5.13) and
conclude that (5.13) continues to hold under this limit. Putting this together with the fact
that DivT = 0 is assumed to hold weakly, we conclude that
H(,)i — (G()l _ TOI) =0

W

in the weak sense, which means that H% is in L and satisfies the condition
o0 o0 .
0= / /0 {~oH® +¢(Fly+ Ig)HY) drar
ro
o0 o0
— / ¢ (r, 000G, 0)dr — / d(r,0) H®(rg, 1) dr-. (5.14)
4] ro

Therefore, to complete the proof of Theorem 15, we need only to show that if A, B, and T
solve (1.26), (1.27) classically, and Div T = 0 weakly, then a weak L> solution HY (i.e.,
that satisfies (5.14)) of (5.12) must be zero almost everywhere if it is zero initially. Thus it
suffices to prove the following proposition.

PROPOSITION 5. Assume that H, f € L]O(?C (R x R). Then every Llocf’c weak solution to the
initial value problem

Hi+ fH =0, H(x,0)= Hp(x), (5.15)
with initial data Ho = 0 is unique, and identically equal to zero a.e., for all t > 0.

PROOF. We use the following standard theorem [6]. O
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THEOREM 16. Let U be any open subset of R". Then u € Wll)'COO(U) if and only if u is
locally Lipschitz continuous in U, in which case the weak derivative of u agrees with the

classical pointwise a.e. derivative as a function in L (U).

COROLLARY 7. Let u and f be real valued functions, u, f :R — R, such that u, f €
L0, T], and u is a weak solution of the initial value problem

uy + fu=20, u(0y =0, (5.16)
on the interval [0, T. Then u(t) =0 forall t €0, T].

PROOF OF COROLLARY. Statement (5.16) says that the distributional derivative u, agrees
with the L function fu on the interval |0, T], and thus we know that u € WIL'COO(O, ).
Therefore, by Theorem 16, i is locally Lipschitz continuous on (0, T), and the weak deriv-
ative u, agrees with the pointwise a.e. derivative of i on (0, T). Thus it follows from (5.16)
that on any subinterval |a, b] of [0, T} on which u % 0, we must have

d
< linu) = “7’ = —f ae (5.17)

Moreover, since u is Lipschitz continuous, both « and In(u) are absolutely continuous on
[a, D], so we can integrate (5.17) to see that

w(t) = ula)ye o [EE (5.18)

for all 1 € [a, b]. But « is continuous, so (5.18) applies in the limit where a decreases to
the first value of 1 = 1 at which u(79) = 0. Thus (5.18) implies that u(7) = 0 throughout
[a, b]. and hence we must have u (1) =0 for all € [0, T']. and the corollary is proved. [

The proof of Proposition 5 now follows because it is easy to show that if H is an L
weak solution of (5.15), then H (x, -) is a weak solution of the scalar ODE H, + fH =0
for almost every x. (Just factor the test functions into products of the form ¢ (H)¢»(x).)

Using Proposition 5, we see that if Equation (1.25) holds on the initial data for a solution
of (1.26), (1.27), and DivT = 0, then Equation (1.25) will hold for all ¢. By a similar
argument, it follows that if (1.26) holds for the boundary data of a solution to (1.25),
(1.27),and DivT = 0, then (1.26) will hold for all  and r. We record this in the following
theorem:

THEOREM 17. Assume that A, B € C%' and T € L™ solve (1.25), (1.27) strongly, and
solve DWVT = O weakly, inr 2 ro. t 2 0. Then if A, B, and T sarisfy (1.26) at r = rq, then
A, B, and T also solve (1.25) for all r > rg.
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5.3. The spherically symmetric Einstein equations formulated as a system of hyperbolic
conservation laws with sources

Conservation of energy and momentum is expressed by the equations
0=DivT) =TY=TY 4 1, T% 4 riTik,

which, in the case of spherical symmetry, can be written as the system of two equations:

0=T0 + 79 + ik 4+ rorik, (5.19)
0=T¢ + 7! + ik 4 rh Tk, (5.20)

Substituting the expressions (5.7) for the connection coefficients (1.10) into (5.19) and
(5.20), gives the equivalent system

1/2A B
0= TOO TOl - ! ! TOO
0 A R

1 (34" B 4 B,
P e el I e 5.21
ts(H ) 5.21)

I ﬁ _}_3&)7“01

0=T.8]+T.|1'+§<

A B
1/A" 2B 4 A’ r
- o - _ T]] —TOO—2—T22. 522
+2(A+B+r> Y B (5-22)

Now if one could use equations to eliminate the derivative terms A A", B,, and B’
in (5.21) and (5.22) in favor of expressions involving the undifferentiated unknowns A,
B, and T, then system (5.21), (5.22) would take the form of a system of conservation
laws with source terms. Indeed, 7% and 79! serve as the conserved quantities, 7% and
T are the fluxes, and what is left, written as a function of the undifferentiated variables
(A, B, T 100 would play the role of a source term. (For example, in a fractional step
scheme designed to simulate the initial value problem, the variables A and B could be
“updated” to time 7; + Ar by the supplemental equations (1.25) and (1.27) or (] .26) and
(1.27) after the conservation law step is implemented using the known values of A and
B at time t;. The authors will carry this out in detail in a subsequent paper.) The system
then closes once one writes T'! as a function of (A, B, 7%, 701} There is a problem here,
however. Equations (1.25)—(1.27) can be used to eliminate the terms A,, By, and B,, but
(5.21) and (5.22) also contain terms involving A;, a quantity that is not given in the initial
data and is not directly evolved by Equations (1.25)-(1.27). The way to resolve this is to
incorporate the A, term into the conserved quantities. For general equations involving A,
this is not possible. A natural change of T variables that eliminates the A, terms from
(5.21),(5.22) is to write the equations in terms of the values that T takes in flat Minkowski
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space. That is, define Ty, in terms of T, by

T()() — lTOO. TOI | T()l Tll — _1_ A]/I]* (5.23)

~JAB M B

where the subscript denotes Minkowski. cf. (1.32)—(1.34). It then follows that Ty, is given
by

2
T,&Ozi(p—kpCJ) q—/)},

>
ct =

v
TA(BII =(p+ ,0('2) 5 5 (5.24)

- —v

o)
v

T, :{(/)—chz)(q +p}.

o]
< — p-

where v denotes the fluid speed as measured by an inertial observer fixed with respect
to the radial coordinate r, cf. (1.35)—(1.37). (We discuss (5.24) in more detail in the last
section.) Substituting (5.23) into (5.21), (5.22), the A, terms cancel out, and we obtain the
system

A I B
00 01 ! (00 1
O:{TM},O+{\/ETM }.1+5E( M+ Tw)
1 JA[A B 4
=+ =+ )T 5.25
+5 B<A+B+’_>M (5.25)
A
0l / 1
1 /A B, 01 B’ 4 11 A’ 00 22
— = 42—T — 4+ - |\T — T —4rT=" 3. 5.26
+2VB[\/ABM+ p Tyt Ty 520

The following proposition states that svstem (5.25). (5.26) is equivalent (in the weak sense)
to the original system DivT = 0.

PROPOSITION 6. If A and B are given Lipschitz continuous functions defined on the do-
mainr 2 ry. t 20, then Ty is a weak solution of (5.25) and (5.26) if and only if T is a
weak solution of DivT = 0 in this domain.

PROOF. For simplicity, and without loss of generality, take the weak formulation with
test functions compactly supported in » > rg. t > 0, so that the boundary integrals do not
appear in the weak formulations. (Managing the boundary integrals is straightforward.)




586 J. Groah et al.

The variables T' so]ve (5.25) weakly if

1 [A/A B 4
gy ey (A | A Y P
*3 B(A+B+r) ]¢}r
_ (T 00, 2o
- TMA(/)I TMA(pr
ro Y0

1B
+[§E'(AT,30+BTA1,,1)

1 (A B 4
+—2~A(X+E+;)T,&]}p}drd1ﬁ. (5.27)

Set ¥ = Ap, whereby Ag;, = ¢, — %w. Using this change of test function, (5.27) becomes
Rl A A
:/ / { __TOO,(//’_'_TOO_L_(//_TOII///_FTOI_W
ro v0 A A

1 B B 1/A" B 4
+[ ’<T°°+ T”>+—<—+—+—)T°‘]w}drdr
r

2B A 2\ A B
o0 poo 1/2A B
— _TOO _TOI / o Btk A TOO
/,.0/0 { i vEo\a T3
1/3A” B 4 01 B, 4
-+ =+ - |T —T drdt, 5.28
+ 2( a2 + B + r) + A Yy dr ( )

which is the weak formulation of (5.21). We deduce that Ty solves (5.25) for every Lip-
schitz continuous test function ¢ if and only if T solves (5.28) (the weak form of TO’ =0)
for all Lipschitz continuous test functions 1. That weak solutions of (5.26) are weak solu-
tions of TII’ 0 follows by a similar argument. O

It is now possible to use Equations (1.25)—(1.27) as identities to substitute for derivatives
of metric components A and B, thereby eliminating the corresponding derivatives of A
and B from the source terms of Equations (5.25), (5.26). Doing this, we obtain the system
of Equations (1.46), (1.47), which was our goal. However, depending on the choice of
equation to drop, either (1.25) or (1.26), it is not clear that if we use the dropped equation
to substitute for derivatives in (5.25), (5.26), that the resulting system of equations will
imply that Div T = 0 continues to hold, the assumption we based the substitution on in the
first place. The following theorem states that (1.46), (1.47) is equivalent to DivT =0 in
the weak sense:
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THEOREM 18. Assume that A. B are Lipschitz continuous functions, and that T € L™,
on the domainr = ro, t = 0. Assume also that (1.25) holds ar t =0, and that (1.26) holds
atr=ry. Then A. B, T are weak solutions of (1.25), (1.26), (1.27), and DivT =0 if and
only if A, B, Ty are weak solutions of either system (1.25), (1.27), (1.46), (1.47), or system
(1.26), (1.27), (1.46), (1.47).

PROOF. Without loss of generality, we consider the case when we drop equation (1.26),
and use (1.25).(1.27), and DivT = 0 to evolve the metric, and we ask whether we can take
the modified system (1.46) and (1.47) in place of DivT = 0. In this case, we must justify
the use of (1.26) in eliminating the B, terms in going from DivT = 0 to system (1.46)
and (1.47). That is, it remains only to show that Equations (1.25) and (1.27), together with
system (1.46) and (1.47). imply that (1.26) holds, assuming (1.26) holds at r = ry. (If so,
then by substitution, it then follows that Div 7 = 0 also holds.)

Note that we can almost reconstruct (5.2 1), the first component of Div T = 0, by reverse
substituting (1.25), (1.27) into (1.46). To see this. first note that we can add (1.25) and
(1.27) to obtain

A B
Vi rBic(Ty) + Ty') =0. (5.29)

Equation (5.29) is an identity that we may add to (1.46) to obtain

A 1
700 [ 2ol SABATO 4 7170l
0={Ty'}, { BM}l 5! ABi(Tyy + Ty ) Ty

| [A/A B 4
+3 E(X+§+’—_)T,8,'. (5.30)

Adding and subtracting

I B, 00 I
55 (T +T3f) (5.31)

to and from the RHS of (5.30), and using

B
HY' = __l; —~ VABKT}) (5.32)
p

(cf. (1.26) and (5.9)), we have

A | A A/ B’ 4
00 / 01 / 01
0 {TM}.()_"{ _:]‘M}l+_ _<_+_+:)TM

| B ]
EE'(T,S,O + Ty )+ (T + T} ) HO (5.33)

.—"
* 2
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Note that all but the last term on the RHS of (5.33) are equal to the first component of
Div T, and so

; 1
0 00 11y 1701
TS = —Er(TM + Ty )H"'.
Therefore, if A, B, and Ty are solutions to (1.25), (1.27), (5.33), and (5.22), it follows that

rB2T!

HO=G"Y —«T0 =« HO, (5.34)

because Gi:()i = 0 is an identity. But H% = 0 holds because we assume (1.25), and hence
(5.34) implies that

HY + fH =0

. 2211 .
where f =T + 25 — 281" ¢ 1% Since we assume that H°! = 0 on the boundar
. il 0l 2 y

r = ry, it follows from Corollary 7 that H%! = 0. O

It remains to identify conditions under which TA],II is a function of (TAQIO, T,B,') assuming
that T has the form of a stress tensor for a perfect fluid, (5.24). A calculation shows that,
in this case, the following simplifications occur:

T — Th = pc? — p, (5.35)
o]
Ty — (T = ppc?. (5.36)

Using (5.35) and (5.36) we see that only the first terms on the RHS of (1.46), (1.47) depend
on v, and the only term that is not linear in p and p is the third term on the RHS of (1.47).
We state and prove the following theorem:

THEOREM 19. Assume that 0 < p < pc?, 0 <dp/dp < c2. Then TA],,] is a function of TB,O
and TA(,),' so long as (p, v) lie in the domain D = {(p, v): 0 < p, |v| <c}.

PROOF. We may write (5.35) and (5.36) in the form

T — T = fi(p). (5.37)
TTy — (T9) = f(0). (5.38)

Since dfi/dp =¢> — p’ = ¢* — 02 > 0, it follows that the function f1 is one-to-one with
respectto p. Also, df2/dp = p’pc? + pc? > pe? > 0, so the function £, is also one-to-one
in p. Consequently, the function h = f5 - fl'1 is one-to-one, and thus

TRy — (TS =h(TL - T))). (5.39)
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Now introduce the linear and invertible change of variables x = T,\(flo — T,J,,l, y= T,S,‘,
I= Tﬁl,,', whereby (5.39) becomes

(x+2)z— y> =h(x). (5.40)

Equation (5.40) is quadratic in z, and so we may solve it directly, obtaining

—x 4 /X240 + hx)

> (5.41)

&

From (5.41), we conclude that for any (x, y) there are rwo values of z, though only one of
them will correspond to values of p and v in the domain D. That is, since

=Ty ~ Ty =pc—p=>0 (5.42)

and £ = TA'/,' > 0, it follows that there is at most one solution of (5.41) in the domain D,
namely

—x 4+ Vx2+ 42 + h(x))

3 (5.43)

<

We conclude that it (o, v) lies in the domain D, then for each value of T,B,O and TAQ,' there
exists precisely one value of Tﬁl,,'. O

A calculation shows that in the case p = o>p, ¢ = const. the formula for TA',,] in terms
of (T,{,’,O, T,&') is given by

l + 2K 0 4K . b )
11 4 00 02 4 00\ 2 012
Ty :_—2K+ Ty — (T/(wo) - (|+2K*)3(K*:(TM) +(TM) ) ’
(5.44)
where
o2c?
Ki=-+5 ——-. (5.45)
(c-—0°)-

5.4. Summary of the weak formulations

Our results concerning the weak formulation of the Einstein equations (1.25)—(1.28) as-
suming spherical symmetry given in Theorem 18 can be summarized as follows. As-
sume that A. B are Lipschitz continuous functions, and that 7 € L*°, on the domain
r > rg, t > 0. Then (1.25)—(1.28) are equivalent to two different systems which take the
form of a system of conservation laws with source terms. In the first case, we have shown
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that weak solutions of the system (1.25), (1.27), together with Equations (5.25), (5.26) (for
DivT = 0), will solve (1.25)-(1.28) weakly, so long as (1.26) holds at r = ry. This reduces
the Einstein equations with spherical symmetry to a system of equations of the general
form

ur+ f(u,A, B), =g(u, A, B,A",B;, B, x), (5.46)
Ay =h%Wu, A, B, x), (5.47)
B, =h'(u, A, B, x), (5.48)

where u = (TA?,O, TA(,’II) agree with the conserved quantities that appear in the conservation
law div Ty = 0 in flat Minkowski space. (Here “prime” denotes 3/3x since we are using
x in place of r.) It is then valid to use Equations (1.25)—(1.27) to eliminate all derivatives
of A and B from the RHS of system (5.46), by which we obtain the system (1.25), (1.27),
(1.46), (1.47), a system that closes to make a nonlinear system of conservation laws with
source terms, taking the general form

U, +f(u, As B)A :'g(uv A’Bax)’
AX ::ho(u’ A’ B’x)a (549)
BX ZhI(M,A, Bax)a

which reproduces (1.48), (1.49) of Section 1. Weak solutions of (5.49) will satisfy (1.26)
so long as (1.26) is satisfied on the boundary r = rg.

In the second case, we have shown that weak solutions of the system (1.26), (1.27),
together with Equations (5.25), (5.26) (for Div T = 0), will solve (1.25)—(1.28) weakly, so
long as (1.25) holds at = 0. This reduces the Einstein equations with spherical symmetry
to an alternative system of equations of the general form

ur+ f(u, A, B)y =g(u,A B, A", B, B', x), (5.50)
Ar=h"%u, A, B, x), (5.51)
B, =hlu, A, B, x). (5.52)

It is then valid to use Equations (1.25)—(1.27) to eliminate all derivatives of A and B from
the RHS of system (5.50), by which we obtain the system (1.26), (1.27), (1.46), (1.47),
a system that closes to make a nonlinear system of conservation laws with source terms,
taking the general form

ur+ f(u, A, B)y =g(u, A, B, x), (5.53)
A, =h%u, A, B, x), (5.54)
B, =hl(u, A, B, x). (5.55)

Weak solutions of (5.53) will satisfy (1.25) so long as (1.25) is satisfied at t = 0.
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5.5. Wuve speeds

In this section we conclude by calculating the wave speeds associated with system (1.46),
(1.47).

The easiest way to calculate the wave speeds for the fluid is from the Rankine-Hugoniot
jump conditions in the limit as the shock strength tends to zero. To start, note that the
u)mponents of the 4- velocity w for a spherically symmetric fluid (1 18) are w = dr/ds,

=dr/ds, w? = =w3 =0. Since —1 = g W, W), the components w" and w' are not inde-
pendent and, in particular, — 1 = —(w")?A 4 (w')2 B. We define fluid speed v as the speed
measured by an observer fixed in (7, r) coordinates. That is, the speed is the change in
distance per change in time as measured in an orthonormal frame with timelike vector par-
allel to 9, and spacelike vector parallel to d,. It follows that the speed is given by v = x /a,

where
W=a o + x % . (5.56)

V=g JEn

Taking the inner product of w with 9, and then with 9,. we find that a = w'/=goo and
x=w! 211, and hence

|
w B
= —. 5.57
YT L0V 4 ( )
whereby,
2 ]

(w’) (5.58)
Using (5.57) and (5.58) in (1.18), it follows that the components of the energy—momentum
tensor take the following simplified form, which is valid globally in the (¢, r)-coordinate
system:

B A(c2 =02y

] (‘2
p + pc -5 — P>
—v-
1

_—_\/XE(])'*}‘,OC )(—_?
| 2

o] v
E[([?+p€ ):2*—;:74']7}.

TH:

Note that these components are equal to the components of the stress tensor in flat
Minkowski space times factors involving A and B that account for the fact that the space-
time is not flat. Using (1.32)—(1.34) we can write the Rankine—Hugoniot jump conditions
in the form

s[Tid] = =17 |- (5.59)
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A
s[Ty] = \/; [Ty']- (5.60)

From (5.59), (5.60), we deduce that wave speeds for the system (1.46), (1.47) are \/A/B
times the wave speeds in the Minkowski metric case, and this holds globally throughout
the (¢, r)-coordinate system. (See [28]. ) Eliminating s from (5.59) and (5.60), yields

(79 = [T21[Ta ] (5.61)

Now take the left fluid state on a shock curve to be (pr, v.), and the right fluid state to
be (o, v). For a spherically symmetric perfect fluid, (5.61) defines the right velocity v as
a function of the right density p. Then to obtain the fluid wave speeds, just substitute this
function into (5.59), solve for s, and take the limit as p — pj.. Following this procedure,
(5.61) simplifies to

(v — v/_)2 _ [pllp]

= . 5.62
(c2 - v2)(c? — vi) (p+ pc?)(pL + pLc?) ©-62)

Note that Equation (5.62) can be written as a quadratic in v, and hence there are two
solutions. The ‘+’ solutions will yield the 2-shocks, and the ‘—’ the 1-shock. Dividing
both sides of (5.62) by (p — ,oL):2 and taking the limit as p — pr, we see that

dp _ (p+c?p)? 2
dp ~ (F—2)? (dp) (569

Solving (5.60) for s we obtain,

+ pc? +
S_[[(p PC) T2 p], (5.64)
B [(p +,0C2)(2 1,2]

and taking the limit as p — p; , we obtain

1242 3.
AP + ) g + (p+ peA) RHC Y 4 )

V' (c2—v2)42cv20’

B +c2) 2o T (Pt pc?) G

(AP + ) 2 + (P + pc?) % + ]
B (p'+ D) 7+<p+pc2)“’“ )]

02—v~ (c2—v2)2

(Here the plus-minus on RHS is determined by the two possible signs of v/ = dv/dp as
allowed by (5.63).) After substituting for dv/dp using (5.63), and simplifying, we obtain

\/*[(p )y £ 2 )
:t o c(c +v )\/-

2
[(p +C ) (C“—Uz)
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i I el ol 2l
JAL(p 4+ v £2¢ vy p' + p'em —v?))
) , 5 5 5
B [(p'+c)cvEcele-+v-)/p']

[A [v° + 21)\/?-}- Pl
= C —

B lup' £+ (2 + 02/ p' + Cvl

[A v+ /p' |
=, — .
Blot /pller+v/p|

This gives,

PROPOSITION 7. The wave speeds of the general relativistic Euler equations (5.49) are

/A Y+
)\:t = EL (5(75)

vy Pl £l

The following proposition demonstrates that the system (1.46), (1.47) is strictly hyperbolic
whenever the particles are moving at less than the speed of light:

PROPOSITION 8. Assume that
[v| < ¢,

so that the particle trajectory has a timelike tangent vector. Then wave speeds for the
general relativistic Euler equations (1.46). (1.47) satisfv »_ < Ay.

PROOF. To determine where the wave speeds are equal. set A_ equal to A4 and solve for
v 10 obtain v* = ¢, Next. substitute v =0 into A_ and A4 10 verify that A_ < A when
v? < *A/B. Proposition 8 follows directly. U

As a final comment, we note that Proposition 8 is true because it is true in a locally iner-
tial coordinate system centered at any point P in space~time. Indeed. in such a coordinate
system. the connection coefficients vanish at P. and the metric components match those
of the Minkowski metric to first order in a neighborhood of P. As a result, the general
relativistic Euler equations reduce to the classical relativistic Euler equations at P. Since it
is known in Special Relativity that the Euler equations are strictly hyperbolic for timelike
particles, [28], it follows that the same must be true in General Relativity. Other pointwisc
properties. such as genuine nonlinearity and the Lax entropy inequalities, [27.15]. can be
verified for the spherically symmetric general relativistic equations in a similar manner.

Because A and B enter as undifferentiated source terms. it follows from (1.46), (1.47)
that for spherically symmetric flow. the only wave speeds in the problem will be the char-
acteristic speeds for the fluid. Loosely speaking. the gravitational field is “‘dragged along™
passively by the fluid when spherical symmetry is imposed. From this we conclude that
there is no lightlike propagation (that is. no gravity waves) in spherical symmetry, even
when there is a matter present. For the empty space equations, this is the conclusion of
Birkoff’s theorem. [42].
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