
Contents

1 Introduction 1
1.1 The Proof Strategy . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 A Locally Inertial Glimm Scheme . . . . . . . . . . . . . . . . 9
1.3 The Smoothness Class of the Metric . . . . . . . . . . . . . . . 9

2 Preliminaries 11

3 The Fractional Step Scheme. 17

4 The Riemann Problem Step 25

5 The ODE Step 34

6 Estimates for the ODE step 40

7 Analysis of the Approximate Solutions 46

8 The Elimination of Assumptions 60

9 Convergence 73

i



Abstract

We demonstrate the consistency of the Einstein equations at the level
of shock-waves by proving the existence of shock wave solutions of the
spherically symmetric Einstein equations for a perfect fluid, start-
ing from initial density and velocity profiles that are only locally
of bounded total variation. For these solutions, the components of
the gravitational metric tensor are only Lipschitz continuous at shock
waves, and so it follows that these solutions satisfy the Einstein equa-
tions, as well as the relativistic compressible Euler equations, only in
the weak sense of the theory of distributions. The analysis introduces
a locally inertial Glimm scheme that exploits the locally flat charac-
ter of spacetime, and relies on special properties of the relativistic
compressible Euler equations when p = σ2ρ, σ ≡ const.

AMS Subject Classification Numbers: 35L65,35L67,83C05
Key Words and Phrases: Shock Waves, Glimm Scheme, General
Relativity
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SHOCK-WAVE SOLUTIONS OF THE EINSTEIN EQUATIONS
WITH PERFECT FLUID SOURCES:

EXISTENCE and CONSISTENCY

by a

LOCALLY INERTIAL GLIMM SCHEME

Jeff Groah1 Blake Temple2

1 Introduction

In General Relativity, a time dependent, spherically symmetric gravitational
metric can, (under generic conditions), be transformed over to standard
Schwarzschild coordinates x = (x0, x1, x2, x3) ≡ (t, r, θ, φ), where the met-
ric takes the canonical form, [30],

ds2 = −Adt2 +Bdr2 + r2
(
dθ2 + sin2 θdφ2

)
, (1.1)

where the metric components A and B are assumed to be functions of (t, r),
A = A(r, t), B = B(r, t). In this paper we establish the consistency of the
Einstein equations at the level of shock waves by proving the existence of
shock-wave solutions of the Einstein-Euler equations for gravitational metrics
of form (1.1), for general initial density and velocity profiles that are only
locally functions of bounded total variation. The solutions are defined outside
a ball of fixed total mass4 , existence is proved up to some positive time
T > 05, and the total mass at r → ∞ is shown to be constant throughout
the time interval [0, T ). To keep the analysis as simple as possible, we assume
the equation of state p = σ2ρ, p = pressure, ρ = density, where σ, the sound
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4This removes the possibility of waves perfectly focused on the origin, that can amplify
to infinity.

5One can only expect a finite time existence result because, in standard Schwarzschild
coordinates, solutions blow up at black hole singularities, i.e., B = 1

1− 2M
r

→∞ at a black
hole, and black holes can form in finite time
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2 JEFF GROAH AND BLAKE TEMPLE

speed, is assumed to be constant6. For these solutions, the fluid variables ρ,
p and velocity w, are in general discontinuous, and the metric components
A and B are only Lipschitz continuous functions, at the shock waves. Since
the Einstein equations involve second derivatives of A and B, (c.f. (1.5)
below), it follows that these solutions satisfy the Einstein equations only in
the weak sense of the theory of distributions. Thus our theorem establishes
the consistency of the initial value problem for the Einstein equations at the
weaker level of shock-waves.

We now discuss the main theorem in detail. In standard Schwarzschild
coordinates, the Einstein equations of General Relativity reduce to the fol-
lowing system of four partial differential equations, (see (3.20)-(3.23) of [10]),

A

r2B

{
r
B′

B
+B − 1

}
= κA2T 00 (1.2)

−Bt

rB
= κABT 01 (1.3)

1

r2

{
r
A′

A
− (B − 1)

}
= κB2T 11 (1.4)

− 1

rAB2
{Btt − A′′ + Φ} =

2κr

B
T 22, (1.5)

where the quantity Φ in the last equation is given by,

Φ = −BAtBt

2AB
− B

2

(
Bt

B

)2

− A′

r
+
AB′

rB

+
A

2

(
A′

A

)2

+
A

2

A′

A

B′

B
.

Here “prime” denotes ∂/∂r, “dot” denotes ∂/∂t, κ = 8πG
c4

is the coupling
consant, G is Newton’s gravitational constant, c is the speed of light, T ij,
i, j = 0, ..., 3 are the components of the stress energy tensor, and A ≡ A(r, t),
B ≡ B(r, t) denote the components of the gravitational metric tensor (1.1).
The mass function M(r, t) is defined through the identity

6This simplifying assumption, as well as insuring that wave speeds are bounded by the
speed of light for arbitrarily strong shock waves, also prevents the formation of vacuum
states. Moreover, the analysis exploits the existence of a Nishida functional, that is non-
increasing on weak solutions of the compressible Euler equations in flat spacetime, and
only exists when p = σ2ρ, [20]. The existence of the Nishida functional in the relativistic
regime was discovered by Smoller and Temple in [24].
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B =
(

1− 2M

r

)−1

, (1.6)

and M = M ≡ M(r, t) is interpreted as the mass inside radius r at time t.
In terms of the variable M, equations (1.2) and (1.3) are equivalent to

M ′ = 1
2
κr2AT 00, (1.7)

and

Ṁ = −1
2
κr2AT 01, (1.8)

respectively. In the case when the stress tensor T is taken to be the stress
tensor for a perfect fluid,

T ij = (ρc2 + p)wiwj + pgij, i, j = 0, ..., 3, (1.9)

system (1.2)-(1.5) gives the spherically symmetric version of the Einstein-
Euler equations,

Gij = κT ij, T ij = (ρc2 + p)wiwj + pgij, i, j = 0, ..., 3, (1.10)

where G is the Einstein curvature tensor, ρc2 is the energy density, p is the
pressure, and w is the four velocity of the fluid. That is, system (1.2)-(1.5) is
obtained from (1.10) by substituting for Gij the components of the Einstein
curvature tensor associated with the metric ansatz (1.1). System (1.10) de-
scribes the coupling of a compressible fluid to the gravitational metric tensor
according Einstein’s theory of general relativity.

The components T ij satisfy

T 00 =
1

A
T 00
M , (1.11)

T 01 =
1√
AB

T 01
M , (1.12)

T 11 =
1

B
T 11
M , (1.13)

where T ijM denote the components of T in flat Minkowski spacetime. Assum-
ing the equation of state

p = σ2ρ, 0 < σ < c, (1.14)
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σ ≡ constant, and assuming that w is radial, the components of TM can be
written in the form

T 00
M =

c4 + σ2v2

c2 − v2
ρ, (1.15)

T 01
M =

c2 + σ2

c2 − v2
cvρ, (1.16)

T 11
M =

v2 + σ2

c2 − v2
ρc2, (1.17)

c.f., [24, 10]. Here v, taken in place of w, denotes the fluid velocity as
measured by an observer fixed with respect to the radial coordinate r. It
follows from (1.7) together with (1.15)-(1.17) that, if r ≥ r0 > 0, then

M(r, t) = M(r0, t) +
κ

2

∫ r

r0
T 00
M (r, t)r2 dr; (1.18)

it follows from (1.10) together with (1.15)-(1.17) that the scalar curvature R
is proportional to the density,

R = (c2 − 3σ2)ρ; (1.19)

and it follows directly form (1.15)-(1.17) that

|T 01
M | < T 00

M , (1.20)
σ2

c2+σ2T
00
M < T 11

M < T 00
M . (1.21)

Equations (1.1)-(1.21) define the simplest possible setting for shock wave
propagation in the Einstein equations.

For our theorem, assume the initial boundary conditions

ρ(r, 0) = ρ0(r), v(r, 0) = v0(r), for r > r0,

(1.22)

M(r0, t) = Mr0 , v(r0, t) = 0, for t ≥ 0,

where r0 and Mr0 are positive constants, and assume the no black hole and
finite total mass conditions,

2M(r, t)

r
< 1, lim

r→∞
M(r, t) = M∞ <∞, (1.23)

hold at t = 0. For convenience, assume further that
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lim
r→∞

r2T 00
M (r, t) = 0, (1.24)

holds at t = 0, c.f., (1.18), (1.23). The main result of this paper can be stated
as follows:

Theorem 1 Assume that the initial boundary data satisfy (1.22)-(1.24), and
assume that there exist positive constants L, V and v̄ such that the initial
velocity and density profiles v0(r) and ρ0(r) satisfy

TV[r,r+L] ln ρ0(·) < V, TV[r,r+L] ln

(
c+ v0(·)
c− v0(·)

)
< V, |v0(r)| < v̄ < c,

(1.25)
for all r0 ≤ r < ∞, where TV[a,b]f(·) denotes the total variation of the
function f over the interval [a, b]. Then a bounded weak (shock wave) solution
of (1.2)-(1.5), satisfying (1.22) and (1.23), exists up to some positive time
T > 0. Moreover, the metric functions A and B are Lipschitz continuous
functions of (r, t), and (1.25) continues to hold for t < T with adjusted
values for V and v̄ that are determined from the analysis.

Note that the theorem allows for arbitrary numbers of interacting shock
waves, of arbitrary strength. Note that by (1.2), (1.4), the metric components
A and B will be no smoother than Lipschitz continuous when shocks are
present, and thus since (1.5) is second order in the metric, it follows that
(1.5) is only satisfied in the weak sense of the theory of distributions. Note
finally that limr→∞M(r, t) = M∞ is a non-local condition.

1.1 The Proof Strategy

In previous work [10], the authors show that when the metric components A
and B are Lipschitz continuous, and T is bounded in L∞, (when viewed as
functions of the coordinate variables (t, r, θ, φ)), system (1.2)-(1.5) is weakly
equivalent to the following system of equations obtained by replacing (1.3)
and (1.5) with the 0- and 1-components of (covariant) DivT = 0,

{
T 00
M

}
,0

+


√
A

B
T 01
M


,1

= −2

x

√
A

B
T 01
M , (1.26)

{
T 01
M

}
,0

+


√
A

B
T 11
M


,1

= −1

2

√
A

B

{
4

x
T 11
M +

(B − 1)

x
(T 00

M − T 11
M ) (1.27)
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+2κxB(T 00
M T

11
M − (T 01

M )2)− 4xT 22
}
,

B′

B
= −(B − 1)

x
+ κxBT 00

M , (1.28)

A′

A
=

(B − 1)

x
+ κxBT 11

M . (1.29)

This is the system of equations that we work with here. (Cf. (4.67), (4.68)
together with (3.20), (3.22) of [10].) Here, “, i” denotes ∂/∂xi, and TM is
defined in (1.15)-(1.17).

System (1.26),(1.27),(1.28),(1.29) forms a system of conservation laws
with source terms which we write in the compact form, (c.f. [10]),

ut + f(A, u)x = g(A, u, x), (1.30)

A′ = h(A, u, x), (1.31)

where

u = (T 00
M , T

01
M ) ≡ (u0, u1), (1.32)

A = (A,B), (1.33)

f(A, u) =

√
A

B

(
T 01
M , T

11
M

)
, (1.34)

and

g(A, u, x) =
(
g0(A, u, x), g1(A, u, x)

)
, (1.35)

h(A, u, x) =
(
h0(A, u, x), h1(A, u, x)

)
, (1.36)

where

g0(A, u, x) = −2

x

√
A

B
T 01
M , (1.37)

g1(A, u, x) = −1

2

√
A

B

{
4

x
T 11
M +

(B − 1)

x
(T 00

M − T 11
M ) (1.38)

+2κxB(T 00
M T

11
M − (T 01

M )2)− 4xT 22
}
,
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and

h0(A, u, x) =
(B − 1)A

x
+ κxABT 11

M , (1.39)

h1(A, u, x) = −(B − 1)B

x
+ κxB2T 00

M . (1.40)

The vector h(A, u, x) is just obtained by solving (1.2) and (1.4) for A′ and
B′. Note that we have set x ≡ x1 ≡ r, and we use x in place of r in the
analysis to follow since this is standard notation in the literature on hyper-
bolic conservation laws. Note also that we write t when we really mean ct,
in the sense that t must be replaced by ct whenever we put dimensions of
time, i.e., factors of c, into our formulas. We interpret this as taking c = 1
when convenient.

A new twist in formulation (1.30), (1.31) is that the conserved quantities
are taken to be the the energy and momentum densities u = (u0, u1) =
(T 00

M , T
01
M ) of the relativistic compressible Euler equations in flat Minkowski

spacetime–quantities that, unlike the entries of T, are independent of the
metric. Note that, (remarkably), all time derivatives of metric components
cancel out from the equations when this change of variables is made, c.f.
[10]. We take advantage of this formulation in the numerical method that
we introduce here for the study of the initial value problem.

For the proof of Theorem 1, we introduce a fractional step Glimm scheme
that employs a Riemann problem step7 to simulates the source free conser-
vation law ut + f(A, u)x = 0, (A ≡ Const), followed by an ODE step that
simulates the effect of the sources present in both f and g, c.f. [16]. Our
idea for the numerical scheme is to stagger discontinuities in the metric with
discontinuities in the fluid variables so that the conservation law step, as
well as the ODE step of the method, are both generated in grid rectangles
on which the metric components A = (A,B), (as well as x), are constant.
At the end of each timestep, we solve A′ = h(A, u, x) and re-discretize, to
update the metric sources. Part of our proof involves showing that the ODE
step ut = g(A, u, x)−∇Af ·A′, with h substituted for A′, accounts for both
the source term g, as well as the effective sources that are due to the discon-
tinuities in the metric components at the boundaries of the grid rectangles.

By our formulation (1.30), (1.31), only the flux f in the conservation law
step, depends on A. From this we conclude that the only effect of the metric

7The Riemann problem is the initial value problem when the initial data is a pair of
constant states centered by a jump discontinuity. For a pure conservation law of the form
ut + f(u)x = 0, the solution, which typically only exists for constant states in restricted
regions of u-space, consists of elementary waves, c.f. [14, 23].



8 JEFF GROAH AND BLAKE TEMPLE

on the Riemann problem step of the method is to change the wave speeds,
but not the states of the waves that solve the Riemann problem. Thus, on
the Riemann problem step, when we assume p = σ2ρ, we can apply the
estimates obtained in [25], which were originally derived for flat Minkowski
spacetime A = (1, 1). Applying these results, it follows that the Riemann
problem is globally solvable in each grid cell, and the total variation in ln ρ,
(the Nishida functional), is non-increasing in time on the Riemann problem
step of our fractional step scheme, [25]. Thus we need only estimate the
increase in total variation of ln ρ for the ODE step of the method, in order to
obtain a local total variation bound, and hence compactness of the numerical
approximations up to some time T > 0.

One nice feature of our method is that the ODE that accomplishes the
ODE step of the method, turns out to have surprisingly nice properties.
Indeed, a phase portrait analysis shows that ρ > 0, |v| < c is an invariant
region for solution trajectories. (Since x and A are taken to be constant on
the ODE step, the ODE’s form an autonomous system at each grid cell.)
We also show that even though the ODE’s are quadratic in ρ, solutions of
the ODE’s do not blow up, but in fact remain bounded for all time. It
follows that the fractional step scheme is defined and bounded so long as
the Courant-Freidrichs-Levy (CFL) condition is maintained, [23]. We show
that the CFL bound depends only on the supnorm of the metric component
‖B‖∞, together with the supnorm ‖S‖∞, where S ≡ S(x, t) = xρ(x, t). We
go on to prove that all norms in the problem are bounded by a function that
depends only on ‖B‖∞ ‖S‖∞, and ‖TVL ln ρ(·, t)‖∞, where the latter denotes
the sup of the total variation over intervals of L. By this we show that the
solution can be extended up until the first time at which one of these three
norms tends to infinity. (Our analysis rules out the possibility that v → c
before one of these norms blows up.) The condition B →∞ corresponds to
the formation of a black hole, and ρ→∞ corresponds to the formation of a
naked singularity, (because the scalar curvature satisfies R = {c2−3σ2}ρ). It
is known that black holes can form in solutions of the Einstein equations, and
it is an open problem whether or not naked singularities can form in solutions
of the Einstein-Euler equations, or whether we can have ‖S‖∞ → ∞, or
‖TVL ln ρ(·, t)‖∞ →∞, in some other way.

The main technical problem is to prove that the total mass M∞ =
κ
2

∫∞
r0
ρr2 dr is bounded. The problem is that, in our estimates, the growth of

ρ depends on M and the growth of M depends on ρ, and M is defined by a
non-local integral. Thus, an error estimate of order ∆x for ∆ρ after one time
step, is not sufficient to bound the total mass M∞ after one time step. 8

8The constancy of the total mass reflects the fact that our weak formulation rules our
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As a final comment, we note that the total variation bound for system
(1.2)-(1.5) is the starting point for the analysis of uniqueness and continous
dependence of solutions on the initial data first worked out for homogeneous
systems of conservation laws by A. Bressan. This theory, appropriately mod-
ified for the source and boundary terms, should also apply to system (1.2)-
(1.5). (See [2, 4] and references therein).

1.2 A Locally Inertial Glimm Scheme

We can view this fractional step method as a locally inertial Glimm scheme
in the sense that it exploits the locally flat character of spacetime. That
is, the Riemann Problem step solves the equations ut + f(A, u)x = 0 inside
grid rectangles Rij. But each grid rectangle defines an “inertial reference
frame” because A ≡ Const. implies the metric is flat in Rij. The boundaries
between these local inertial reference frames are the discontinuities that ap-
pear along the top, bottom and both sides of the grid rectangles. The term
−∇Af ·A′ on the RHS of the ODE step ut = g(A, u, x)−∇Af ·A′, accounts
for the discontinuities in A along the sides of the grid rectangles Rij, and
the term g in the ODE step, together with the imposition of the constraint
A′ = h(A, u, x) at the end of each timestep, account for the discontinuities in
A at the top and bottom of each Rij. It follows that once the convergence of
an approximate solution is established, one can just as well replace the true
approximate solution by the solution of the Riemann problem in each grid
rectangle Rij–the two differ by only order ∆x. The resulting appoximation
scheme converges to a weak solution of the Einstein equations, and has the
property that it solves the compressible Euler equations exactly in local in-
ertial coordinate frames, (grid rectangles), and the transformations between
neighboring coordinate frames are accounted for by discontinuities at the
coordinate boundaries. In this sense, the fractional step Glimm method is
a locally inertial numerical method. It was our search for a locally inertial
method that led us to these results, and the success here points to a strategy
for obtaining convergent numerical methods in other coordinate systems, c.f.
[11].

1.3 The Smoothness Class of the Metric

The RHS of the Einstein equations

delta function sources of mass at the shock waves. Note that at points of interaction of
shock waves, the Gaussian normal coordinates break down, and so at such points, it is not
so easy to analyze the delta function sources from the viewpoint of shock-matching, c.f.
[25]
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Gij = κT ij, (1.41)

involve the fluid variables ρ, p and w, thus it follows that when shock waves
are present, T is discontinuous, c.f. (1.10). Since the Einstein curvature
tensor G on the LHS of (1.41) involves second derivative of the metric gij,
one expects that, in general, the metric components gij(x) should be at least
C1,1 functions of the coordinates, (that is, in the smoothness class of continu-
ous functions with Lipschitz continuous first order derivatives), in order that
the LHS of (1.41) be free of delta function sources, c.f. [13, 25]. However,
the metric components A and B in the solutions of (1.2)-(1.5) constructed
here, are only Lipschitz continuous. We know that these solutions are in
fact “free of delta function sources” as a consequence of the fact that they
are genuine weak solutions of (1.41). It remains an open problem whether
or not there exist coordinate transformations that smooth the metric com-
ponents of these solutions from the smoothness class C0,1 up to the class
C1,1. In such coordinates, (1.10) would hold in the pointwise sense at shock
waves, and hence, such a transformation would map weak solutions of the
Einstein equations to strong solutions. It was pointed out in [10], (see also
[25]), that the transformation that takes an arbitrary spherically symmetric
metric over to a metric of form (1.1), necessarily involves derivatives of the
metric components, and so the existence of such C1,1 coordinates would be
consistent with the fact that the A and B that solve (1.2)-(1.5) are only
Lipschitz continuous at shock waves. Moreover, in [25, 13] it was shown that
for a general smooth shock surface in four dimensional spacetime, such a
coordinate transformation always exists, and can be taken to be the Gaus-
sian normal coordinates at the shock surface. But the solutions constructed
here can contain arbitrary numbers of interacting shock-waves, of arbitrary
strength–and the Gaussian normal coordinate systems break down at points
where shock waves interact. With this in mind, we pose the following open
question: Given a weak solution of the Einstein equations for which the met-
ric components are only C0,1 functions of the coordinate variables, does there
always exist a coordinate transformation that improves the regularity of the
metric components to C1,1 when the components are viewed as functions of
the transformed coordinate variables? In particular, we ask if this statement
is true for the C0,1 solutions that we have constructed here?

We believe that this is an interesting question regarding the regularity of
solutions of the Einstein equations. Indeed, the Einstein equations are in-
herently hyperbolic in character; that is, there is finite speed of propagation
because all wave speeds are bounded by the speed of light. It follows that,
unlike Navier Stokes type parabolic regularizations of the classical compress-
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ible Euler equations, incorporating the effects of viscosity and dissipation
into Einstein’s theory of gravity, cannot alter the fundamental hyperbolic
character of the Einstein equations themselves. Thus, even when dissipa-
tive effects are accounted for, it is not clear apriori that the corresponding
solutions of the Einstein equations will in general be more regular than the
solutions that we have constructed here. We also note that the singularity
theorems in [12] presume that metrics are in the smoothness class C1,1, one
degree smoother than the solutions we have constructed, c.f. [12], page 284.

In summary, if a transformation exists that impoves the regularity of
solutions of the Einstein equations from the class C0,1 up to the class C1,1,
then it defines a mapping that takes weak solutions of the Einstein equations
to strong solutions. It then follows that in general relativity, the theory of
distributions and the Rankine Hugoniot jump conditions for shock waves
need not be imposed on the compressible Euler equations as extra conditions
on solutions, but rather must follow as a logical consequence of the strong
formulation of the Einstein equations by themselves. If such a transformation
does not always exist, then solutions of the Einstein equations are one degree
less regular than previously assumed.

2 Preliminaries

The starting point of our analysis is the following theorem, which is a restate-
ment of Theorem 2, [10]. This theorem implies the equivalence of system
(1.30),(1.31) with the Einstein equations (1.2)-(1.5) for weak, (shock wave),
solutions, so long as (1.3) is treated as a constraint that holds so long as it
holds at the boundary x = r0. (We use the variable x in place of r in order
to conform with standard notation, c.f. [23]).

Theorem 2 Let u(x, t),A(x, t) be weak solutions of (1.30),(1.31) in the do-
main

D ≡ {(x, t) : r0 ≤ x <∞, 0 ≤ t < T} , (2.1)

for some r0 > 0, T > 0. Assume that u is in L∞loc(D), and that A is lo-
cally Lipschitz continuous in D, by which we mean that for any open ball B
centered at a point in D, there is a constant C > 0 such that

|A(x2, t2)−A(x1, t1)| ≤ C{|x2 − x1|+ |t2 − t1|}. (2.2)

Then u and A satisty all four Einstein equations (1.2)- (1.5) throughout D
if and only if the equation (1.3),



12 JEFF GROAH AND BLAKE TEMPLE

− Ḃ

xB
= κABT 01,

holds at the boundary x = r0. In this case, it follows that the equivalent
forms (1.7), (1.8) of (1.2),(1.3), respectively, also hold in the strong sense
throughout D.

Note that for our problem, the constraint (1.8), and therefore (1.3), is implied
by the boundary conditions

M(r0, t) = Mr0 , (2.3)

v(r0, t) = 0, (2.4)

alone, because, using (1.16), equation (1.8) translates into

Ṁ = −κ
2

√
A

B

c2 + σ2

c2 − v2
cvρx2,

which, in light of (2.3), (2.4), is an identity at the boundary x = r0.
It follows from Theorem 2 that in order to establish Theorem 1, it suffices

only to prove the corresponding existence theorem for system (1.30)-(1.31)
in domain D. The equation (1.3) will then follow as an identity on weak
solutions because it is met at the boundary. It follows that if we construct
weak solutions for which v is uniformly bounded and for which ρ decreases
fast enough, then we can apply (1.3) as x→∞ to conclude that

lim
x→∞

Ṁ(x, t) = 0. (2.5)

This is our strategy for proving that the total mass is finite.
Before stating the main theorem precisely, a few preliminary comments

regarding system (1.30)-(1.31) are in order. First note that system (1.30)-
(1.31) closes once we express T 11

M and T 22 on the RHS of (1.34), (1.35) and
(1.36), as a function of the conserved quantities u = (u0, u1) ≡ (T 00

M , T
01
M ).

From (1.10) it follows that

T 22 =
p

x2
=
σ2ρ

x2
, (2.6)

and this can be expressed in terms of u via the mapping (2.21) discussed
below. To write T 11

M as a function of u, use the identities, (c.f. (4.69),(4,70)
of [10]),

T 00
M − T 11

M = ρc2 − p ≡ f1(ρ), (2.7)

T 00
M T

11
M − (T 01

M )2 = pρc2 ≡ f2(ρ). (2.8)
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By (2.7),

ρ = f−1
1 (T 00

M − T 11
M ), (2.9)

and using this in (2.8), one can in general solve (2.8) for T 11
M . In the case

p = σ2ρ, a calculation gives

T 11
M =

2ζ + 1

2ζ

1−

√√√√√1− 4ζ

(2ζ + 1)2

ζ +

[
T 01
M

T 00
M

]2

T 00

M , (2.10)

where

ζ =
σ2c2

(c2 − σ2)2
. (2.11)

It is readily verified that the quantity under the square root sign is positive
so long as [

T 01
M

T 00
M

]
< 1 +

1

2ζ
,

which holds in light of (1.20). It follows that (2.10) defines T 11
M as a smooth,

single valued function of the conserved quantities (u0, u1) ≡ (T 00
M , T

01
M ). Other

than its existence, we will not need the explicit formula for T 11
M given in (2.10).

We are free to analyze the state space for system (1.30)-(1.31) in the plane of
conserved quantities u = (u0, u1) ≡ (T 00

M , T
01
M ), in the (ρ, u) plane, or in the

plane of Riemann invariants (r, s) which are defined in terms of ρ and v via
the special relativistic Euler equations in flat Minkowski spacetime, (assume
p = σ2ρ, c.f. [24]),

r =
1

2
ln
c+ v

c− v
− K0

2
ln ρ, (2.12)

s =
1

2
ln
c+ v

c− v
+
K0

2
ln ρ, (2.13)

where

K0 =
2σc

c2 + σ2
. (2.14)

(There should be no confusion between “r” the Riemann invariant and “r”
the radial coordinate.) It is more convenient for us to use the variables
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z ≡ s + r = K0 ln ρ, (2.15)

w ≡ s− r = ln
c+ v

c− v
, (2.16)

and we let z denote the vector

z = (z, w) ≡
(
K0 ln ρ, ln

c− v
c+ v

)
. (2.17)

Given this, we use the following notation: As usual, the double norm ‖ · ‖
applied to a vector denotes Euclidean norm, so e.g., ‖u‖ ≡

√
(u0)2 + (u1)2

and ‖z‖ ≡
√

(z)2 + (w)2), and the single norm | · |, when applied to scalars,
denotes the the regular absolute value. But we use the special notation that
| · |, when applied to a vector, denotes the change in the z-component across
the vector, so that, e.g.,

|z| ≡ |z|. (2.18)

Similarly, if γ denotes a wave with left state zL and right state zL, (see (3.10)
and (4.13)-(4.15) below), then we let

‖γ‖ ≡
√
|zR − zL|2 + |wR − wR|2, (2.19)

|γ| ≡ |zR − zL|, (2.20)

and we refer to |γ| as the strength of the wave γ, c.f. [24, 16].
Equations (1.15), (1.16), and (2.12)-(2.16), define the mappings Ψ :

(ρ, v)→ (u0, u1) and Φ : (ρ, v)→ (z, w),

(
u0

u1

)
= Ψ

(
ρ
v

)
≡

 c4+σ2v2

c2−v2 ρc
2

(c2+σ2)cv
c2−v2 ρ

 , (2.21)

(
z
w

)
= Φ

(
ρ
v

)
≡
(
K0 ln ρ
ln c+v

c−v

)
. (2.22)

The following proposition states that the mappings Ψ and Φ define one to
one regular maps between the respective domains:

Proposition 1 The mapping

Φ : D → R (2.23)
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defined by (2.21) is smooth, one-to-one and onto, from domain

D = {(ρ, v) : 0 < ρ <∞, |v| < c}, (2.24)

to range

R = {(u0, u1) : 0 < u0 <∞, |u1| <∞}; (2.25)

and the mapping

Φ : D → R̂, (2.26)

defined in (2.22), is smooth, one-to-one and onto from domain D to

R̂ = {(z, w) : −∞ < z < +∞,−∞ < w < +∞}. (2.27)

Proof: This follows directly from (2.21) and (2.22).

The goal of this paper is to prove the following theorem:

Theorem 3 Let u0(x) ≡ (u0
0(x), u1

0(x)) = Ψ(ρ0(x), v0(x)) = Ψ◦Φ−1(z0(x), w0(x))
and A0(x) = (A0(x), B0(x)) denote initial data for system (1.30),(1.31), de-
fined for x ≥ r0. Assume that there exists positive constants V, L, and v̄,
such that

TV[x,x+L] ln ρ0(·) < V, (2.28)

TV[x,x+L] ln c+v0(·)
c−v0(·) < V, (2.29)

|v0(x)| < v̄, (2.30)

for all x ≥ r0. Assume that B0(x) = 1

1− 2M0(x)

x

, where the initial mass function

M0(x) is given by

M0(x) = Mr0 +
κ

2

∫ x

r0
u0

0(r)r2 dr, (2.31)

(c.f. (1.18)), and assume that M0 satisfies the conditions

lim
x→∞

M0(x) = M∞ <∞, (2.32)

and

1− 2M0(x)

x
= B−1

0 (x) > B̄−1 > 0, (2.33)

respectively, for some fixed positive constants Mr0 < M∞, and B̄ < ∞. As-
sume finally that
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A0(x) = Ar0 exp
∫ x

r0

{
B0(r)− 1

r
+ κrB0(r)T 11

M (u0(r))

}
dr (2.34)

for some fixed positive constant Ar0 > 0, so that

A0(r0) = Ar0 > 0. (2.35)

Given this, we conclude that there exists T > 0, and functions u(x, t),A(x, t)
defined on x ≥ r0, 0 ≤ t < T, such that u(x, t),A(x, t) is a weak solution
of system (1.26),(1.27), (1.2)-(1.4), together with the initial-boundary con-
ditions

ρ(x, 0) = ρ0(x), v(x, 0) = v0(x), (2.36)

A(r0, t) =

(
Ar0 ,

1

1− 2Mr0
r0

)
, (2.37)

v(r0, t) = 0. (2.38)

Moreover, the solution u,A satisfies the following:
(i) For each t ∈ [0, T ) there exists a constant V (t) <∞ such that

TV[x,x+L] ln ρ(·, t′) < V (t), (2.39)

TV[x,x+L] ln
c+ v(·, t′)
c− v(·, t′)

< V (t), (2.40)

for all t′ ≤ t.
(ii) For each x ≥ r0 and t ∈ [0, T ),

0 < A(x, t), B(x, t) <∞, (2.41)

and

lim
x→∞

M(x, t) = M∞. (2.42)

(iii) For each closed bounded set U ⊂ {(x, t) : x ≥ r0, 0 ≤ t < T}, there
exists a constant C(U) <∞ such that,

‖A(x2, t2)−A(x1, t1)‖ < C(U) {|x2 − x1|+ |t2 − t1|} , (2.43)

and ∫ x

r0
‖u(r, t2)− u(r, t1)‖dr < C(U)|t2 − t1|. (2.44)
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Here, (2.39) and (2.40) imply that the functions z(·, t) and w(·, t) are func-
tions of locally bounded total variation at each fixed time t < T, and the
bounds are uniform over bounded sets in x ≥ r0, 0 ≤ t < T. Estimates
(2.39) and (2.40) also imply that ρ > 0 and |v| < c, and therefore that
u0 > 0 throughout x ≥ r0, 0 ≤ t < T. The inequality (2.41) says that
B = 1

1− 2M
x

> 0, and hence that 2M
x

< 1 for t < T, the condition that no

black holes have formed before time T. Inequality (2.43) says that the metric
components A and B are locally Lipschitz continuous functions in x ≥ r0,
0 ≤ t < T, and (2.43) says that u(x, t) is L1-Lipschitz continuous in time,
uniformly on bounded sets. Note that (2.31), (2.34) are included to guaran-
tee that equations (1.2) and (1.4), (and so also (1.31)), are satisfied at time
t = 0.

3 The Fractional Step Scheme.

In this section we define the approximate solutions u∆x,A∆x = (A∆x, B∆x) of
system (1.30), (1.31) constructed by a fractional step Glimm scheme. Again,
we have set x ≡ x1 ≡ r, and we write t in place of ct, in the sense that t
must be replaced by ct whenever we put dimensions of time, (that is, factors
of c), into our formulas.

Let ∆x << 1 denote a mesh length for space and ∆t a mesh length for
time, and assume that

∆x

∆t
= Λ, (3.1)

so that Λ−1 is the Courant number. We choose

Λ ≥Max

2

√
A

B

 , (3.2)

where the maximum is taken over all values that appear in the approximate
solution. This guarantees the Courant-Friedrichs-Levy (CFL) condition, the
condition that the mesh speed be greater than the maximum wave speed in

the problem. (That is,
√

A
B

is the speed of light in Schwarzschild coordinates,
and the factor of two accounts for the fact that waves emanate from the center
of the mesh rectangles in our approximation scheme. Of course, as part of
our proof, we must show that the maximum on the RHS of (3.2) exists.) Let
(xi, tj) be mesh points in an unstaggered grid defined on the domain

D = {r0 ≤ x ≤ ∞, t ≥ 0}, (3.3)
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t

x

R0,j−1

Rij

i−1i=0
x=r0

i+1ii−1

j

2 i+1
2

Figure 1: The mesh rectangles Rij

by setting

xi = r0 + i∆r,

tj = j∆t,

c.f. Figure 1.
Each mesh point (xi, tj), i ≥ 0, j ≥ 0, is positioned at the bottom center

of the grid rectangle Rij,

Rij = {xi− 1
2
≤ x < xi+ 1

2
, tj ≤ t < tj+1}, (3.4)

where xi+− 1
2

= (i+−
1
2
)∆x. Let Ri0j denote the half rectangle {xi0 ≤ x <

xi0+ 1
2
, tj ≤ t < tj+1} at the boundary x = r0. In the approximation scheme,

the metric source A = (A,B) is approximated by the constant value Aij in
each grid rectangle Rij, so set

A∆x(x, t) = Aij for (x, t) ∈ Rij, (3.5)

for values of Aij to be defined presently. It follows that A∆x is discontinuous
along each line x = xi+ 1

2
, i = 0, ...,∞, and at each time t = tj. In our
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definition below, values of Aij are determined from values Ai,j−1 and u∆x

at time tj−, by solving (1.31), using the boundary condition A = Ar0 =(
Ar0 ,

1

1− 2Mr0
r0

)
at the boundary x = r0.

We now define u∆x by induction. First assume that u∆x is given by
piecewise constant states uij at time t = tj+ as follows:

u∆x(x, t) = uij for xi ≤ x < xi+1, t = tj + . (3.6)

This poses the Riemann problem

u0(x) =

{
uL = ui−1,j x < xi,
uR = uij x > xi,

(3.7)

for the system

ut + f(Aij, u)x = 0, (3.8)

at the bottom center of each mesh rectangle Rij, i ≥ 1. When i = 0, the
boundary condition v = 0 at x0 = r0 replaces the left state, and so in this
case, the piecewise constant state u0j at time t = tj+ poses the boundary
Riemann problem

u0(x) =

{
v = 0 x = r0,
uR = u0,j x > r0,

(3.9)

Let uRPij (x, t) denote the solution of (3.6), (3.7) for (x, t) ∈ Rij, and let

uRP∆x (x, t) = uRPij (x, t) for (x, t) ∈ Rij. (3.10)

Equation (3.10) defines the Riemann problem step of the fractional step
scheme. Note that since A∆x = Aij is constant in each Rij, it follows that
system (3.8) is just the special relativistic Euler equations for p = σ2ρ, with
a rescaled flux. We discuss the solution of this Riemann problem in detail
in Section 4. We conclude there that the solution uRPij (x, t) consists of a
1-wave γ1

ij followed by a 2-wave γ2
ij for all i > 0, it consists of a single 2-wave

γ2
0j = 0 at the boundary i = 0, and the waves γpij all have sub-luminous

speeds so long as (3.2) holds. It follows that (3.2) guarantees that the waves
in the Riemann problem (3.7), (3.7), never leave Rij in one time step, c.f.
Proposition 3 below.

The Riemann problem step of the method ignores the effect of the source
term g in system (1.30), and also ignores the effect of the discontinuities in
the flux f(A, u) due to discontinuities in A at the boundaries xi−+ 1

2
of Rij.

These effects are accounted for in the ODE step. For the ODE step of the
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fractional step scheme, the idea is to use the Riemann problem solutions as
initial data, and solve the ODE’s

ut = G(A, u, x) ≡ g −A′ · ∇Af, (3.11)

for one time step, thus defining the approximate solution in Rij. The first
term on the RHS of (3.11) accounts for the sources on the RHS of (1.30),
and the second term accounts for the discontinuities in A at the boundaries
xi−+ 1

2
. Now by (1.38),

g ≡ g(A, u, x) =
(
g0(A, u, x), g1(A, u, x)

)
,

where

g0(A, u, x) = −2

x

√
A

B
T 01
M , (3.12)

g1(A, u, x) = −1

2

√
A

B

{
4

x
T 11
M +

(B − 1)

x
(T 00

M − T 11
M ) (3.13)

+2κxB(T 00
M T

11
M − (T 01

M )2)− 4xT 22
}
.

By (1.34),

∇Af ≡ ∇Af(A, u) ≡
(
∇Af

0,∇Af
1
)

=

(
1

2

1√
AB

T 01
M ,−

1

2

1

B
√
AB

T 11
M

)
,

(3.14)
and by (1.40),

A′ = h ≡
(
h0(A, u, x)), h1(A, u, x))

)
, (3.15)

where

h0(A, u, x) =
(B − 1)A

x
+ κxABT 11

M ,

h1(A, u, x) = −(B − 1)B

x
+ κxB2T 00

M . (3.16)

It follows from (3.14)-(3.16) that

A′ · ∇Af(A, u, x) =
1

2

√
A

B
δ
(
T 01
M , T

11
M

)
, (3.17)
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where

δ =
A′

A
− B′

B
=

2(B − 1)

x
− κxB

(
T 00
M − T 11

M

)
. (3.18)

Using (3.12), (3.13) and (3.18) and simplfying, we find that the ODE step
should be

ut = G, (3.19)

where

G0(A, u, x) = −1

2

√
A

B
T 01
M

{
2(B + 1)

x
− κxB

(
T 00
M − T 11

M

)}
, (3.20)

G1(A, u, x) = −1

2

√
A

B

{
4

x
T 11
M +

B − 1

x

(
T 00
M + T 11

M

)
+ (3.21)

κxB
[
T 00
M T

11
M − 2

(
T 01
M

)2
+
(
T 11
M

)2
]
− 4xT 22

}
.

Since u = (T 00
M , T

01
M ), and T 11

M , T
22 are given as functions of u in (2.6), (2.10),

respectively, it follows that the right hand sides of (3.20) and (3.21) determine
well defined functions of (A, u, x). It follows that G, as defined in (3.20),
(3.21) also satisfies

G(A, u, x) = g(A, u, x)−A′ · ∇Af(A, u, x),

where (3.12), (3.13) and (3.17) define g and A′ · f as functions of (A, u, x).
We can now define the ODE step of the method. Let û(t, u0) denote the

solution to the initial value problem

ût = G(Aij, û, x) = g(Aij, û, x)−A′ · ∇Af(Aij, û, x),

û(0) = u0, (3.22)

where G(A, û, x) is defined in (3.20), (3.21), and g(A, u, x) and A′ ·f(A, u, x)
are defined in (3.12), (3.13) and (3.17), respectively. It follows that

û(t, u0)− u0 =
∫ t

0
ût dt

=
∫ t

0
{g(Aij, û(ξ, u0), x)−A′ · ∇Af(Aij, û(ξ, u0), x)} dξ.
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Define the approximate solution u∆x(x, t) on each mesh rectangle Rij by the
formula

u∆x(x, t) = uRP∆x (x, t) +
∫ t

tj

{
G(Aij, û(ξ − tj, uRP∆x (x, t)), x)

}
dξ (3.23)

= uRP∆x (x, t) +
∫ t

tj

{
g(Aij, û(ξ − tj, uRP∆x (x, t)), x)

}
dξ

−
∫ t

tj

{
A′ · ∇Af(Aij, û(ξ − tj, uRP∆x (x, t)), x)

}
dξ.

Thus on each mesh rectangle Rij, u∆x(x, t) is equal to uRP∆x (x, t) plus a cor-
rection that defines the ODE step of the method.

To complete the definition of u∆x by induction, it remains only to define
the constant states Ai,j+1 on Ri,j+1, and ui,j+1 = u∆x(x, tj+1+) for xi ≤ x <
xi+1, in terms of the values of u∆x,A∆x defined for tj ≤ t < tj+1. For this we
use Glimm’s method of random choice, c.f. [8, 23]. Thus let

a ≡ {aj}∞j=0 ∈ Π, (3.24)

denote a (fixed) random sequence, 0 < aj < 1, where Π denotes the infinite
product measure space Π∞i=0(0, 1)j, where (0, 1)j denotes the unit interval
(0, 1) endowed with Lebesgue measure, 0 < j <∞. (For convenience, assume
WLOG that a0 = 1

2
.) Then, assuming that u∆x,A∆x is defined up to time

t < tj+1, define

ui,j+1 = u∆x(xi + aj+1∆x, tj+1−), (3.25)

M∆x(x, tj+1) = Mr0 +
κ

2

∫ x

r0
u0

∆x(r, tj+1−)r2 dr, (3.26)

c.f. (1.18).9 In terms of these, define the functions

B∆x(x, tj+1) =
1

1− 2M∆x(x,tj+1)

x

, (3.27)

and

A(x, tj+1) = Ar0 exp
∫ x

r0

{
B∆x(r, tj+1)− 1

r
+ κrB∆x(r, tj+1)T 11

M (u∆x(r, tj+1))

}
dr,

(3.28)

9By (3.25),the approximate solution depends on the choice of sample sequence a. In
the last section, we prove that for almost every choice of sample sequence, a subsequence
of approximate solutions converges to a weak solution of (1.31).
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c.f. (1.6) and (1.4). Finally, in terms of these, define

Mi,j+1 = M(xi, tj+1), (3.29)

Bi,j+1 = B(xi, tj+1) =
1

1− 2Mi,j+1

xi

, (3.30)

and

Ai,j+1 = A(xi, tj+1). (3.31)

Let Ai,j+1 = (Ai,j+1, Bi,j+1) denote the constant value for A∆x on Ri,j+1.
This completes the definition of the approximate solution u∆x by induction.
Note that (3.26)-(3.28) imply that when ρ > 0, |v| < c, we have

B∆x(x, tj) ≥ 1, (3.32)

B∆x(r0, tj) = 1

1− 2Mr0
r0

≡ Br0 , (3.33)

A∆x(x, tj) ≥ Ar0 , (3.34)

for all x ≥ r0, j ≥ 0. Note also that as a consequence of (3.26), (3.27) and
(3.28), equations (1.2) and (1.4) hold in the form

B′∆x(x,tj)

B
= −B∆x(x,tj)−1

x
+ κB∆x(x, tj)xT

11
M (u∆x(x, tj)), (3.35)

A′∆x(x,tj)

A
= +B∆x(x,tj)−1

x
+ κB∆x(x, tj)xT

00
M (u∆x(x, tj)). (3.36)

Therefore,

∂

∂x
ln {A∆x(x, tj)B∆x(x, tj)} =

A′

A
+
B′

B
≤ 4κxB∆x(x, tj)(T

00
M (u∆x(x, tj)) + T 11

M (u∆x(x, tj))).

Integrating this from r0 to x yields

A∆x(x, tj)B∆x(x, tj) ≤ Ar0Br0 exp
{

8

r0

∫ x

r0
B∆x(x, tj)

κ

2
r2T 00

M (u∆x(x, tj))
}
.

(3.37)

Inequalities (3.35)-(3.37) directly imply the following proposition:
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Proposition 2 Assume that there exist positive constants M̄, B̄, S̄, v̄, and
integer J > 0, such that the approximate solution u∆x,A∆x, defined as above,
exists and satisfies

M∆x(x, tj) ≤ M̄, (3.38)

B∆x(x, tj) ≤ B̄, (3.39)

0 ≤ S∆x(x, tj) ≡ |xρ∆x(x, tj)| ≤ S̄ <∞, (3.40)

and

|v∆x(x, tj)| ≤ v̄ < c, (3.41)

for all x ≥ r0, j ≤ J, so that by (1.15),

0 ≤ xu0
∆x(x, tj) ≤

c2 + σ2v̄2

c2 − v̄2
S̄. (3.42)

Then

0 <
Ar0

B∆x(x, tj)
≤ A∆x(x, tj)

B∆x(x, tj)
≤ A∆x(x, tj) ≤ A∆x(x, tj)B∆x(x, tj)

≤ Ar0Br0exp

{
8B̄M̄

r0

}
≡ GAB(B̄, M̄), (3.43)

and

|A′∆x(x, tj)| ≤
(

1

r0

+ κ
c2 + σ2v̄2

c2 − v̄2
S̄

)
GAB(B̄, M̄), (3.44)

|B′∆x(x, tj)| ≤
(

1

r0

+ κ
c2 + σ2v̄2

c2 − v̄2
S̄

)
B̄2 (3.45)

for all x ≥ r0, and j ≤ J.
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Note that by (3.30), (3.31), (3.43)-(3.45) apply withA∆x(x, tj), B∆x(x, tj),
replaced by Aij, Bij, respectively. Note also that (3.43) implies that

Λ = 2
√
GAB (3.46)

suffices to guarantee the CFL condition (3.2), and note that (3.44) and (3.45)
imply

∥∥∥∥∥∆A∆x

∆x

∥∥∥∥∥ ≤
(

1

r0

+ κ
c2 + σ2v̄2

c2 − v̄2
S̄

)
(B̄2 +GAB(B̄, M̄)), (3.47)

where

∆A∆x

∆x
=

Ai+1,j −Aij

∆x
, (3.48)

which gives the Lipschitz continuity in x of A∆x and B∆x, respectively.

Proof: Inequality (3.43) follows directly form (3.37) in light of (7.30) and
(3.26), and (3.44), (3.45) follow directly from (3.35), (3.36), and (3.43).

4 The Riemann Problem Step

In this section we discuss uRPij , the solutions which constitute the Riemann
problem step in the construction of u∆x. For fixed (i, j), uRPij (x, t) is defined
in (3.7), (3.8) as the solution of the Riemann problem

ut + f(Aij, u)x = 0, (4.1)

u0(x) =

{
uL = ui−1,j x < 0
uR = uij x ≥ 0

}
, (4.2)

with the origin translated to the bottom center (xi, tj) of the mesh rectangle
Rij ≡ {(x, t) : xi− 1

2
< x ≤ xi+ 1

2
, tj ≤ t < tj+1}. Vector Aij is constant on

Rij. Assuming p = σ2ρ, system (4.1) takes the form

(T 00
M ),t +

(√
Aij
Bij

T 01
M

)
,x

= 0, (4.3)

(T 01
M ),t +

(√
Aij
Bij

T 11
M

)
,x

= 0, (4.4)

where T 11
M is given as a function of T 00

M and T 01
M in (2.10).
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Proposition 3 Assume that uL and uR correspond to values of ρ and v that
lie in the region ρ > 0, −c < v < c. Then the Riemann problem (4.1),
(4.2) has a unique solution consisting of elementary waves: shock waves and
rarefaction waves. The solution is scale invariant, (is a function of x/t), and
consists of a 1-wave γ1

ij followed by a 2-wave γ2
ij. Moreover, the CFL condition

(3.2) guarantees that the speeds of the waves are always smaller than the

mesh speed ∆x
∆t

= Max
{

2
√

A
B

}
, and thus waves never interact during one

time step.

Proof: System (4.3)-(4.4) is the relativistic compressible Euler equations

divTM = 0 in flat Minkowski spacetime, except for the constant factor
√

Aij
Bij

that multiplies the flux. Now the factor
√

Aij
Bij

changes the speeds of the

waves, but does not affect the values of u on the elementary waves γpij. In-

deed, the scale change t̄ → t/
√
Aij/Bij converts (4.1) into the Minkowski

space problem divTM = 0, and so it follows from the frame invariance of the
compressible Euler equations that (s, uL, uR) satisfies the Rankine-Hugoniot
jump conditions

s[u] = [f ] =

√
Aij
Bij

[fM ], (4.5)

for system (4.1), if and only if (s̄, u) satisfies the Minkowski jump conditions

s̄[u] = [fM ], (4.6)

where

s =

√
Aij
Bij

s̄. (4.7)

(Recall that a shock with left state uL, right state uR, and speed s, is a weak
solution of a conservation law ut + f(u)x = 0 if and only if the Rankine-
Hugoniot jump relations s[u] = [f ] are satisfied.) Here f denotes the flux in
(4.1), fM = f(1, 1, u) denotes the standard Minkowski flux, and [·] denotes
the jump in a quantity from left to right across a shock. Thus the i-shock
curves for system (4.1) agree with the i-shock curves for the system ut +
fM(u)x) = 0, when Aij = (Aij, Bij) = (1, 1), [23]. Moreover, since [u] tends
to an eigen-direction and s tends to an eigenspeed as [u]→ 0 across a shock,
it follows that the i-rarefaction curves Ri and i-shock curves Si for system
(4.1) are the same as the curves for the Minkowski system ut + fM(u)x = 0,
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c.f. [23, 24, 8, 14, 3]. It follows that the factor
√

Aij
Bij

changes the speeds of

the waves, but does not affect the values of u on the elementary waves γpij,
as claimed.

It was shown in [24] that the Riemann problem for system ut+fM(u)x = 0
has a unique solution consisting of a 1-wave followed by a 2-wave, and all
wave speeds are subluminous so long as ρ > 0, −c < v < c. If we denote
this solution by [uL, uR]M(x, t), then, (assuming ρ > 0, −c < v < c), it
follows from (4.7) that the solution of (4.1), (4.2) is given by [uL, uR](x, t) =

[uL, uR]M(x,
√

Aij
Bij
t). Since, by [24], all shock and characteristic speeds are

sub-luminous for the Minkowski problem divTM = 0, p = σ2ρ, it follows from
(4.7) that wave speeds in the solution of the Riemann problem (4.1), (4.2) are

bounded by
√

A
B
, the speed of light in standard Schwarzschild coordinates.

This verifies that if ρ > 0, −c < v < c, then the CFL condition (3.2)
guarantees that all wave speeds in the solution uRPij are bounded by the mesh

speed ∆x
∆t

= Λ. Note that this implies that the constant states ui−1,j, uij are
maintained along the left and right boundaries of Rij in the approximate
solution uRPij . 2

For fixed Aij = (Aij, Bij), let

[uL, uR] ≡ [uL, uR](x, t), (4.8)

denote the solution of the Riemann problem (4.1), (4.2), and write

[uL, uR] = (γ1, γ2), (4.9)

to indicate that the solution [uL, uR](x, t) consists of the 1-wave γ1 followed
by the 2-wave γ2. An elementary wave γ is itself a solution of a Riemann
problem, in which case we write [uL, uR] = γ, and we call uL and uR the
right and left states of the wave γ, respectively. In this case, define |γ|, the
strength of the wave γ, by

|γ| = |K0 ln(uL)−K0 ln(uR)| =
∣∣∣∣K0 ln

(
uL
uR

)∣∣∣∣ , (4.10)

c.f. (2.14). For the general case [uL, uR] = (γ1, γ2), we define the strength of
the Riemann problem as the sum of the strengths of its elementary waves,

|[uL, uR]| = |γ1|+ |γ2|. (4.11)

The following proposition, special to the case p = σ2ρ, states that the sum
of the strengths of elementary waves are non-increasing during wave inter-
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actions, so long as Aij is constant. (This property was first identified by
Nishida in non-relativistic case, [20].)

Proposition 4 Assume that Aij is fixed. Let uL, uM , and uR be any three
states in the region ρ > 0, −c < v < c. Then

|[uL, uR]| ≤ |[uL, uM ]|+ |[uM , uR]|. (4.12)

Proof: It was shown in [24] that (4.12) holds in the special relativistic case
divTM = 0. Since the effect of Aij is to change the speeds of the elementary
waves, but not the left and right states, in the solution of (4.1), (4.2), it fol-
lows that the estimate (4.12) continues to hold for arbitrary, (but constant),
values of Aij. 2

Proposition 4 is a direct consequence of the geometry of shock and rar-
efaction curves summarized above, and discussed further below, and is not
true except in the special case p = σ2ρ, [24]. It follows from Proposition 4
that the only increase in the total variation of ln ρ∆x(·, t) in an approximate
solution u∆x(·, t) is due to increases that occur during the ODE steps (3.22).
This is the basis for our analysis of convergence. Thus we analyze solutions
in the z-plane, z = (z, w) ≡ (K0 ln ρ, ln c−v

c+v
), a 45o rotation of the plane of

Riemann invariants (r, s), c.f.(2.12), (2.13), [24].
Thus, let zL, zR be the left and right states of a single elementary wave

γ, and let γ denote both the name of the wave, as well as the vector

γ = zR − zL. (4.13)

Let

‖γ‖ = ‖zR − zL‖, (4.14)

and so we have

|γ| = |K0 ln ρR −K0 ln ρL| = |zR − zL| ≤ ‖γ‖, (4.15)

where K0 is defined in (2.14). Note that because changes in A affect only
the speeds of waves, it follows that γ, |γ| and ‖γ‖ depend only on zL, zR, and
not on the value of Aij used in the construction. We write

[zL, zR] ≡ [uL, uR] = (γ1, γ2), (4.16)

to indicate that γ1, γ2 are the elementary 1- and 2-waves that solve the
Riemann Problem with left state zL = Φ ◦ Ψ−1uL and right state zL =
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Φ ◦ Ψ−1uR. We now review the results in [24] regarding the geometry of
shock and rarefaction curves as plotted in the z-plane.

Let Si(zL) denote the i-shock curve emanating from the left state zL.
That is, zR ∈ Si(zL) if and only if [zL, zR] is a pure i-shock,[23]. It was
shown in [24] that all i-shock curves are translates of one another in the z-
plane, and 2-shock curves are just the reflection of the 1-shock curves about
lines z = const. The following formula for the 1-shock curve is given in [24],
p.85, equations (74),(75):

Lemma 1 A state zR lies on the 1-shock curve S1(zL) if and only if

∆r = −1

2
ln {f+(2Kζ)} −

√
K

2
ln {f+(ζ)} , (4.17)

∆s = −1

2
ln {f+(2Kζ)}+

√
K

2
ln {f+(ζ)} , (4.18)

where

f+(ζ) = (1 + ζ) +
√
ζ(2 + ζ), (4.19)

for some 0 ≤ ζ <∞. Here

K =
2σ2c2

(c2 + σ2)2
=
K2

0

2
, (4.20)

is used in place of K0, and ∆r = rR − rL, ∆s = sR − sL, denote the change
in the Riemann invariants across the shock, c.f. [24].

Using (2.15),(2.16) we see that (4.17),(4.18) are equivalent to

∆w = − ln
{
f+(K2

0ζ)
}
, (4.21)

∆z = −K0 ln {f+(ζ)} . (4.22)

Since (4.21),(4.22) describe the 1-shock curves for 0 ≤ ζ < ∞, it follows
directly from these that 1-shock curves S1(zL) have a geometric shape in the
z-plane that is independent of zL. Thus all 1-shock curves are translates of
one another in the z-plane, as claimed.

It also was shown in [24] that the 2-shock curve S2(zL) is the reflection of
S1(zL) about the line z = zL, (this follows directly from (76), (77) of [24].)
From this, together with (4.21),(4.22), it follows that
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|∆w| = ln
{
f+(K2

0ζ)
}
, (4.23)

|∆z| = K0 ln {f+(ζ)} , (4.24)

hold all along both the 1- and 2-shock curves. The next lemma implies the
convexity of i-shock curves in the case p = σ2ρ.

Lemma 2 The shock equations (4.23), (4.24) imply that

sinh

(
|∆w|

2

)
= K0 sinh

(
|∆z|
2K0

)
, (4.25)

from which it follows that (4.23), (4.24) define

|∆w| = H(|∆z|), (4.26)

where the function H is given by

H(|∆z|) = ln f+

(
2K2

0 sinh2

{
|∆z|
2K0

})
= 2 sinh−1

(
K0 sinh

|∆z|
2K0

)
. (4.27)

The function H satisfies

H ′′(|∆z|) =
(c2 − σ2)2

2cσ(c2 + σ2)

sinh( |∆z|
2K0

)

cosh3( |∆w|
2

)
≥ 0. (4.28)

Proof: Solving equation (4.24) for ζ gives

ζ = 2

(
sinh

(
|∆z|
2K0

))2

. (4.29)

Substituting (4.29) into (4.23) yields the first equality in (4.27), and the
formula

f−1
+ (y) = 2 sinh2(ln y). (4.30)

Using this to solve for ζ in (4.23), (4.24), equating, and taking square roots,
gives (4.25), as well as the second equality in (4.27). Implicitly differentiating
(4.25) and simplifying gives (4.28). 2
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w

z

r=1ln(c+v)−1K0lnρc−v2

s=1ln(c+v)+1K0lnρ

S2S1

c−v2

2

2

Figure 2: The reflection property of shock curves

It follows directly from Lemma 2 that H(|∆z|) is a monotone increasing
convex up function of |∆z| that is superlinear in the sense that

|∆z| < H(|∆z|) <∞, (4.31)

for all ∆z 6= 0, and

lim
|∆z|→0

H(|∆z|)
|∆z|

= 1, (4.32)

c.f. Figure 2,3.
Since |∆w| = |∆z| along all 1- and 2-rarefaction curves, we have the

following lemma:

Lemma 3 Let zL, zR be the left and right states of an elementary wave γ,
so that

γ = [zL, zR]. (4.33)

Then

|∆w| ≤ H(|γ|), (4.34)

where

∆w = wR − wL, (4.35)

|γ| = |∆z| = |zR − zL|, (4.36)
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|∆w|
|∆w|=H(|∆z|)

|∆w|=|∆z|

|∆z|

Figure 3: H is increasing convex up

where H is given in (4.26).

The superlinearity and convexity of H, together with Jenson’s inequality,
imply the following propostion:

Proposition 5 Let γ1, ..., γn be any set of elementary waves. Then

n∑
i=1

|γi| ≤
n∑
i=1

H(|γi|) ≤ H

(
n∑
i=1

|γi|
)
. (4.37)

The next Proposition summarizes results in [24], and follows directly from
Proposition 5:

Proposition 6 For any left and right states zL, zR ∈ R2, there exists a
unique solution of the Riemann Problem [zL, zR] consisting of a 1-shock or
1-rarefaction wave γ1, followed by a 2-shock or 2-rarefaction wave γ2, so that
we can write

(γ1, γ2) = [zL, zR]. (4.38)

The speed of the wave γ1 is always strictly less than the speed of γ2, and all
wave speeds are subluminous. Moreover, there exist C2 functions Γp : R2 →
R2, one for each p = 1, 2, such that (γ1, γ2) = [zL, zR] if and only if the
vector γp satisfies

γp = Γp(zR − zL), (4.39)



SHOCK-WAVE SOLUTIONS OF THE EINSTEIN EQUATIONS 33

where,

|γp| = |Γp(zR − zL)| ≤
√

2‖zR − zL‖. (4.40)

Proof: The smoothness of Γp and the dependence on the difference zR − zL
follows from the C2 contact between shock and rarefaction curves, together
with the fact that shock-wave curves, drawn in the z-plane, are translation
invariant. Estimate (4.40) can be verified in each of the four cases of the
Riemann Problem [zL, zR]; namely, if [zL, zR] is a 1-shock followed by a 2-
rarefaction wave or a 1-rarefaction wave followed by a 2-shock, then |γ1| +
|γ2| = |zR − zL|. In the other two cases one can verify (4.40) assuming
that the shock-waves lie on the Riemann Invariants, and then see that the
divergences of shock and rarefaction curves only improves this estimate. 2

We now discuss the boundary Riemann problems posed at mesh points
(x0, tj), j = 0, 1, 2, .., that lie along the boundary x0 = r0 in the approximate
solution u∆x. In this case, for fixed j, uRP0j (x, t) is defined in (3.8), (3.9) as
the solution of (4.1) together with the initial-boundary data

u0(x) =

{
v = 0 x = 0
uR = u0j x ≥ 0

}
, (4.41)

with the origin translated to the bottom center (x0, tj) of the mesh rectangle
R0j ≡ {(x, t) : xr0<x≤x 1

2
,tj≤t<tj+1

. Again, vector A0j is constant on R0j.

The following theorem, which generalizes Proposition 3 to include boundary
Riemann problems, follows by similar reasoning. (See [21] for a discussion of
boundary Riemann problems.)

Proposition 7 Assume that uR lies in the region ρ > 0, −c < v < c.
Then the boundary Riemann problem (4.1), (4.41) has a unique solution
consisting of a single elementary 2-wave γ2

0j of positive speed. Moreover,
the CFL condition (3.2) guarantees that the speed of the wave γ2

0j is always

smaller than half the the mesh speed ∆x
∆t

= Max
{

2
√

A
B

}
, and thus γ2

0j cannot
hit the boundary of R0j within one timestep.

For fixed A0j, let

[0, uR] ≡ [0, uR](x, t), (4.42)

denote the solution of the Riemann problem (4.1), (4.41), and write

[0, uR] = γ2, (4.43)
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to indicate that the solution [0, uR](x, t) consists of the single wave γ2, a
2-wave. Again, define the strength of the Riemann problem [0, uR] as the
strength of its elementary wave,

|[0, uR]| = |γ2|. (4.44)

The following theorem generalizes Proposition 4 to include the boundary Rie-
mann problems, and this implies that the sum of the strengths of elementary
waves are non-increasing during boundary wave interactions, so long as Aij

is constant.

Proposition 8 Assume that Aij is fixed. Let uM , and uR be any pair of
states in the region ρ > 0, −c < v < c. Then

|[0, uR]| ≤ |[0, uM ]|+ |[uM , uR]|. (4.45)

5 The ODE Step

In this section we analyze the ODE step (3.22) of the fractional step scheme.
Recall that this arises by rewriting system (1.30) in the form ut + ∂f

∂u
ux =

g−A′ · ∇Af ≡ G(A, u, x) and neglecting the flux term containing ux. Then
the jumps in A at the vertical lines xi+ 1

2
, i = 0, 1, ..., are accounted for by

the A′ ·∇Af term on the RHS of this equation. Using (3.20), (3.21) and the
fact that (u0, u1) = (T 00

M , T
01
M ), system (3.22) takes the form

Ṫ 00
M = −1

2

√
A

B
T 01
M

{
2(B + 1)

x
− κxB

(
T 00
M − T 11

M

)}
≡ G0(A, u, x), (5.1)

Ṫ 00
M = −1

2

√
A

B

{
4

x
T 11
M +

(B − 1)

x

(
T 00
M + T 11

M

)
(5.2)

+κxB
[
T 00
M T

11
M − 2

(
T 01
M

)2
+
(
T 11
M

)2
]
− 4xT 22

}
≡ G1(A, u, x).

We now analyze the solution trajectories for system (5.1), (5.2) in the (ρ, v)-
plane. To this end, we record the following identities which are easily derived
from (1.15),(1.16),(1.17), and (2.6):

(
T 11
M

)2
−
(
T 01
M

)2
=

σ4 − v2c2

c2 − v2
ρ2c2, (5.3)
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T 00
M T

11
M −

(
T 01
M

)2
= σ2ρ2c2, (5.4)(

T 11
M

)2
− 2

(
T 01
M

)2
+ T 00

M T
11
M =

(σ2 − v2)(c2 + σ2)

c2 − v2
ρ2c2, (5.5)

T 00
M + T 11

M =
(c2 + σ2)(c2 + v2)

c2 − v2
ρ, (5.6)

T 00
M − T 11

M = (c2 − σ2)ρ. (5.7)

Using (5.3)-(5.7) in the RHS of (5.1), (5.2), we obtain after simplification,

G0 = −1
2

√
A
B

(
c2+σ2

c2−v2

)
cv ρ

x
{2(B + 1)− κB(c2 − σ2)ρx2} , (5.8)

G1 = −1
2

√
A
B

(
c2+σ2

c2−v2

)
ρ
x
{4v2 + (B − 1)(c2 + v2) + κB(σ2 − v2)c2ρx2} .

(5.9)

Now differentiating the LHS of (5.1), (5.2) gives

ρ̇
∂T 00

M

∂ρ
+ v̇

∂T 00
M

∂v
= G0, (5.10)

ρ̇
∂T 01

M

∂ρ
+ v̇

∂T 01
M

∂v
= G1. (5.11)

Thus it follows from Cramer’s Rule that system (5.1), (5.2) in (ρ, v)-variables
is given by

ρ̇ =
Dρ

D
, (5.12)

v̇ =
Dv

D
, (5.13)

where

Dρ =

∣∣∣∣∣∣ G
0 ∂T 00

M

∂v

G1 ∂T 01
M

∂v

∣∣∣∣∣∣ , (5.14)

Dv =

∣∣∣∣∣∣
∂T 00

M

∂ρ
G0

∂T 01
M

∂ρ
G1

∣∣∣∣∣∣ , (5.15)

D =

∣∣∣∣∣∣
∂T 00

M

∂ρ

∂T 00
M

∂v
∂T 01

M

∂ρ

∂T 01
M

∂v

∣∣∣∣∣∣ . (5.16)



36 JEFF GROAH AND BLAKE TEMPLE

Using (1.15) and (1.16) we obtain

∂T 00
M

∂ρ
=
c4 + σ2v2

c2 − v2
,

∂T 00
M

∂v
= 2

(c2 + σ2)c2v

(c2 − v2)2
ρ,

∂T 01
M

∂ρ
=

(σ2 + c2)cv

c2 − v2
,

∂T 01
M

∂v
=

(σ2 + c2)(c2 + v2)c

(c2 − v2)2
ρ,

and

D =
(c2 + σ2)(c4 − σ2v2)c

(c2 − v2)2
ρ. (5.17)

A calculation using these together with (5.8), (5.9) leads to

Dρ = −1

2

√
A

B

(
c2 + σ2

c2 − v2

)2
c2

x

{
4− κB(c2 + σ2)ρx2

}
ρ2,

Dv = −1

2

√
A

B

(
c2 + σ2

c2 − v2

)
σ2c2

x

×
{
−4

v2

c2
+ (B − 1)

c4 − σ2v2

σ2c2
+ κB(c2 + v2)ρx2

}
ρ.

Putting (5.17) and the above expressions for Dρ and Dv into (5.12), (5.13)
and simplfying, we obtain system (5.1), (5.2) in (ρ, v)-variables:

ρ̇ = −1

2

√
A

B

(
c2 + σ2

c4 − σ2v2

)
vc

x
(5.18)

×
{

4− κB(c2 + σ2)ρx2
}
ρ,

v̇ = −1

2

√
A

B

(
c2 − v2

c4 − σ2v2

)
σ2c

x
(5.19)

×
{
−4

v2

c2
+ (B − 1)

c4 − σ2v2

σ2c2
+ κB(c2 + v2)ρx2

}
,

For convenience, we rewrite system (5.18), (5.19) in the form
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ρ̇ =
κ
√
ABx

2

[
(c2 + σ2)2vc

c4 − σ2v2

]
ρ {ρ− ρ1} , (5.20)

v̇ = −κ
√
ABx

2

[
(c4 − v4)σ2c

c4 − σ2v2

]
{ρ− ρ2} ,

(5.21)

where

ρ1 =
4

κB(c2 + σ2)x2
, (5.22)

and

ρ2 =
4v2σ2 − (B − 1)(c4 − σ2v2)

κB(c2 + v2)σ2c2x2
, (5.23)

where, (by a simple calculation),

ρ2 <
4v2σ2

κB(c2 + v2)σ2c2x2
< ρ1, (5.24)

for all values of v ∈ (−c, c).
We devote the remainder of this section to the proof of the following

theorem, which gives a global bound for solutions of u̇ = G(A, u, x), starting
from arbitrary initial data

u(0) = u0 ≡ Ψ(ρ0, v0), (5.25)

assuming that A > 0, B ≥ 1 and x ≥ r0 are constant, and assuming the
physical bounds 0 < ρ0 <∞, −c < v0 < c, (c.f. (2.21)):

Proposition 9 Assume that A,B and x are constant, that A > 0, B ≥ 1,
x ≥ r0, and assume that (ρ0, v0) satisfies −c < v0 < c and 0 < ρ0 <∞. Then
the solution (ρ(t), v(t)) of system (5.20), (5.21), with initial condition

ρ(0) = ρ0, (5.26)

v(0) = v0, (5.27)
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exists, is finite, and satisfies

−c < v(t) < c,

for all t ≥ 0. Moreover, if ρ0 ≤ ρ1, then ρ(t) ≤ ρ1 for all t ≥ 0; while if
ρ0 ≥ ρ1, then

ρ1 ≤ ρ(t) ≤ max

ρ1, ρ0

(
c2

c2 − v2
0

) 1
2

(
c2+σ2

cσ

)2
 , (5.28)

for all t > 0.

Proof: For fixed A and x, system (5.20), (5.21) is an autonomous system of
the form

ρ̇ = f1(ρ, v),

v̇ = f2(ρ, v).

Note that ρ = 0 and v =+
− c are solution trajectories for this system. Since

the system is autonomous, solution trajectories never intersect, and so it
follows that ρ > 0, |v| < c is an invariant region for solutions. Note also that
since ρ1 is independent of v, the isocline ρ ≡ ρ1 also defines a solution curve
for system (5.20), (5.21), and so it also cannot be crossed by other solution
trajectories. Thus 0 < ρ < ρ1, |v| < c is a bounded invariant region, and
ρ > ρ1, |v| < c is an unbounded invariant region, for solutions of system
(5.20), (5.21). Thus it remains only to verify (5.28), and it follows that the
only obstacle to global existence for the initial value problem (5.20), (5.21),
(5.26), (5.27), is the case ρ0 > ρ1, and the possibility that ρ(t) → ∞ before
t → ∞. Note that (5.20) is quadratic in ρ, so the bound (5.28) on ρ is not
a consequence of equation (5.20) alone. However, (5.21) implies that ρ is
bounded, as we now show.

If ρ0 > ρ1, then since ρ1 > ρ2 for all values of v, it follows that v̇ < 0 for
all time. Consequently, v(t) ≤ v0, and ρ(t) can only increase while v ≥ 0.
Once v hits v = 0, v(t) < 0 and ρ(t) decreases from that time forward. Thus
it suffices to estimate the change in ρ(t) while 0 ≤ v(t) ≤ v0. But from (5.20),
(5.21), we have

dρ

dv
= −(c2 + σ2)2v

(c4 − v4)σ2

ρ− ρ1

ρ− ρ2

ρ (5.29)

≥ −
(

(c2 − σ2

σc

)2
v

c2 − v2
ρ,
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×

0
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−1

1
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c
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Figure 4: The phase portrait for system (5.20), (5.21)

where we have used ρ ≥ ρ1 ≥ ρ2. Integrating this inequality by separation of
variables gives the inequality (5.28). 2

The phase portrait for solutions of (5.20), (5.21), is given in Figure 4.

By the results of Section 4 the Riemann problem solutions preserve the
bounds 0 < ρ <∞, |v| < c, and all (invariant) wave speeds remain bounded
by c, so long as 0 < ρ < ∞, |v| < c initially. By the results in this section,
it follows that these bounds also are maintained under the ODE step. But
(3.26) and (3.43) imply that that the only way the approximate solution u∆x

can fail to be defined for all time, is if B → ∞, or the CFL condition fails.
The following theorem is a direct consequence of (3.26) and (3.43):
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Proposition 10 Let B̄, M̄ denote arbitrary positive constants, let

Λ =
∆x

∆t
= 2

√
GAB(B̄, M̄),

and assume that the initial data u0(·) satisfies the bounds 0 < ρ <∞, |v| < c
for all x ≥ r0. Then the approximate solution u∆x is defined, and continues
to satisfy the bounds 0 < ρ <∞, |v| < c for all x ≥ r0, t ≤ tJ , so long as

‖M∆x‖∞ < M̄,

‖B∆x‖∞ < B̄,

for all x ≥ r0, j ≤ J.

As a final comment, note that we have bounds for the RP step, and
bounds for the ODE step, but it remains to obtain bounds that apply to
both steps. Also, the fact that ρ and v remain finite in each approximate
solution does not rule out ρ → ∞ in the actual solution. For this, we need
estimates that are independent of ∆x, c.f. [16].

6 Estimates for the ODE step

In this section we obtain estimates for the growth of the total variation of ln ρ
and ln c+v

c−v under the evolution of the ODE u̇ = G(A, r, x), which is equivalent
to the system (5.20), (5.21). To this end, rewrite system (5.20), (5.21) in
terms of the variables (z, w)≡(K0 ln ρ,K0 ln c+v

c−v ) to obtain, c.f. (2.15), (2.16),

ż =
4
√
AB

x

(
σvc2

c4 − σ2v2

){
κ(c2 + σ2)

4
ρx2 −

(
1

B

)
1

}
(6.1)

≡ F1(A,B, x, z, w)

ẇ =
4
√
AB

x

(
c4

c4 − σ2v2

){
κ(c2 + v2)

4

σ2

c2
ρx2 (6.2)

−
(
σ2

c2

[
1

B

v2

c2
− (B − 1)

4B

c4 − σ2v2

σ2c2

])
2

}
≡ F2(A,B, x, z, w).

Here K0 is defined in (2.14), and we use that
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ż = K0
ρ̇

ρ
,

ẇ =
2c

c2 − v2
v̇.

Note also that κc2ρx2 is dimensionless. A calculation shows that the indexed
brackets on the RHS of (6.1), (6.2) satisfy

|(·)i| ≤ 1, i = 1, 2. (6.3)

To verify (6.3), use that B ≥ 1, and

|(·)2| =
σ2

c2

∣∣∣∣∣(c4 + 3σ2v2)−B(c4 − σ2v2)

4Bσ2c2

∣∣∣∣∣
=

σ2

c2

∣∣∣∣∣14
(

1

B
− 1

)(
c

σ

)2

+
1

4

(
3

B
+ 1

)(
v

c

)2
∣∣∣∣∣

≤ σ2

c2
Max

{
1

4

(
c

σ

)2

,
(
v

c

)2
}
≤ 1.

The following theorem gives bounds for the RHS of (6.1), (6.2).

Proposition 11 Assume that

1 ≤ B ≤ B̄, (6.4)

0 < AB ≤ GAB(B̄, M̄) ≡ Ar0Br0 exp

{
8B̄M̄

r0

}
, (6.5)

S ≤ S̄, (6.6)

|v| < c, (6.7)

and r0 ≤ x <∞. Then each of

|Fi(A,B, x, z, w)|,
∣∣∣∣∣∂Fi∂z

∣∣∣∣∣ ,
∣∣∣∣∣∂Fi∂w

∣∣∣∣∣ ,
i = 1, 2, is bounded by 1

2
√

2
G1(B̄, M̄ , S̄), where G1 is defined by

1

2
√

2
G1(B̄, M̄ , S̄) ≡ G0(κc2r0S̄ + 1)

r0

, (6.8)
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where

G0 ≡ G0(B̄, M̄) = K1

√
GAB(B̄, M̄), (6.9)

K1 =
8c4

(c2 − σ2)2
. (6.10)

Here we use the notation that K with a subscript denotes a constant that
depends only on κ, r0, σ and c, while G(·) denotes a constant that depends
also on Ā, B̄, S̄ and M̄, whichever appear in the parentheses after the G. We
include the factor (2

√
2)−1 in (6.8) for future convenience, c.f. Theorem 12

and Proposition 13 below.

Proof: This follows by direct calculation, using |v| < c, σ < c. For example,

∣∣∣∣∣∂F2

∂z

∣∣∣∣∣ =

∣∣∣∣∣∂ρ∂z ∂F2

∂ρ

∣∣∣∣∣ =

∣∣∣∣∣ ρK0

∂F2

∂ρ

∣∣∣∣∣
=

∣∣∣∣∣ρ(c2 + v2)

2σc

4
√
AB

x

(
c4

c4 − σ2v2

){
κ(c2 + v2)

4

σ2

c2
x2

}∣∣∣∣∣
≤ G0(B̄, M̄)

r0

(κc2r0S̄ + 1).

Also,

∣∣∣∣∣∂F2

∂w

∣∣∣∣∣ =

∣∣∣∣∣ ∂v∂w ∂F2

∂v

∣∣∣∣∣ =

∣∣∣∣∣
(
c2 − v2

2c

)
∂F2

∂v

∣∣∣∣∣
=

∣∣∣∣∣
{

4
√
AB

x

(
c2 − v2

2c

)
∂

∂v

(
c4

c4 − σ2v2

)
{·}∗

}
3

+

{
4
√
AB

x

(
c3(c2 − v2)

2(c4 − σ2v2)

)
∂

∂v
{·}∗

}
4

∣∣∣∣∣ ,
where

{·}∗ =

{
κ(c2 + v2)

4

σ2

c2
ρx2 −

(
σ2

c2

[
1

B

v2

c2
− (B − 1)

4B

c4 − σ2v2

σ2c2

])
2

}
∗
.

But straightforward estimates show that

|{·}i| ≤
1

2

G0(B̄, M̄)

r0

(κc2r0S̄ + 1),
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for both i = 1 and i = 2, and so

∣∣∣∣∣∂F2

∂w

∣∣∣∣∣ ≤ G0(B̄, M̄)

r0

(κc2r0S̄ + 1).

This completes the proof of the theorem.2

We now study solutions of (6.1), (6.2) in the z-plane,

z = (z, w) ≡ (K0 ln ρ, ln
c− v
c+ v

), (6.11)

‖z‖ =
√
z2 + w2, (6.12)

so that system (6.1), (6.2) can be written as

ż = F (A, x, z), (6.13)

where A = (A,B) and

F = (F1, F2). (6.14)

Let

z(t) ≡ z(t; A, x, z0) (6.15)

denote the solution of (6.1), (6.2) starting from initial data

z(0) = z0, (6.16)

treating A and x as constants. We now estimate

d

dt
‖z(t)‖. (6.17)

To start, note first that for any smooth curve z(t),∣∣∣∣∣ ddt‖z‖
∣∣∣∣∣ =

∣∣∣∣∣z(t) · ż(t)

‖z(t)‖

∣∣∣∣∣ ≤ ‖ ˙z(t)‖. (6.18)

Thus, if z(t) denotes a solution of (6.1), (6.2), then

∣∣∣∣∣ ddt‖z‖
∣∣∣∣∣ ≤ ‖F (A,B, x, z(t))‖

=
√

2
G0(B̄, M̄)

r0

(κc2r0S̄ + 1). (6.19)
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We next obtain a similar estimate for∣∣∣∣∣ ddt‖zR(t)− zL(t)‖
∣∣∣∣∣ , (6.20)

where

zL(t) ≡ z(t; A, xL, zL), (6.21)

zR(t) ≡ z(t; A, xR, zR), (6.22)

and AL, xL,AR, xR, are constants. (Here, zL, zR could be consecutive con-
stant states that pose a Riemann problem in the construction of u∆x.) Then,

∣∣∣∣∣ ddt‖zR(t)− zL(t)‖
∣∣∣∣∣ ≤ ‖żR(t)− żL(t)‖

= ‖F (zR,A, x)− F (zL,A, x)‖ = ‖∆F‖
≤
√

2Max{|∆F1|, |∆F2|}. (6.23)

But

|∆Fi| ≤
∣∣∣∣∣∂Fi∂z

∣∣∣∣∣ |∆z|+
∣∣∣∣∣∂Fi∂w

∣∣∣∣∣ |∆w|, (6.24)

so by Proposition 11, if (6.4)-(6.7) hold, then

|∆Fi| ≤
G0(B̄, M̄)

r0

(κc2r0S̄ + 1) {|∆z|+ |∆w|}

≤
√

2
G0(B̄, M̄)

r0

(κc2r0S̄ + 1) {‖∆z‖} . (6.25)

We have the following result:

Proposition 12 Let zL(t), zR(t) be defined by (6.21) and (6.22), and assume
xL < xR, and that (6.4)-(6.7) of Proposition 11 hold. Then∣∣∣∣∣ ddt‖zR(t)− zL(t)‖

∣∣∣∣∣ ≤ G1√
2
{‖zR(t)− zL(t)‖} , (6.26)

‖zR(t)− zL(t)‖ ≤ ‖zR − zL‖e
G1√

2
t
, (6.27)

where, c.f. (6.8),

G1 ≡ G1(B̄, M̄ , S̄) = 2
√

2
G0(B̄, M̄)

r0

(κc2r0S̄ + 1). (6.28)
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The states zL(t), zR(t) pose a Riemann Problem [zL(t), zR(t)] at each time
t ≥ 0. Let

[zL(t), zR(t)] = (γ1(t), γ2(t)), (6.29)

denote the waves that solve this Riemann problem, c.f. (4.16).

Lemma 4 The following estimate holds:

∣∣∣∣∣∣ ddt
∑
p=1,2

|γp(t)|

∣∣∣∣∣∣ ≤
√

2‖żR(t)− żL(t)‖. (6.30)

≤ G1‖∆z‖.

Proof: For the purposes of the proof, let z(t) = zR(t)− zL(t), and let

γp(z(t)) ≡ Γp(z(t)), (6.31)

where Γp is defined in (4.39) of Proposition 6. Then by Propositions 4, 8 and
(4.40),

∑
p=1,2

{|γp(z(t))| − |γp(z(0))|} ≤
∑
p=1,2

|γp(z(t)− z(0))|

≤
√

2‖z(t)− z(0)‖. (6.32)

Similarly,

∑
p=1,2

{|γp(z(0))| − |γp(z(t))|} ≤
∑
p=1,2

|γp(z(0)− z(t))|

≤
√

2‖z(t)− z(0)‖. (6.33)

Thus (6.32) together with (6.33) imply that∣∣∣∣∣∣ ddt
∑
p=1,2

|γp(z(t))|

∣∣∣∣∣∣ ≤
√

2‖ż(t)‖, (6.34)

which is (6.30). The second inequality in (6.30) follows directly from (6.26).
2

We have the following, c.f. (6.8):
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Proposition 13 Let (γ1(t), γ2(t)) = [zL(t), zR(t)], where zL(t), zR(t) solve
the ODE (6.1), (6.2). Assume that (6.4)-(6.7) of Proposition 11 hold. Then

|γ1(t)|+ |γ2(t)| ≤ |γ1(0)|+ |γ2(0)|+ ‖zR(0)− zL(0)‖eG1tG1t, (6.35)

where G1 ≡ G1(B̄, M̄ , S̄) is given in (6.28).

Proof: This follows from (6.30) and (6.27). 2

7 Analysis of the Approximate Solutions

Let u∆x(x, t) denote an approximate solution generated by the fractional step
Glimm method, starting from initial data u0(·) that satisfies the finite total
mass condition

M∆x(∞, 0) = Mr0 +M0 ≤ ∞, M0 ≡
κ

2

∫ ∞
r0

u0
∆x(r, 0)r2 dr; (7.1)

the condition for initial locally finite total variation,

∑
i1 ≤ i ≤ i2
p = 1, 2

|γpi,0| < V0, (7.2)

for all i1, i2 such that |xi2 − xi1| ≤ L; the condition that the initial velocity
is bounded uniformly away from the speed of light,

|v∆x(x, 0)| ≤ v̄0 < c; (7.3)

and the condition that the initial supnorm of xρ is bounded,

S∆x(x, 0) ≡ xρ∆x(x, 0) ≤ S̄0 <∞. (7.4)

Note that (7.1) and (7.4) imply that

|w∆x(x, 0)| ≤
∣∣∣∣ln(c+ v̄0

c− v̄0

)∣∣∣∣ ≡ w̄0, (7.5)

and

|z̄∆x(x, 0)| ≤
∣∣∣∣∣K0 ln

(
S̄

r0

)∣∣∣∣∣ ≡ z̄0. (7.6)
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Assuming (7.1)-(7.6), our goal is to find estimates for Vj, S̄j and T > 0
such that

∑
i1 ≤ i ≤ i2
p = 1, 2

|γpij| < Vj, (7.7)

and

Sj ≡ sup
r≥r0

xρ∆x(x, tj) ≤ S̄j (7.8)

for all |xi2 − xi1| ≤ L, 0 ≤ tj ≤ T = tJ ≤ 1. Note that (7.7) estimates the
total variation in z on x-intervals of length L, and (7.8) estimates a weighted
supnorm. Estimates for the supnorm and local total variation norm of the
approximate solution u∆x, that are uniform in time, are required to apply
the Oleinik compactness argument, [16]. Recall that the waves γpij solve the
Riemann Problem [ui−1,j, uij] for system (3.8), and that since A = Aij on
mesh rectangle Rij, it follows that the source A affects the speeds of the
waves γpij, but the states on the waves themselves agree with the solution
[ui−1,j, uij] for the special relativistic Euler equations (3.8) when A = (1, 1).

To start, let ∆ij denote the interaction diamond centered at (xi, tj) in the
approximate solution u∆x. In the case i > 0, the diamond ∆ij is formed by
the points (xi−1 + aj∆x, tj), (xi + aj∆x, tj), (xi, tj− 1

2
), (xi, tj+ 1

2
), and in the

case i = 0, ∆0,j is the half-diamond formed at the boundary by the mesh
points (x0, tj+ 1

2
), (x0, tj− 1

2
), (x0 + aj∆x, tj), c.f. Figure 5.

In the case i > 0, the waves γpij solve the Riemann Problem [uL, uR],
where

uL = ui−1,j,

uR = uij.

We call these the waves that leave the diamond ∆ij, c.f. [8]. The waves that
enter the diamond solve the Riemann Problems [ûL, uM1 ], [uM1 , uM2 ], and
[uM2 , ûR], where

uM1 = ui−1,j−1,

uM2 = ui,j−1,

and
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uL
uL

uM

uM=u0, j−1
uM1=ui−1, j−1
uM2=ui, j−1

x=r0
i=0

i x

uM1 uM2

uR uR

∆oj γij ∆ij

j

t

1 γij
2

Figure 5: The interaction diamonds ∆ij

ûL = uRPi−1,j,

ûR = uRPij . (7.9)

States uL, uR are obtained from ûL, ûR by solving the ODE ut = G, written
out in (3.19). That is, uL = χ−1(zL), uR = χ−1(zR), and ûL = χ−1(ẑL), ûR =
χ−1(ẑR), where,

zL = z(∆t; Aij, xi, ẑL), (7.10)

zR = z(∆t; Aij, xi, ẑR),

c.f. (6.15). Thus, using the notation introduced at (4.16),

[uL, uR] = (γ1
ij, γ

2
ij),

[ûL, ûR] = (γ̂1
ij, γ̂

2
ij), (7.11)

[uM1 , uM2 ] = (γ1
i,j−1, γ

2
i,j−1),

and we write

[ûL, uM1 ] = (γR1
i−1,j−1, γ

R2
i−1,j−1), (7.12)

[uM2 , uR] = (γL1
i+1,j−1, γ

L2
i+1,j−1).
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Here we let γR1
ij , γ

R2
ij denote the waves in the Riemann Problem posed at

(xi, tj) that lie to the right of the random point (xi + aj+1∆x, tj+1) at time
t = tj+1, and γL1

ij , γ
L2
ij the waves that fall to the left of the random point

(xi−1 + aj+1∆x, tj+1), respectively, [23, 8]
In the case of the boundary diamond ∆0,j, the wave γ2

0j leaves the diamond
∆0,j, and the waves γ2

0,j−1, γ
L1
1,j−1 and γL2

1,j−1 enter the diamond. In this case,
using the notation introduced at (4.44), (4.43), we can write

[0, uR] = γ2
0j,

[0, ûM ] = γ̂2
0,j−1, (7.13)

[uM , ûR] = (γL1
1,j−1, γ

L2
1,j−1),

where

uR = u0j,

ûR = uRP0j , (7.14)

uM = u0,j−1.

Now let |γINij | denote the sum of the strength of the waves that enter the
diamond ∆ij. Thus, if i > 0, then

|γINij | =
∑
p=1,2

{
|γpi−1,j−1|+ |γ

p
i,j−1|+ |γ

Lp
i+1,j−1|

}
, (7.15)

and if i = 0,

|γIN0j | = |γ2
0,j−1|+ |γL1

1,j |+ |γL2
1,j |. (7.16)

It follows from Propositions 4 and 8 that when i > 0,

|γ̂1
ij|+ |γ̂2

ij| ≤ |γINij |, (7.17)

and when i = 0,

|γ̂2
0j| ≤ |γIN0j |. (7.18)

Now it follows from (6.35) of Proposition 13, that if u∆x satisfies (6.4)-
(6.7) of Proposition 11, then

|γ1
ij|+ |γ2

ij| ≤ |γ̂1
ij|+ |γ̂2

ij|+ ‖ẑR − ẑL‖eG1∆tG1∆t. (7.19)

But by (4.26),
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|ẑR − ẑL| ≤ |γ̂1
ij|+ |γ̂2

ij|+H(|γ̂1
ij|) +H(|γ̂2

ij|), (7.20)

so putting these together we obtain,

|γ1
ij|+ |γ2

ij| ≤ |γ̂1
ij|+ |γ̂2

ij|+

 ∑
p=1,2

[
|γ̂pij|+H(|γ̂pij|)

] eG1∆tG1∆t. (7.21)

We can now use (7.17), (7.18) to estimate |γ̂pij| and H(|γ̂pij|).
Note first that by the convexity of H, we have Proposition 5, so

∑
p=1,2

H
(
|γ̂pij|

)
≤ H

 ∑
p=1,2

|γ̂pij|

 ≤ H(|γINij |). (7.22)

Let

|γOUTij | = |γ1
ij|+ |γ2

ij|. (7.23)

Then putting (7.17), (or (7.18) at the boundary), and (7.22) into (7.21), we
obtain

|γOUTij | ≤ |γINij |+
{
|γINij |+H

(
|γINij |

)}
eG1∆tG1∆t. (7.24)

We can also estimate the change in z and z between (xi, tj) and (xi, tj−1).
Since both zi,j−1 and zRPij are states on the waves γpi,j−1 or γpi+1,j−1, and by
(6.19) we know

|zij − zRPij | ≤ ‖zij − zRPij ‖ ≤ G1∆t, (7.25)

it follows that

|zij − zi,j−1| ≤
∑

l = i, i+ 1
p = 1, 2

{
|γpl,j−1|+H

(
|γpl,j−1|

)}
+G1∆t, (7.26)

and

|zij − zi,j−1| ≤
∑

l = i, i+ 1
p = 1, 2

|γl,j−1|+G1∆t. (7.27)

We collect our results so far in the following theorem.
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Theorem 4 Let M̄, B̄, S̄, v̄, and integer J0 > 0, be any finite positive
constants, assume |v̄| < c, and let u∆x(x, t), A∆x(x, t) be an approximate
solution generated by the fractional step Glimm method with

∆x

∆t
= Λ = 2

√
GAB(B̄, M̄). (7.28)

Assume that,

M∆x(x, tj) ≤ M̄, (7.29)

B∆x(x, tj) ≤ B̄, (7.30)

0 < S∆x(x, tj) ≤ S̄ (7.31)

|v∆x(x, tj)| ≤ v̄, (7.32)

for all x ≥ r0, 0 ≤ tj ≤ T0 = tJ0 ≤ 1. Then the speed of each wave γpij
generated in u∆x at the Riemann Problem step of the method is bounded by

the coordinate speed of light
√
Aij/Bij, i ≥ 0, 0 ≤ j ≤ J0, and the following

estimates hold at each interaction diamond ∆ij, i ≥ 0, j ≤ J0 − 1:

‖zij − zi,j−1‖ ≤
∑

l = i, i+ 1
p = 1, 2

{
|γpl,j−1|+H

(
|γpl,j−1|

)}
+G1∆t,(7.33)

|zij − zi,j−1| ≤
∑

l = i, i+ 1
p = 1, 2

|γpl,j−1|+G1∆t, (7.34)

|γOUTij | − |γINij | ≤
{
|γINij |+H

(
|γINij |

)}
eG1∆tG1∆t, (7.35)

where,

G1 ≡ G1(B̄, M̄ , S̄) = 2
√

2
G0(B̄, M̄)

r0

(κc2r0S̄ + 1), (7.36)

G0 ≡ G0(B̄, M̄) = K1

√
GAB(B̄, M̄), (7.37)

K1 =
8c4

(c2 − σ2)2
, (7.38)

GAB = Ar0Br0 exp

{
8B̄M̄

r0

}
. (7.39)

Moreover,
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1 ≤ B∆x(x, tj), (7.40)

0 < Ar0 < A∆x(x, tj) ≤ GAB, (7.41)

0 < xu0
∆x(x, tj) ≤

c2 + σ2v̄2

c2 − v̄2
S̄, (7.42)

and

|A′∆x(x, tj)| ≤
(

1

r0

+ κ
c2 + σ2v̄2

c2 − v̄2
S̄

)
B̄GAB, (7.43)

|B′∆x(x, tj)| ≤
(

1

r0

+ κ
c2 + σ2v̄2

c2 − v̄2
S̄

)
B̄2. (7.44)

for all x ≥ r0, 0 ≤ tj ≤ T0 = tJ0 ≤ 1.

Note, again, that (7.43) gives the Lipschitz continuity in x of A∆x and B∆x

and (7.42) implies that ρ∆x > 0 for 0 ≤ t ≤ T0.

Proof: This follows directly from (7.24), (7.26) and (7.27), together with
Propositions 2 and 10.2

Corollary 1 Assume that the approximate solution u∆x,A∆x satisfies the
conditions (7.28)-(7.32) of Theorem 4 up to some time T0, 0 < T0 = tJ0 ≤ 1,
and assume further that there exists constants L, V0 such that

∑
i1≤i≤i2, p=1,2

|γpi0| < V0, (7.45)

for all |xi2 − xi1| ≤ L. Then for any constant α > 1 :

(A) The following total variation bound holds:

∑
i1≤i≤i2, p=1,2

|γpij| ≤ α

(
1 +

4tj
√
GAB

L

)
V0 ≤ αV̄∗, (7.46)

for all |xi2 − xi1 | ≤ L, so long as tj ≤Min{Tα, T0} ≤ 1 where

Tα =
(

1

G1eG1

)
(α− 1)V̄∗{

αV̄∗ +H(αV̄∗)
} , (7.47)

V̄∗ ≡
(

1 +
4
√
GAB

L

)
V0. (7.48)
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(B) The following L1
loc bounds hold:

∫ xi2

xi1

‖z∆x(x, tj2)− z∆x(x, tj1)‖ dx

≤
{

4
√
GAB

[
αV̄∗ +H(αV̄∗)

]
+G1|xi2 − xi1|

}
|tj2 − tj1|, (7.49)

∫ xi2

xi1

|z∆x(x, tj2)− z∆x(x, tj1)| dx

≤
{

4
√
GAB

[
αV̄∗

]
+G1|xi2 − xi1|

}
|tj2 − tj1|, (7.50)

for any tj1 ≤ tj2 ≤Min{Tα, T0} ≤ 1, and any r0 ≤ xi1 ≤ xi2 <∞.
(C) The following bounds on the supnorm hold:

|zij − zi+j,0| ≤ α

(
1 +

4tj
√
GAB

L

)
V0 + 2

√
GABG1tj, (7.51)

|wij − wi+j,0| ≤ H

(
α

(
1 +

4tj
√
GAB

L

)
V0

)
+ 2

√
GABG1tj, (7.52)

‖zij − zi+j,0‖ ≤ α

(
1 +

4tj
√
GAB

L

)
V0 (7.53)

+H

(
α

(
1 +

4tj
√
GAB

L

)
V0

)
+ 2

√
GABG1tj,

for all tj ≤Min(Tα, T0) ≤ 1.

The motivation for choosing the factor
(
1 + 4tj

√
GAB
L

)
in (7.85) of (A) is that

since

∆x

∆t
= Λ = 2

√
GAB(B̄, M̄), (7.54)

it follows that (
1 +

4tj
√
GAB

L

)
≥
xi2 − xi1 + 4∆x

∆t
tj

L
, (7.55)

where the RHS of (7.55) dominates the number of intervals of length L con-
tained within the domain of dependence of [xi1 , xi2 ] at time level tj. Note

that the appearance of tj
√
GAB in

(
1 + 4tj

√
GAB
L

)
(7.46) is important because
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the LHS of (7.46) can be estimated independently of M̄, B̄, S̄ and v̄ for tj
sufficiently small.

Regarding part (C), note that zi+j,0 = z∆x(xi + tj
∆x
∆t
, 0) where tj

∆x
∆t

=
2tj
√
GAB depends on M̄, B̄. Note also that since

|v∆x(x, tj)| ≤ v̄j < c iff |w∆x(x, tj)| ≤ w̄j =

∣∣∣∣∣ln c+ v̄j
c− v̄j

∣∣∣∣∣ , (7.56)

it follows from (7.52) that if initially |w∆x(xi, 0)| ≤ w̄0, then

|w∆x(xi, tj)| ≤ w̄0 +H

(
α

(
1 +

4tj
√
GAB

L

)
V0

)
+G1tj

√
GAB = w̄j, (7.57)

for all xi ≥ r0, tj ≤ Min{Tα, T0} ≤ 1. Thus |w| is bounded uniformly and v
is bounded uniformly away from c at each tj ≤ Min{Tα, T0} ≤ 1 so long as
these bounds hold initially.

Proof of (A): Assume 0 < tj ≤ T0, and consider the interaction diamonds
∆ij, i = i1, . . . , i2. Then by (7.35), (if i1 > 0),

∑
i1≤i≤i2, p=1,2

|γpij =
∑

i1≤i≤i2
|γOUTij | (7.58)

≤
∑

i1≤i≤i2
|γINij |+

∑
i1≤i≤i2

{
|γINij |+H

(
|γINij |

)}
eG1∆tG1∆t

≤
∑

i1−1≤i≤i2+1

|γi,j−1|+
∑

i1−1≤i≤i2+1

{|γi,j−1|+H (|γi,j−1|)} eG1∆tG1∆t.

More generally, let

Vj =
∑

i1≤i≤i2
|γOUTij |, (7.59)

Vj−1 =
∑

∂(i1−1)≤i≤i2+1

|γOUTi,j−1|, (7.60)

V0 =
∑

∂(i1−j)≤i≤i2+j

|γOUTi,0 |, (7.61)

where to account for the boundary at r = r0, we let

∂(i1 − j) =

{
0 i1 − j ≤ 0
i1 − j otherwise

. (7.62)
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Then (7.58) together with the convexity of H imply that

Vk − Vk−1 ≤ {Vk−1 +H (Vk−1)} eG1∆tG1∆t, (7.63)

for all k ≤ j. To estimate Vj, define

V̄0 =
{

1 +
xi2+j − x∂(i1−j)

L

}
V0 ≥

∑
∂(i1−j)≤i≤i2+j, p=1,2

|γpi0|, (7.64)

c.f. (7.45), and inductively let

V̄k = V̄k−1 + {Vk−1 +H (Vk−1)} eG1∆tG1∆t, (7.65)

to define V̄k for all k ≤ j. Note that

V̄∗ ≡
(

1 +
4
√
GAB

L

)
V0 ≥

(
1 +

4tj
√
GAB

L

)
V0 ≥ V̄0, (7.66)

where we use that{
1 +
|xi2+j − x∂(i1−j)|

L

}
≤
{
L+ 2tj

∆x
∆t

L

}
(7.67)

dominates the number of intervals of length L contained in |xi2+j − x∂(i1−j)|.
Now V̄k increases with k, and by induction using (7.63) it follows that

V̄k ≥ Vk, (7.68)

for all k ≤ j. Thus to estimate Vj, it suffices to estimate V̄j. To this end, fix
α > 1, and let Tα be given by (7.47).

Claim: V̄j ≤ αV̄0 for all tj ≤Min{Tα, T0} ≤ 1.

To prove the claim, assume that tj ≤ Min{Tα, T0} ≤ 1, and tj+1 is the first
time such that

V̄j+1 > αV̄0. (7.69)

Then for tk ≤ tj,

V̄k − V̄k−1 ≤
{
αV̄0 +H

(
αV̄0

)}
eG1∆tG1∆t, (7.70)

and summing we obtain

V̄k − V̄0 ≤
{
αV̄0 +H

(
αV̄0

)}
eG1∆tG1tj. (7.71)
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But solving for tj in (7.71) shows that

{
αV̄0 +H

(
αV̄0

)}
eG1∆tG1tj ≤ (α− 1)V̄0, (7.72)

so long as

tj ≤
(

1

G1eG1

)
(α− 1)V̄0{

αV̄0 +H(αV̄0)
} .

But

Tα ≤
(

1

G1eG1

)
(α− 1)V̄0{

αV̄0 +H(αV̄0)
} , (7.73)

and so it follows (inductively) from (7.73) that the bound (7.69) is maintained
so long as tj ≤Min{Tα, T0} ≤ 1, as claimed.

In light of (7.66), it follows that

∑
i1≤i≤i2

|γpij| = Vj ≤ V̄j ≤ αV̄0 < α

(
1 +

4tj
√
GAB

L

)
V0 ≤ αV̄∗

for all tj ≤Min{Tα, T0} ≤ 1, which is (7.46). The proof of (A) is complete.

Proof of (B): For (7.49), estimate as follows:

∫ xi2

xi1

‖z∆x(x, tj2)− z∆x(x, tj1)‖ dx

=
i2−1∑
i=i1

‖zij2 − zij1‖∆x ≤
i2−1∑
i=i1

j2∑
j=j1+1

‖zij − zi,j−1‖∆x

≤
i2−1∑
i=i1

j2∑
j=j1+1


∑

l = i, i+ 1
p = 1, 2

[
|γpl,j−1|+H

(
|γpl,j−1|

)]
+G1∆t


∆x

≤ 2
j2∑

j=j1+1

 i2∑
i=i1

∑
p=1,2

{
|γpi,j−1|+H

(
|γpi,j−1|

)}∆x+G1|xi2 − xi1 ||tj2 − tj2|

≤
{

2
[
αV̄∗ +H(αV̄∗)

] ∆x

∆t
+G1|xi2 − xi1 |

}
|tj2 − tj2|
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where we have used (7.33) and (7.46). In light of (7.28), this verifies (7.49).
Inequality (7.50) follows by the same argument using (7.34) in place of (7.33).

Proof of (C): Note first that (7.33) and (7.34) directly imply that

‖zij − zi0‖ ≤
∑

l = i, i+ 1
0 ≤ k ≤ j − 1

p = 1, 2

{|γplk|+H (|γplk|)}+G1tj, (7.74)

|zij − zi0| ≤
∑

l = i, i+ 1
0 ≤ k ≤ j − 1

p = 1, 2

|γplk|+G1tj. (7.75)

Unfortunately, we cannot use (7.74) directly to estimate ‖zij − zi0‖ because
we cannot bound the right-hand-side by V0 without introducing wave-tracing
to identify waves at time tj with waves at time t = 0. To get around this, we
estimate ‖zij − zi0‖ as follows.

Let (xi, tj) be fixed. Let JRij denote the piecewise linear I-curve that
connects mesh points (xi, tj+ 1

2
) to (xi + aj∆xj, tj) to (xi+1, t(j−1)+ 1

2
) and so

on, continuing downward and to the right until you reach (xi+j +a0∆x, 0) at
time t0 = 0. Let JLij connect (xi, tj+ 1

2
) to (xi−1 + aj∆x, tj) to (xi−1, t(j−1)+ 1

2
)

and so on, continuing downward and to the left until one reaches t = 0 at
(xi−j−1, t0) or else stop at r = r0 at the point (r0, tj0+ 1

2
), (see Figure 6). Let

Jij denote the I-curve Jij = JLij
⋃

JRij, and recall from [8, 23, 24], that one can
connect Jij by a sequence of I-curves, J0, . . . , JN = Jij such that Jk+1 is an
immediate successor of Jk, and J0 is the I-curve that crosses the waves γpi0
between i = ∂(i− i1) and i = i+ j. (See figure 4.) Since Jk differs from Jk+1

by a single interaction diamond, it follows by induction using (7.58), and the
argument (7.58)-(7.73), that

∑
Jij

|γpij| ≤ α

(
1 +

4tj
√
GAB

L

)
V0, (7.76)

where
∑

Jij |γ
p
ij| denotes the sum of the waves γpij that cross the curve Jij.

(We have used the assumption tj ≤ Min{Tα, T0} ≤ 1.) From this it follows
that

∑
JRij

|γpij| ≤ α

(
1 +

4tj
√
GAB

L

)
V0. (7.77)
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J0

xi+a0∆x

r0
i−1 i+1i x

JL
ij JR

ij

j

t

××× × × ×

×

×

××

×

×

Figure 6: The I-curves J0, J
L
ij and JRij

But
∑

JRij
|γpij| bounds the total variation in z between the state zi+j,0 and the

state zij, except for the change in z that occurs between zRPi′j′ and zi′j′ at each
(xi′ , tj′) that lies on the I-curve JRij. But by (7.25), we know that

‖zRPi′j′ − zi′j′‖ ≤ G1∆x, (7.78)

so it follows that

|zij − zi+j,0| ≤ α

(
1 +

4tj
√
GAB

L

)
V0 +G1tj

∆x

∆t
. (7.79)

which verifies (7.51) in light of (7.54), (7.54). Also, since

‖γpij‖ ≤ |γ
p
ij|+H

(
|γpij|

)
, (7.80)

where H
(
|γpij|

)
bounds the change in w across wave γpij, it follows that

|wij − wi+j,0| ≤
∑
JRij

H
(
|γpij|

)
+G1tj

∆x

∆t
,

‖zij − zi+j,0‖ ≤
∑
JRij

|γpij|+H
(
|γpij|

)
+G1tj

∆x

∆t
,

and so using (7.77), (which again uses tj ≤ Min{Tα, T0} ≤ 1), we obtain
(7.52) and (7.53). This completes the proof of Corollary 1. 2
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In order to unify the estimates in (B) and (C), assume that |xi2−xi1| ≤ L,
and set G2 ≡ G2(B̄, M̄ , S̄) equal to

G2 = Max
{

4
√
GAB

[
αV̄∗ +H(αV̄∗)

]
+G1L, 2

√
GABG1, G1e

G1 ,
√
GAB

}
,

(7.81)

where G1 ≡ G1(B̄, M̄ , S̄), GAB ≡ GAB(B̄, M̄) and V̄∗ are defined in (7.36),
(7.39) and (7.48), respectively. (Note that V̄∗, and hence G2, also depend on
V0, but for our purposes we only keep track of the dependence on M̄, B̄, S̄, v̄,
the constants that are not yet determined by the initial data.) Then the
following corollary is a simplification of Corollary 1.

Corollary 2 Assume that the approximate solution u∆x,A∆x satisfies the
conditions (7.28)-(7.32) of Theorem 4 up to some time T0, 0 < T0 = tJ0 ≤ 1,
and assume that there exists constants L, V0 such that

∑
i1≤i≤i2, p=1,2

|γpi0| < V0, (7.82)

for all |xi2 − xi1 | ≤ L, and assume that α = 2, c.f. (7.46). Then:

(A) The following total variation bound holds:

∑
i1≤i≤i2, p=1,2

|γpij| < 2V̄∗, (7.83)

for all |xi2 − xi1 | ≤ L, so long as tj ≤Min{T2, T0} ≤ 1, where

T2 =
(

1

G2

)
V̄∗{

2V̄∗ +H(2V̄∗)
} , (7.84)

V̄∗ =

(
1 +

4
√
GAB

L

)
V0. (7.85)

(B) The following L1
loc bounds hold:∫ xi2

xi1

‖z∆x(x, tj2)− z∆x(x, tj1)‖ dx ≤ G2|tj2 − tj1|, (7.86)

and ∫ xi2

xi1

|z∆x(x, tj2)− z∆x(x, tj1)| dx ≤ G2|tj2 − tj1|, (7.87)

for all r0 ≤ xi1 < xi2 <∞, |xi2 − xi1| ≤ L, tj ≤Min{T0, T2}.
(C) The following bounds on the supnorm hold.
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|zij − zi+j,0| ≤ F ∗0 (G2 · tj), (7.88)

|wij − wi+j,0| ≤ F ∗0 (G2 · tj), (7.89)

‖zij − zi+j,0‖ ≤ F ∗0 (G2 · tj), (7.90)

for all xi ≥ r0, tj ≤Min{T0, T2}, where

F ∗0 (ξ) = 2

(
1 +

4ξ

L

)
V0 +H

(
2

(
1 +

4ξ

L

)
V0

)
+ ξ. (7.91)

Again, consistent with our notation, the functions G2(·, ·, ·) and F ∗0 (ξ) depend
only on constants σ, c,K0, r0, L and V0 that depend only on the initial data,
and so the functions G2(·, ·, ·) and F ∗0 (ξ) are independent of the constants
M̄, B̄, S̄, v̄. The functions G2(·, ·, ·) and F ∗0 (ξ) are also increasing functions
of each argument. The main point is that constants that depend on M̄, B̄, S̄
or v̄ in the estimates (7.86)-(7.90), are organized into the single constant G2,
(which happens to be independent of v̄), and which is always multiplied by
the factor tj. Thus estimates independent of M̄, B̄, S̄ and v̄ can obtained by
making tj sufficiently small. Note that the formula for F ∗0 (ξ) is obtained
by substituting 2 for α, and ξ for tj

√
GAB and 2

√
GABG1tj, on the RHS of

(7.53).

8 The Elimination of Assumptions

In this section we show that the assumptions (7.29)-(7.32) in Corollary 2,
Theorem 4 above, needn’t be assumed, but are implied by values of M̄, B̄, S̄, v̄
that can be defined in terms of the initial data alone, subject to restrictions
on the time T0. Once we succeed with this replacement, Theorem 4 and
Corollary 2 provide the uniform bounds required to apply the Oleinik com-
pactness argument demonstrating the compactness of approximate solutons
up to some finite time T. To start, consider first the bound (7.32) for v.
Since the constant G1 in Corollary 2 is independent v, it follows that we can
achieve (7.32) for a value of v̄ defined in terms of the bound on v at time
t = 0. Indeed, assume that the initial data v∆x(x, 0) satisfies

|v∆x(x, 0)| ≤ v̄0 < c ⇐⇒ |w∆x(x, 0)| ≤
∣∣∣∣ln(c+ v̄0

c− v̄0

)∣∣∣∣ ≡ w̄0, (8.1)

for all r0 ≤ x. Then assuming the hypotheses of Corollary 2, it follows from
(7.89) that
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|w∆x(x, tj)| ≤ w̄0 + F ∗0 (G2tj), (8.2)

for all r0 ≤ x, tj ≤ Min{T2, T0}. Therefore, if we define v̄ so that w̄ =∣∣∣ln ( c+v̄
c−v̄

)∣∣∣ , where

w̄ ≡ w̄0 + F ∗0 (G2tj), (8.3)

then (7.32) is a consequence of our other assumptions. Indeed, to make a
rigorous proof out of this, just define v̄ by (8.3), (8.2), and let Tv be the first
time at which |v| ≤ v̄ fails. The argument that leads to the choice of w̄ in
(8.2) then shows that Tv ≥Min{T2, T0}.

Similarly, we now use (7.88) to show that S̄ can be defined in terms of
an initial bound S̄0 on S∆x(x, 0) in such a way that (7.31) can be eliminated
as an assumption in Corollary 2 because it follows as a consequence of our
other assumptions. In this case, however, (as in the case of M̄ and B̄), the
constant G1 depends on S̄, so we need a corresponding restriction t ≤ TS for
some TS << 1. Indeed, assume that the initial data S∆x(x, 0) satisfies

0 < S∆x(x, 0) ≤ S̄0, (8.4)

for all r0 ≤ x. Then assuming the hypotheses of Corollary 2, it follows from
(7.88) that

K0 ln ρij −K0 ln ρi+j,0 ≤ F ∗0 (G2 · tj) , (8.5)

and so

0 < ρij ≤ F ∗1 (G2 · tj) ρi+j,0 (8.6)

where

F ∗1 (ξ) = exp

{
F0(ξ)

K0

}
≥ 1. (8.7)

It follows from (8.4) that

Sij = xiρij ≤ F ∗1 (G2 · tj)xiρi+j,0 ≤ F ∗1 (G2 · tj) S̄0. (8.8)

Inequality (8.8) tells us that if we choose S̄ ≥ F ∗1 (0) S̄0, say choose

S̄ = 2F ∗1 (0)S̄0, (8.9)

and set

TS = Sup{t : F ∗1 (G2 · tj) ≤ 2F ∗1 (0), for all tj ≤ t}, (8.10)
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then assumption (7.29) of Corollary 2, Theorem 4, (that 0 < S∆x(x, t) ≤ S̄),
can be replaced by the condition that S̄ is defined in (8.9), together with
the assumption that tj ≤ TS, where TS is defined in (8.9). Note that this
argument relies on the fact that the function F ∗1 (·) is independent of S̄.

We now derive formulas analogous to (8.9), (8.10), for M̄, TM and B̄, TB,
so that assumptions (7.29) and (7.30) of Corollary 2, Theorem 4, can be
replaced by the condition that M̄, B̄ be defined by the values given in the
formulas, together with tj ≤ TM and tj ≤ TB, respectively. So consider next
the total mass

M∆x(∞, tj) = Mr0 +Mj, Mj ≡
κ

2

∫ ∞
r0

u0
∆x(r, tj)r

2 dr. (8.11)

Using u0 = T 00
M and lnw = c+v

c−v in (1.15), we obtain

u0 =
1

2

{
(1 + σ2) coshw + (1− σ)

}
ρ. (8.12)

Thus it follows from (8.3) and (8.6) that

u0
∆x(xi, tj) ≤

1

2

{
(1 + σ2) cosh w̄ + (1− σ)

}
F ∗1 (G2 · tj)ρ∆x(xi+j, 0). (8.13)

Using this in (8.11) we obtain

Mj ≤ Mr0 + F ∗2 (G2 · tj)
κ

2

∫ ∞
r0

ρ∆x(r + j∆x, 0)r2 dr

≤ Mr0 + F ∗2 (G2 · tj)
κ

2

∫ ∞
r0

u0
∆x(r, 0)r2 dr

= Mr0 + F ∗2 (G2 · tj)M0, (8.14)

where

F ∗2 (ξ) ≡ 1

2

{
(1 + σ2) cosh(w̄) + (1− σ)

}
F ∗1 (ξ), (8.15)

M0 =
κ

2

∫ ∞
r0

u0
∆x(r, 0)r2 dr. (8.16)

Inequality (8.14) tells us that if we choose M̄ ≥Mr0 + F ∗2 (0)M0, say choose

M̄ = Mr0 + 2F ∗2 (0)M0, (8.17)

and set
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TM = Sup{t : Mr0 + F ∗2 (G2 · tj)M0 ≤ M̄, for all tj ≤ t}. (8.18)

then assumption (7.29) of Corollary 2, Theorem 4, can be replaced by the
condition that M̄ is defined in (8.17), together with the assumption that
tj ≤ TM , where TM is defined in (8.18).

We now turn to the problem of defining B̄, TB so as to replace the final
assumption (7.30) of Theorem 3. Since

B∆x(x, t) =
1

1− 2GM∆x(x,t)
x

, (8.19)

it follows that to accomplish this, we must estimate the change in M∆x(x, tj)
between times t = 0 and t = tj, assuming that Corollary 2, Theorem 4,
applies. More generally, assume that (7.29)-(7.32), and hence Theorem 4,
hold up to time tj, and assume that 0 ≤ tj0 < tj. We estimate

|M∆x(x, tj)−M∆x(x, tj0)| ≤ κ

2

∫ x

r0
|u0

∆x(r, tj)− u0
∆x(r, tj0)|r2 dr. (8.20)

To start, let

∆u0 = u0
∆x(r, tj)− u0

∆x(r, tj0),

∆w = w∆x(r, tj)− w∆x(r, tj0), (8.21)

∆ρ = ρ0
∆x(r, tj)− ρ0

∆x(r, tj0),

etc. Then

|∆u0| ≤
∥∥∥∥∥∂u0

∂w

∥∥∥∥∥
∞
|∆w|+

∥∥∥∥∥∂u0

∂z

∥∥∥∥∥
∞
|∆z|. (8.22)

From (8.12) we calculate

∂u0

∂z
=

1

2K0

{
(1 + σ2) coshw + (1− σ)

}
ρ, (8.23)

∂u0

∂w
=

1 + σ2

2
(sinhw) ρ. (8.24)

Since
∣∣∣∂u0

∂w

∣∣∣ ≤ ∂u0

∂z
, it follows from (8.22) that
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|∆u0| ≤ 1

K0

1

2

{
(1 + σ2) cosh(w̄) + (1− σ)

}
‖ρ‖∞ {|∆w|+ |∆z|}

≤
√

2

K0

F ∗2 (G2 · tj)
F ∗1 (G2 · tj)

‖ρ‖∞‖∆z‖. (8.25)

Putting (8.25) into (8.20) and using

ρ∆x(x, t) ≤ F ∗1 (G2 · tj) ρ∆x (x+ j∆x, 0) , (8.26)

we obtain

|M∆x(x, tj)−M∆x(x, tj0)| ≤ κF ∗2 (G2 · tj)√
2K0

∫ x

r0
ρ∆x (r + j∆x, 0) ‖∆z‖r2 dr.

(8.27)
We use (8.27) again below, but for now we can continue from (8.27) to obtain

κF ∗2 (G2·tj)√
2K0

∫ x
r0
ρ∆x (r + j∆x, 0) ‖∆z‖r2 dr

≤ κF ∗2 (G2·tj)S̄x√
2K0

∫ x
r0
‖∆z‖ dr (8.28)

≤ κF ∗2 (G2·tj)S̄x2
√

2K0L
G2|tj − tj0|,

where we have used ∫ x

r0
‖∆z‖ dr ≤ x

L
G2|tj2 − tj1|, (8.29)

a consequence of (7.86). Note that the factor x/L bounds the number of
intervals of length L between r0 and x. We record this as a Corollary of
Theorem 4:

Corollary 3 Assume Corollary 2, Theorem 4, applies up to time T0. Then

|M∆x(x, tj)−M∆x(x, tj0)| ≤ κF ∗2 (G2 · tj) S̄x2

√
2K0L

G2|tj − tj0|, (8.30)

for all 0 ≤ tj0 ≤ tj ≤ T0.

In particular, ignoring errors of order ∆x, (8.30) implies the local Lipschitz
in time continuity of M∆x, (and hence of B∆x and A∆x).
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We can estimate |M∆x(x, tj)−M∆x(x, tj0)| differently starting from (8.27)
as follows:

|M∆x(x, tj) − M∆x(x, tj0)|

≤ κF ∗2 (G2 · tj)√
2K0

[∫ R

r0
+
∫ ∞
R

]
ρ∆x (r + j∆x, 0) ‖∆z‖r2 dr,

≤ κF ∗2 (G2 · tj) S̄R2

√
2K0L

G2|tj − tj0| (8.31)

+
κF ∗2 (G2 · tj)F ∗0 (G2 · tj)√

2K0

∫ ∞
R

ρ∆x (r + j∆x, 0) r2 dr,

where we have used (8.28) together with

‖∆z‖ ≤ F ∗0 (G2 · tj), (8.32)

a consequence of (7.88). But

κ

2

∫ ∞
R

ρ∆x (r + j∆x, 0) r2 dr ≤ κ

2

∫ ∞
R

ρ∆x(r + j∆x, 0)(r + j∆x)2 dr

≤ κ

2

∫ ∞
R

ρ∆x(r, 0)r2 dr

≤ κ

2

∫ ∞
R

u0
∆x(r, 0)r2 dr

≤ M∆x(∞, 0)−M∆x(R, 0), (8.33)

and since

lim
R→∞

[M∆x(R, 0)−M∆x(∞, 0)] = 0, (8.34)

it follows that for any δ > 0 sufficiently small, there exists R(δ) > 0, such
that

κF ∗2 (G2 · tj)F ∗0 (G2 · tj)√
2K0

∫ ∞
R(δ)

ρ∆x (r + j∆x, 0) r2 dr ≤ δ, (8.35)

for all tj ≤ T0. Indeed, since M∆x(x, 0) is a continuous monotone increasing
function of x, it follows that we can define R(δ) to satisfy the equality

√
2

K0

F ∗2 (G2)F ∗0 (G2) [M∆x(∞, 0)−M∆x(R(δ), 0)] = δ, (8.36)
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in which case (8.35) follows at once from (8.33). Using this definition of R(δ)
in (8.31), it follows that for every δ > 0,

|M∆x(x, tj)−M∆x(x, tj0)| ≤ κF ∗2 (G2 · tj) S̄R(δ)2

√
2K0L

G2|tj − tj0|+ δ. (8.37)

Therefore, assuming Corollary 2, Theorem 4 applies up to some time T0,
0 < T0 ≤ 1, we can choose δ = ε/2, and set

Tε =

{
κF ∗2 (G2) S̄R(ε/2)2

√
2K0L

G2

}−1
ε

2
, (8.38)

and conclude from (8.37) that

|M∆x(x, tj)−M∆x(x, tj0)| < ε, (8.39)

for all tj ≤Max{Tε, T0}. We record this as another corollary to Theorem 4:

Corollary 4 Assume that Corollary 2, Theorem 4, holds up to time T0.
Then for all ε > 0, there exists Tε > 0, (given explicitly in (8.38)), such that

|M∆x(x, tj)−M∆x(x, tj0)| < ε, (8.40)

for all x ≥ r0, tj ≤Min{Tε, T0}.

We now use Corollary 4 to define B̄ and TB. Consider the function
B∆x(x, t). Assume that the initial data satisfies

B∆x(x, 0) =
1

1− 2M∆x(x,0)
x

≤ B̄0 (8.41)

for some positive constant B̄0. Choose B̄ > B̄0, say

B̄ = 2B̄0. (8.42)

Choose ε > 0 by

ε = Sup

ε :
1

1− 2(M∆x(x,0)+ε)
x

≤ 2B̄0 = B̄, for all r0 ≤ x <∞

 . (8.43)

Claim: By (8.43),

ε ≥ r0

2

(
1

B̄0

− 1

2B̄0

)
> 0. (8.44)
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To see this, let ε(x) be defined so that

1

1− 2(M∆x(x,0)+ε(x))
x

= 2B̄0. (8.45)

Solving (8.45) for ε(x) gives

ε(x) =
x

2

{
1− 1

2B0

− 2M∆x(x, 0)

x

}
. (8.46)

But (8.41) implies

2M∆x(x, 0)

x
≤ 1− 1

B̄0

. (8.47)

Using (8.47) in (8.46) gives (8.44). 2

Now for ε in (8.43), define

TB = Tε ≡
{
κF ∗2 (G2) S̄R(ε/2)2

√
2K0L

G2

}−1
ε

2
, (8.48)

so that by (8.38), (8.40),

|M∆x(x, tj)−M∆x(x, 0))| < ε, (8.49)

for all tj ≤Max{Tε, T0}. But (8.40), (8.43), directly imply

1

1− 2(M∆x(x,0)+ε)
x

≤ B̄. (8.50)

We conclude that assumption (7.30) of Corollary 2, Theorem 4, can be re-
placed by the condition that B̄ is defined in (8.42), together with the con-
dition that tj ≤ TB, where TB is defined in (8.48). We have shown that
assumptions (7.29)-(7.32) of Corollary 2, Theorem 4, can be removed, and
are consequences of appropriately restricting the time T0 and redefining the
constants involved in terms of the initial data.

The following theorem, which summarizes our results, follows directly
from our construction of v̄, S̄, M̄ , B̄ and TS, TM , TB above:

Theorem 5 Let u∆x(x, t), A∆x(x, t) be an approximate solution generated
by the fractional step Glimm method starting from initial data u∆x(x, 0),
A∆x(x, 0), and let M̄0, B̄0, S̄0, v̄0 and V̄0 be positive constants such that the
initial data satisfies:
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M∆x(x, 0) ≤ M̄0, (8.51)

B∆x(x, 0) ≤ B̄0, (8.52)

0 < S∆x(x, 0) ≤ S̄0 (8.53)

|v∆x(x, 0)| ≤ v̄0 < c, (8.54)

for all x ≥ r0, and

∑
i1≤i≤i2, p=1,2

|γpi0| < V0, (8.55)

for all r0 ≤ xi2 < xi2 <∞, |xi2 − xi1| ≤ L. Let v̄ = 2v̄0, S̄ = 2S̄0, M̄ = 2M̄0,
B̄ = 2B̄0, assume that

∆x

∆t
= Λ = 2

√
GAB(B̄, M̄), (8.56)

and let

T = Min {1, T2, TS̄, TM̄ , TB̄} , (8.57)

where

T2 = T2 =
(

1

G2

)
V̄∗{

2V̄∗ +H(2V̄∗)
} , (8.58)

TS = Sup{t : F ∗1 (G2 · tj) ≤ 2F ∗1 (0), for all tj ≤ t},
TM = TM = Sup{t : Mr0 + F ∗2 (G2 · tj)M0 ≤ M̄, for all tj ≤ t},

TB =

{
κF ∗2 (G2) S̄R(ε/2)2

√
2K0L

G2

}−1
ε

2
,

and

ε = Sup

ε :
1

1− 2(M∆x(x,0)+ε)
x

≤ B̄, for all r0 ≤ x <∞

 , (8.59)

c.f., (7.84), (8.10), (8.18), (8.48) and (8.43). Then the approximate solution
u∆x,A∆x is well defined for all r0 ≤ r < ∞, 0 ≤ t ≤ T, and satisfies the
bounds
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M∆x(x, tj) ≤ M̄, (8.60)

B∆x(x, tj) ≤ B̄, (8.61)

0 < S∆x(x, tj) ≤ S̄ (8.62)

|v∆x(x, tj)| ≤ v̄ < c, (8.63)

together with the bounds

∑
i1≤i≤i2, p=1,2

|γpij| < 2V̄∗ = 2

(
1 +

4
√
GAB

L

)
V0, (8.64)

‖zij − zi+j,0‖ ≤ F ∗0 (G2 · T ), (8.65)

∫ xi2

xi1

‖z∆x(x, tj2)− z∆x(x, tj1)‖ dx ≤ G2|tj2 − tj1|, (8.66)

|A′∆x(x, tj)| ≤
(

1

r0

+ κ
c2 + σ2v̄2

c2 − v̄2
S̄

)
B̄GAB, (8.67)

|B′∆x(x, tj)| ≤
(

1

r0

+ κ
c2 + σ2v̄2

c2 − v̄2
S̄

)
B̄2, (8.68)

|M∆x(x, tj2)−M∆x(x, tj1)| ≤ κF ∗2 (G2 · T ) S̄x2

√
2K0L

G2|tj2 − tj1|, (8.69)

for all r0 ≤ x, xi1 , xi2 < ∞, |xi2 − xi1 | ≤ L, and 0 ≤ tj, tj1 , tj2 ≤ T, c.f.
(7.83), (7.90), (7.41), (8.30), (7.86), (7.43), (7.44).

Recall that the constants GAB ≡ GAB(M̄, B̄), G2 ≡ G2(M̄, B̄, S̄), F ∗1 (G2 ·T ),
F ∗2 (G2 ·T ), and V∗(G2 ·T ), defined in (3.43),(7.81),(8.7),(8.15), and (7.85) re-
spectively, are based on the functions GAB(·, ·), G2(·, ·, ·), F ∗i (·) and V∗(·) that
depend only on the constants σ, c,K0, r0, L and V0, and thus are determined
by the initial data alone.

Corollary 5 Let u∆x(x, t), A∆x(x, t) be an approximate solution generated
by the fractional step Glimm method starting from initial data u∆x(x, 0),
A∆x(x, 0), that satisfies the conditions (8.60)-(8.59) of Theorem 5. Then
there exists a subsequence ∆x→ 0 and bounded measurable functions u(x, t) =
Ψ−1 · Φ · z(x, t), A(x, t), such that (u∆x,A∆x) → (u,A) for a.e. (x, t) ∈
[r0,∞) × [0, T ]. Moreover, the convergence u∆x(·, t) → u(·, t) is in L1

loc for
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each t ∈ [0, T ], uniformly on compact sets in (x, t)-space, and the limit func-
tion u∆x satisfies:

TV[x1,x2]z(·, t) ≤ 2V̄∗,

TV[x1,x2]w(·, t) ≤ H(2V̄∗), (8.70)

TV[x1,x2]z(·, t) ≤ 2V̄∗ +H(2V̄∗),

‖z(x, t)− z(x+ λT, 0)‖ ≤ F ∗0 (G2 · T ), (8.71)

and ∫ x2

x1

‖z(x, t2)− z(x, t1)‖ dx ≤ G2|t2 − t1|, (8.72)

for all r0 ≤ x, x1, x2 <∞, |x2 − x1| < L, and 0 ≤ t, t1, t2 ≤ T.
The convergence in A is pointwise a.e., uniformly on compact sets in

(x, t)-space, and the limit function A(x, t) satisfies

A(x, t) = Ar0 exp
∫ x

r0

{
B(r, t)− 1

r
+ κrB(r, t)T 11

M (u(r, t))

}
dr, (8.73)

B(r, t) =
1

1− 2M(r,t)
r

, M(r, t) = M(r0, t) +
κ

2

∫ r

r0
u0(r, t)r2 dr, (8.74)

∣∣∣∣∣A(x+ y, t)− A(x, t)

y

∣∣∣∣∣ ≤
(

1

r0

+ κ
c2 + σ2v̄2

c2 − v̄2
S̄

)
B̄GAB, (8.75)∣∣∣∣∣B(x+ y, t)−B(x, t)

y

∣∣∣∣∣ ≤
(

1

r0

+ κ
c2 + σ2v̄2

c2 − v̄2
S̄

)
B̄2, (8.76)

|M(x, t2)−M(x, t1)| ≤ κF ∗2 (G2 · T ) S̄x2

√
2K0L

G2|t2 − t1|, (8.77)

for all r0 ≤ x, x1, x2 <∞, |x2 − x1| ≤ L, and 0 ≤ t, t1, t2 ≤ T.

Proof: It follows from (7.90), (8.64) (together with the non-singularity of the
mapping from z → u) that the approximate solution u∆x(x, t) is bounded,
and of locally bounded total variation at each fixed time 0 ≤ t ≤ T, and
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these bounds are uniform in time over compact x-intervals. Moreover, it
follows from (8.66) that u∆x(x, t) is locally Lipschitz continuous in the L1-
norm at each time, uniformly on compact sets. These bounds are uniform as
∆x→ 0. This is all that is required to apply Oleinik’s compactness argument
to the function u∆x, [8, 23, 16]. From this we can conclude that there exists
a sequence ∆x → 0 such that u∆x converges a.e. to a bounded measurable
function u on x ≥ r0, 0 ≤ t ≤ T . The convergence is in L1

loc at each time,
uniformly on compact sets, and the supnorm bound (8.71), the local total
variation estimate (8.70), and the continuity of the local L1 norm (8.72), carry
over from the corresponding estimates (8.71), (8.64), (7.86) for approximate
solution. (For (8.64) we use that the change ∆w across a wave is bounded
by H(∆z), and that H is a convex function, c.f. Proposition 5. The Oleinik
argument is based on using Helly’s Theorem to extract a pointwise convergent
subsequence on a dense set of times between t = 0 and T = t, and then to use
the local L1-Lipschitz continuity of u∆x to extrapolate the L1 convergence to
all intermediate times, [16].)

It follows from (8.69)-(8.68), together with (3.28), that A∆x is locally
Lispchitz continuous in x and t for x ≥ r0, t ≤ T , (ignoring errors that are of
order ∆x), and the Lipschitz bounds are uniform as ∆x→ 0. It follows from
Arzela-Ascoli that on some subsequence ∆x→ 0, A∆x converges to a locally
Lipschitz continuous function A(x, t), and the convergence is pointwise al-
most everywhere, uniformly on compact sets. It follows that the convergence
of u∆x and A∆x is strong enough to pass the limit through the integral sign
in (3.28) and (1.18), and thus conclude (8.73) and (8.74), respectively. Sim-
ilarly, (8.76)-(8.77) are obtained from (7.43)-(8.30), respectively. The initial
data u0 is taken on in the L1 sense,

lim
t→0
‖u(·, t)− u0(·)‖L1

loc
= 0, (8.78)

and the boundary condition v = 0 ⇐⇒ M(r0, 0) = Mr0 is taken on weakly,
c.f. [16].2

Proof of Theorem 3: In the final section we prove that for almost every
sample sequence a, the functions u∆x(x, t),A(x, t) define a weak solution of
the Einstein equations (1.2)-(1.5) on r0 ≤ x < ∞, 0 ≤ t ≤ T . Assuming
this, u∆x(x, t),A(x, t) is then a weak solution of (1.2)-(1.5) in the class u∆x

bounded measurable and A∆x Lipschitz continuous, and so it follows that
our results in [10] apply. In particular, (1.3) holds in the pointwise almost
everywhere sense. Thus the proof of Theorem 3 is complete once we verify
(2.42). (The assumptions (2.28)-(2.29) just imply that TV[x1,x2]z(·, 0) < ∞,
and this guarantees (8.64).) For (2.42), note first that (1.24) together with
(8.71) imply that
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lim
x→0

Ṁ(x, t) = 0, (8.79)

for all 0 ≤ t ≤ T. To see this, recall from Theorem 2 that if u∆x,A∆x is a
weak solution for 0 ≤ t ≤ T, then (1.3) and (1.8) hold. By (1.8), statement
(8.79) follows so long as

lim
r→∞

√√√√A(r, t)

B(r, t)
u1(r, t)r2 = 0 (8.80)

for t ≤ T, where ∣∣∣∣∣∣
√√√√A(r, t)

B(r, t)
u1(r, t)r2

∣∣∣∣∣∣ ≤
√
A(r, t)u0(r, t)r2. (8.81)

Now since A and B are given by (8.73) and (8.74), it follows that A sat-
isfies (1.2) and (1.4), and so adding these two equations, and following the
argument leading to (3.43), we obtain that

|A| ≤ Ar0Br0exp

{
8B̄M̄

r0

}
,

and thus A is uniformly bounded. Since |v(x, t)| ≤ v̄ < c, (1.24) and (8.71)
imply that

lim
r→∞

√
A(r, t)u0(r, t)r2 = 0, (8.82)

and so (8.79) follows as claimed. But (8.79) implies that,

lim
x→∞

M(x, t) = lim
x→∞

M(x, 0) = M∞, (8.83)

which is (2.42) of Theorem 3. We conclude from Theorem 2 that the proof of
Theorem 3 is complete once we prove that u(x, t),A(x, t) is a genuine weak
solution of (1.26),(1.27) with initial boundary data 2.36)-(2.38). This is the
topic of the next section. 2

Our theorems have the following corollary:

Corollary 6 Assume that the initial data u0(x) satisfies (1)-(5). Then a
bounded weak solution u(x, t),A(x, t) of the Einstein equations (1.2)-(1.5)
exists up until the first time T at which either

lim
t→T−

SupxB(x, t) =∞, (8.84)
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lim
t→T−

Supxxρ(x, t) =∞, (8.85)

or

lim
t→T−

SupxTV[x1,x2]z(·, t) =∞. (8.86)

Proof: If B, S and TV[x1,x2]z remain uniformly bounded up to time T,
then our argument shows that v remains uniformly bounded away from c up
to time T, c.f. (8.2)-(8.3). Thus we can repeat the proof that the solution
starting from initial data at time T, continues forward for some positive time.
The Corollary follows at once.

9 Convergence

In this section we prove that the approximate solutions u∆x,A∆x which sat-
isfy the estimates (8.70)-(8.77) of Corollary 5, Theorem 5, are weak solutions
of (1.30), (1.31), for almost every choice of sample sequence a ∈ Π, c.f.
(3.24). This is a modification of Glimm’s original argument [8], and the ar-
gument in [16]. The main point is to show that the the discontinuities in A∆x

at the boundary of the mesh rectangles Rij are accounted for by inclusion of
the term

A′ · ∇Af(A, u, x) =
1

2

√
A

B
δ
(
T 01
M , T

11
M

)
,

in the ODE step (3.22), c.f. (3.17).
To start, recall that uRP∆x denotes the exact Riemann problem solution in

each Rij for the homogeneous system (4.1), so that

0 =
∫ ∫

Rij

{
−uRP∆xϕt − f(Aij, u

RP
∆x )ϕx

}
dxdt

+
∫
Ri

{
uRP∆x (x, t−j+1)ϕ(x, tj+1)− uRP∆x (x, t+j )ϕ(x, tj)

}
dx (9.1)

+
∫
Rj

{
f(Aij, u

RP
∆x (xi+ 1

2
, t))ϕ(xi+ 1

2
, t)

−f(Aij, u
RP
∆x (xi− 1

2
, t))ϕ(xi− 1

2
, t)
}
dt.

Recall that û(t, u0) denotes the solution to the initial value problem
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ût = G(Aij, û, x) = g(Aij, û, x)−A′ · ∇Af(Aij, û, x),

û(0) = u0.

Thus

û(t, u0)− u0 =
∫ t

0
ût dt

=
∫ t

0
{g(Aij, û(ξ, u0), x)−A′ · ∇Af(Aij, û, x)} dt.

Since û implements the ODE step of the fractional step method, it follows
that the approximate solution u∆x(x, t) is defined on each mesh rectangle
Rij by the formula

u∆x(x, t) = uRP∆x (x, t) +
∫ t

tj

{
g(Aij, û(ξ − tj, uRP∆x (x, t)), x)

}
dt (9.2)

−
∫ t

tj

{
∂f

∂A
(Aij, û(ξ − tj, uRP∆x (x, t))) ·A′∆x

}
dt.

Note that the difference between the approximate and Riemann problem
solutions is on the order of ∆x. Define the residual ε(u∆x,A∆x, ϕ) of the
approximate solutions u∆x by

ε∆x ≡ ε(u∆x,A∆x, ϕ)

=
∫ ∞
r0

∫ ∞
0
{−u∆xϕt − f(A∆x, u∆x)ϕx − g(A∆x, u∆x, x)ϕ} dtdx

−I1 − I2,

=
∑
ij

∫ ∫
Rij
{−u∆xϕt − f(Aij, u∆x)ϕx − g(A∆x, u∆x, x)ϕ} dtdx

−I1 − I2, (9.3)

where

I1 =
∫ ∞
r0

u∆x(x, 0
+)ϕ(x, 0) dx =

∑
i

∫
Ri
u∆x(x, 0

+)ϕ(x, 0) dx, (9.4)

and
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I2 =
∫ ∞

0
f(A∆x(r

+
0 , t), u∆x(r

+
0 , t))ϕ(r0, t) dt

=
∑
j

∫
Rj
f(Aij, u∆x(r

+
0 , t))ϕ(r0, t) dt. (9.5)

We now prove that the residual is O(∆x). (It follows that if u∆x → u and
A∆x → A converge in L1

loc at each time, uniformly on compact sets, then
the limit function will satisfy ε(u,A, ϕ) = 0, the condition that u be a weak
solution of the Einstein equations.) To this end, substitute (9.2) into (9.3)
to obtain

ε(u∆x,A∆x, ϕ) =
∑
ij

∫ ∫
Rij

{
−uRP∆xϕt − f(Aij, u∆x)ϕx − g(Aij, u∆x, x)ϕ

−ϕt
∫ t

tj

[
g(Aij, û(ξ − tj, uRP∆x (x, t)), x) (9.6)

− ∂f
∂A

(Aij, û(ξ − tj, uRP∆x (x, t))) ·A′∆x

]
dξ

}
dxdt

−I1 − I2.

Set

I1
ij(x, t) =

∫ t

tj

[
g(Aij, û(ξ − tj, uRP∆x (x, t)), x)

]
dξ

∫ t

tj

[
− ∂f
∂A

(Aij, û(ξ − tj, uRP∆x (x, t))) ·A′∆x

]
dξ.

Upon substituting (9.1) into (9.7), we have

ε∆x =
∑
ij

∫ ∫
Rij

{
ϕx
[
f(Aij, u

RP
∆x )− f(Aij, u∆x)

]
− g(Aij, u∆x, x)ϕ

−ϕtI1
ij(x, t)

}
dxdt (9.7)

−I1 −
∑
ij

∫
Ri

{
uRP∆x (x, t−j+1)ϕ(x, tj+1)− uRP∆x (x, t+j )ϕ(x, tj)

}
dx

−I2 −
∑
ij

∫
Rj

{
f(Aij, u

RP
∆x (xi+ 1

2
, t))ϕ(xi+ 1

2
, t)

−f(Aij, u
RP
∆x (xi− 1

2
, t))ϕ(xi− 1

2
, t)
}
dt
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Note that

|f(Aij, u
RP
∆x )− f(Aij, u∆x)| ≤ C∆t, (9.8)

and so

|
∑
ij

∫ ∫
Rij
ϕ
[
f(Aij, u

RP
∆x )− f(Aij, u∆x)

]
dxdt| ≤ |ϕx|∞C∆tT (b− a), (9.9)

where Supp(ϕ) ⊂ [a, b]× [0.T ]. (We let C denote a generic constant that de-
pends only on the bounds for the solution.) Using the fact that uRP∆x (x, t+j ) =
u∆x(x, t

+
j ), and inserting (9.2), we obtain that

−I1 −
∑
ij

∫
Ri

{
uRP∆x (x, t−j+1)ϕ(x, tj+1)− uRP∆x (x, t+j )ϕ(x, tj)

}
dx

=
∑
j 6=0

∫ ∞
r0

{
u∆x(x, t

+
j )− uRP∆x (x, t−j )

}
ϕ(x, tj) dx

=
∑
j 6=0

∫ ∞
r0

ϕ(x, tj)
{
u∆x(x, t

+
j )− u∆x(x, t

−
j )
}
dx (9.10)

+
∑
j 6=0

∫ ∞
r0

ϕ(x, tj)
{
u∆x(x, t

−
j )− uRP∆x (x, t−j )

}
dx.

Set

ε1(u∆x,A∆x, ϕ) =
∑
j 6=0

∫ ∞
r0

ϕ(x, tj)
{
u∆x(x, t

+
j )− u∆x(x, t

−
j )
}
dx. (9.11)

It follows that

ε∆x = ε1(u∆x,A∆x, ϕ) +
∑
ij

∫ ∫
Rij

{
−g(Aij, u∆x, x)ϕ− ϕtI1

ij(x, t)
}
dxdt

+
∑
j 6=0

∫ ∞
r0

ϕ(x, tj)
{
u∆x(x, t

−
j )− uRP∆x (x, t−j )

}
dx (9.12)

−I2 −
∑
ij

∫
Rj

{
f(Aij, u

RP
∆x (xi+ 1

2
, t))ϕ(xi+ 1

2
, t)

−f(Aij, u
RP
∆x (xi− 1

2
, t))ϕ(xi− 1

2
, t)
}
dt+O(∆x).

But adding −I2 to

−
∑
ij

∫
Rj

{
f(Aij, u

RP
∆x (xi+ 1

2
, t))ϕ(xi+ 1

2
, t)− f(Aij, u

RP
∆x (xi− 1

2
, t))ϕ(xi− 1

2
, t)
}
dt
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gives

∑
ij

∫
Rj

{
f(Ai+1,j, u

RP
∆x (xi+ 1

2
, t))− f(Aij, u

RP
∆x (xi+ 1

2
, t))

}
ϕ(xi+ 1

2
, t) dt (9.13)

+
∑
j

∫
Rj

{
f(A0j, u

RP
∆x (r+

0 , t))− f(A0j, u∆x(r
+
0 , t))

}
ϕ(r0, t) dt,

where

|
∑
j

∫
Rj

{
f(A0j, u

RP
∆x (r+

0 , t))− f(A0j, u∆x(r
+
0 , t))

}
ϕ(r0, t) dt|

≤ |ϕ|∞C∆t2
(
T

∆t

)
= O(∆t). (9.14)

To analyze the term multiplied by ϕt in (9.12), we add and subtract a term
that differs from this one by O(∆x), and then use integration by parts on
the new term. That is, set I∆S equal to the expression

∑
ij

∫ ∫
Rij
ϕt

∫ t

tj

[
g(Aij, û(ξ − tj, uRP∆x (x, ξ)), x)

−g(Aij, û(ξ − tj, uRP∆x (x, t)), x)− ∂f

∂A
(Aij, û(ξ − tj, uRP∆x (x, ξ))) ·A′∆x

+
∂f

∂A
(Aij, û(ξ − tj, uRP∆x (x, t))) ·A′∆x

]
dξ dxdt.

But

|I∆S| ≤
∑
ij

∫ ∫
Rij
|ϕt|∞

∫ t

tj
C|γlij| dξ dxdt|

≤ ϕt|∞C∆t2∆x
∑
ijl

|γlij|

≤ CV |ϕt|∞∆t2∆x
T

∆t
= O(∆x2),

and so

−
∑
ij

∫ ∫
Rij
ϕt

∫ t

tj

[
g(Aij, û(ξ − tj, uRP∆x (x, t)), x)

− ∂f
∂A

(Aij, û(ξ − tj, uRP∆x (x, t))) ·A′∆x

]
dξ. dxdt
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= I∆S −
∑
ij

∫ ∫
Rij
ϕt

∫ t

tj

[
g(Aij, û(ξ − tj, uRP∆x (x, ξ)), x)

− ∂f
∂A

(Aij, û(ξ − tj, uRP∆x (x, ξ))) ·A′∆x

]
dξ. dxdt

= −
∑
ij

∫
Ri

{
ϕ(x, tj+1)

∫ tj+1

tj

[
g(Aij, û(ξ − tj, uRP∆x (x, ξ)), x)

− ∂f
∂A

(Aij, û(ξ − tj, uRP∆x (x, ξ))) ·A′∆x

]
dξ

−
∫ tj+1

tj
ϕ

[
g(Aij, u∆x, x)− ∂f

∂A
(Aij, u∆x) ·A′∆x

]
dt

}
dx

+O(∆x2)

= −
∑
ij

∫
Ri

{
ϕ(x, tj+1)

∫ tj+1

tj

[
g(Aij, û(ξ − tj, uRP∆x (x, tj+1)), x)

− ∂f

∂A
(Aij, û(ξ − tj, uRP∆x (x, tj+1))) ·A′∆x

]
dξ

}
dx (9.15)

s+ I4 + I5 +O(∆x2)

where

I4 =
∑
ij

∫
Ri

{
ϕ(x, tj+1)

∫ tj+1

tj

[
g(Aij, û(ξ − tj, uRP∆x (x, tj+1)), x)

−g(Aij, û(ξ − tj, uRP∆x (x, ξ)), x)

− ∂f
∂A

(Aij, û(ξ − tj, uRP∆x (x, tj+1))) ·A′∆x

+
∂f

∂A
(Aij, û(ξ − tj, uRP∆x (x, ξ))) ·A′∆x

]
dξ

}
dx,

and

I5 =
∑
ij

∫ ∫
Rij
ϕ

[
g(Aij, u∆x, x)− ∂f

∂A
(Aij, u∆x) ·A′∆x

]
dxdt. (9.16)

Note that

|I4| ≤ |ϕ|∞
∑
ijl

C|γlij|∆x∆t ≤ |ϕ|∞C∆x∆t
∑
j

V

= |ϕ|∞C∆x∆tV
T

∆t
= O(∆x),
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where the sum on j is taken over tj in Supp(ϕ). Substituting (9.13) and
(9.15) into (9.12), we have

ε(u∆x,A∆x, ϕ) = O(∆x) + ε1(u∆x,A∆x, ϕ)

−
∑
ij

∫ ∫
Rij
ϕ
∂f

∂A
(Aij, u∆x) ·A′∆x dxdt (9.17)

+
∑
ij

∫
Rj
ϕ(xi+ 1

2
, t)

{
f(Ai+1,j, u

RP
∆x (xi+ 1

2
, t))− f(Aij, u

RP
∆x (xi+ 1

2
, t))

}
dt.

It is evident now that

ε(u∆x,A∆x, ϕ) = ε1(u∆x,A∆x, ϕ) +O(∆x). (9.18)

We use Glimm’s technique to show that ε1(u∆x,A∆x, ϕ) = O(∆x), c.f. [8].
To estimate ε1, write ε ≡ ε1(∆x, ϕ, a) to display its dependence on (∆x, φ, a),

where a ∈ Π is the sample sequence, c.f. (3.24) above. Set

εj1(∆x, ϕ, a) =
∫ ∞
r0

ϕ(x, tj)
{
u∆x(x, t

+
j )− u∆x(x, t

−
j )
}
dx. (9.19)

Now since u(x, t) = Ψ−1 · Φ · z(x, t), it follows from (8.70) that there exists
a constant V such that TV[x,x+L]u∆x(·, t) ≤ V on r0 ≤ x < ∞, t < T. Using

this, the following lemma gives estimates for ε1 and εj1.

Lemma 5 Let a ∈ Π, and let ϕ ∈ C0∩L∞ be a test function in the space of
continuous functions of compact support in r0 ≤ x <∞, 0 ≤ t < T. Suppose
TV[x,x+L]u∆x(·, t) ≤ V for all x ≥ r0, t < T. Then

|εj1(∆x, ϕ, a)| ≤ V
diam (sptϕ)

L
∆x‖ϕ‖∞, (9.20)

and

|ε1(∆x, ϕ, a)| ≤ V Λ

L
(diam (sptϕ))2 ‖ϕ‖∞. (9.21)

Proof: Since [u∆x](x, tj) is bounded by the sum of the wave strengths from
xi− 1

2
to xi+ 1

2
for each x at time t = tj, it follows that

|εj1| ≤ ‖ϕ‖∞
∑
i,p

||γpij||u∆x ≤ ‖ϕ‖∞V
diam (sptϕ)

L
∆x, (9.22)
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where ||γ||u denotes the strength of a wave in u-space. This verifies (9.20).
Consequently, if J is the smallest j so that t = tj upper bounds the support
of ϕ, then J = T/∆t, where T = J∆t, and

|ε1| ≤
J∑
j=1

|εj1| ≤
T

∆t
‖ϕ‖∞∆xV

diam (sptϕ)

L

≤ V Λ

L
(diam (sptϕ))2 ‖ϕ‖∞

where ∆x/∆t ≤ Λ. 2

We next show that εj1, when taken as a function of aj, has mean zero.

Lemma 6 For approximate solutions u∆x,∫ 1

0
εj1 daj = 0 (9.23)

Proof: The proof follows from Fubini’s theorem.

∫ 1

0
εj1 daj =

∫ 1

0

∞∑
0

∫ x
i+ 1

2

x
i− 1

2

[u∆x,a(xi + aj∆x, tj)− u∆x,a(x, tj)] dxdaj

=
∞∑
i=0


∫ x

i+ 1
2

x
i− 1

2

∫ 1

0
u∆x,a(xi + aj∆x, tj) dajdx

−
∫ 1

0

∫ x
i+ 1

2

x
i− 1

2

u∆x,a(x, tj) dxdaj


= 0,

which was to be proved. (Here we used u∆x,a to express the dependence of
the approximate solution u∆x on the sample sequence a.) 2

We now show that the functions εj1 are orthogonal, when taken as elements
of L2(Π).

Lemma 7 Suppose ϕ has compact support, and is piecewise constant on
rectangles Rij. Then if j1 6= j2, we have εj11 ⊥ εj21 where orthogonality is with
respect to the inner product on L2(Π).

Proof: Using Lemma 7 in calculating the inner product

〈εj11 , ε
j2
1 〉 =

∫
εj11 ε

j2
1 (Π daj) =

∫ (∫
εj11 ε

j2
1 daj2

)
Πj 6=j2 daj

=
∫
εj11

(∫
εj21 daj2

)
Πj 6=j2 daj

= 0,
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verifying orthogonality. 2

It follows immediately from Lemma 7 that

‖ε1‖2
2 =

∑
j

‖εj1‖2
2, (9.24)

which we use in our next theorem to finally show that there is a subsequence
so that ε1 → 0 as ∆x→ 0 for almost any a ∈ Π.

Theorem 6 Suppose that TV[x,x+L]u∆x(·, t) ≤ V for all r0 ≤ x < ∞, 0 ≤
t < T. Then there is a null set N ⊂ Π and a sequence ∆xk such that for all
a ∈ Π−N and ϕ ∈ C1

0(t > 0), we have ε1(∆x, ϕ, a)→ 0 as k →∞.

Proof: Combining (9.24) and (9.20), and using the fact that
∫
Π da = 1, we

have

‖ε1(∆x, ϕ, a)‖2
2 =

∑
j

‖εj1(∆x, ϕ, a)‖2
2

≤
∑
j

‖εj1(∆x, ϕ, a)‖2
∞

≤
J∑
j=0

V 2(∆tk)
2‖ϕ‖2

∞
(diam (sptϕ))2

L2

≤ V 2(∆tk)
(diam (sptϕ))3

L2
‖ϕ‖2

∞,

and hence, for piecewise constant ϕ with compact support, there is a sequence
∆xk → 0 such that ε1 → 0 in L2. If ϕ is continuous with compact support,
then by (9.21),

‖ε1‖2 ≤ ‖ε1‖∞ ≤ C‖ϕ‖∞. (9.25)

Let {ϕl} be a sequence of piecewise constant functions with constant
support whose closure relative to the infinity norm contains the space of test
functions that are continuous with compact support. For each l, there is a
null set Nl ⊂ Π and a sequence ∆xkn(l) → 0 such that ε1 → 0 pointwise, for
all a ∈ Π − Nl. Set N =

⋃
lNl, and let a ∈ Π − N . By a diagonalization

process, we can find a subsequence, ∆xk, such that for each l, ε1 → 0 as
k →∞. If ψ is any test function, then if a ∈ Π−N , we have

|ε1(∆x, ψ, a)| ≤ |ε1(∆x, ψ − ϕl, a)|+ |ε1(∆x, ϕl, a)|
≤ Const.‖ψ − ϕl‖∞ + |ε1(∆x, ϕl, a)|.

It is now clear that given ε > 0, there exists N ∈ N so that if i, l ≥ N , then
|ε1(∆x, ψ, a)| ≤ ε. 2
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