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Abstract

We demonstrate the consistency of the Einstein equations at the level
of shock-waves by proving the existence of shock wave solutions of the
spherically symmetric Einstein equations for a perfect fluid, start-
ing from initial density and velocity profiles that are only locally
of bounded total variation. For these solutions, the components of
the gravitational metric tensor are only Lipschitz continuous at shock
waves, and so it follows that these solutions satisfy the Einstein equa-
tions, as well as the relativistic compressible Euler equations, only in
the weak sense of the theory of distributions. The analysis introduces
a locally inertial Glimm scheme that exploits the locally flat charac-
ter of spacetime, and relies on special properties of the relativistic
compressible Euler equations when p = 0%p, 0 = const.

AMS Subject Classification Numbers: 35L65,351L67,83C05
Key Words and Phrases: Shock Waves, Glimm Scheme, General
Relativity
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SHOCK-WAVE SOLUTIONS OF THE EINSTEIN EQUATIONS
WITH PERFECT FLUID SOURCES:

EXISTENCE and CONSISTENCY
by a
LOCALLY INERTIAL GLIMM SCHEME

Jeff Groah' Blake Temple?

1 Introduction

In General Relativity, a time dependent, spherically symmetric gravitational
metric can, (under generic conditions), be transformed over to standard
Schwarzschild coordinates x = (2%, 2%, 2%, 2%) = (¢,7,0,¢), where the met-
ric takes the canonical form, [30],

ds® = —Adi® + Bdr® + 12 (d6* + sin® 0d4?) (1.1)

where the metric components A and B are assumed to be functions of (¢,r),
A = A(r,t), B = B(r,t). In this paper we establish the consistency of the
Einstein equations at the level of shock waves by proving the existence of
shock-wave solutions of the Einstein-Euler equations for gravitational metrics
of form (1.1), for general initial density and velocity profiles that are only
locally functions of bounded total variation. The solutions are defined outside
a ball of fixed total mass* , existence is proved up to some positive time
T > 0°, and the total mass at r — oo is shown to be constant throughout
the time interval [0, T"). To keep the analysis as simple as possible, we assume
the equation of state p = o2p, p = pressure, p = density, where o, the sound
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4This removes the possibility of waves perfectly focused on the origin, that can amplify
to infinity.

50ne can only expect a finite time existence result because, in standard Schwarzschild
coordinates, solutions blow up at black hole singularities, i.e., B = j — 00 at a black

hole, and black holes can form in finite time
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speed, is assumed to be constant’. For these solutions, the fluid variables p,
p and velocity w, are in general discontinuous, and the metric components
A and B are only Lipschitz continuous functions, at the shock waves. Since
the Einstein equations involve second derivatives of A and B, (c.f. (1.5)
below), it follows that these solutions satisfy the Einstein equations only in
the weak sense of the theory of distributions. Thus our theorem establishes
the consistency of the initial value problem for the Einstein equations at the
weaker level of shock-waves.

We now discuss the main theorem in detail. In standard Schwarzschild
coordinates, the Einstein equations of General Relativity reduce to the fol-
lowing system of four partial differential equations, (see (3.20)-(3.23) of [10]),

A B’
TB {T’B + B — 1} = KJAQTOO (12)
r
B
—é = kABT" (1.3)
1 A
- {rA — (B - 1)} = wB*T"! (1.4)
1 ” 2KT | 99
—7711432 {Btt — A —+ q)} - B T ) (15>

where the quantity ® in the last equation is given by,

_ BAB, B<Bt>2_A’ AB’

=-S5 2\B) 7B
LA(AV Aap
2\ A 2 A B’

Here “prime” denotes 0/0r, “dot” denotes 0/0t, K = %g is the coupling
consant, G is Newton’s gravitational constant, ¢ is the speed of light, T,
i,7 =0, ...,3 are the components of the stress energy tensor, and A = A(r, t),
B = B(r,t) denote the components of the gravitational metric tensor (1.1).
The mass function M (r,t) is defined through the identity

6This simplifying assumption, as well as insuring that wave speeds are bounded by the
speed of light for arbitrarily strong shock waves, also prevents the formation of vacuum
states. Moreover, the analysis exploits the existence of a Nishida functional, that is non-
increasing on weak solutions of the compressible Euler equations in flat spacetime, and
only exists when p = o?p, [20]. The existence of the Nishida functional in the relativistic
regime was discovered by Smoller and Temple in [24].
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B=(1- 2M) - (1.6)

r

and M = M = M(r,t) is interpreted as the mass inside radius r at time ¢.
In terms of the variable M, equations (1.2) and (1.3) are equivalent to

M' = 1kr? AT, (1.7)
and
M = — kT2 AT, (1.8)

respectively. In the case when the stress tensor 1" is taken to be the stress
tensor for a perfect fluid,

Tij = (p62 —i—p)wiwj +p9ij> Z>] = 0? '-'537 (19)

system (1.2)-(1.5) gives the spherically symmetric version of the Einstein-
Euler equations,

Gij = '%Tija Tij = (pC2 +p)wle +pgij> Z>] = O: Sy 37 (110)

where G is the Einstein curvature tensor, pc? is the energy density, p is the
pressure, and w is the four velocity of the fluid. That is, system (1.2)-(1.5) is
obtained from (1.10) by substituting for G;; the components of the Einstein
curvature tensor associated with the metric ansatz (1.1). System (1.10) de-
scribes the coupling of a compressible fluid to the gravitational metric tensor
according Einstein’s theory of general relativity.

The components 7% satisfy

1
T = T . (1.11)
1
™ = —=Ty, 1.12
Vap (112
1
™ = ET}}, (1.13)

where Tf& denote the components of 1" in flat Minkowski spacetime. Assum-
ing the equation of state

p=0c’p, 0<o<ec, (1.14)
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o = constant, and assuming that w is radial, the components of T); can be
written in the form

ct + o%?

= S0, (1.15)
&+ o?

W = 2 2P (1.16)
2 | 2

Ty = 1;21—52p02, (1.17)

c.f., [24, 10]. Here v, taken in place of w, denotes the fluid velocity as

measured by an observer fixed with respect to the radial coordinate r. It
follows from (1.7) together with (1.15)-(1.17) that, if » > o > 0, then

M(r,t) = M(ro,t) + g/ TO(r, )12 dr (1.18)
To

it follows from (1.10) together with (1.15)-(1.17) that the scalar curvature R
is proportional to the density,

R=(c* —30%))p; (1.19)
and it follows directly form (1.15)-(1.17) that

Th | < T3, (1.20)
ST < TH < T, (1.21)

Equations (1.1)-(1.21) define the simplest possible setting for shock wave
propagation in the Einstein equations.
For our theorem, assume the initial boundary conditions

p(r,0) = po(r), v(r,0) =wvo(r), forr>ro,
(1.22)
M (ro,t) = M,,, v(ro,t) =0, fort >0,

where ry and M,, are positive constants, and assume the no black hole and
finite total mass conditions,

oM (r,t
MDD 3 M) = Mo < oo, (1.23)

r r—00

hold at ¢t = 0. For convenience, assume further that



SHOCK-WAVE SOLUTIONS OF THE EINSTEIN EQUATIONS 5)

lim 72Ty (r,t) = 0, (1.24)

T—00

holds at ¢t = 0, c.f., (1.18), (1.23). The main result of this paper can be stated
as follows:

Theorem 1 Assume that the initial boundary data satisfy (1.22)-(1.24), and
assume that there exist positive constants L, V and v such that the initial
velocity and density profiles vo(r) and po(r) satisfy

¢+ (")

T‘/[T,T+L] In pO() < v7 T‘/[r,'r-l-L] In ( ( )) < V? |UO<T)‘ <v<g,
C — Vol

(1.25)
for all ro < r < oo, where TVi,yf(-) denotes the total variation of the
function f over the interval [a,b]. Then a bounded weak (shock wave) solution
of (1.2)-(1.5), satisfying (1.22) and (1.23), exists up to some positive time
T > 0. Moreover, the metric functions A and B are Lipschitz continuous
functions of (r,t), and (1.25) continues to hold for t < T with adjusted
values for V and v that are determined from the analysis.

Note that the theorem allows for arbitrary numbers of interacting shock
waves, of arbitrary strength. Note that by (1.2), (1.4), the metric components
A and B will be no smoother than Lipschitz continuous when shocks are
present, and thus since (1.5) is second order in the metric, it follows that
(1.5) is only satisfied in the weak sense of the theory of distributions. Note
finally that lim, .., M(r,t) = M, is a non-local condition.

1.1 The Proof Strategy

In previous work [10], the authors show that when the metric components A
and B are Lipschitz continuous, and 7" is bounded in L*°, (when viewed as
functions of the coordinate variables (¢, 7,0, ¢)), system (1.2)-(1.5) is weakly
equivalent to the following system of equations obtained by replacing (1.3)
and (1.5) with the 0- and 1-components of (covariant) DivT = 0,

A 2 [A
{T]%}’OJF{\/;TS;} = B0 (1.26)

,1

[A 1 [A (4 (B—-1)

01 11 _ 11 00 _ pll

{TM}’O—F{ BTM} = 73 B{:CTM+ . (Thr —Tar) (1.27)
1
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+2kzB(TH Ty — (Th))?) — 42T},
B (B—1)

5 = —T+mBT§}, (1.28)
Al (B—1)
1 - + kxBT,;. (1.29)

This is the system of equations that we work with here. (Cf. (4.67), (4.68)
together with (3.20), (3.22) of [10].) Here, “ 7" denotes 9/0x%, and T is
defined in (1.15)-(1.17).

System (1.26),(1.27),(1.28),(1.29) forms a system of conservation laws
with source terms which we write in the compact form, (c.f. [10]),

w + f(A u), = g(A,u,x), (1.30)
A’ =h(A, u,x), (1.31)
where
v = (T,T8) = (W, ul), (1.32)
A = (A B), (1.33)
Ao i
and
9(A,u,7) = (8"(A,u,2), g" (A, u,2)), (1.35)
h(A,u,2) = (h°(A,u,2), h' (A u,2)) (1.36)
where
2 A
0 _ 2 ]Asm
g (Aju,z) = x\/;TM’ (1.37)
J (A = - g{ij(B‘l)(Tff—Tﬁ) (1.39)

+2raB(TY T — (Th)?) — 42T},
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and

B-1)A
RO(A,u,r) = L——lf+mﬂBﬂj (1.39)
xz
B-1)B
RY A u,x) = —gﬁ—H.TBQT}\)/?. (1.40)
T

The vector h(A,u,z) is just obtained by solving (1.2) and (1.4) for A" and
B’. Note that we have set x = 2! = r, and we use x in place of 7 in the
analysis to follow since this is standard notation in the literature on hyper-
bolic conservation laws. Note also that we write ¢ when we really mean ct,
in the sense that ¢ must be replaced by ¢t whenever we put dimensions of
time, i.e., factors of ¢, into our formulas. We interpret this as taking ¢ = 1
when convenient.

A new twist in formulation (1.30), (1.31) is that the conserved quantities
are taken to be the the energy and momentum densities v = (u° u') =
(T2, T of the relativistic compressible Euler equations in flat Minkowski
spacetime—quantities that, unlike the entries of 7', are independent of the
metric. Note that, (remarkably), all time derivatives of metric components
cancel out from the equations when this change of variables is made, c.f.
[10]. We take advantage of this formulation in the numerical method that
we introduce here for the study of the initial value problem.

For the proof of Theorem 1, we introduce a fractional step Glimm scheme
that employs a Riemann problem step’ to simulates the source free conser-
vation law u; + f(A,u), = 0, (A = Const), followed by an ODE step that
simulates the effect of the sources present in both f and g, c.f. [16]. Our
idea for the numerical scheme is to stagger discontinuities in the metric with
discontinuities in the fluid variables so that the conservation law step, as
well as the ODE step of the method, are both generated in grid rectangles
on which the metric components A = (A, B), (as well as x), are constant.
At the end of each timestep, we solve A" = h(A,u,z) and re-discretize, to
update the metric sources. Part of our proof involves showing that the ODE
step uy = g(A,u,x) — Vaf- A’ with h substituted for A’ accounts for both
the source term g, as well as the effective sources that are due to the discon-
tinuities in the metric components at the boundaries of the grid rectangles.

By our formulation (1.30), (1.31), only the flux f in the conservation law
step, depends on A. From this we conclude that the only effect of the metric

"The Riemann problem is the initial value problem when the initial data is a pair of
constant states centered by a jump discontinuity. For a pure conservation law of the form
ut + f(u); = 0, the solution, which typically only exists for constant states in restricted
regions of u-space, consists of elementary waves, c.f. [14, 23].
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on the Riemann problem step of the method is to change the wave speeds,
but not the states of the waves that solve the Riemann problem. Thus, on
the Riemann problem step, when we assume p = o?p, we can apply the
estimates obtained in [25], which were originally derived for flat Minkowski
spacetime A = (1,1). Applying these results, it follows that the Riemann
problem is globally solvable in each grid cell, and the total variation in In p,
(the Nishida functional), is non-increasing in time on the Riemann problem
step of our fractional step scheme, [25]. Thus we need only estimate the
increase in total variation of In p for the ODE step of the method, in order to
obtain a local total variation bound, and hence compactness of the numerical
approximations up to some time 7" > 0.

One nice feature of our method is that the ODE that accomplishes the
ODE step of the method, turns out to have surprisingly nice properties.
Indeed, a phase portrait analysis shows that p > 0, |v| < ¢ is an invariant
region for solution trajectories. (Since z and A are taken to be constant on
the ODE step, the ODE’s form an autonomous system at each grid cell.)
We also show that even though the ODE’s are quadratic in p, solutions of
the ODE’s do not blow up, but in fact remain bounded for all time. It
follows that the fractional step scheme is defined and bounded so long as
the Courant-Freidrichs-Levy (CFL) condition is maintained, [23]. We show
that the CFL bound depends only on the supnorm of the metric component
|| B|loo, together with the supnorm ||S||e, where S = S(z,t) = xzp(z,t). We
go on to prove that all norms in the problem are bounded by a function that
depends only on || B||so ||S|leo, and ||T'VE In p(+, t)||s0, where the latter denotes
the sup of the total variation over intervals of L. By this we show that the
solution can be extended up until the first time at which one of these three
norms tends to infinity. (Our analysis rules out the possibility that v — ¢
before one of these norms blows up.) The condition B — oo corresponds to
the formation of a black hole, and p — oo corresponds to the formation of a
naked singularity, (because the scalar curvature satisfies R = {¢*—30?}p). It
is known that black holes can form in solutions of the Einstein equations, and
it is an open problem whether or not naked singularities can form in solutions
of the Einstein-Euler equations, or whether we can have [|S||.c — oo, or
I TVLInp(-,t)]| — 00, in some other way.

The main technical problem is to prove that the total mass M, =
L pr?dr is bounded. The problem is that, in our estimates, the growth of
p depends on M and the growth of M depends on p, and M is defined by a
non-local integral. Thus, an error estimate of order Ax for Ap after one time
step, is not sufficient to bound the total mass M., after one time step. ®

8The constancy of the total mass reflects the fact that our weak formulation rules our
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As a final comment, we note that the total variation bound for system
(1.2)-(1.5) is the starting point for the analysis of uniqueness and continous
dependence of solutions on the initial data first worked out for homogeneous
systems of conservation laws by A. Bressan. This theory, appropriately mod-
ified for the source and boundary terms, should also apply to system (1.2)-
(1.5). (See [2, 4] and references therein).

1.2 A Locally Inertial Glimm Scheme

We can view this fractional step method as a locally inertial Glimm scheme
in the sense that it exploits the locally flat character of spacetime. That
is, the Riemann Problem step solves the equations u; + f(A, u), = 0 inside
grid rectangles R;;. But each grid rectangle defines an “inertial reference
frame” because A = Const. implies the metric is flat in R;;. The boundaries
between these local inertial reference frames are the discontinuities that ap-
pear along the top, bottom and both sides of the grid rectangles. The term
—Vaf+A’on the RHS of the ODE step u; = g(A,u,x) —Vaf-A’ accounts
for the discontinuities in A along the sides of the grid rectangles R;;, and
the term g in the ODE step, together with the imposition of the constraint
A" = h(A,u, ) at the end of each timestep, account for the discontinuities in
A at the top and bottom of each R,;;. It follows that once the convergence of
an approximate solution is established, one can just as well replace the true
approximate solution by the solution of the Riemann problem in each grid
rectangle R;;j—the two differ by only order Az. The resulting appoximation
scheme converges to a weak solution of the Einstein equations, and has the
property that it solves the compressible Euler equations exactly in local in-
ertial coordinate frames, (grid rectangles), and the transformations between
neighboring coordinate frames are accounted for by discontinuities at the
coordinate boundaries. In this sense, the fractional step Glimm method is
a locally inertial numerical method. It was our search for a locally inertial
method that led us to these results, and the success here points to a strategy
for obtaining convergent numerical methods in other coordinate systems, c.f.
[11].

1.3 The Smoothness Class of the Metric
The RHS of the Einstein equations

delta function sources of mass at the shock waves. Note that at points of interaction of
shock waves, the Gaussian normal coordinates break down, and so at such points, it is not
so easy to analyze the delta function sources from the viewpoint of shock-matching, c.f.
[25]
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G = KT, (1.41)

involve the fluid variables p, p and w, thus it follows that when shock waves
are present, T is discontinuous, c.f. (1.10). Since the Einstein curvature
tensor G on the LHS of (1.41) involves second derivative of the metric g;;,
one expects that, in general, the metric components g;;(z) should be at least
C1! functions of the coordinates, (that is, in the smoothness class of continu-
ous functions with Lipschitz continuous first order derivatives), in order that
the LHS of (1.41) be free of delta function sources, c.f. [13, 25]. However,
the metric components A and B in the solutions of (1.2)-(1.5) constructed
here, are only Lipschitz continuous. We know that these solutions are in
fact “free of delta function sources” as a consequence of the fact that they
are genuine weak solutions of (1.41). It remains an open problem whether
or not there exist coordinate transformations that smooth the metric com-
ponents of these solutions from the smoothness class C%! up to the class
CY!. In such coordinates, (1.10) would hold in the pointwise sense at shock
waves, and hence, such a transformation would map weak solutions of the
Einstein equations to strong solutions. It was pointed out in [10], (see also
[25]), that the transformation that takes an arbitrary spherically symmetric
metric over to a metric of form (1.1), necessarily involves derivatives of the
metric components, and so the existence of such C!! coordinates would be
consistent with the fact that the A and B that solve (1.2)-(1.5) are only
Lipschitz continuous at shock waves. Moreover, in [25, 13] it was shown that
for a general smooth shock surface in four dimensional spacetime, such a
coordinate transformation always exists, and can be taken to be the Gaus-
sian normal coordinates at the shock surface. But the solutions constructed
here can contain arbitrary numbers of interacting shock-waves, of arbitrary
strength—and the Gaussian normal coordinate systems break down at points
where shock waves interact. With this in mind, we pose the following open
question: Given a weak solution of the Einstein equations for which the met-
ric components are only C%' functions of the coordinate variables, does there
always exist a coordinate transformation that improves the reqularity of the
metric components to C*' when the components are viewed as functions of
the transformed coordinate variables? In particular, we ask if this statement
is true for the C%! solutions that we have constructed here?

We believe that this is an interesting question regarding the regularity of
solutions of the Einstein equations. Indeed, the Einstein equations are in-
herently hyperbolic in character; that is, there is finite speed of propagation
because all wave speeds are bounded by the speed of light. It follows that,
unlike Navier Stokes type parabolic regularizations of the classical compress-
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ible Euler equations, incorporating the effects of viscosity and dissipation
into Einstein’s theory of gravity, cannot alter the fundamental hyperbolic
character of the Einstein equations themselves. Thus, even when dissipa-
tive effects are accounted for, it is not clear apriori that the corresponding
solutions of the Einstein equations will in general be more regular than the
solutions that we have constructed here. We also note that the singularity
theorems in [12] presume that metrics are in the smoothness class C™!'| one
degree smoother than the solutions we have constructed, c.f. [12], page 284.

In summary, if a transformation exists that impoves the regularity of
solutions of the Einstein equations from the class C%! up to the class C'1,
then it defines a mapping that takes weak solutions of the Einstein equations
to strong solutions. It then follows that in general relativity, the theory of
distributions and the Rankine Hugoniot jump conditions for shock waves
need not be imposed on the compressible Euler equations as extra conditions
on solutions, but rather must follow as a logical consequence of the strong
formulation of the Einstein equations by themselves. If such a transformation
does not always exist, then solutions of the Einstein equations are one degree
less regular than previously assumed.

2 Preliminaries

The starting point of our analysis is the following theorem, which is a restate-
ment of Theorem 2, [10]. This theorem implies the equivalence of system
(1.30),(1.31) with the Einstein equations (1.2)-(1.5) for weak, (shock wave),
solutions, so long as (1.3) is treated as a constraint that holds so long as it
holds at the boundary x = 1. (We use the variable z in place of r in order
to conform with standard notation, c.f. [23]).

Theorem 2 Let u(x,t), A(z,t) be weak solutions of (1.30),(1.31) in the do-
main
D={(z,t):r0 <z <00,0<t<T}, (2.1)

for some rg > 0, T > 0. Assume that u is in L{S.(D), and that A is lo-
cally Lipschitz continuous in D, by which we mean that for any open ball B
centered at a point in D, there is a constant C' > 0 such that

|A(I2,t2) — A(C(]l,tl)| S C{|l’2 - ZL‘1| + |t2 - t1|}. (22)

Then uw and A satisty all four Einstein equations (1.2)- (1.5) throughout D
if and only if the equation (1.3),
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B
—— = KABT™
B " ’

holds at the boundary x = rg. In this case, it follows that the equivalent
forms (1.7), (1.8) of (1.2),(1.3), respectively, also hold in the strong sense
throughout D.

Note that for our problem, the constraint (1.8), and therefore (1.3), is implied
by the boundary conditions

M(To,t) :MTO, 2
v(re,t) =0, 2
alone, because, using (1.16), equation (1.8) translates into

which, in light of (2.3), (2.4), is an identity at the boundary = = ry.

It follows from Theorem 2 that in order to establish Theorem 1, it suffices
only to prove the corresponding existence theorem for system (1.30)-(1.31)
in domain D. The equation (1.3) will then follow as an identity on weak
solutions because it is met at the boundary. It follows that if we construct
weak solutions for which v is uniformly bounded and for which p decreases
fast enough, then we can apply (1.3) as  — oo to conclude that

lim M (z,t) = 0. (2.5)

r—0o0

This is our strategy for proving that the total mass is finite.

Before stating the main theorem precisely, a few preliminary comments
regarding system (1.30)-(1.31) are in order. First note that system (1.30)-
(1.31) closes once we express Th} and T%? on the RHS of (1.34), (1.35) and
(1.36), as a function of the conserved quantities u = (u",u') = (TY,T5}).
From (1.10) it follows that

2
2_ P 0P
T = il (2.6)
and this can be expressed in terms of u via the mapping (2.21) discussed
below. To write T} as a function of u, use the identities, (c.f. (4.69),(4,70)
of [10]),

T — Tif = p —p = fi(p), (2.7)
VT — (Th1)? = ppc® = falp). (2.8)
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By (2.7),

o= frNT0 - T, (2.9)
and using this in (2.8), one can in general solve (2.8) for T};. In the case
p = o?p, a calculation gives

o 20+1 4¢ Ty ’ 00
=S e (] ) eo
where
2 2
¢ = (020_602)2' (2.11)

It is readily verified that the quantity under the square root sign is positive
1
<1l+—,

so long as
3
[Tz(\)/? 2¢
which holds in light of (1.20). It follows that (2.10) defines T}; as a smooth,

single valued function of the conserved quantities (u®, u') = (T3, Ty} ). Other
than its existence, we will not need the explicit formula for T3} given in (2.10).

We are free to analyze the state space for system (1.30)-(1.31) in the plane of
conserved quantities u = (u®,u') = (T, TY), in the (p,u) plane, or in the
plane of Riemann invariants (r,s) which are defined in terms of p and v via
the special relativistic Euler equations in flat Minkowski spacetime, (assume
p=0o?p, c.f. [24]),

1. c+v Ky
= -1 ——1 2.12
' Mo T2 P (212)
1 c+wv KO
= -1 —1 2.1
S 5 nc—v+ 5 np, (2.13)
where
20¢
Ky = ) 2.14
07 2402 (2.14)

(There should be no confusion between “r” the Riemann invariant and “r”
the radial coordinate.) It is more convenient for us to use the variables
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z = s+r=Kylnp, (2.15)
w = S—rzlnc+v, (2.16)
c—v

and we let z denote the vector

z=(z,w) = (Ko Inp,In Z;Z) : (2.17)

Given this, we use the following notation: As usual, the double norm || - ||
applied to a vector denotes Euclidean norm, so e.g., ||u = /(u°)? + (u')?
and ||z|| = /(2)? + (w)?), and the single norm | - |, when applied to scalars,
denotes the the regular absolute value. But we use the special notation that

| - |, when applied to a vector, denotes the change in the z-component across
the vector, so that, e.g.,

lz| = |z|. (2.18)

Similarly, if v denotes a wave with left state z;, and right state zr, (see (3.10)
and (4.13)-(4.15) below), then we let

IVl = yIzr — 202 + lwg — wgl?, (2.19)
il 2R — 21, (2.20)

and we refer to |y| as the strength of the wave 7, c.f. [24, 16].
Equations (1.15), (1.16), and (2.12)-(2.16), define the mappings ¥ :
(p,0) — (') and @ : (p,0) — (2,w),

u p\ _ [ S
< wl > =V < v > = ( (ci;—fzgcvp ) (221>
z Kolnp
<w>:@<5>z<m%”>' (2.22)

The following proposition states that the mappings ¥ and ® define one to
one regular maps between the respective domains:

Proposition 1 The mapping

®:D— R (2.23)
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defined by (2.21) is smooth, one-to-one and onto, from domain

D ={(p,v): 0 < p<oo,lv|<c}, (2.24)
to range
R={"u"):0<u’ <oo,|u'| <oo}; (2.25)
and the mapping
:D— R, (2.26)

defined in (2.22), is smooth, one-to-one and onto from domain D to
R={(z,w): —00 < z < 400, —00 < w < +00}. (2.27)

Proof: This follows directly from (2.21) and (2.22).
The goal of this paper is to prove the following theorem:

Theorem 3 Let up(z) = (ud(z), uj(r)) = U(po(z), vo(x)) = Wod ! (zo(x), wo(x))
and Ag(z) = (Ao(x), Bo(x)) denote initial data for system (1.80),(1.51), de-
fined for x > ro. Assume that there exists positive constants V, L, and v,
such that

TViewsny Inpo(-) <V, (2.28)
TV pir) In 5208 <V, (2.29)
|vo(z)| <, (2.30)

for all x > rq. Assume that By(x) = 172%, where the initial mass function
My(z) is given by

Mo(a) = My, + 5 | uf(r)r*dr, (2.31)
To

(c.f. (1.18)), and assume that My satisfies the conditions

lim My(z) = Mo < o0, (2.32)
and
oM, _
1- ;(x) = B;Y(z) > B >0, (2.33)

respectively, for some fized positive constants M,, < My, and B < oo. As-
sume finally that
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By(r)

Ap(z) = A,y exp /T: {70_1 + krBo(r)Ty} (uo(r))} dr (2.34)

for some fized positive constant A,, > 0, so that
Ap(ro) = A, > 0. (2.35)

Given this, we conclude that there exists T > 0, and functions u(z,t), A(z,t)
defined on x > 1o, 0 < t < T, such that u(z,t), A(z,t) is a weak solution
of system (1.26),(1.27), (1.2)-(1.4), together with the initial-boundary con-
ditions

p(x,0) = po(z), v(z,0)=vo(z), (2.36)
A(ro,t) = (Am, 1_21MO) , (2.37)
v(ro,t) = 0. O (2.38)

Moreover, the solution u, A satisfies the following:
(i) For each t € [0,T) there ezists a constant V (t) < oo such that

T‘/[:c,x-i-L] In p('vt/) < V<t)7 (239>
c+o(-,t)
T In ———= 13 2.4
‘/[%x-i‘L] nC—’U(',t/) < V( )’ ( O)

for allt' <t.
(1t) For each x > 1o and t € [0,T),

0 < A(z,t), B(x,t) < o0, (2.41)
and
lim M(z,t) = M. (2.42)

(11i) For each closed bounded set U C {(x,t) : x > ry, 0 <t < T}, there
exists a constant C(U) < oo such that,

HA(.%‘Q,tQ) — A(l’l,tl)H < C(Z/{) {|.T2 — 1'1’ + ’tz — t1|}, (243)

and

/ u(r, t2) — u(r, t)||dr < CU)|ts — t]. (2.44)
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Here, (2.39) and (2.40) imply that the functions z(-,¢) and w(-,t) are func-
tions of locally bounded total variation at each fixed time ¢t < 7', and the
bounds are uniform over bounded sets in x > rg, 0 < t < T. Estimates
(2.39) and (2.40) also imply that p > 0 and |v| < ¢, and therefore that
u® > 0 throughout z > ry, 0 < t < T. The inequality (2.41) says that
B = l_%ﬂ > 0, and hence that 222 < 1 for ¢ < T, the condition that no

black holes have formed before time 7. Inequality (2.43) says that the metric
components A and B are locally Lipschitz continuous functions in x > ryg,
0 <t < T, and (2.43) says that u(z,t) is L'-Lipschitz continuous in time,
uniformly on bounded sets. Note that (2.31), (2.34) are included to guaran-
tee that equations (1.2) and (1.4), (and so also (1.31)), are satisfied at time
t=0.

3 The Fractional Step Scheme.

In this section we define the approximate solutions ua,, Aa, = (Aaz, Baz) of
system (1.30), (1.31) constructed by a fractional step Glimm scheme. Again,
we have set x = 2! = r, and we write ¢ in place of ct, in the sense that ¢
must be replaced by ¢t whenever we put dimensions of time, (that is, factors
of ¢), into our formulas.

Let Ax << 1 denote a mesh length for space and At a mesh length for
time, and assume that

Azx
e A, (3.1)

so that A~! is the Courant number. We choose

AzMaa:{Q\/g}, (3.2)

where the maximum is taken over all values that appear in the approximate
solution. This guarantees the Courant-Friedrichs-Levy (CFL) condition, the
condition that the mesh speed be greater than the maximum wave speed in
the problem. (That is, \/% is the speed of light in Schwarzschild coordinates,
and the factor of two accounts for the fact that waves emanate from the center
of the mesh rectangles in our approximation scheme. Of course, as part of
our proof, we must show that the maximum on the RHS of (3.2) exists.) Let
(x;,t;) be mesh points in an unstaggered grid defined on the domain

D = {ro <z <oo,t>0}, (3.3)
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R
) Ry iy
] T
i=0 i-1 i~} i id it x
T=T

Figure 1: The mesh rectangles R;;

by setting

x; = 719+ iAr,
tj = ]At,
c.f. Figure 1.

Each mesh point (z;,t;), ¢ > 0, j > 0, is positioned at the bottom center
of the grid rectangle R,;;,

R,’j:{afi_% §$<l’i+%, tj §t<tj+1}, (34)

where w+ 1= (i*1)Axz. Let R;,; denote the half rectangle {z;, < z <
Tigyls t; <t <t;i1} at the boundary = = r¢. In the approximation scheme,

the metric source A = (A, B) is approximated by the constant value A;; in
each grid rectangle R;;, so set

Apg(z,t) = Ayj for (z,t) € Ry, (3.5)

for values of A;; to be defined presently. It follows that A, is discontinuous
along each line xz = Tiyls i = 0,...,00, and at each time ¢ = ¢;. In our
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definition below, values of A;; are determined from values A,;;_; and ua,
at time ¢;—, by solving (1.31), using the boundary condition A = A,, =

70
We now define ua, by induction. First assume that ua, is given by

piecewise constant states u;; at time ¢ = ¢;+ as follows:

ung(z,t) = w;; for x; <z <z, t=1;+. (3.6)

This poses the Riemann problem

. UL = Ui—1,5 T < T,
() = { UR = Ujj x> 1, (3.7)
for the system
ur + f(Ay,u)e =0, (3-8)

at the bottom center of each mesh rectangle R;;, « > 1. When ¢ = 0, the
boundary condition v = 0 at xg = 1o replaces the left state, and so in this
case, the piecewise constant state wup; at time ¢ = t;+ poses the boundary
Riemann problem

~_Jv=0 T =T,
to(w) = { UR =Ug; T > To, (3.9)

Let ul"(x,t) denote the solution of (3.6), (3.7) for (x,t) € R;;, and let

ull(x,t) = RP([E t) for (z,t) € Ry (3.10)

Equation (3.10) defines the Riemann problem step of the fractional step
scheme. Note that since Aa, = A;; is constant in each R,;, it follows that
system (3.8) is just the special relativistic Euler equations for p = o?p, with
a rescaled flux. We discuss the solution of this Riemann problem in detail
in Section 4. We conclude there that the solution u/i”(z,t) consists of a
1-wave %J followed by a 2-wave 72 for all 2 > 0, it consists of a single 2-wave
70] = 0 at the boundary i = 0, and the waves 7j; all have sub-luminous
speeds so long as (3.2) holds. It follows that (3.2) guarantees that the waves
in the Riemann problem (3.7), (3.7), never leave R;; in one time step, c.f.
Proposition 3 below.

The Riemann problem step of the method ignores the effect of the source
term g in system (1.30), and also ignores the effect of the discontinuities in
the flux f(A,u) due to discontinuities in A at the boundaries z, 1 of R;j.

These effects are accounted for in the ODE step. For the ODE step of the
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fractional step scheme, the idea is to use the Riemann problem solutions as
initial data, and solve the ODE’s

u=G(A,u,x) =g— A" - Vaf, (3.11)

for one time step, thus defining the approximate solution in R;;. The first
term on the RHS of (3.11) accounts for the sources on the RHS of (1.30),
and the second term accounts for the discontinuities in A at the boundaries
;1. Now by (1.38),

g = g(A,u,x) = (gO(A,u,:L'),gl(A,u,:c)> )

where
2 A
°(A = —=4/=Ty 12
g( 7“737) z\ B M> (3 )
1 [A (4 B—1)
9' (A u,z) = ) B{wTJ\l/[l_’_( - (Txt — Tar) (3.13)
+2raB(TY T} — (Th)?) — 42T} |
By (1.34),
1 1 1 1
— A — 0 N _ (2 701~ 11
vAf VAf( ,U) (vAf 7vAf> (2 AB M > QB\/E M)v
(3.14)
and by (1.40),
A'=h=(h(A u,x),h (A1), (3.15)
where
0 (B - ]‘)A 11
h°(A,u,z) = ———+ keABT),,
X
B-1)B
RY(A,u,r) = —(7)+/f:cBQT]?4O. (3.16)
T

It follows from (3.14)-(3.16) that

, 1 [A
A" Vaf(Aux) = 54/ 50 (T3, T31) (3.17)
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where

A" B"_2(B-1) 00 11
5:Z—§:T—H:UB(TM—TM). (3.18)
Using (3.12), (3.13) and (3.18) and simplfying, we find that the ODE step

should be

where
1 [A . (20B+1)

GOA,u,z) = —2\/;T£}{x—mB(T£}—T;;)}, (3.20)
1 A (4 B-1

1 N L Bty alt! 00 11

G'(Auz) = — B{:L‘TM+ - (79 + Tt ) + (3.21)

k2B [Tﬁ}Tj} —2 (1) + (T]\l})Q] - 4xT22} .

Since u = (T, T3}), and T4}, T?* are given as functions of  in (2.6), (2.10),
respectively, it follows that the right hand sides of (3.20) and (3.21) determine
well defined functions of (A,u,z). It follows that G, as defined in (3.20),
(3.21) also satisfies

G(Aa u, ZL’) - g(A7 ’LL,.T) - A/ : vAf<Aa u, ZL’),

where (3.12), (3.13) and (3.17) define g and A’ - f as functions of (A, u,x).
We can now define the ODE step of the method. Let a(t,u) denote the
solution to the initial value problem

= G(Ay,0,2) = g(Ay, 0,0) — A" Vaf(Ay, 4, 2),
4(0) = uo, (3.22)
where G(A, u, x) is defined in (3.20), (3.21), and g(A,u,x) and A’- f(A, u, z)
are defined in (3.12), (3.13) and (3.17), respectively. It follows that
t
ﬁ(t, Uo) — Uy = / ﬁ,t dt
0

= /Ot {g(Aijaﬁ(£>u0)ax) — A’ VAf(Aij:ﬁ(g,Uo),x)} d§.
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Define the approximate solution ua,(x,t) on each mesh rectangle R;; by the
formula

t

uns(z,t) = ufP(x,t)+ t'{G(Aij,a(f—tj,ugl;(x,t)),x)}d§ (3.23)
= W 0)+ [ (oA 0l — b, (1), 0)) de
— [ A VA (Al — bl 0), ) ) e

Thus on each mesh rectangle R;;, ua,(,t) is equal to uk%(x,t) plus a cor-
rection that defines the ODE step of the method.

To complete the definition of ua, by induction, it remains only to define
the constant states Ai,j+1 on Ri7j+1, and Ui j+1 = UA:C($,75]‘+1+) for T, <x<
Zit1, in terms of the values of ua,, Aa, defined for t; <t < t;,. For this we
use Glimm’s method of random choice, c.f. [8, 23]. Thus let

a={a;};2, €I, (3.24)

denote a (fixed) random sequence, 0 < a; < 1, where IT denotes the infinite
product measure space I13°,(0,1);, where (0,1); denotes the unit interval
(0,1) endowed with Lebesgue measure, 0 < j < co. (For convenience, assume
WLOG that ay = %) Then, assuming that ua,, A, is defined up to time
t < tjy1, define

Ui j1 = Ung (T + a1 Az, tj 1 —), (3.25)

K xT
Mpz(z,tjp) = My, + 3 /TO U, (7, tje1—)r? dr, (3.26)
c.f. (1.18).2 In terms of these, define the functions
1

1 2Mpag(z,tjq1)”
xr

BAx(aj,thrl) = (327)

and

BAI(T, t]+1) - 1
r

+ krBag(r, tj+1)TJ\141(UAz(7’a tj+1))} dr,
(3.28)

Az, tj) = Ay exp /JC {

9By (3.25),the approximate solution depends on the choice of sample sequence a. In
the last section, we prove that for almost every choice of sample sequence, a subsequence
of approximate solutions converges to a weak solution of (1.31).
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c.f. (1.6) and (1.4). Finally, in terms of these, define

M j1 = M (i, tj41), (3.29)
Bij = Bz tj41) = 1_21M]+17 (3.30)

and i
Assr = Alws, o). (3.31)

Let A; ;11 = (A +1,Bij11) denote the constant value for Aa, on R, 1.
This completes the definition of the approximate solution ua, by induction.
Note that (3.26)-(3.28) imply that when p > 0, |v| < ¢, we have

Bag(w,t;) > 1, (3.32)

Bax(ro,tj) = —zmg = Br, (3.33)
0

Apa(m, 1)) > Ay, (3.34)

for all © > 79,7 > 0. Note also that as a consequence of (3.26), (3.27) and
(3.28), equations (1.2) and (1.4) hold in the form

B/Awg’tj) - —BA’”(g;tj)fl + mBAm(x,tj)ij}(uAm(x, i), (3.35)
A/Azﬁfvtﬂ =  Baelli)Zl 4 B (2, 42T (une (2, 1)) (3.36)
Therefore,
0 A B
B In{Apz(7,t5) Basz(, 1)} = T+t g

< dkxBag(z,t)(Thf (uas(z,t5)) + Thf (unaz(z,t5))).

Integrating this from r¢ to x yields

8 x

Ana(, ;) Bas(a, t;) < ATOBTOeXp{ BAI(:E,tj)STQTJ?f(uAI(x,tj))}.
To Jro

(3.37)

Inequalities (3.35)-(3.37) directly imply the following proposition:
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Proposition 2 Assume that there exist positive constants M, B, S, v, and
integer J > 0, such that the approximate solution uay, Aa., defined as above,
exists and satisfies

Mag(z,t;) < M, (3.38)
Bas(7,t;) < B, (3.39)
0 < Sax(z,t;) = |wpas(r,t;)] < S < oo, (3.40)
and
lvaz(z,t5)] <0 <c, (3.41)

for all x > ry, j < J, so that by (1.15),

A+ 0%
Then
A AA (ZL’ t')
0< —" < 280V < An(x,t:) < Apg(,t;)Bag(z,
Bao(t,t;) = Bas(a,t;) — 0 (2.8) < Ane(2, 1) Bax (2, ;)
8BM _
< ATOBTOexp{ } = Gap(B, M), (3.43)
To
and
1 2+ 0?0 _
1 A+ 0% -\ -
|Bao(z,t;)] < (m +h 5| B’ (3.45)

for all x > rg, and j < J.
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Note that by (3.30), (3.31), (3.43)-(3.45) apply with Aa,(x,1;), Baz(z,t;),
replaced by A;;, B;;, respectively. Note also that (3.43) implies that

A =2y/Gup (3.46)

suffices to guarantee the CFL condition (3.2), and note that (3.44) and (3.45)
imply
1 A+ o?0?

< ( + mS) (B®+ Gap(B, M)), (3.47)

To c? — 92

AAA,
Ax

where

AApnr, A1 — Ay
— ; 3.48
Ax Ax ’ ( )

which gives the Lipschitz continuity in x of Aa, and Ba,, respectively.

Proof: Inequality (3.43) follows directly form (3.37) in light of (7.30) and
(3.26), and (3.44), (3.45) follow directly from (3.35), (3.36), and (3.43).

4 The Riemann Problem Step

In this section we discuss uf}P , the solutions which constitute the Riemann
problem step in the construction of ua,. For fixed (i,7), ufi (x,t) is defined
in (3.7), (3.8) as the solution of the Riemann problem

Ut + f(AZ‘j, U)x = 07 (41)
U (l’) _ UL = Ui—1,5 z <0 <4 2)
0 UR = Uiy T Z 0 ’ '

with the origin translated to the bottom center (z;,t;) of the mesh rectangle
Rij = {(x,1) : T < < xH%,tj <t < tj41}. Vector A;; is constant on
Ri;. Assuming p = o2p, system (4.1) takes the form

A,
o (5%) = o (43)

A -
(Tf})7t+<,/ ”Tj}) = 0, (4.4)
B’Lj 7x

where T3} is given as a function of 7% and T3} in (2.10).




26 JEFF GROAH AND BLAKE TEMPLE

Proposition 3 Assume that uy and ug correspond to values of p and v that
lie in the region p > 0, —c < v < c. Then the Riemann problem (4.1),
(4.2) has a unique solution consisting of elementary waves: shock waves and
rarefaction waves. The solution is scale invariant, (is a function of x/t), and
consists of a 1-wave ’y}j followed by a 2-wave ’yfj Moreover, the CFL condition
(3.2) gquarantees that the speeds of the waves are always smaller than the

mesh speed % = Max {2\/%}, and thus waves never interact during one
time step.

Proof: System (4.3)-(4.4) is the relativistic compressible Euler equations

divTy; = 0 in flat Minkowski spacetime, except for the constant factor %
ij

that multiplies the flux. Now the factor 1/% changes the speeds of the

waves, but does not affect the values of u on the elementary waves ;. In-

deed, the scale change ¢ — t/,/A;;/B;; converts (4.1) into the Minkowski
space problem divT); = 0, and so it follows from the frame invariance of the
compressible Euler equations that (s,ur,ur) satisfies the Rankine-Hugoniot
jump conditions

A

sful = [f] = |/ 521w, (15)

for system (4.1), if and only if (5, u) satisfies the Minkowski jump conditions

Slu] = [fu], (4.6)
where
Aij _
s=1\g.5 (4.7)

)

(Recall that a shock with left state uy, right state ug, and speed s, is a weak
solution of a conservation law u; + f(u), = 0 if and only if the Rankine-
Hugoniot jump relations s[u] = [f] are satisfied.) Here f denotes the flux in
(4.1), far = f(1,1,u) denotes the standard Minkowski flux, and [-] denotes
the jump in a quantity from left to right across a shock. Thus the i-shock
curves for system (4.1) agree with the i-shock curves for the system wu; +
fu(u)y) =0, when A;; = (A4;5, Bij) = (1,1), [23]. Moreover, since [u] tends
to an eigen-direction and s tends to an eigenspeed as [u] — 0 across a shock,
it follows that the i-rarefaction curves R; and i-shock curves S; for system
(4.1) are the same as the curves for the Minkowski system u; + fas(u), =0,
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c.f. [23, 24, 8, 14, 3]. It follows that the factor ,/g—g changes the speeds of

the waves, but does not affect the values of u on the elementary waves 'yfj,
as claimed.

It was shown in [24] that the Riemann problem for system u;+ fas(u), = 0
has a unique solution consisting of a 1-wave followed by a 2-wave, and all
wave speeds are subluminous so long as p > 0, —c < v < c. If we denote
this solution by [ur,ur|m(x,t), then, (assuming p > 0, —c < v < ¢), it
follows from (4.7) that the solution of (4.1), (4.2) is given by [ur,ug](x,t) =

[wr, ur|m(z, \/ ‘g]t) Since, by [24], all shock and characteristic speeds are

sub-luminous for the Minkowski problem divTy; = 0, p = o2p, it follows from
(4.7) that wave speeds in the solution of the Riemann problem (4.1), (4.2) are

bounded by \/%, the speed of light in standard Schwarzschild coordinates.
This verifies that if p > 0, —¢ < v < ¢, then the CFL condition (3.2)
guarantees that all wave speeds in the solution u;i" are bounded by the mesh
speed % = A. Note that this implies that the constant states w;_; j, u;; are
maintained along the left and right boundaries of R;; in the approximate
solution u". O

For fixed Aij = (Aija Bz‘j); let

[uLa UJR] = [uLv uR} <x> t)> (48)

denote the solution of the Riemann problem (4.1), (4.2), and write

[ug, ur) = (v',7°), (4.9)

to indicate that the solution [ur,ug](x,t) consists of the 1-wave v! followed
by the 2-wave 72. An elementary wave ~ is itself a solution of a Riemann
problem, in which case we write [ug,ug] = 7, and we call u; and ug the
right and left states of the wave -, respectively. In this case, define ||, the
strength of the wave ~, by

u
] = [Koln(ug) — Koln(ug)| = \Ko In (u;) , (4.10)

c.f. (2.14). For the general case [ur,ug] = (v',7?), we define the strength of
the Riemann problem as the sum of the strengths of its elementary waves,
[ur, url]l = W' + 177 (4.11)

The following proposition, special to the case p = o?p, states that the sum
of the strengths of elementary waves are non-increasing during wave inter-
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actions, so long as A;; is constant. (This property was first identified by
Nishida in non-relativistic case, [20].)

Proposition 4 Assume that A;; is fived. Let ur, uy, and ug be any three
states in the region p > 0, —c < v < c. Then

[ur, ur]| < |[ur, un]| + [[unr, ur]]- (4.12)

Proof: It was shown in [24] that (4.12) holds in the special relativistic case
divTy = 0. Since the effect of A;; is to change the speeds of the elementary
waves, but not the left and right states, in the solution of (4.1), (4.2), it fol-
lows that the estimate (4.12) continues to hold for arbitrary, (but constant),
values of A;;. O

Proposition 4 is a direct consequence of the geometry of shock and rar-
efaction curves summarized above, and discussed further below, and is not
true except in the special case p = o2p, [24]. It follows from Proposition 4
that the only increase in the total variation of In pa.(+,t) in an approximate
solution ua.(+,t) is due to increases that occur during the ODE steps (3.22).
This is the basis for our analysis of convergence. Thus we analyze solutions
in the z-plane, z = (2,w) = (Kolnp,In &%), a 45° rotation of the plane of
Riemann invariants (r,s), c.f.(2.12), (2.13), [24].

Thus, let z;,,zr be the left and right states of a single elementary wave
v, and let v denote both the name of the wave, as well as the vector

Y =%2Rr — ZL. (4.13)
Let
7]l = llzr — 2zl (4.14)
and so we have
V| = |Kolnpr — Kolnpr| = |2r — 2] < |7, (4.15)

where Kj is defined in (2.14). Note that because changes in A affect only
the speeds of waves, it follows that ~, || and ||y|| depend only on zy, zg, and
not on the value of A;j; used in the construction. We write

21, 2r) = [ur, ur] = (7', 7°), (4.16)

to indicate that ~!',~7? are the elementary 1- and 2-waves that solve the
Riemann Problem with left state z; = ® o U~lu; and right state z; =
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® o Uluz. We now review the results in [24] regarding the geometry of
shock and rarefaction curves as plotted in the z-plane.

Let S;(zy) denote the i-shock curve emanating from the left state zp.
That is, zg € Si(zr) if and only if [z;,zg| is a pure i-shock,[23]. It was
shown in [24] that all i-shock curves are translates of one another in the z-
plane, and 2-shock curves are just the reflection of the 1-shock curves about
lines z = const. The following formula for the 1-shock curve is given in [24],
p.85, equations (74),(75):

Lemma 1 A state zg lies on the 1-shock curve Si(zp) if and only if

Ar= — I {f,(2KQ)} - ﬁ In {£,(0)} (4.17)

As = —;1n{f+(2KO}+\/fln{ﬂ(é)}’ (4.18)

where

J+(Q) = (14 ) +/¢(2+0), (4.19)

for some 0 < ( < co. Here

20%c? K?
K=-——"— =20 4.20
(c + 02)? 9 ( )
is used in place of Ky, and Ar = rgr —rr, As = sg — 1, denote the change
in the Riemann invariants across the shock, c.f. [24].

Using (2.15),(2.16) we see that (4.17),(4.18) are equivalent to

Aw = —In{f (K3}, (4.21)
Az=—-KoIn{f({)}. (4.22)

Since (4.21),(4.22) describe the 1-shock curves for 0 < ¢ < oo, it follows
directly from these that 1-shock curves S;(zy) have a geometric shape in the
z-plane that is independent of z;. Thus all 1-shock curves are translates of
one another in the z-plane, as claimed.

It also was shown in [24] that the 2-shock curve Sy(z1) is the reflection of
S1(zr) about the line z = zy, (this follows directly from (76), (77) of [24].)
From this, together with (4.21),(4.22), it follows that
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Aw| = {f (K30}, (4.23)
Az| = Koln{f+(Q)}, (4.24)

hold all along both the 1- and 2-shock curves. The next lemma implies the
convexity of i-shock curves in the case p = o2p.

Lemma 2 The shock equations (4.23), (4.24) imply that

]\ (1A
smh( 5 = Kjsinh ok, ) (4.25)

from which it follows that (4.23), (4.24) define

|Aw| = H(|Az]), (4.26)

where the function H s given by

|Az] |Az]

_ 2 o 12 9 ainh-l :
H(|Az|) =1In f, <2K0 sinh { oK, }) 2sinh (KO sinh 2K0> . (4.27)

The function H satisfies

2 _ _2\2  giph(l24
(¢* —0%)? sin (QKO) >0 (4.28)

H// A —
(182) 2c0(c? + 0?) cosh®(1521) —

Proof: Solving equation (4.24) for ¢ gives

B , |Az] 2
(=2 (smh <2K0>> : (4.29)

Substituting (4.29) into (4.23) yields the first equality in (4.27), and the
formula

f1(y) = 2sinh*(Iny). (4.30)

Using this to solve for ¢ in (4.23), (4.24), equating, and taking square roots,
gives (4.25), as well as the second equality in (4.27). Implicitly differentiating
(4.25) and simplifying gives (4.28). O
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Figure 2: The reflection property of shock curves

It follows directly from Lemma 2 that H(|Az|) is a monotone increasing
convex up function of |Az| that is superlinear in the sense that

|Az| < H(|Az]) < oo, (4.31)
for all Az # 0, and

H(|A
L H(Az)

il oo VA
|Az[—0  |Az|

(4.32)

Y

c.f. Figure 2,3.
Since |Aw| = |Az| along all 1- and 2-rarefaction curves, we have the
following lemma:

Lemma 3 Let zy,zg be the left and right states of an elementary wave v,
so that

v = |21, zR]. (4.33)

Then
|Aw| < H(]y]), (4.34)

where
Aw = wgr — wy, (4.35)

I = 1A2] = |zr - 2, (4.36)
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|Aw|=H(|Az])
|Aw| A

[Aw|=|Az]

- |Az]

Figure 3: H is increasing convex up

where H is given in (4.20).

The superlinearity and convexity of H, together with Jenson’s inequality,
imply the following propostion:

Proposition 5 Let v, ...,7, be any set of elementary waves. Then
Sl < 3 Hh) < 1 (3 ). (437
i=1 i=1 i=1

The next Proposition summarizes results in [24], and follows directly from
Proposition 5:

Proposition 6 For any left and right states zy, zr € RZ, there exists a
unique solution of the Riemann Problem [zy, zg| consisting of a 1-shock or
I-rarefaction wave v, followed by a 2-shock or 2-rarefaction wave v2, so that
we can write

(v',7%) = (21, 2&]. (4.38)

The speed of the wave v is always strictly less than the speed of %, and all
wave speeds are subluminous. Moreover, there exist C? functions T'), : R? —
R%, one for each p = 1,2, such that (v',7?) = |z1,2zg] if and only if the
vector 4P satisfies

VW =T,(2zr — z1), (4.39)
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where,
V7| = [Tp(zr — 2)| < V2|2R — 2. (4.40)

Proof: The smoothness of I', and the dependence on the difference zp — z,
follows from the C? contact between shock and rarefaction curves, together
with the fact that shock-wave curves, drawn in the z-plane, are translation
invariant. Estimate (4.40) can be verified in each of the four cases of the
Riemann Problem [zp,zg|; namely, if [z1,zg| is a 1-shock followed by a 2-
rarefaction wave or a l-rarefaction wave followed by a 2-shock, then |y!| +
|72] = |2r — 2z]. In the other two cases one can verify (4.40) assuming
that the shock-waves lie on the Riemann Invariants, and then see that the
divergences of shock and rarefaction curves only improves this estimate. O

We now discuss the boundary Riemann problems posed at mesh points
(x0,tj), 7 =0,1,2, .., that lie along the boundary xy = r( in the approximate
solution ua,. In this case, for fixed j, uf”(x,t) is defined in (3.8), (3.9) as
the solution of (4.1) together with the initial-boundary data

uo(x):{vzo i

UR = qu

0
0 } , (4.41)

with the origin translated to the bottom center (zo,t;) of the mesh rectangle
Roj = {(2,1) © Tyyco<o, t;<t<t,,,- Again, vector Ag; is constant on Ry;.
2

AV

The following theorem, which generalizes Proposition 3 to include boundary
Riemann problems, follows by similar reasoning. (See [21] for a discussion of
boundary Riemann problems.)

Proposition 7 Assume that ug lies in the region p > 0, —c < v < c.
Then the boundary Riemann problem (4.1), (4.41) has a unique solution
consisting of a single elementary 2-wave 73;‘ of positive speed. Moreover,
the CFL condition (3.2) guarantees that the speed of the wave 'ygj 15 always

smaller than half the the mesh speed % = Max {2\/%} , and thus 7&- cannot
hit the boundary of Ro; within one timestep.

For fixed Ag;, let

[07 UJR] = [07 U’R] (‘Tu t)? (442)
denote the solution of the Riemann problem (4.1), (4.41), and write

[0, ur] =2, (4.43)
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to indicate that the solution [0,ug](x,t) consists of the single wave %, a
2-wave. Again, define the strength of the Riemann problem [0, ug| as the
strength of its elementary wave,

10, ur]l = [+]. (4.44)

The following theorem generalizes Proposition 4 to include the boundary Rie-
mann problems, and this implies that the sum of the strengths of elementary
waves are non-increasing during boundary wave interactions, so long as A;;
is constant.

Proposition 8 Assume that A;; is fized. Let up, and ur be any pair of
states in the region p > 0, —c < v < c. Then

[0, wr]| < 1[0, wn]| + |[unr, url] (4.45)

5 The ODE Step

In this section we analyze the ODE step (3.22) of the fractional step scheme.
Recall that this arises by rewriting system (1.30) in the form u, + %uw =
g—A"-Vaf=G(A, u,x) and neglecting the flux term containing u,. Then
the jumps in A at the vertical lines Tiyls i = 0,1, ..., are accounted for by
the A’-Va f term on the RHS of this equation. Using (3.20), (3.21) and the
fact that (u®,u') = (T30, TY}), system (3.22) takes the form

Tﬁ}:—l\/g ](\)41{2(3;1)_%3 (Tf}—ﬂ;)} =G'A,u,z), (5.1

2
: 1 /A (4 (B-1)
00 _ -+ ol 00 11
Ty = 5\ B {$TM + (TM +TM) (5.2)

+rxB

TOTI — 2 (T}\)})Q + (T}wlﬂ - 4xT22} = G (A, u, ).

We now analyze the solution trajectories for system (5.1), (5.2) in the (p,v)-
plane. To this end, we record the following identities which are easily derived
from (1.15),(1.16),(1.17), and (2.6):

4 2.2

(1) - () = T e 53
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TOT — (T3) = 0%, (5.4)

2 2 (02 —v?)(c? + 0?)
(Ta1)" —2(18)) + 19T} = S e (55)
Ty +Ty = R (5.6)
W —Tiy = (& —a?)p. (5.7)

Using (5.3)-(5.7) in the RHS of (5.1), (5.2), we obtain after simplification,

G* = —1\/4 (22) w2 (2B +1) — kB(¢* — 0*)pa®} (5.8)

G = 1[5 (525) 2 {40* + (B = 1)(¢* + %) + kB(0® — v*)c*pa’}
(5.9)

Now differentiating the LHS of (5.1), (5.2) gives
o1y 9Ty
= @ 5.10
P p +v By ) ( )
ory . OTY} ]

) } = G . 5.11
p ap +v EN (5.11)

Thus it follows from Cramer’s Rule that system (5.1), (5.2) in (p, v)-variables
is given by

D,
) = — 5.12
p D (5.12)
D
) = 5.13
b= 2, (513)
where
el oy
_ oy
D, = o 8575:3’1 , (5.14)
Ty el
Du=| oy (o | (5.15)
P
orY)  orTd)
D:‘ Bgﬁ)} 6%} ‘ (5.16)

dp ov
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Using (1.15) and (1.16) we obtain

op 2 -2’

ory; 5 (2 + 0?)c*
v (2 —v2)2 77

Ty (0% +c*)ew
op -2

Ty (0°+ ) +v*)c
ov (2 — v?)? ’

and
(2 + o) (c! — o%v?)e
D= (5.17)

A calculation using these together with (5.8), (5.9) leads to

1 [A [ +02\* 5 9 91 o
D, = -5 B<02—112 ;{4—/{3(0 + o%)px }p,
Do 1 é 2+ 0%\ o?c?
v 2V B\c2—v2) =z

U2 C4 o 0.21}2
X {—402 + (B — 1)W + K/B<02 + U2)px2} p

Putting (5.17) and the above expressions for D, and D, into (5.12), (5.13)
and simplfying, we obtain system (5.1), (5.2) in (p, v)-variables:

1 A/ 2+0% )\ ve
.o 1 ]A ve 5.18
p 2 B<c4—02v2 T ( )
X {4 — KkB(* + 02)px2} 05
1 A [ =0\ o
o 1 ]A oc 1
v 2V B <c4—0202> x (5-19)

2 A o22
X {—402 + (B — 1)7 + kB(c* + U2)pZL’2} ,

For convenience, we rewrite system (5.18), (5.19) in the form
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, kVABzx [ (% + 0%)?vc
p = 5 [ A gaz | PPt (5.20)
, kVABz [(c* —v*)o?c
v o= — 9 [ 04—0'2U2 {p_p2}7
(5.21)
where
4
= 5.22
~ kB(c? + 02)x?’ (5.22)
and
4?02 — (B — 1)(c* — o%0?
P2 = (2 2)( 2,22 ) (5.23)
KB(c* +v?)o%cx
where, (by a simple calculation),
4v?0?
pa < < pi, (5.24)

KB(c? 4 v?)o?c2x?

for all values of v € (—¢, ¢).

We devote the remainder of this section to the proof of the following
theorem, which gives a global bound for solutions of u = G(A, u, x), starting
from arbitrary initial data

u(0) = ug = ¥ (po, vo), (5.25)

assuming that A > 0, B > 1 and = > ry are constant, and assuming the
physical bounds 0 < py < 00, —¢ < vy < ¢, (c.f. (2.21)):

Proposition 9 Assume that A, B and x are constant, that A > 0, B > 1,
x > 19, and assume that (po,vo) satisfies —c < vy < ¢ and 0 < py < co. Then
the solution (p(t),v(t)) of system (5.20), (5.21), with initial condition

p(0) = po, (5.26)
v(0) = wy, (5.27)
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exists, is finite, and satisfies

—c<(t) <ec,

for all t > 0. Moreover, if po < p1, then p(t) < py for all t > 0; while if
Po Z P1, then

p1 < p(t) < max q p1, po (CQ_UQ , (5.28)

for all t > 0.

Proof: For fixed A and z, system (5.20), (5.21) is an autonomous system of
the form

p = fl(pa U),
v o= fa(p,v).

Note that p = 0 and v =* ¢ are solution trajectories for this system. Since
the system is autonomous, solution trajectories never intersect, and so it
follows that p > 0, |v| < ¢ is an invariant region for solutions. Note also that
since p; is independent of v, the isocline p = p; also defines a solution curve
for system (5.20), (5.21), and so it also cannot be crossed by other solution
trajectories. Thus 0 < p < p1, |v| < ¢ is a bounded invariant region, and
p > pi1, |v| < ¢ is an unbounded invariant region, for solutions of system
(5.20), (5.21). Thus it remains only to verify (5.28), and it follows that the
only obstacle to global existence for the initial value problem (5.20), (5.21),
(5.26), (5.27), is the case py > p1, and the possibility that p(t) — oo before
t — oo. Note that (5.20) is quadratic in p, so the bound (5.28) on p is not
a consequence of equation (5.20) alone. However, (5.21) implies that p is
bounded, as we now show.

If pg > p1, then since p; > po for all values of v, it follows that v < 0 for
all time. Consequently, v(t) < vy, and p(t) can only increase while v > 0.
Once v hits v = 0, v(t) < 0 and p(t) decreases from that time forward. Thus
it suffices to estimate the change in p(t) while 0 < v(t) < vy. But from (5.20),
(5.21), we have

i (5.29)
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Figure 4: The phase portrait for system (5.20), (5.21)

where we have used p > p; > ps. Integrating this inequality by separation of
variables gives the inequality (5.28). O

The phase portrait for solutions of (5.20), (5.21), is given in Figure 4.

By the results of Section 4 the Riemann problem solutions preserve the
bounds 0 < p < oo, |[v| < ¢, and all (invariant) wave speeds remain bounded
by ¢, so long as 0 < p < 0o, |[v| < ¢ initially. By the results in this section,
it follows that these bounds also are maintained under the ODE step. But
(3.26) and (3.43) imply that that the only way the approximate solution ua,
can fail to be defined for all time, is if B — oo, or the CFL condition fails.
The following theorem is a direct consequence of (3.26) and (3.43):
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Proposition 10 Let B, M denote arbitrary positive constants, let

Az S E———
A:EZZ GAB(B,M),

and assume that the initial data ug(-) satisfies the bounds 0 < p < oo, |v| < ¢
for all x > ro. Then the approzimate solution ua, is defined, and continues
to satisfy the bounds 0 < p < oo, |v| < ¢ for all x > ro, t < t;, so long as

HMAacnoo < Mv

HBA:EHOO < B?

forall x > ry, j < J.

As a final comment, note that we have bounds for the RP step, and
bounds for the ODE step, but it remains to obtain bounds that apply to
both steps. Also, the fact that p and v remain finite in each approximate
solution does not rule out p — oo in the actual solution. For this, we need
estimates that are independent of Az, c.f. [16].

6 Estimates for the ODE step

In this section we obtain estimates for the growth of the total variation of In p
and In €2 under the evolution of the ODE 4 = G(A, 7, z), which is equivalent
to the system (5.20), (5.21). To this end, rewrite system (5.20), (5.21) in
terms of the variables (z, w)=(Ky1n p, Koln &%) to obtain, c.f. (2.15), (2.16),

s 4VAB <C4avc2 ){m(c2+02)px2_(1)1} 6.1

x — o%? 4 B
= F(A B,z zw)
W= 4\/E< 4 042 2) {5(624‘02) Ujpﬂf (6.2)
x ct— o 4 c?
o2 [1v?2 (B—1)c'—oc%?
(7 lze "))
= F(A Bz, z,w).

Here K is defined in (2.14), and we use that
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z = KOB7

P
, 2c .
e B

Note also that kc?px? is dimensionless. A calculation shows that the indexed
brackets on the RHS of (6.1), (6.2) satisfy

()] <1, i=1,2. (6.3)

To verify (6.3), use that B > 1, and

o? |(c* + 30%0?) — B(c' — 0%v?)
()] = 2 ABo2c2

- SR G- SG )
= ZjMax{zll <§—>2 (2)2} <1

The following theorem gives bounds for the RHS of (6.1), (6.2).

Proposition 11 Assume that

1< B<B, (6.4)
o BM
0 < AB < Gup(B,M) = A,,B,, exp{ . } , (6.5)
0
S <3, (6.6)
v <, (6.7)

and ro < x < 0o. Then each of

OF;
0z

|Fi(A, B, x, z,w)],

Y

ow

=

i =1,2, is bounded by Q—%Gl(B,M, S), where G is defined by

1 _ . Go(kPreS +1)
——G1(B,M,S) = , 6.8
SGi(B.T,§) = Dl 69
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where

(6.9)

(6.10)

Here we use the notation that K with a subscript denotes a constant that
depends only on k, 79,0 and ¢, while G(-) denotes a constant that depends
also on A, B, S and M, whichever appear in the parentheses after the G. We
include the factor (24/2)7! in (6.8) for future convenience, c.f. Theorem 12

and Proposition 13 below.

Proof: This follows by direct calculation, using |v| < ¢, o < ¢. For example,

oR| _ (0p0Ry|_| o OF,
0z 0z Op Ky Op
p(c® +v?) 4/ AB ct k(c* +0v¥)o? ,
- ’ 20¢ x <c4 — 021)2) { 4 a7 }
< M(ﬁcgmg +1).
To
Also,
OF,|  |O0vdF,| (cz—v2> OF,
ow ow v 2¢ ov
) () o
x 2¢ ov \ ¢t — o202 ),
N {4@ < A(c? —v?) ) 0 I }
T 2(ct —o?) ) ov -t |
where

B ? 4B o2c?
But straightforward estimates show that

< 30 M s 1),
0
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for both ¢ =1 and ¢ = 2, and so

0F;

vi2 GO(BaM)
ow

(ke®roS + 1).
To

This completes the proof of the theorem.O
We now study solutions of (6.1), (6.2) in the z-plane,

—v

c
= = (Kylnp,l
5= (o.0) = (Kohnp, S0,
el = V7,
so that system (6.1), (6.2) can be written as
= F(A,z,2),
where A = (A, B) and
F = (Fy, Fy).

Let

z(t) = z(t; A, x, 7o)
denote the solution of (6.1), (6.2) starting from initial data
z(0) = zo,
treating A and z as constants. We now estimate

d

—1|z(?)||-
< ()
To start, note first that for any smooth curve z(t),
z(t) - #(t) /
2| = <l
‘ ||Z( )l

Thus, if z(t) denotes a solution of (6.1), (6.2), then

IN

d
el < 1B ()]

= ﬂw(mc%@g +1).

To

43

(6.11)

(6.12)

(6.13)

(6.14)

(6.15)

(6.16)

(6.17)

(6.18)

(6.19)
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We next obtain a similar estimate for

d

7 12r() — 2]}, (6.20)
where

ZL(t) EZ(t;A,IL,ZL>, (621)

zr(t) = z(t; A, xR, zR), (6.22)

and Ap,xp, Ag, g, are constants. (Here, z,zr could be consecutive con-
stant states that pose a Riemann problem in the construction of ua,.) Then,

d . )
dtHZR(t)—ZL(t)H‘ < ||zr(t) —zL(1)||
= ||F(zr, A, 1) — F(z, A, z)|| = |AF||
< V2Maz{|AF|, |AF}. (6.23)
But
OF; OF;
<
|AE|_] B a2+ |28 aw), (6.24)

so by Proposition 11, if (6.4)-(6.7) hold, then

M(I{CQTOS + 1) {|Az]| + |Aw]|}

IAF] <
To

< ﬁ%“i’m(m%s +1){||Az||}. (6.25)

We have the following result:

Proposition 12 Let zy(t), zgr(t) be defined by (6.21) and (6.22), and assume
xp < xR, and that (6.4)-(6.7) of Proposition 11 hold. Then

L llnlt) ~ 20| < %{sz) — )} (6.26)
l2r(t) — 21.(1)]| < l25 — 20} 75", (6.27)

where, c.f. (6.8),

G1=G(B,M,S) = 2\/§M</€C27’05’ +1). (6.28)

To
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The states z(t),zg(t) pose a Riemann Problem [z (t),zg(t)] at each time
t > 0. Let

22 (), 2r(1)] = (7' (1):7*(1)), (6.29)

denote the waves that solve this Riemann problem, c.f. (4.16).

Lemma 4 The following estimate holds:

< Vlzn(t) — 2 (0] (6.30)

< Gif|Az].

Proof: For the purposes of the proof, let z(t) = zg(t) — z1(t), and let

7P(2(t)) = Tp(2(1)), (6.31)

where I') is defined in (4.39) of Proposition 6. Then by Propositions 4, 8 and
(4.40),

2 A @O =)} < Y V(=) - 2(0)]

p=1,2 p=1,2

< V2ll2(t) - #(0)]). (6.32)
Similarly,
;Z{WP(Z(U)N — (=)} < ;2 [7"(2(0) — =(t))]
< V3la(t) - 2(0)]. (6.33)

Thus (6.32) together with (6.33) imply that

&S )| < V3o, (6:34)

p=1,2

which is (6.30). The second inequality in (6.30) follows directly from (6.26).
([

We have the following, c.f. (6.8):
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Proposition 13 Let (v'(t),v%(t)) = [z1(t),zr(t)], where z1(t), zr(t) solve
the ODE (6.1), (6.2). Assume that (6.4)-(6.7) of Proposition 11 hold. Then

O+ O] < Y 0)] + [v*(0)] + 1R (0) — 2L(0)[[e*Gat,  (6.35)

where G = G1(B, M, S) is given in (6.28).

Proof: This follows from (6.30) and (6.27). O

7 Analysis of the Approximate Solutions

Let ua,(z,t) denote an approximate solution generated by the fractional step
Glimm method, starting from initial data u(-) that satisfies the finite total
mass condition

Mpyz(00,0) = M,, + My < o0, My= g/ ulr,(r, 0)r? dr; (7.1)

0
the condition for initial locally finite total variation,
> bl <W, (7.2)
11 <1< 1y
p=172

for all iy, such that |z, — z;,| < L; the condition that the initial velocity
is bounded uniformly away from the speed of light,

lvaz(z,0)] < 0 < ¢ (7.3)

and the condition that the initial supnorm of xp is bounded,

Sae(,0) = 2pas(z,0) < Sy < 00. (7.4)
Note that (7.1) and (7.4) imply that

= Wy, (75)

lwan(x,0)] < ’m (C“’O)’

C—Q_JO

and

‘ZAHC(:U70)| <

Koln (5>‘ =% (76)
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Assuming (7.1)-(7.6), our goal is to find estimates for V;, S; and T > 0
such that

> <V, (7.7)
i1 <1< 1
p=1,2
and
S; = sup xpaz(z,t;) < S; (7.8)
r>7Q

for all |z;, — ;| < L,0<t; <T =1t; <1. Note that (7.7) estimates the
total variation in z on z-intervals of length L, and (7.8) estimates a weighted
supnorm. Estimates for the supnorm and local total variation norm of the
approximate solution ua,, that are uniform in time, are required to apply
the Oleinik compactness argument, [16]. Recall that the waves ’yfj solve the
Riemann Problem [u;_; ;,u;;] for system (3.8), and that since A = Aj; on
mesh rectangle R;;, it follows that the source A affects the speeds of the
waves 7;;, but the states on the waves themselves agree with the solution
[ui—1;,u;;] for the special relativistic Euler equations (3.8) when A = (1,1).

To start, let A;; denote the interaction diamond centered at (z;,¢;) in the
approximate solution ua,. In the case ¢ > 0, the diamond A;; is formed by
the points (x;_1 + a;Az, t;), (v; + ajAz,t;), (xi,tj_%), (i, tj+%), and in the
case i = 0, Ay  is the half-diamond formed at the boundary by the mesh
points (.To,tj_,’_%), (a:o,tj_%), (xo + a;Ax,t;), c.f. Figure 5.

In the case i > 0, the waves ~;; solve the Riemann Problem [ur,ug],
where

Ur, = Ui—1,5,
UR = Ujj-
We call these the waves that leave the diamond A;;, c.f. [8]. The waves that

enter the diamond solve the Riemann Problems [ur,uar], [war,, ur,], and
[uM27 ﬁR]a where

Up = Ui—1,5-1,

Upgy = Us5—1,

and
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A
t
1 2
Aoj YVij YVij /A”
UL p
j /“R U, /“R
L
Upy U Unro
o=y
=0
Upr=Uo, j1
Up =iy, j—1
Uprp=M j1
Figure 5: The interaction diamonds A;;
~  __ . RP
UL = Uj_q ;5
~ __ _RP

States ur,ug are obtained from 4y, ug by solving the ODE u; = G, written
out in (3.19). That is, uy, = x*(z1),ur = x ' (2zr), and 4y = x " '(21), g =

X 1(zg), where,

Zr = Z(At7 AZ_]7 Ty, 2L)7 (710)
7ZRr — Z(At, Aija X, iR),
c.f. (6.15). Thus, using the notation introduced at (4.16),

[ug, ur) = (775,

iz, k) = (335, 95)s (7.11)
[UMNUMQ] = (7}]—1? %’2,]'—1)’

and we write

(7.12)

[Ur, up, | = (7&11,3;17 fViREl,jfl)?

[Unsy, Ur| = (Wil/-:l,j—lvviLfl,j—l)'
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Here we let 7/, 71 denote the waves in the Riemann Problem posed at
(w;,t;) that lie to the right of the random point (z; + a;41Ax,t;41) at time
t = tj41, and %j ,%2 the waves that fall to the left of the random point
(xi—1 + aj+1Ax, t;4q), respectively, [23, §]

In the case of the boundary diamond AO j, the wave ’ygj leaves the diamond
Ag,j, and the waves 70] Ly -1 and ”yl] , enter the diamond. In this case,
using the notation introduced at (4.44), (4.43), we can write

[07 uR] = 7[2)]'7
[0, dar] = 4051, (7.13)

[un, Ug] = (’Ylg 1771,] 1)

where

UR = Ugjy,

RP
ip = ug; (7.14)
Upr = Ug,j—1-

Now let |7Z N1 denote the sum of the strength of the waves that enter the
diamond A;;. Thus, if 7 > 0, then

i =3 ol + 2l + R} (7.15)
p=1,2
and if i =0,
"VON| = |7§,j71| + |”Y1L,1" + |71 |- (7.16)

It follows from Propositions 4 and 8 that when ¢ > 0,

35 + 1951 < i, (7.17)

and when 7 = 0,

651 < 1oy |- (7.18)
Now it follows from (6.35) of Proposition 13, that if ua, satisfies (6.4)-
(6.7) of Proposition 11, then
gl + 1 < sl + 1351 + l2m — 2olle 2 Gi A (7.19)
But by (4.26),
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2r — 2| < Pyl + 1951 + H(3gl) + HO3350), (7.20)

so putting these together we obtain,

s+ 3] < 1451+ 1451 + { >[5l + H(A5)) } eHAGIAL (7.21)

p=1,2

We can now use (7.17), (7.18) to estimate |4;;| and H(|7};]).
Note first that by the convexity of H, we have Proposition 5, so

> H(]35]) < (Zm)_ (7). (7.22)

p=1,2 p=1,2

Let

OUT| _ |1 2
|%‘j | = |%‘j| + |%’j|- (7.23)

Then putting (7.17), (or (7.18) at the boundary), and (7.22) into (7.21), we
obtain

WOV < N+ N+ H () e Gaat, (7.24)

We can also estimate the change in z and z between (x;,t;) and (z;,t;_1).
Since both z; ;_; and z/i" are states on the waves 7/, ; or 7/, ;_;, and by
(6.19) we know

|25 = 25| < llzog — 20 || < GiA, (7.25)
it follows that

|2ij — 2, j—1| < > {|7fjj_1| +H (|7fj_1|)} + G At, (7.26)

l=i,i+1
p=1,2
and
Zij — Zi,j—1| S Z |’717j_1| + GlAt. (727)
l=i,i+1
p=12

We collect our results so far in the following theorem.
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Theorem 4 Let M, B, S, v, and integer Jy > 0, be any finite positive
constants, assume || < ¢, and let up.(x,t), Aaz(x,t) be an approximate
solution generated by the fractional step Glimm method with

Assume that,

Ax ——

= A= 2/Gap(B, M). (7.28)
Mag(z,t;) < M, (7.29)
Bas(z,t;) < B, (7.30)

0 < Sas(z,t;)) < S (7.31)
vas(zty)| < 7, (7.32)

forall v > 1o, 0 < t; < Ty = ty, < 1. Then the speed of each wave 7;;
generated in ua, at the Riemann Problem step of the method is bounded by

the coordinate speed of light

\/m, 1 >0,0 <7< Jy, and the following

estimates hold at each interaction diamond A;;, i > 0,5 < Jy — 1:

Iz —zigall < Y {al+H (W)} + Giae(7.33)
l=ii+1
p=172
zij — zij-1| < > -1 + G1At, (7.34)
l=ii+1
p=172
WU = YT < (T H (100N e G At (7.35)
where,
o6 aysCo B s
1 =Gy(B,M,S) =22 (koS + 1), (7.36)
0
GoEGO(B,M):Kl GAB<B7M), (737)
8¢
BM
Gap = Ary By, exp{ . } (7.39)
0

Moreover,
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1 < Bag(w, ),

0< Aro < AAI<£L',tj) < Gas,
2 2-2

0 c’+o°v”

and
’A,ﬁ (fII t )| < *1 + Iﬁiﬁzg BGqB
pAm To 2 — 0?2 ’

1 2 252\
1By, (2,1))] < ( + Ffj"_“s> B2

To C

forallz > 1y, 0<t; <Th=t; <1

(7.43)

(7.44)

Note, again, that (7.43) gives the Lipschitz continuity in x of Ax, and Ba,

and (7.42) implies that pa, > 0 for 0 <t < Tj.

Proof: This follows directly from (7.24), (7.26) and (7.27), together with

Propositions 2 and 10.0

Corollary 1 Assume that the approrimate solution ua., Aa, satisfies the
conditions (7.28)-(7.32) of Theorem 4 up to some time Ty, 0 < Ty =t <1,

and assume further that there exists constants L, Vy such that
> il <V,
11 <1<i9, p=1,2
for all |x;, — x| < L. Then for any constant o > 1 :
(A) The following total variation bound holds:

4t/ G _
> Il Sa(quAB)VOSaV*,

i1 <i<ia, p=1,2

for all |z, — x| < L, so long as t; < Min{T,,To} <1 where

To= (GlleGl) {axéa;;z:;m)}’

Y <1+4'§AB>VO.

V., =

(7.45)

(7.46)

(7.47)

(7.48)
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(B) The following L}, bounds hold:

loc

(Ei2
[ zsala ) — zas(at,) | do

1

< {4 Gz [V + H(aV,)| + Gule, — x|} it — t5,], (7.49)

/ 2 ’ZAx<x7tj2) - ZAw<x7tj1)| dx
:177;1

S {4 GAB [06‘7*} —+ G1’$i2 — JI“’} |tj2 — tj1|, (750)

for any t;, <t;, < Min{T,,To} <1, and any ro < z;; < z;, < 00.
(C) The following bounds on the supnorm hold:

|2ij — Zitjo| < @ (1 + Vo + 24/ GapGit, (7.51)

4t/ G
lwij — wiyjol < H (04 (1 + JLAB> Vo) + 21/G apGity, (7.52)
\/GAB> v
- 0

4t ;
1Zij — Zitjoll < <1 + 7
4t/ G
+H (oz (1 + ]LAB> V@) +21/G apGity,

for all t; < Min(T,,Ty) < 1.

4t;1/G AB)
L

(7.53)

The motivation for choosing the factor (1 + 2ivGap ‘LGAB) in (7.85) of (A) is that
since

Az ——
AL =AN=2/Gap(B,M), (7.54)

it follows that

> Liy — T4y + 4%15]'
- L ?
where the RHS of (7.55) dominates the number of intervals of length L con-
tained within the domain of dependence of [z;,,x;,] at time level ¢;. Note

that the appearance of tj4/G4p in (1 + HivGap VLGAB) (7.46) is important because

(1 + 4tj\/LG—AB> (7.55)
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the LHS of (7.46) can be estimated independently of M, B,S and ¥ for ¢;
sufficiently small.

Regarding part (C), note that z;;0 = zas(2; + ¢;5%,0) where t;2% =
2t;+/G ap depends on M, B. Note also that since

c+vj

C—Uj

, (7.56)

lvaz(z,t;)] <05 <c iff |waz(z,t;)] <w; = |ln

it follows from (7.52) that if initially |wa.(z;, 0)| < wp, then

4t/ G
‘wa(.%i,tj)’ <wo+H <Oé <1 + ]LAB> %) + Gltj Gy = Wy, (757)

for all x; > ro, t; < Min{T,,To} < 1. Thus |w| is bounded uniformly and v
is bounded uniformly away from c at each t; < M in{T,,To} <1 so long as
these bounds hold initially.

Proof of (A): Assume 0 < t; < Tj, and consider the interaction diamonds
Aij7 1= i17 ce ,ig. Then by (735), <1f il > 0),

> hh= > hi”l (7.58)

i1<i<iz, p=1,2 i1<i<ia

< 3 W S R+ H (W)} e MG A

11 <i<ig 11 <i<ig

IN

S gl DD gl + H (igal)} e M GLAL

11 —1<i<io+1 11 —1<i<io+1

More generally, let

Vi= > it (7.59)
11 <i<ig
Vi = > Al (7.60)
d(i1—1)<i<io+1
Vo= > bt (7.61)

B(i1—j)<i<iz+j
where to account for the boundary at r = rq, we let

0 1—Jj<0
11 —J otherwise °

(i — j) = { (7.62)
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Then (7.58) together with the convexity of H imply that

Vi—Vicr < {Vier + H (Vi1)} eD2GL AL, (7.63)

for all k& < j. To estimate V}, define

‘70 _ {1 n Lig4j — :Ua(z‘1—j) } VE) Z Z |7f0|7 (764)

L (i1 —j)<i<iz+j, p=1,2

c.f. (7.45), and inductively let

Vk B %_1 + {‘/k—l + H (Vk—l)} eGlAtGlAt, (765)
to define Vj, for all £ < j. Note that

_ 4/ G 4t/ G _
V*E<1+ LAB>VOZ<1+JLAB>V02VO, (7.66)

where we use that

i — Tl L+2t;52
{1+ |$2+] Lxd(l J)|} S{ LJ At} (767)

dominates the number of intervals of length L contained in |z, ; — Zaq, —j)|-
Now Vj increases with k, and by induction using (7.63) it follows that

for all & < j. Thus to estimate V}, it suffices to estimate ‘7] To this end, fix
a > 1, and let T, be given by (7.47).

Claim: V; < aVj for all t; < Min{T,,To} < 1.

To prove the claim, assume that t; < Min{T,,To} < 1, and t;;; is the first
time such that ) B
Vi > aVp. (7.69)

Then for ¢, <'t;,

Vi —Vieg < {cﬂ_/o + H (a%)} GG AL, (7.70)

and summing we obtain

Vi — Vo < {aVo + H (a¥h) } e721Gt;. (7.71)
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But solving for ¢; in (7.71) shows that

{04‘70 +H (a%)} NGt < (o — 1)V, (7.72)
so long as
t<<< 1 ) (a =DV
PTG LoV + H(aVy)}
But
T, < ( L ) (o= DV (7.73)
Gre?) LaVy + H(aVy) }

and so it follows (inductively) from (7.73) that the bound (7.69) is maintained
so long as t; < Min{T,,To} < 1, as claimed.
In light of (7.66), it follows that

Yo hhl=Vi<V;<alp<a Vp < aVl

11 <i<iz
for all t; < Min{T,,To} <1, which is (7.46). The proof of (A) is complete.
Proof of (B): For (7.49), estimate as follows:

<1 n 4tj\/LGAB>

Tig
|7 Nzaa(e i) = zac(o )| de

1

io—1 i2—1  J2

= lzij — 2z | Az < D > ziy — 2zij1[|Ax
=11 1=ty j=j1+1
ia—1  Jo

<y ¥ > ol +H ()] + Giat g Ax

=ng=En =41
Y

p=1,2
J2 2
<2 3 1Y S AWl + H (W) | Ar+ Gl — zallt, — t,]
j=j1+1 |i=i; p=1,2

Ar

< {2 [ozf/* + H(ozf/*)} A7

+ G1|xi2 - Z‘11|} |tj2 - tj2|
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where we have used (7.33) and (7.46). In light of (7.28), this verifies (7.49).
Inequality (7.50) follows by the same argument using (7.34) in place of (7.33).

Proof of (C): Note first that (7.33) and (7.34) directly imply that

|12i; — ziol - < > {hiel + H (D} + Gaty,  (7.74)
l=14,141
0<k<yj—1
p=12

zij — Zzio| < > vi| + Gt (7.75)
l—ii+1
0<k<j—1
p=1,2

Unfortunately, we cannot use (7.74) directly to estimate ||z;; — zo|| because
we cannot bound the right-hand-side by V; without introducing wave-tracing
to identify waves at time ¢; with waves at time ¢ = 0. To get around this, we
estimate ||z;; — zo|| as follows.

Let (z;,t;) be fixed. Let Jﬁ denote the piecewise linear /-curve that
connects mesh points (:Ei,tﬁ%) to (x; + ajAz;,t;) to (asi+1,t(j_1)+%) and so
on, continuing downward and to the right until you reach (z;1; +agAz,0) at
time o = 0. Let J/; connect (xi,thr%) to (z;—1 + a;Ax,t;) to (mi,l,t(jfl)%)
and so on, continuing downward and to the left until one reaches t = 0 at
(wi—j_1,t0) or else stop at r = ry at the point (r, tj0+%), (see Figure 6). Let
Jij denote the I-curve J;; = J/5 U JJ%, and recall from 8, 23, 24], that one can
connect J;; by a sequence of I-curves, Jo,...,Jy = J;; such that Jz4; is an
immediate successor of Ji, and Jo is the I-curve that crosses the waves
between i = 0(i — 1) and i = i+ j. (See figure 4.) Since J, differs from Jj 4
by a single interaction diamond, it follows by induction using (7.58), and the
argument (7.58)-(7.73), that

d il <a V. (7.76)

( 4tj\/GAB>
I+ ———
where ;. |7i;| denotes the sum of the waves v;; that cross the curve Jj;.
(We have used the assumption t; < Min{T,,Ty} < 1.) From this it follows

that

(1 4 HivGas ”LGAB> Vo. (7.77)

> il <«
JR
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L R
JL Jh

' WG X

, i1 i i+1
Ty %

x;+ayAx

Ty

Figure 6: The I-curves Jy, J and Jf

]

But >>;r |7;;| bounds the total variation in z between the state z;, ;o and the
ij

state z;;, except for the change in 2 that occurs between zﬁﬁ and z;; at each

(zy,t;) that lies on the I-curve JjF. But by (7.25), we know that

255 — zu|l < GiAw, (7.78)

so it follows that

4t/ G A
|Zz'j _Zi+j0| S 0% ].+]7AB ‘/(]‘i‘Gltji (779)
’ L At
which verifies (7.51) in light of (7.54), (7.54). Also, since
W5l < W51+ H (151) (7.80)

where H (|75|) bounds the change in w across wave vfj, it follows that

Ax
jwi; —wirsol < Y H (W) + SEUVE

R
T3

Ax

1255 — Zivjoll < %; 5l + H (|5]) + Giti <

and so using (7.77), (which again uses t; < Min{T,,Ty} < 1), we obtain
(7.52) and (7.53). This completes the proof of Corollary 1. O
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In order to unify the estimates in (B) and (C), assume that |z;, —;,[ < L,
and set Gy = Go(B, M, S) equal to

G2 = Max {4 GAB [aV* + H(av*)} + GlL,2\/GABG1,G16G1, \/GAB} y
(7.81)

where Gy = G1(B, M, S), Gap = Gap(B, M) and V, are defined in (7.36),
(7.39) and (7.48), respectively. (Note that V,, and hence Gy, also depend on
Vj, but for our purposes we only keep track of the dependence on M, B, S, v,
the constants that are not yet determined by the initial data.) Then the
following corollary is a simplification of Corollary 1.

Corollary 2 Assume that the approximate solution ua., Aa, satisfies the
conditions (7.28)-(7.32) of Theorem 4 up to some time Ty, 0 < Ty =t;, < 1,
and assume that there exists constants L, Vy such that

Y. il <V, (7.82)
i1 <1<t2, p=1,2
for all |x;, — x| < L, and assume that o = 2, c.f. (7.46). Then:
(A) The following total variation bound holds:
S phl<2n, (7.8
i1<i<ia, p=1,2

for all |x;, — x| < L, so long as t; < Min{T,, Ty} <1, where

1 V.
2= <G2> {2V, + H(2V)} (7.84)

v, = (1 + N?) V. (7.85)
(B) The following L},. bounds hold:
[ el th) = macle )l de < ol — 1], (786)
and 1
[ el ) = 2l ) | do < Galty, — ], (7.87)

forallmg < xyy < x4y <00, |5y — x4y | < L, t; < Min{Tp, To}.
(C) The following bounds on the supnorm hold.
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|Z7;j — Zi+j,0| S FJ(GQ . tj), (788)
|w2-j — wi+j’0’ S F;(GQ t]), (789)
|1Zij — Zivjoll < F5(Ga-ty), (7.90)
for all z; > ry, t; < Min{Ty, T>}, where
4 4
Fg‘(g):2<1+§>vo+H<2 <1+L£> Vb) +¢&. (7.91)

Again, consistent with our notation, the functions Gs(-, -, -) and (&) depend
only on constants o, ¢, Ko, rg, L and V| that depend only on the initial data,
and so the functions Ga(-,-,-) and F§(&) are independent of the constants
M, B,S,v. The functions Gy(-,-,-) and F§ () are also increasing functions
of each argument. The main point is that constants that depend on M, B, S
or ¥ in the estimates (7.86)-(7.90), are organized into the single constant G,
(which happens to be independent of ), and which is always multiplied by
the factor ¢;. Thus estimates independent of M, B, S and v can obtained by
making ¢; sufficiently small. Note that the formula for Fj({) is obtained
by substituting 2 for «, and & for ¢;4/Gap and 2/G 4pGit;, on the RHS of
(7.53).

8 The Elimination of Assumptions

In this section we show that the assumptions (7.29)-(7.32) in Corollary 2,
Theorem 4 above, needn’t be assumed, but are implied by values of M, B, S, v
that can be defined in terms of the initial data alone, subject to restrictions
on the time 7j. Once we succeed with this replacement, Theorem 4 and
Corollary 2 provide the uniform bounds required to apply the Oleinik com-
pactness argument demonstrating the compactness of approximate solutons
up to some finite time 7. To start, consider first the bound (7.32) for v.
Since the constant 1 in Corollary 2 is independent v, it follows that we can
achieve (7.32) for a value of ¥ defined in terms of the bound on v at time
t = 0. Indeed, assume that the initial data va.(z,0) satisfies

l0ae(2,0)| < T < ¢ <> ]wAI(a:,O)|§‘ln(z+;0>‘zwo, (8.1)
— U0

for all 7o < x. Then assuming the hypotheses of Corollary 2, it follows from
(7.89) that
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\waz(z, ;)| < wo + F§(Gat;), (8.2)
for all 7o < z, t; < Min{T5,Tp}. Therefore, if we define v so that w =

in (£3)

, where

w = wo + FJ(Gat;), (8.3)

then (7.32) is a consequence of our other assumptions. Indeed, to make a
rigorous proof out of this, just define v by (8.3), (8.2), and let T, be the first
time at which |v| < o fails. The argument that leads to the choice of w in
(8.2) then shows that T, > Min{T5, Ty}

Similarly, we now use (7.88) to show that S can be defined in terms of
an initial bound Sy on Sa.(z,0) in such a way that (7.31) can be eliminated
as an assumption in Corollary 2 because it follows as a consequence of our
other assumptions. In this case, however, (as in the case of M and B), the
constant G depends on S, so we need a corresponding restriction ¢t < Ty for
some Tg << 1. Indeed, assume that the initial data Sa,(z,0) satisfies

0 < Sag(w,0) < Sy, (8.4)

for all 7o < x. Then assuming the hypotheses of Corollary 2, it follows from
(7.88) that

Kolnpij — Kolnpij0 < Fg (G2 - t5), (8.5)
and so
0 < pij < FY (Gs - t)) pitjo (8.6)
where
F
Fr(€) = exp{ 0(5)} > 1. (8.7)
Ky

It follows from (8.4) that

Sij = T;pPij < Fl* (GQ : tj) LiPi+j,0 < Fl* (GQ . tj) SQ. (88)
Inequality (8.8) tells us that if we choose S > F7 (0) Sp, say choose

S = 2F7(0)S,, (8.9)

and set

Ts = Sup{t : F (G -t;) <2Fy(0), forallt; <t}, (8.10)
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then assumption (7.29) of Corollary 2, Theorem 4, (that 0 < Sa,(x,t) < S),
can be replaced by the condition that S is defined in (8.9), together with
the assumption that ¢; < T, where Ty is defined in (8.9). Note that this
argument relies on the fact that the function F}(-) is independent of S.

We now derive formulas analogous to (8.9), (8.10), for M, Ty and B, T,
so that assumptions (7.29) and (7.30) of Corollary 2, Theorem 4, can be
replaced by the condition that M, B be defined by the values given in the
formulas, together with ¢t; < Ty, and t; < T, respectively. So consider next
the total mass

Mpg(00,t;) = My, + M;, M; = g/ ul, (1, t;)r* dr. (8.11)
T0
Using u” = T} and Inw = <2 in (1.15), we obtain
o_ 1 2
u zi{(l—i-a )coshw—i—(l—a)}p. (8.12)

Thus it follows from (8.3) and (8.6) that

ud (@i, 1) < 5 {(1+0%) cosh b + (1 = 0) | F}(Ga - t)paa(wir;,0). (8.13)

N

Using this in (8.11) we obtain

M; < M, +F;(Gy-t;) g/ pae(r + jAz, 0)r* dr

0

< M, + F; (Gy-t)) g/ uom(r, O)r2 dr

T0

= M,, + F; (Gs - t;) My, (8.14)
where
1
F3(6) = 5 {(1+ %) cosh(w) + (1 - o)} FY(6). (8.15)
M, = g T:O ul, (r, 0)r? dr. (8.16)

Inequality (8.14) tells us that if we choose M > M,, + F5(0)M,, say choose

M = M,, + 2F5(0) Mo, (8.17)

and set
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Tar = Sup{t : M,, + F5 (Ga - t;) My < M, for all t; < t}. (8.18)

then assumption (7.29) of Corollary 2, Theorem 4, can be replaced by the
condition that M is defined in (8.17), together with the assumption that
t; < Ty, where Ty is defined in (8.18).

We now turn to the problem of defining B, T so as to replace the final
assumption (7.30) of Theorem 3. Since

1

| _ 2GMp, ()
T

Bag(7,t) = (8.19)

it follows that to accomplish this, we must estimate the change in Ma,(z,t;)
between times t = 0 and ¢ = ¢;, assuming that Corollary 2, Theorem 4,
applies. More generally, assume that (7.29)-(7.32), and hence Theorem 4,
hold up to time ¢;, and assume that 0 < t¢;, < t;. We estimate

K X
[Maw(,t) = Maa(z, 1)) < 5 /TO [Une (1 t)) — wp, (st )[r* dr. (8.20)
To start, let
Au’ = UAg (T’ tj) - u0A:c<T7 tj0)7

Aw = war(r,t;) — was(r, i), (8.21)
Ap = pOAx(r? t]) - p%x(rﬂ tjo)’

etc. Then
ou® ou®
A < || |A —1 |Az]. 8.22
2y < | S8 il 52| 14 5.2
From (8.12) we calculate
ou’ 1 )
o = 27[(0{(1+0 )coshw+(1—a)}p, (8.23)
ou’ 1+ 07
(9u = —;J (sinhw) p. (8.24)
w
Since 86—11‘5 < %—f, it follows from (8.22) that
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A < g {1+ o) coshl@) + (1= )} ol {1Bul + [A])

V2 F5 (Gs - t;)
< — == || || AzZ]|. 8.25
S (G2~tj)HpH | Az]| (8.25)

Putting (8.25) into (8.20) and using

pr(l',t) S Fl* (GQ : tj) PAx (1‘ + jAJj, O) ) (826>

we obtain

Mag(z,t;) — Mag(x,t; <¥/ . (r+ jAz,0) || Az||r? dr.
[ Maa,ty) = Maa(ost)| £ =225 | s (A2, 0) | Al dr
(8.27)

We use (8.27) again below, but for now we can continue from (8.27) to obtain

KFXY G Ty x .
*;g;;ﬂ JE pag (r+ jAz,0) | Az|r2 dr

KkF} (Gat;)Sz px
< SRS [0 || Ag| dr (8.28)
KF¥(Ga-t;)Sx?
< SEEST Gty — t,
where we have used
z x
[ 1aa] dr < 2 Galty, — ), (8.20)
To

a consequence of (7.86). Note that the factor /L bounds the number of
intervals of length L between ry and z. We record this as a Corollary of
Theorem 4:

Corollary 3 Assume Corollary 2, Theorem 4, applies up to time Ty. Then

kFy (Gy - t;) Sa?
Mpg(z,t:) — Mag(z,t;,)| < —2 J
’ A ( ]) A ( Jo)' = \/§K0L

G2|tj o tj0|7 (830>
f07’ all 0 S tjo S tj S To.

In particular, ignoring errors of order Az, (8.30) implies the local Lipschitz
in time continuity of Ma,, (and hence of Ba, and Aa;).



SHOCK-WAVE SOLUTIONS OF THE EINSTEIN EQUATIONS 65

We can estimate | Ma,(z,t;) — Mag(,tj,)| differently starting from (8.27)
as follows:

|MA96($> tj) - MAw(xv tjo)’

KFy (Gy-ty) | (B - 2
< &4 N = JZ
< e / +/R paw (r + Az, 0) | Az|r? dr,
kFy (Gy - t;) SR?
Golt: —t. 8.31
= \/iKgL 2| J Jo‘ ( )
kFy (Ga - t;) i (Go - t))

Vol /R paz (r+ jAx,0) r2dr,
0

where we have used (8.28) together with

|Az]| < F5(Gs - 1), (8.32)

a consequence of (7.88). But

g/oo pre (1 + Az, 0)r*dr < g/oo pae(r + jAZ,0)(r + jAz)? dr
R R
< E /OO pAI(’r, 0)7”2 dr
2 JR
< E/ uly, (r, 0)r® dr
2 Jr
< Man(00,0) — Mao(R,0), (8.33)
and since
lim [Ma,(R,0) = Maq(00,0)] = 0, (8.34)

it follows that for any ¢ > 0 sufficiently small, there exists R(d) > 0, such
that

/ﬂ?FQ* (GQ . tj) FS( (G2 . tj
V2K,

for all t; < Tp. Indeed, since Ma,(x,0) is a continuous monotone increasing
function of z, it follows that we can define R(J) to satisfy the equality

V2 B (G By (Go) [Mialo0.0) — Mas(RG),0) =0, (536)

) /O;) pae (7 + Az, 0) 72 dr < 6, (8.35)
R
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in which case (8.35) follows at once from (8.33). Using this definition of R(d)
in (8.31), it follows that for every ¢ > 0,

KZFQ* (GQ . ty) SR(5)2
V2K, L

Therefore, assuming Corollary 2, Theorem 4 applies up to some time Tj,
0 < Ty <1, we can choose § = €/2, and set

 [KF3(G2) SR(¢/2)? ., '€
Te_{ NTN GQ} 5 (8.38)

|Maz(2,t5) — Maz(2,t,)] < Galt; —tj| +96.  (8.37)

and conclude from (8.37) that

|MA$(x7tj> - MAr<x’tjo>| <€, (839>
for all t; < Max{T.,To}. We record this as another corollary to Theorem 4:

Corollary 4 Assume that Corollary 2, Theorem 4, holds up to time Ty.
Then for all € > 0, there exists T, > 0, (given explicitly in (8.38)), such that

| Maz(z,t5) — Mas(z,t),)| <e, (8.40)
for all x > 1o, t; < Min{T.,T,}.

We now use Corollary 4 to define B and Tx. Consider the function
Baz(x,t). Assume that the initial data satisfies

1

1 _ 2Mas(x0)

Bag(r,0) = < By (8.41)

for some positive constant By. Choose B > B, say
B =2B,. (8.42)

Choose € > 0 by

1 _ _
e = Sup {6 : PR EDS <2By=DB, forallrg<uz< oo} . (8.43)

T

Claim: By (8.43),

T
LY (E I B 8.44
=3 (BO 230) ~ (8.44)
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To see this, let €(x) be defined so that

1 _
) R (8.45)
Solving (8.45) for e(x) gives
x 1 2Ma,(2,0)
L S P . 4
) =3 { 2B, v } (8.46)
But (8.41) implies
T - BO ’ ’
Using (8.47) in (8.46) gives (8.44). O
Now for € in (8.43), define
K3 (Gy) SR(e/2)% ) e
Tp =T = 2 G , 8.48
’ { V2oL M2 (&4
so that by (8.38), (8.40),
|Mpg(z,t;) — Mag(2,0))] <e, (8.49)
for all t; < Max{T,,To}. But (8.40), (8.43), directly imply
1 _
g < B (8.50)

T

We conclude that assumption (7.30) of Corollary 2, Theorem 4, can be re-
placed by the condition that B is defined in (8.42), together with the con-
dition that t; < T, where Tp is defined in (8.48). We have shown that
assumptions (7.29)-(7.32) of Corollary 2, Theorem 4, can be removed, and
are consequences of appropriately restricting the time 7y and redefining the
constants involved in terms of the initial data.

The following theorem, which summarizes our results, follows directly
from our construction of ©, S, M, B and T, Ty, Ts above:

Theorem 5 Let up.(x,t), Ang(z,t) be an approzimate solution generated
by the fractional step Glimm method starting from initial data ua.(zx,0),
A, (2,0), and let My, By, Sy, vy and Vy be positive constants such that the
initial data satisfies:
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Mpao(z,0) < My, (8.51)
Ba.(z,0) < By, (8.52)
0 < Saz(z,0) < S (8.53)
lvaz(z,0)] < 7y <e, (8.54)
for all x > ry, and
> hl<W, (8.55)

11 <i<iz, p=1,2

forall ro < i, <y, <00, |23y, — 23| < L. Let v = 20y, S =28y, M = 2M,,
B = 2By, assume that

Az ——
— =A =24 B, M .
At GAB( ) )7 (8 56)

and let
T = Min{l,Tg,Tg,TM,TB}, (8.57)
where
1 Vi
T = Th= () = —, (8.58)
Ga/ {2V, + H(2V.)}

Ts = Sup{t:Fy (Gy-t;) <2F(0), forall t; <t},
Ty = Ty = Sup{t: M,, + Fy (Gy - t;) My < M, for all t; < t},
F; SR(¢/2)? "
TB — ) (G2> SR(E/ ) G2 E ’
V2K, L 2

and

1 _
e = Sup {6 : PR VA EZ £ < B, forall ro <z < oo} : (8.59)

T

c.f., (7.84), (8.10), (8.18), (8.48) and (8.43). Then the approzimate solution
Upz, Aag 15 well defined for all ro < r < oo, 0 <t < T, and satisfies the
bounds
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Ma.(z,t;) < M, (8.60)
Bas(z,t;) < B, (8.61)
0 < Saz(z,t;) < S (8.62)
|’UAx(xvtj)| <0< c, (863)
together with the bounds
_ 4/ G
S <2V =2 <1 + AB) Vo, (8.64)
11 <:<ig, p=1,2 L
12ij — zivjoll < FG(G2-T), (8.65)
| zsale ) = 2salosti)llde < Golty, 3], (8.66)
xil
1 A+ 0%0? )\ -
| Al (2, 85)] < (7“0 + ﬁms BG ap, (8.67)
1 C2 + 0_2,(—}2 B _,
|B/Am(mvtj)| < <TO t+ K 2 — 72 S| B ) (868)
kEF} (Gy-T) Sx?
| Maz(z,tj,) = Mag(z, t5,)] < Galtj, — U], (8.69)

V2K, L
for all ro < x,2;,, 0 < 00, |z, — | < L, and 0 < tj,t,.t;,, < T, c.f.

(7.83), (7.90), (1.41), (8.30), (7.86), (7.43), (7.44).

Recall that the constants Gap = Gap(M, B), Gy = Go(M, B, S), Ff(Gy-T),
FS(Gy-T), and V(G5 - T), defined in (3.43),(7.81),(8.7),(8.15), and (7.85) re-
spectively, are based on the functions Gag(+, ), Ga(-, -, ), Fi*(-) and V,(-) that
depend only on the constants o, ¢, Ky, 9, L and Vj, and thus are determined
by the initial data alone.

Corollary 5 Let un,(z,t), Aaz(x,t) be an approximate solution generated
by the fractional step Glimm method starting from initial data ua.(z,0),
A, (2,0), that satisfies the conditions (8.60)-(8.59) of Theorem 5. Then
there ezists a subsequence Ax — 0 and bounded measurable functions u(x,t) =
Ut d.z(x,t), Az, t), such that (uay, Anz) — (u,A) for a.e. (z,t) €

[ro,00) X [0,T]. Moreover, the convergence upy(-,t) — u(-,t) is in L}, for
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each t € [0, T], uniformly on compact sets in (x,t)-space, and the limit func-
tion ua, satisfies:

TVieyan2( 1) < 2V4,
T‘/[Ihu’vz]w('?t) < H}QK), B (870)
TVigy an2 (1) < 2V + H(2VL),
|z(z,t) —z(z+ A\T,0)|| < Fj(Gy-T), (8.71)
and
/ |2(z, t2) — 2(z, t1)|| dz < Galts — 1], (8.72)

for allrg < x, 21,19 < 00, |wg — 21| < L, and 0 < t,ty,t5 <T.
The convergence in A is pointwise a.e., uniformly on compact sets in
(x,t)-space, and the limit function A(xz,t) satisfies

Az, t) = A, exp / {B(T?_l + wrB(r, )T (u(r, t))} dr,  (8.73)

1 o
Blrt) = —gygge M(rt) = M(ro.t) + 2/r0 WO(r, Or2dr,  (8.74)

. 2 252 _
Aty t) At (1 C+ov g BGagp,  (8.75)
y To C2—U2
. 2 252 _
B(x +y,t) — B(x,t) B (N A~ B2, (8.76)
y To 02—U2
kEFY (Gy - T) Sa?
|M (2, t5) — M(z,1,)] < (G 1) Goltz — 1], (8.77)

- V2K, L
for allrg < x,21,09 < 00, |xg — 1| < L, and 0 < t,t1,t < T.

Proof: It follows from (7.90), (8.64) (together with the non-singularity of the
mapping from z — wu) that the approximate solution ua.(x,t) is bounded,
and of locally bounded total variation at each fixed time 0 < ¢ < T, and
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these bounds are uniform in time over compact z-intervals. Moreover, it
follows from (8.66) that ua,(x,t) is locally Lipschitz continuous in the L!-
norm at each time, uniformly on compact sets. These bounds are uniform as
Ax — 0. This is all that is required to apply Oleinik’s compactness argument
to the function ua,, [8, 23, 16]. From this we can conclude that there exists
a sequence Ax — 0 such that ua, converges a.e. to a bounded measurable
function v on x > rg,0 < t < T. The convergence is in Llloc at each time,
uniformly on compact sets, and the supnorm bound (8.71), the local total
variation estimate (8.70), and the continuity of the local L' norm (8.72), carry
over from the corresponding estimates (8.71), (8.64), (7.86) for approximate
solution. (For (8.64) we use that the change Aw across a wave is bounded
by H(Az), and that H is a convex function, c.f. Proposition 5. The Oleinik
argument is based on using Helly’s Theorem to extract a pointwise convergent
subsequence on a dense set of times between ¢ = 0 and 7' = ¢, and then to use
the local L'-Lipschitz continuity of ua, to extrapolate the L' convergence to
all intermediate times, [16].)

It follows from (8.69)-(8.68), together with (3.28), that Aa, is locally
Lispchitz continuous in x and ¢ for z > ro, t < T, (ignoring errors that are of
order Az), and the Lipschitz bounds are uniform as Az — 0. It follows from
Arzela-Ascoli that on some subsequence Az — 0, A, converges to a locally
Lipschitz continuous function A(z,t), and the convergence is pointwise al-
most everywhere, uniformly on compact sets. It follows that the convergence
of ua, and A, is strong enough to pass the limit through the integral sign
in (3.28) and (1.18), and thus conclude (8.73) and (8.74), respectively. Sim-
ilarly, (8.76)-(8.77) are obtained from (7.43)-(8.30), respectively. The initial
data wg is taken on in the L' sense,

lim [[u(-. 1) — uo()]l =0, (8.78)

and the boundary condition v =0 <= M(r(,0) = M,

o 1s taken on weakly,
c.f. [16].0

Proof of Theorem 3: In the final section we prove that for almost every
sample sequence a, the functions ua.(z,t), A(x,t) define a weak solution of
the Einstein equations (1.2)-(1.5) on rp < = < 00,0 < ¢t < T. Assuming
this, ua.(x,t), A(x,t) is then a weak solution of (1.2)-(1.5) in the class ua,
bounded measurable and A, Lipschitz continuous, and so it follows that
our results in [10] apply. In particular, (1.3) holds in the pointwise almost
everywhere sense. Thus the proof of Theorem 3 is complete once we verify
(2.42). (The assumptions (2.28)-(2.29) just imply that TV, 4,12(-,0) < oo,
and this guarantees (8.64).) For (2.42), note first that (1.24) together with
(8.71) imply that
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lim M(z,t) =0, (8.79)

for all 0 <t < T. To see this, recall from Theorem 2 that if ua,, Aa, IS a
weak solution for 0 < ¢ < T, then (1.3) and (1.8) hold. By (1.8), statement
(8.79) follows so long as

: A<T7 t) 1 2 _
lim B, t)u (r,t)rc=10 (8.80)
for t < T, where
A(Ta t) 1 2 0 2
< . 81
‘ B(r. t)u (r,t)re| < \JA(r, t)u’(r,t)r (8.81)

Now since A and B are given by (8.73) and (8.74), it follows that A sat-
isfies (1.2) and (1.4), and so adding these two equations, and following the
argument leading to (3.43), we obtain that

8BM
4] < ATOBmexp{ }

To

and thus A is uniformly bounded. Since |v(z,t)| < 0 < ¢, (1.24) and (8.71)
imply that

lim /A(r, t)u’(r, t)r* = 0, (8.82)

T—00

and so (8.79) follows as claimed. But (8.79) implies that,

lim M(x,t) = lim M(z,0) = My, (8.83)

T—00

which is (2.42) of Theorem 3. We conclude from Theorem 2 that the proof of
Theorem 3 is complete once we prove that u(x,t), A(x,t) is a genuine weak
solution of (1.26),(1.27) with initial boundary data 2.36)-(2.38). This is the
topic of the next section. O

Our theorems have the following corollary:

Corollary 6 Assume that the initial data uo(zx) satisfies (1)-(5). Then a
bounded weak solution u(z,t), A(z,t) of the Einstein equations (1.2)-(1.5)
exists up until the first time T at which either

lim Sup,B(x,t) = oo, (8.84)

t—T—
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liI:,I} Supyzp(x,t) = oo, (8.85)
t—T—
or
lir%q SupeTVig, z2(-, 1) = 00. (8.86)
t—=T~

Proof: If B, S and TV}, ;,;z remain uniformly bounded up to time T
then our argument shows that v remains uniformly bounded away from ¢ up
to time T, c.f. (8.2)-(8.3). Thus we can repeat the proof that the solution
starting from initial data at time 7', continues forward for some positive time.
The Corollary follows at once.

9 Convergence

In this section we prove that the approximate solutions ua;, Aa, which sat-
isfy the estimates (8.70)-(8.77) of Corollary 5, Theorem 5, are weak solutions
of (1.30), (1.31), for almost every choice of sample sequence a € II, c.f.
(3.24). This is a modification of Glimm’s original argument [8], and the ar-
gument in [16]. The main point is to show that the the discontinuities in A,
at the boundary of the mesh rectangles R;; are accounted for by inclusion of
the term

1 /A
A" Vaf(Auz) = )/ 50 (T]‘\]},Tj}) ,

in the ODE step (3.22), c.f. (3.17).
To start, recall that u%f denotes the exact Riemann problem solution in
each R;; for the homogeneous system (4.1), so that

+ o @ Gete i) — @ el )} o (0.)
+ /73 {f(AU7 ugi(l‘z.g-%; t))80<$i_‘_%, t)
—f(Ay, uﬁg(%_%, 15))4,0(%_%7 t)} dt.

Recall that u(t, ug) denotes the solution to the initial value problem
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= G(Ayj,0,7) = g(Ayj, 0, 2) — A" - Vaf(Ay, 0, x),
Thus

t
alt,uo) —up = / e di
0
t
= [ oAy € w) 2) — AT Vaf(Ay i)} dt
Since u implements the ODE step of the fractional step method, it follows

that the approximate solution ua.(x,t) is defined on each mesh rectangle
Ri; by the formula

una(z,t) = ukP(z,1) +/ Ay a6 —t,uf (@), o)} dt (9.2)
- [ {5, tj,u%(x,t»)‘A'm} .

Note that the difference between the approximate and Riemann problem
solutions is on the order of Az. Define the residual €(uay, Aaz, @) of the
approximate solutions ua, by

€EAnr = E(quaAAxy(P)
/ /0 {—uasvr — f(Apz, unz)pr — 9(Apz, Unz, )@} didx
T0
_[1 - 127
Z//’R {_UAISO': - f(Alﬁu’Ax)SOCU - g(AAl‘?uAJ}?x)SO} dtdﬁl’)
ij ij
_Il - [27 (93)
where
Iy :/ une(,07)p(z,0) dv = Z/ ung(z,0M)p(,0) da, (9.4)
To

and
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Iy = [T F(Ans(rd.0)uaslry )p(ro. 1) de
= X [ FAG s 0)plro.t) dt. (95)
j J
We now prove that the residual is O(Ax). (It follows that if ua, — u and
Aa, — A converge in L} at each time, uniformly on compact sets, then
the limit function will satisfy €(u, A, ¢) = 0, the condition that u be a weak

solution of the Einstein equations.) To this end, substitute (9.2) into (9.3)
to obtain

e(Uune, Aag, ) = Z//R {—uklon— F(Ay, une)pe — 9(Aj, v, 7)
i ©J

o0 [ oA (6 ~ b, ull ,0), ) (96)

tj
af ~ RP /
—ﬁ(A@],U(f—t],qu(l',t)))AA:E df dxdt
-1 — 1.

Set

) = [ oAy, ale — 15,080 . 0), 2)] de

tf 0
[/ |- o ite - @0 - A, de

J

Upon substituting (9.1) into (9.7), we have

€Ar = Z//R {00 | F(Ai ukl) = F(Asj una)| = 9(Asj, uag, )0
—puI}(w, )} dadt (9.7)

-1 — Z/R {uﬁf(w,t;+1)<p(:c,tj+1) — uif(x,tj)@(:c,tj)} dx
1] v

ij j
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Note that

|F(A,ulkl) — f(Ay,un,)| < CA, (9.8)

and so

|Z//R90 [f(Aiﬁ“g];) — f(Ay, UAx)] dzdt] < |¢z|CALT (b — a), (9.9)

where Supp(p) C [a,b] x [0.T]. (We let C' denote a generic Constant that de-
pends only on the bounds for the solution.) Using the fact that u%E (z, th) =
ung(z, 1)), and inserting (9.2), we obtain that

_]1 Z/ qu 3 ]+1)()0(:L‘7tj+1) _ugi(xvtj)¢<xvt])} dz

= Z/ Une(,t]) — uﬁf(w,t;)}g&(az,tj)da:

J#0
= Z/ uAI(a:,t;“) — qu(:z:,tj_)} dx (9.10)
J#0
+Z/ uAm(w,tj) ull (2 ,tj_)} dx.
J#0
Set
€1 (s, Ans, ) 2/ ) {una(e,t7) —une(e,t;) ) de. (911
J#0
It follows that
err = €1(uaz, Aag, p) +Z// 9(Aj, ung, T )so—sotlfj(w,t)} dxdt
—1—2/ o(x, ;) qu(x,tj) ull (x ,tj_)} dx (9.12)
J#0

—1Iy — Z/ Az]a“Az( z+1at))‘;0( z+1?t)
— F(Agj, ufl (1, )1, 1)} dt+ O(Ax),

But adding — 15 to

_Z/ Aljvqu z+1at))90( z+17t) f(AZ],uﬁg(xi_%,t))gp(xi_ 7t)} dt
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gives

ZA‘{f(Am,j,uii( ir1:t)) — f(A, uRkE (2 Z+1,t))}g0( Tip1.t)dt (9.13)
+3 [{F (A0 uBE G, 0) = F(Aoy uaur, )} (o, 1) d,

where

I3, {F (Ao 208 = Sy usslof )l t)
< |l CAL (ATt) — O(A). (9.14)

To analyze the term multiplied by ¢; in (9.12), we add and subtract a term
that differs from this one by O(Ax), and then use integration by parts on
the new term. That is, set Iag equal to the expression

>/ /. o[ [otay il — 08 . 0).2)

0
—g(Ayj, (& — tj,ull (v,1)), ) — ai

0
aj; (Aij, (€

(A, a(€ = ty,uRs, (2,))) - Ay,
—t5,ukl(z,t))) - Aly, | d€ dadt.
But
sl < S f [, e [ Opllacaral
< @l CAPAZY ||

ijl

T
C’V|g0t]OOAt2AxE = O(Az?),

IA

and so

—Z//%%/ Ay a6 — 15, ufll (2, 1)), 2)

af |

— o Ay (€ — b5, uli (1)) - Aly, | d€. dudt
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“ns=2 [ [, o[ [otas e = 0B . 0).0)

of
0A

— —Z/ { z,tj41) /.JH [Q(Azj,ﬁ(f tjaquc (2,€)), )

of
C0A

ti+1 of .
- \/tj % [g(Aijaquv ) 8A(AZ],UAm) A'A:L“| dt} dx
+0(Az?)
j+1
= _Z/ { i) / [Q(Az’jaﬁ(f—tjauif(fﬁ,tﬁl))aif)

0
- R s~ oty A e} (9.15

s+ ]4 + I5 + O(ACL'Q)

OF (A — 1), ul(2.6))) - Agx] . dudt

OF (A e — 1), ul(2,0))) - A'M] e

where

Z/ { 1) /J+1 |9(Aj, 0(€ — t5,ull (2, t11)), @)

_g<AU7 (f t]? uAa: ($ 5)) )
0
— ot (A — 13,00 (2, 101))) - A,

0
ai<Aij,u(f—tj,qu( ,€))) - A/A$‘| df} de

and

Iy = Z / / [ (Aij, uag, T) — gi(A”,um) A’Ax] dadt.  (9.16)

Note that

Iy < |¢\OOZC|%J|AxAt<]gp]ooCAxAtZV

ijl

T
= |g0|OOC’AxAtVE = O(Ax),
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where the sum on j is taken over ¢; in Supp(y). Substituting (9.13) and
(9.15) into (9.12), we have

e(uAa:a AA:w @) = O(AZL‘) + €1 (qua AA:B: 90)
of )
- ZJ: / / o P i uas) - Al dods (9.17)

+Z/R 80(%4%,75) {f(AiJrl,juuﬁf(xH%at)) - f(Aij7U§5($i+%7t))} dt.
ij YR
It is evident now that

E(UA:m AAxy @) =€ (uA27 AA:E; (P) + O(A%) (918)

We use Glimm’s technique to show that €;(uaz, Aaz, ) = O(Ax), c.f. [8].
To estimate €1, write € = €;(Ax, ¢, a) to display its dependence on (Ax, ¢, a),
where a € IT is the sample sequence, c.f. (3.24) above. Set

e (Az, p,a) = / o(x,t;) {qu(x,tj) — qu(x,t;)} dz. (9.19)
To

Now since u(x,t) = U~ - @ - z(x,t), it follows from (8.70) that there exists

a constant V' such that TV, 4 rjuas(-,t) <V onrg <o < oo, t <T. Using

this, the following lemma gives estimates for €; and €.

Lemma 5 Leta € I, and let p € CyN L™ be a test function in the space of
continuous functions of compact support inro < x < oo, 0 <t <T. Suppose
TVigarrtas(-t) <V for all x > ro, t <T. Then

; diam (spte
(A, o, a)] < VIO g (9:20)
and
VA
e1(Az, p,2)] < —— (diam (spt))” || ¢ (9.21)

Proof: Since [ua,](z,t;) is bounded by the sum of the wave strengths from

7;_1 to x,, 1 for each z at time ¢ = ¢;, it follows that
2 2

diam (spty)
L

€l < [lelloo D10z < o)l Az, (9.22)

i,p



80 JEFF GROAH AND BLAKE TEMPLE

where |||, denotes the strength of a wave in u-space. This verifies (9.20).
Consequently, if J is the smallest j so that ¢ = t; upper bounds the support
of ¢, then J =T/At, where T'= JAt, and

diam (spty)

@] < Z|61| < *I|¢I|ooA$V 7

j=1
VA
< T2 (diam (spto) 1ol

where Az /At <A. O
We next show that e, when taken as a function of a;, has mean zero.

Lemma 6 For approximate solutions ua,,

1 .
/O e da; =0 (9.23)

Proof: The proof follows from Fubini’s theorem.

1 . 1 °© T, 1
/0 e da; = /0 Z/ 2 [Upnga(Ti + ajAz,t;) — upgalx,t;)] deda;
0 “Fi-1

1
= {/ / Unga(T; + ajAx, t;) dajdx
1 0
)
—/ / uA“lxt)da:daJ}

7

which was to be proved. (Here we used ua, . to express the dependence of
the approximate solution ua, on the sample sequence a.) O

We now show that the functions € are orthogonal, when taken as elements
of L?(IT).

Lemma 7 Suppose ¢ has compact support and is piecewise constant on
rectangles R;j. Then if j1 # j2, we have €]' L €> where orthogonality is with
respect to the inner product on L*(II).

Proof: Using Lemma 7 in calculating the inner product
(eet) = [l (day) = [ ([ el day,) 1y, day

= / e]! ( / e’ d%) 2, da

= 0,
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verifying orthogonality. O
It follows immediately from Lemma 7 that

leall3 =" llefl13, (9.24)
J

which we use in our next theorem to finally show that there is a subsequence
so that €, — 0 as Az — 0 for almost any a € II.

Theorem 6 Suppose that TVi, o ipjung(-,t) <V for all g < o < 00, 0 <
t <T. Then there is a null set N C II and a sequence Axy, such that for all
acll— N and ¢ € C}(t > 0), we have ¢;(Ax,p,a) — 0 as k — oo.

Proof: Combining (9.24) and (9.20), and using the fact that [ da = 1, we
have

ler(Az, g, a)ll; = > [l (Az, @, a)l3
j

< Yl Az, 0, a)l%
j

J diam (spte 2
< SVl )
J:
diam (sptp))®
< v B oy

12
and hence, for piecewise constant ¢ with compact support, there is a sequence

Az, — 0 such that ¢, — 0 in L2. If ¢ is continuous with compact support,
then by (9.21),

lexllz < llerlloe < Cllplloo- (9.25)

Let {¢1} be a sequence of piecewise constant functions with constant
support whose closure relative to the infinity norm contains the space of test
functions that are continuous with compact support. For each [, there is a
null set N; C IT and a sequence Az, ) — 0 such that ¢, — 0 pointwise, for
all a € I — N;. Set N = U; N, and let @ € II — N. By a diagonalization
process, we can find a subsequence, Az, such that for each [, ¢ — 0 as
k — oo. If v is any test function, then if a € IT — N, we have

|61(Ax7¢7a)| S |€1(Al‘,¢—gﬁl,a)|+|€1(A[L'790l,a)|
< Const|[¢ — il + [e1(Az, @1, a).

It is now clear that given € > 0, there exists N € N so that if 7,/ > N, then
‘El(AfF»%a)\ <e O
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