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1. Introduction. In [13], Isaacson and Temple introduced the 2 × 2 system

at = 0,

ut + f(a, u)x = a′g(a, u)(1.1)

as a general nonlinear balance law that models resonance between a nonlinear wave
field and a stationary source (cf. [5, 7, 8, 9, 10, 11, 14, 17, 19, 20, 21, 22, 23, 25, 26]).
Here a and u are assumed to be scalar valued, and resonance occurs at states U∗ =
(a∗, u∗), where the nonlinear wave speed λ = fu vanishes. Assume further that f and
g are smooth functions and that the following conditions are satisfied at the state U∗:

fu(U∗) = 0,(1.2)

g(U∗) − fa(U∗) �= 0 (w.l.o.g. assume g(U∗) − fa(U∗) > 0),(1.3)

fuu(U∗) �= 0 (w.l.o.g. assume fuu(U∗) < 0),(1.4)

and

gu(U∗) �= 0.(1.5)

It was shown in [13] that the generic conditions (1.2)–(1.5) imply that the structure
of elementary wave curves (shock waves, rarefaction waves, and standing waves) and
the solution of the Riemann problem (the initial value problem when the initial data
consists of constant states UL, UR, separated by a discontinuity) are canonical1 in a
neighborhood Ω of the state U∗; cf. [16, 13, 24]. (The cases gu > 0 and gu < 0 are
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qualitatively different.) Here a′ ≡ ax ≡ da
dx , and a = a(x) is an inhomogeneous term

that is treated as a variable so that (1.1) takes the form of a system of two equations
that expresses the dependence of the solution on the source a.

In this paper we introduce a new potential interaction functional and use it to
construct a nonlinear Glimm functional that is positive decreasing on solutions of
(1.1) and bounds the total variation of the conserved quantity u in terms of the initial
data for all time t > 0. We show that the functional is always locally finite at time
t = 0+ of the random choice method, and so the limit solution will be of bounded
total variation for all time so long as this functional is bounded uniformly at t = 0+
as the mesh length ∆x → 0. This then gives a condition on the initial data that
guarantees the solution will be of bounded total variation in u for all time. Moreover,
the potential interaction estimate can be interpreted as the best possible estimate
for the increase in total variation in u that can occur due to the interaction of an
initial set of waves, taking no account of the initial distances between the waves or
the times at which pairs of waves will interact. As part of our proof, we show that the
only potential for increase of total variation is due to the interaction of rarefaction
waves and standing waves. An immediate consequence of this is a proof that the total
variation of u at any t > 0 will be uniformly bounded by a constant times the total
variation of u at t = 0+ in any weak solution of (1.1) generated by the generalized
Glimm method, which initially consists entirely of shock waves and standing waves.

The lack of a total variation estimate in the conserved quantities is the main
obstacle to extending the results in [25, 13] to systems of equations (that is, when u
is a vector instead of a scalar), and this is the primary motivation for our work. An
important example of a system of form (1.1) is given by the equations for compressible
Euler flow in a variable area duct:

at = 0,

ρt + (ρu)x = −a′

a
ρu,(1.6)

(ρu)t + (ρu2 + p)x = −a′

a
ρu2,

(ρE)t + (ρEu + pu)x = −a′

a
(ρEu + pu),

where ρ is the density, p is the pressure, E is the energy density, and a(x) is the
diameter of the duct at position x [2]. It is a mathematical open problem to show
that wave strengths remain bounded in the time evolution of solutions of (1.6) in a
neighborhood of a point of resonance U∗ when the flow is transonic; cf. [1]. The main
thrust of this paper is thus to establish total variation estimates for (1.1) that can be
extended to a general class of systems of form (1.1), which includes (1.6). Now the
total variation in the conserved quantity u at time t > 0 in a solution of (1.1) is not
in general bounded by any uniform constant times the total variation of u at time
zero in the presence of resonance. In fact, solutions of the linearization of (1.1) about
U = U∗ grow unboundedly as t → ∞ [13]. In [25, 13] a time independent bound on the
supnorm and global existence of weak solutions is demonstrated based on obtaining
a time independent total variation estimate for solutions in the coordinate system
of Riemann invariants,2 which is related to the conserved variables U = (a, u) by a
singular coordinate transformation. These estimates do not carry over naturally to

2The fact that solutions are bounded at all is thus a purely nonlinear effect.
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systems like (1.6), in which u is a vector. Indeed, Glimm’s method indicates that a
time independent bound on the total variation of the conserved quantities is needed
to extend the analysis to systems. To establish a bound on the total variation of
the conserved quantity U, we introduce a singular transformation of the coordinate
system of Riemann invariants and give essentially the best possible bound on the
total variation at time t > 0 in terms of the initial data in these coordinates, which
are regular with respect to the coordinates of conserved quantities. Our method of
analysis is then to adapt the linear functional introduced in [25, 13] over to these
new coordinates (which requires a correction term for the wave strengths of certain
standing waves in order to make the linear part of the functional continuous) and then
to add a potential interaction term for rarefaction wave-standing wave interactions to
account for the fact that the functional is not contractive (decreasing in time) in these
new coordinates. The total variation bounds on the solutions imply supnorm bounds,
and these bounds help explain why, as waves interact due to the nonlinearity of wave
speeds, solutions of the nonlinear problem (1.1) do not blow up like the resonant linear
equation but rather decay to time asymptotic wave patterns given by the solutions of
the Riemann problem.

We use the notation U = (a, u), F = (0, f), G = (0, a′g) so that the initial value
problem for (1.1) is a special case of the general initial value problem,

Ut + F(U)x = G(U),(1.7)

U(x, 0) = U0(x).

The advantage of treating systems in the form (1.1) instead of general systems of form
(1.7) is that for system (1.1) we can define a generalized Riemann problem and analyze
solutions by Glimm-type methods that can be applied, in principle, to systems of
equations. The point of incorporating the a′ term in front of g on the right-hand side of
(1.1) is that it ensures that standing waves can be rescaled into discontinuities [13, 6].
It was shown in [6] that in the strictly hyperbolic regime, general source terms can be
treated like contact discontinuities in such a way that the Riemann problem of Lax,
and the random choice method of Glimm, both extend virtually unchanged to systems
of the form (1.1)—that is, general systems with sources can be treated numerically just
as the source-free equations. Of course, since the right-hand side of (1.1) involves the
derivative a′, there is no classical weak formulation of (1.1) when a is discontinuous—
you cannot multiply a delta function by a discontinuous function in the classical theory
of distributions; cf. [3]. Thus, the generalized Riemann problems used to construct the
Glimm approximates are weaker than weak solutions of the equations; cf. [6]. To justify
the method, it is important to show that the limits of approximate solutions of the
generalized Glimm method are veritable weak solutions of (1.1) when system (1.1) has
a weak formulation, namely, when a(x) is Lipschitz continuous. This is accomplished
in [6].3 The interesting point to make here is that because the Riemann problems are
based on approximating a(x) by piecewise constant states, it follows that the Glimm
scheme approximates can give only a C0 and not a C1 approximation of a(x), and
thus a′ is not well approximated in L1. Even so, Hong showed in [6] that for any test
function φ, the residual and, in particular,

∫
t≥0

a′g(a, u)φ(x, t)dxdt converges not by

L1 convergence (as in Glimm’s original results) but weakly, by oscillation, when a is
Lipschitz continuous; cf. [21]. This argument, appropriately modified for the resonant

3Note also that every a of bounded variation can be approximated by a Lipschitz continuous
function.
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case considered here, is presented in section 6 below. Interestingly, three mollification
parameters are needed to conclude the proof of convergence of the residual in section
6.

In section 2 we review the results in [13]; we define the regular transformation
(a, u) → (a,w) and the linear functional Lw(J) and compare these to the singu-
lar transformation (a, u) → (a, z) and linear functional Lz(J) defined in [25, 13].4

We then review the solution of the Riemann problem and construct the admissible
solution [UL, UR] based on an Lw minimization principle that is finer than the Lz

minimization principle introduced in [13]. The Lw minimization is required for the
subsequent analysis. The nonuniqueness of solutions of the Riemann problem even
in the presence of the classical entropy condition for the nonlinear waves reflects an
interesting instability in the time asymptotics of solutions of (1.1).

In section 3 we construct the approximate solutions U∆x by the generalized Glimm
method. For a given approximate solution, the functionals Lw(J) and Lz(J) both
sum the strengths of waves that cross an I-curve J with weight factors according
to whether the wave is a nonlinear wave, a weak standing wave, or a strong standing
wave, respectively; cf. [25].5 The purpose of the weight factors is to make Lz([UL, UR])
and Lw([UL, UR]) continuous functions of UL and UR for the admissible solution of
the Riemann problem [UL, UR] (cf. [16, 24] and (2.1) below). Now it was shown in
[13] that the weight factors 1, 2, and 4 on nonlinear waves, weak standing waves, and
strong standing waves, respectively, suffice to make Lz continuous (these weights were
introduced in [25]). We show here that in the case g = 0, the weight factors 1, 2, 4
also suffice to make Lw([UL, UR]) continuous functions of UL and UR. However, when
gu �= 0, we must adjust the definition of strength for the standing waves in order
to preserve continuity when the standing wave curves diverge from the zero speed
shock curves; cf. [13]. It was shown in [13] that the functional Lz is positive and
nondecreasing across interaction diamonds ∆ that lie between successive I-curves
J1 and J2 in an approximate Glimm scheme solution, and Lz(J) bounds the total
variation in (a, z) of the solution along J [24, 4]. On the other hand, Lw(J) bounds
the total variation in (a,w) (and hence also the total variation in (a, u)) along an
I-curve J but does not decrease across interaction diamonds.

In section 4 we define the interaction potential d(γ0, γr) between a rarefaction
wave γr and a standing wave γ0, and in section 5 we define the nonlocal Glimm
functional, P (J) =

∑
(α,β)∈App(J) d(γ

α
0 , γ

β
r ), and prove that the functional F (J) =

Lw(J) + P (J) decreases across interaction diamonds ∆, where the sum is taken over
all approaching waves that cross J in a Glimm approximate solution. From this we
establish the total variation bound for the generalized Glimm approximates and thus
conclude the main total variation bound in the conserved variables (a, u) for solutions
of the resonant nonlinear system (1.1). It is fortunate that at the transitions between
regions where the structure of the admissible solution Riemann problem changes,
the Riemann problem never involves rarefaction waves. Moreover, rarefaction waves
are never created by interaction, and thus, since the potential interaction functional
P only requires the potential for rarefaction waves to interact with standing waves,
it follows that the continuity of both P and F is also maintained as states cross

4The functionals Lz were labeled “F” in [25] and [13], but we refer to these as Lz here because
they contain no potential interaction term and are therefore linear on sequences of elementary waves;
cf. [4].

5A standing wave is strong if the jump in u across the wave has the same sign as the jump in u
across a shock wave and weak if the jump has the same sign as the jump in u across a rarefaction
wave; cf. [13].
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transitional boundaries between different regions of the Riemann problem.
In section 6 we modify the argument in [6] and prove the convergence of the

residual when a is Lipschitz continuous.

2. Review of the Riemann problem. The Riemann problem is the initial
value problem with initial data given at t = 0 by the jump discontinuity

U0(x) =

{
UL = (aL, uL) if x < 0,
UR = (aL, uL) if x > 0.

(2.1)

The solution of the Riemann problem for (1.1), assuming (1.2)–(1.5), was first de-
scribed in [13]. The solutions that minimize Lz were constructed within the class
of shock waves, rarefaction waves, and standing waves, and the solution was thereby
shown to have a canonical structure for pairs of states UL and UR in a sufficiently
small neighborhood of U∗. In this section we review the solution of the Riemann
problem and define the functionals Lz and Lw.

To motivate this, we note that by [13], near a point of resonance U∗ of system
(1.1), solutions of (2.1) have an interesting multiplicity of solutions even when the
standard entropy condition for shocks is imposed on the nonlinear waves. An addi-
tional admissibility condition is required to fix a unique solution. For system (1.1) in
the case g = 0, uniqueness is implied by the Lax entropy condition for shocks, together
with the condition that the wave curves for the waves that solve the Riemann problem
should lie between the values of a on the left and right; cf. [13]. This is a natural
condition if one views the discretization of a as approximating a smooth duct—the
time asymptotic wave pattern will depend on the interior structure of the duct as well
as the left and right most diameters. However, when g �= 0, system (1.1) has a more
interesting and nontrivial multiplicity of solutions of the Riemann problem: in certain
cases, there is a multiplicity of three distinct solutions of the Riemann problem that
preserve the bounds in a from the left and right, and these reduce to two possible
solutions at boundary cases. The main purpose of this section is to define the func-
tional Lw and show that the following admissibility condition is sufficient to pick out
a unique solution of the Riemann problem (except of course for a dual ambiguity at
the boundary regions where the qualitative wave structure changes).

Definition 2.1. A solution of the Riemann problem (2.1) is called admissible if
it minimizes Lw among all other solutions of the Riemann problem that preserve the
bounds in a and contain only Lax entropy shocks.6

In contrast, the admissibility criterion in [13], which requires that Lz be mini-
mized, still leaves some ambiguity in cases where there are three solutions. We let
[UL, UR] denote the admissible solution of the Riemann problem, and we will show
that [UL, UR] always consists of three elementary waves: a negative speed nonlinear
wave followed by a single standing wave followed by a positive speed nonlinear wave.
However, in two cases diagrammed in Figures 15 and 17, the standing wave must be
taken to be what we call a triple composite standing wave, a wave that consists of
a standing wave followed by a zero speed shock wave followed by a second standing
wave.

To start, let γ denote an arbitrary elementary wave, and let subscripts q = 0, r, s
identify the wave as a standing wave, rarefaction wave, or shock wave, respectively.

6Unlike Lz , Lw is not minimized on solutions among all connected sequences of elementary waves
that take UL to UR, and if it were, F (J) = Lw(J) would decrease on solutions, and no potential
interaction term would be required in our analysis; cf. [13].
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A wave γ is determined by its left and right states, and we say that γa · · · γb is a
connected sequence of elementary waves that takes UL to UR if the right state of any
wave in the list is equal to the left state of its successor in the list, and UL, UR is the
left, right state of the first, last wave in the list, respectively. Thus the admissible
solution of the Riemann problem [UL, UR] is just a particular connected sequence of
elementary waves that takes UL to UR. Two connected sequences of elementary waves
γa · · · γb and γ̄a · · · γ̄b are said to be similar if they both take UL to UR, in which case
we write γa · · · γb ∼ γ̄a · · · γ̄b. For a nonlinear wave γ that takes UL to UR, we say that
γ ∼ γaγb is a partition of the wave γ if the state UM , the right state of γa and the
left state of γb, lies strictly between UL and UR in the (a, u)-plane. (We allow both
rarefaction waves and shock waves to be partitioned.)

To begin the review of the Riemann problem, we first remind the reader that
system (1.1) has standing wave solutions that can be rescaled into discontinuities so
that the standing waves can be treated like a family of contact discontinuities in the
theory of hyperbolic conservation laws [13, 6]. Indeed, let (a(x), u(x)) be a standing
wave (i.e., time independent) solution of (1.1). Then

d

dx
f = a′g,

which is equivalent to

fada + fudu = gda.

We rewrite this as

(fa − g)da + fudu = 0.(2.2)

The nondegeneracy assumption (1.3) implies that fa − g �= 0 in a neighborhood of
U∗, and therefore (2.2) is equivalent to the autonomous ODE

da

du
=

fu
g − fa

.(2.3)

This equation has a unique solution through each point in a neighborhood of U∗ in
the (a, u)-plane. Thus, for any solution a = as(u) of (2.3) and any smooth function
ϕ(x), the curve u = ϕ(x), a = as(ϕ(x)) is a standing wave solution of (1.1). Moreover,
if aL = as(uL) and aR = as(uR), then the standing wave discontinuity

U(x, t) =

{
(aL, uL) if x < 0,
(aR, uR) if x > 0

(2.4)

is obtained as a limit of smooth solutions; specifically, if ϕε(x) → ϕ0(x), where

ϕ0(x) =

⎧⎨
⎩

uL if x < 0,

uR if x > 0,

then Uε = (as(ϕε(x)), ϕε(x)) → U(x, t). Thus we can view the standing wave discon-
tinuities defined in (2.4) as a family of elementary waves for system (1.1), similar to
a family of contact discontinuities.

The standing wave curves define solutions of (2.2). Note that for a standing wave,

da

du
= 0 if and only if fu = 0.(2.5)
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Fig. 1.

Moreover, if da/du = 0, then

d2a

du2
=

fuu
g − fa

< 0.(2.6)

Thus, d2a/du2 < 0 in a neighborhood of U∗.
Definition 2.2. The transition curve T associated with system (1.1) is the set

T = {(a, u) : λ ≡ fu = 0}.(2.7)

Since fuu �= 0, the implicit function theorem implies that (in a neighborhood of
U∗) T is a smooth curve passing through U∗, which we denote by

u = uT (a).(2.8)

The curve T comprises the states near U∗ for which the nonlinear wave speed λ ≡ fu
is zero. By (2.5) and (2.6), the standing wave curves u �→ (as(u), u) are convex
down, cross T transversally, and maximize a on T in some neighborhood of U∗. (The
notation comes from [7]. See Figure 1.)

We now define the zero speed shock curve corresponding to a given standing wave
curve. By our choice of signs (fuu < 0 and g − fa > 0), the entropy shock waves (see
[24]) for the nonlinear scalar conservation law ut + f(a, u)x = 0 jump always from
left to right in the (x, t)-plane and (a, u)-plane simultaneously; thus, by the Rankine–
Hugoniot jump relation for shocks,

s[u] = [f ],

the zero speed shocks (s = 0) cross T from left to right at a constant value of f.
Now, for a given standing wave a = as(u) and a given state (a, u) on this standing

wave, define ū to be the value of u such that the state (a, ū) lies on the opposite side of
T at the same a-level and on the same standing wave curve as the given state (a, u).
If the state U = (a, u) lies on the left-hand side of T (we write U < T ), then define
ũ to be the value of u such that the state (a, ũ) lies on the right-hand side of T and
at the same level a, but on the same constant f curve as the given state (a, u). That
is, for U < T , ū satisfies

as(ū) = as(u),(2.9)

and ũ satisfies

f(a, ũ) = f(a, u)(2.10)
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(see Figure 1).
Definition 2.3. Let a = as(u) be a standing wave curve. Then, (assuming

fuu < 0) the zero speed shock curve corresponding to standing wave curve as is the
curve (lying to the right of T ) defined by

{ũ : f(a, ũ) = f(a, u) where u ≤ uT (a) and ũ ≥ uT (a)}.

(When fuu > 0, we change to u ≥ uT (a) and ũ ≤ uT (a).)
Lemma 2.4. If gu < 0, then for each standing wave curve a = as(u), the cor-

responding zero speed shock curve lies to the right of the standing wave curve in the
(a, u)-plane. That is, if (a, u) satisfies a = as(u) with u < uT (a), then

f(a, ū) < f(a, ũ) = f(a, u).(2.11)

If gu > 0, then the corresponding zero speed shock curve lies to the left of the standing
wave curve in the (a, u)-plane. That is,

f(a, ū) > f(a, ũ) = f(a, u).(2.12)

For example, in the case gu < 0, Lemma 2.4 implies that the zero speed shock
curve lies above and to the right of the standing wave curve as(u) (see Figure 2). (For
a proof of Lemma 2.4, see [13, Lemma 2.4, p. 13], and note that the condition fa �= 0
was not required.)

We now define the nonsingular coordinate w and functional Lw and formulate
the Lw minimization principle to select a unique admissible solution of the Riemann
problem. To construct Lw, we first construct w and a functional L∗

w that is analogous
to the construction of the singular coordinate z and functional Lz defined in [25, 13],
and then we obtain Lz by modifying L∗

w so that L∗
w[UL, UR] depends continuously on

UL and UR. To start, we first review the construction of z and Lz for system (1.1).
The coordinate z is based on the singular coordinate system of nonlinear hyper-

bolic wave curves (a =constant) and standing wave curves (a = as(u)) as observed in
the (a, u)-plane and is defined as follows. For each point (a, u), let (aT , uT ) denote
the unique point where the standing wave curve through (a, u) crosses T , and set

z(a, u) = sgn(u− uT )|a− aT |.

Using this, define the strength |γ|z of an elementary wave γ by

|γ|z =

⎧⎨
⎩

|z(UR) − z(UL)| if γ is a nonlinear wave,
2|z(UR) − z(UL)| if γ is a weak standing wave,
4|z(UR) − z(UL)| if γ is a strong standing wave.

(2.13)
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Here a standing wave is weak if the jump in u across the wave is in the direction of
a rarefaction wave (uR < uL since we assume fuu < 0) and is strong if the jump in
u across the wave is in the direction of a shock wave (uR > uL when fuu < 0); cf.
[25, 21]. For a sequence of elementary waves γ1, . . . , γn, define

Lz[γ1, . . . , γn] =

n∑
i=1

|γi|z.(2.14)

Analogously, define the nonsingular coordinate w by

w(a, u) =

{
u− uT if u < T ,
uT − ū if u > T

and the strength |γ|w of an elementary wave γ by

|γ|∗w =

⎧⎨
⎩

|w(UR) − w(UL)| if γ is a nonlinear wave,
2|w(UR) − w(UL)| if γ is a weak standing wave,
4|w(UR) − w(UL)| if γ is a strong standing wave.

(2.15)

For a sequence of elementary waves γ1, . . . , γn, define

L∗
w[γ1, . . . , γn] =

n∑
i=1

|γi|∗w.(2.16)

We next show that the change in w across an elementary wave bounds the change
in u across the wave in any neighborhood Ω of U∗ that is sufficiently small.7 This is
guaranteed by the simpler condition stated in the following lemma. (Since the change
in u across a nonlinear wave is equal to the change in w across the wave, the only
issue is with the standing waves.)

Lemma 2.5. Let γ0 denote a standing wave with left state UL and right state UR,
both states lying on one side of the transition curve. Then for Ω sufficiently small,
there exists a constant c > 1 such that the condition UL, UR ∈ Ω implies that the
absolute change in u across γ0 between aL and aR is always that constant times larger
than the absolute change in u along the transition curve T between aL and aR.

Proof. We verify the lemma in the case diagrammed in Figure 3 (other cases are
similar). Thus we show that for Ω sufficiently small, there exists c > 1 such that
if UL, UR ∈ Ω, then |DF | > c|GG′|. (We use the notation that |DF | denotes the
absolute change in u between states D and F.) But |DF | = |DC| is the change in u
across the wave γ0. Thus, by construction of the standing wave curves, we know that

du

da
=

g − fa
fu

along a standing wave curve, so by the mean value theorem

|DC| =
g − fa
fu

|aR − aL|,(2.17)

7We treat the local problem here because it demonstrates that the analysis is generic in a neigh-
borhood of any state U∗, but all of this can be globalized to apply to any neighborhood Ω where
the solution of the Riemann problem has the canonical structure described in section 2 such that
Lemma 2.5 applies.
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where it is understood that g−fa
fu

is evaluated at some point in Ω. Also |GG′| = |GH|
is the change in u along T between aL and aR. Since G and H lie on T , we have
fu(H) = fu(G) = 0, and so differentiating and using the mean value theorem we
obtain that

|GH| =
fua
fuu

|aR − aL|.(2.18)

Since fu can be taken arbitrarily small in a neighborhood of T , it follows from (2.17)
and (2.18) that there exists a constant c > 1 such that |DC| > c|GH| so long as
UL, UR ∈ Ω.

Corollary 2.6. Assume that Ω is sufficiently small so that Lemma 2.5 holds.
Then there exists a constant c > 0 such that, if UL, UR ∈ Ω, then

c−1|uL − uR| < |γ|∗ < c|uL − uR|.(2.19)

Proof. The second inequality in (2.19) is clear by construction. We verify the
first inequality in (2.19) in the case of a standing wave |γ0| diagrammed in Figure 3.
(Again, there is no issue for nonlinear waves, and the cases for other standing waves
are similar, because we always assume that standing waves do not cross T ). In the
case of Figure 3, |γ0| = 4 {|w(C) − w(D)|} . However,

1

4
|γ0| = |w(C) − w(D)| = ||CH| − |DG|| = ||FG′| − |DG|| = ||DF | − |GG′||

≥
∣∣|DF | − c−1|DF |

∣∣ =

(
1 − 1

c

)
|DF | =

(
1 − 1

c

)
|u(F ) − u(D)|

for the c > 1 of Lemma 2.5. It follows that

|uL − uR| ≤
1

4

(
1 − 1

c

)−1

|γ0|,

which proves the corollary.
From here on out, we always assume that all states lie in a region Ω where lemma

2.5 and Corollary 2.6 apply.
In order to deduce the solution of the Riemann problem from a minimization

principle, we will use the following property of the functional L∗
w.

Lemma 2.7. Let points A,B,C,D denote the vertices of a region in U -space
bounded on either side by standing wave curves and above and below by nonlinear
wave curves such that the region lies entirely on one side of the transition curve.
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Assume that the vertices of the two possible such regions of this type are labeled with
the orientation shown in Figure 4. Then

L∗
w(A → B → C) ≤ L∗

w(A → D → C),(2.20)

L∗
w(D → A → B) ≤ L∗

w(D → C → B).(2.21)

(Again, we use the convention that an elementary wave can be denoted by the
left and right states of the wave separated by an arrow.)

Proof. We verify (2.20) in the case diagrammed in Figure 5, which is similar to
Figure 3 of Lemma 2.5. (The other cases are similar.) Referring to Figure 5, we can
estimate

L∗
w(A → D → C) − L∗

w(A → B → C)(2.22)

= |AD| + 4|w(C) − w(D)| − |EF | − 4|w(B) − w(A)|
= |AE| − |DF | + 4||CH| − |DG|| − 4||BH| − |AG||.

But by Lemma 2.5,

||CH| − |DG|| = |DF | − |GG′|,
||BH| − |AG|| = |AE| − |GG′|.

Substituting these into (2.22) gives

L∗
w(A → D → C) − L∗

w(A → B → C)

= 3|DF | − 4|GG′| + |AE| − 4|AE| + 4|GG′|
= 3|DF | − 3|AE| ≥ 0,
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where we have used |AE| ≥ |GG′| by Lemma 2.5 to conclude the last line.
The following is a simple corollary of Lemma 2.7.
Corollary 2.8. If γa and γb are two standing waves on the same side of T that

pass between the same values of a, then L∗
w(γa) > L∗

w(γb) if γa is the wave closer to
the transition curve T .

The next lemma provides an important continuity property of the functional L∗
w

for waves that cross the transition curve.
Lemma 2.9. Consider the interaction γ̄0 + γ̄s → γs + γ0 diagrammed in Figure

7(a). Then, referring to the points referenced in that diagram, we have

L∗
w(UL → A → UR) = L∗

w(UL → E → UR)(2.23)

and

d1 ≡ L∗
w(UL → B → C) − L∗

w(UL → A → C)(2.24)

= L∗
w(D → C → UR) − L∗

w(D → E → UR) ≡ d2.

Moreover, statement (2.23) also holds for the analogous points diagrammed in Figure
7(b), together with

d1 ≡ L∗
w(UL → A → C) − L∗

w(UL → B → C)(2.25)

= L∗
w(A → D → UR) − L∗

w(A → E → UR) ≡ d2.

Proof. We verify (2.23) and (2.25). For (2.23), let F and G denote the points such
that L∗

w(A → UR) = L∗
w(F → G). Then by the 1, 2, 4 weightings on wave strengths, it
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follows that |γ̄0|∗ = L∗
w(UL → A) = L∗

w(UL → F )+L∗
w(G → E)+L∗

w(E → UR). This
is enough to verify (2.23). For (2.25), note that L∗

w(UL → A → UR) = d1 +L∗
w(UL →

B → C → UR) = d1 + L∗
w(UL → D → C → UR) = d1 − d2 + L∗

w(UL → E → UR), so
by (2.23), d1 = d2.

We now define Lw in terms of L∗
w. To this end, note that because of Lemma

2.7, the functional L∗
w([UL, UR]) will be a continuous function of UL and UR on the

admissible solution of the Riemann problem only in the case when gu ≡ 0, and in this
case, we can take Lw ≡ L∗

w. However, when gu �= 0, we show below that the functional
Lw([UL, UR]) will not be continuous everywhere (for any choice of admissible solution
of the Riemann problem) due to the divergence of the zero speed shock curve from
the standing wave curves when gu �= 0. Moreover, we must modify the definition
of wave strength for the triple composite standing waves, (described by the wave
UL → P → Q → R in Figure 15 and Figure 17, when gu < 0 and gu > 0, respectively)
in order to insure that Lw is minimized on a triple composite standing wave. The idea
is to first modify the strength of a triple composite standing wave to be equal to the
strength of the two waves (a positive speed shock wave followed by a standing wave on
the right when gu < 0, and a standing wave on the left followed by a negative speed
shock wave when gu > 0) that would solve the same Riemann problem in the case
gu = 0. We call these two waves the projection of the triple composite wave γ0, and
label it P (γ0). By so changing the wave strength, we introduce a new discontinuity in
the functional L∗

w that must be corrected for. Thus, to modify L∗
w into a continuous

functional Lw, we must further add a compensating term δ(γ0) to each standing wave
γ0 on the right, left when gu < 0, gu > 0, respectively. (We label a triple composite
standing wave as being on the left, right of T according to the side of T on which the
standing wave in P (γ0) falls. Thus, triple composite standing waves lie on the right,
left of T when gu < 0, gu > 0, respectively.) Thus, the strategy for modifying L∗

w

into a continuous functional Lw at triple composite standing waves is to redefine the
strength of a triple composite standing wave |γ0| = |P (γ0)|∗ + δ(γ0), where P (γ0) and
δ(γ0) are appropriately defined below.

So assume first that gu < 0. We first show that L∗
w is discontinuous under per-

turbation of a zero speed shock wave followed by a strong standing wave on the right
of T ; cf. Figure 8. Indeed, referring to Figure 8, the elementary waves defined by
UL → UM → UR and UL → E → UR both must serve as admissible solutions of
the Riemann problem, but L∗

w(UL → UM → UR) �= L∗
w(UL → I → K → UR) =

L∗
w(UL → E → UR). We correct for this in the case gu < 0 by modifying the def-

inition of wave strength for strong standing waves (uL < uR) on the right of T by
exactly the amount required to make L∗

w continuous.
To make this precise, let UL and UR denote the left and right states of a strong

standing wave γ0 on the right of T . Let f(a, u) = f(aL, uR) define the unique zero
speed shock curve that passes through the state UL, and for our purposes here, let U∗
denote the unique point where this zero speed shock curve intersects the transition
curve T . The state U∗ = (a∗, u∗) is determined by the conditions f(a∗, u∗) = f(aL, uL)
and u∗ = uT (a∗); cf. Figure 9. Let as(u) denote the unique standing wave curve that
emanates from the point U∗. The curve as lies to the left of the standing shock curve
emanating from U∗ because gu < 0. Now define the points I and K that lie on the
standing wave curve as to the right of T , at levels aL and aR, respectively (again see
Figure 9). Since I and K are determined by γ0 alone, we can define

δ(γ0) = L∗
w(I → K → UR) − L∗

w(I → UL → UR)(2.26)

for any strong standing wave γ0 lying to the right of T in the case gu < 0. (Note
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that δ(γ0) depends only on UL and UR across the standing wave and is exactly the
deficit between L∗

w(UL → UM → UR) and L∗
w(UL → E → UR) encountered in Figure

8. Note also that δ(γ0) = 0 when UL ∈ T , because |γ0| reduces to |γ0|∗ in this limit.)
Thus, in the case gu < 0, we define the modified strength |γ0| of a strong standing
wave on the right of T by the rule

|γ0|w = |γ0|∗w + δ(γ0),(2.27)

where d(γ0) is defined in (2.26).
Consider next the triple composite standing waves in the case gu < 0. The main

examples are given by γ0 ≡ UL → P → Q → R in Figures 15 and 6, the general
case isolated in Figure 6. In both diagrams, R = UR denotes the right state of the
triple composite standing wave γ0. In these cases, the projection P (γ0) is given by
P (γ0) = UL → T → R. We now show that the value of L∗

w(P (γ0)) is discontinuous
as UL = R varies from R to I along the line segment SN in Figure 6. Indeed, as
P (γ0) varies from UL → T → R to UL → M → L, the solution of the Riemann
problem changes to UL → S → L and then to UL → K → I. Thus for continuity,
we require that Lw(UL → S → L) = Lw(UL → M → L). But L∗

w(UL → S → L) =
L∗
w(UL → K → I → L) = L∗

w(UL → M → L) + δ, where δ = δ(γ0) = L∗
w(K → I →

L) − L∗
w(K → M → L). Thus, for the general weak standing wave UL → UR on the

right of T when gu < 0, diagrammed in Figure 10, define

δ = δ(γ0) = L∗
w(K → I → UR) − L∗

w(K → UL → UR).(2.28)

We take this as defining δ(γ0) for any weak standing wave on the right of T that
takes UL to UR, where for triple composite waves, (2.28) is assumed to apply to the
weak standing wave on the right in P (γ0). (Note that the points K and I in Figure
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10 are determined by UL and UR alone.) To put this all together, let P (γ0) = γ0

for any standing wave that is not triple composite, and let δ(γ0) be defined in (2.26)
and (2.28) for strong and weak standing waves on the right of T . Then we define the
modified strength |γ| of an elementary wave γ in the case gu < 0 by

|γ|w =

{
|P (γ)|∗w + δ(γ) if γ is a standing wave on the right of T ,
|γ|∗w otherwise,

(2.29)

where d(γ) is defined in (2.26) and (2.28). For a sequence of elementary waves
γ1, . . . , γn, we define the modified linear functional

Lw[γ1, . . . , γn] =

n∑
i=1

|γi|w.(2.30)

This completes the definition of Lw in the case gu < 0. We now define the modified
linear functional Lw in the case gu > 0.

So assume now that gu > 0. We show first that L∗
w is discontinuous under per-

turbation of a strong standing wave on the left of T followed by a zero speed shock
wave; cf. Figure 11. Referring to Figure 11, we see that both UL → UM → UR

and UL → E → UR both solve the Riemann problem, but L∗
w(UL → UM → UR) =

L∗
w(UL → K → I → UR) �= L∗

w(UL → E → UR). To correct for this in the case
gu > 0, we modify the definition of wave strength for strong standing waves on the
left of T by exactly the amount required to make L∗

w continuous.
To make this precise, let UL and UR denote the left and right states of a strong

(uL < uR) standing wave γ0 on the left of T . In this case, let as(u) denote the unique
standing wave curve that passes through the states UL and UR, and let U∗ = (a∗, u∗)
denote the unique point at which this standing curve as intersects the transition
curve T . Let f(a, u) = f(a∗, u∗) define the unique zero speed shock curve that passes
through the state U∗, defined to the right of T , and let I = (a#, u#) denote the state
on this zero speed shock curve at level aR; cf. Figure 12. Thus, I is determined by
the condition that I > T , together with a# = aR, and f(a∗, u∗) = f(aR, u#). (Note
that the zero speed shock curve emanating from U∗ lies to the left of the standing
wave curve emanating from U∗ because gu > 0.) Now define the state K to be the
state at level aL on the standing wave curve through I lying on the right-hand side
of the transition curve T on the opposite side from UL (see Figure 12). Since I and
K are determined by γ0 alone, we can define

δ(γ0) = L∗
w(ŪL → K → I) − L∗

w(ŪL → ŪR → I),(2.31)

which is defined for any strong standing wave γ0 lying to the left of T in the case
gu > 0. (Note that this is exactly the deficit between L∗

w(UL → K → I) and L∗
w(UL →
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UR → I) in Figure 12. Note also that as before, δ(γ0) = 0 when UR ∈ T , |γ0| reduces
to |γ0|∗ in this limit.) Thus, in the case gu > 0, we define the modified strength |γ0|
of a strong standing wave on the left of T by the rule |γ0|w = |γ0|∗w + δ(γ0).

Consider finally the triple composite standing wave γ0 ≡ UL → P → Q → R
in Figure 17, isolated in Figure 13, for the case gu > 0. In both diagrams, R = UR

denotes the right state of the triple composite standing wave γ0. In this case, the
projection P (γ0) is given by P (γ0) = UL → T → R. We now show that the value
of L∗

w(P (γ0)) is discontinuous as UL = R varies from R to I along the line segment
SN in Figure 13. Indeed, as P (γ0) varies from UL → T → R to UL → M → L, the
solution of the Riemann problem changes to UL → M → L and then to UL → K → I.
Thus, for continuity, we require that Lw(UL → M → L) = Lw(UL → T → L). But
L∗
w(UL → M → L) + δ = L∗

w(UL → T → L), where δ = δ(γ0) = L∗
w(M → K →

I) − L∗
w(M → L → I). Thus, for the general weak standing wave UL → UR on the

left of T when gu > 0, diagrammed in Figure 14, define

δ = δ(γ0) = L∗
w(I → K → ŪR) − L∗

w(I → ŪL → ŪR).(2.32)

We take this as defining δ(γ0) for any weak standing wave on the left of T that takes
UL to UR, where for triple composite waves, (2.32) is assumed to apply to the weak
standing wave on the left in P (γ0). (Again, note that the points K and I in Figure
14 are determined by UL and UR alone.) To put this together, let P (γ0) = γ0 for
any standing wave that is not triple composite, and let δ(γ0) be defined in (2.31) and
(2.32) for strong and weak standing waves on the right of T . Then we define the
modified strength |γ| of an elementary wave γ in the case gu > 0 by

|γ|w =

{
|P (γ)|∗w + δ(γ) if γ is a standing wave on the left of T ,
|γ|∗w otherwise,

(2.33)

where d(γ) is defined in (2.31) and (2.32). For a sequence of elementary waves
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γ1, . . . , γn, again define the modified linear functional

Lw[γ1, . . . , γn] =

n∑
i=1

|γi|w.(2.34)

This completes the definition of Lw for the case gu > 0 and so completes the definition
of Lw in general.

We can now present in detail the admissible solution of the Riemann problem
based on the Lw minimization principle. The solutions [UL, UR] that are admissible
by Definition 2.1 are diagrammed in Figures 15–18 for the cases gu < 0, gu > 0 and
UL to the left of T , UL to the right of T . The solutions that minimize Lz are pointed
out for comparison.8 The cases gu < 0 and gu > 0 are qualitatively different because
of the location of the zero speed shock curve. To read the diagrams, start at UL and
follow the arrows to an arbitrary state UR. The wave curves traversed then give the
elementary waves in the solution of the Riemann problem going from left to right in
the (x, t)-plane. In the limit as g tends to zero, these diagrams reduce to those for
the resonant homogeneous system ut + f(a, u)x = 0 [10, 12].

In Figures 15–18, the solid convex down curves denote standing wave curves, and
the dotted curve to the right of T denotes the zero speed shock curve corresponding
to the standing wave curve through UL. In Figures 15 and 16, the dotted line falls to
the right of the standing wave curve through UL because gu < 0. Similarly, in Figures
17 and 18, it falls to the left because gu > 0. We discuss the multiplicity of solutions
in Figures 15–17 below. In Figure 18, solutions are unique.

In each of Figures 15–17, there is a region of right states UR for which there are
multiple solutions of the Riemann problem that minimize the total variation in a.

8In [13] it was shown that the solutions of the Riemann problem that minimize Lz actually
minimize Lz over all sequences of connected elementary waves that connect UL to UR. This essentially
implies that Lz is nonincreasing on solutions. On the other hand, this is not the case for the solutions
of the Riemann problem that minimize Lw, and this explains why a potential interaction term is
required to construct a decreasing functional that incorporates Lw.
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In the region of multiple solutions, there is always a multiplicity of three solution in
the interior of the region, but this reduces to a multiplicity of two on the boundary
of the region. The Lw minimization principle rules out every four wave solution,
except for the two special cases labeled by UL → P → Q → R in Figures 15 and 17.
However, in both cases, the zero speed wave in the solution of the Riemann problem
always consists of a standing wave followed by a zero speed shock wave followed by
another standing wave (all zero speed) and the monotonicity in a is preserved across
triple composite standing waves. From the point of view of wave interactions, such
composite waves interact like a single wave, and so in our discussion below, we will
treat triple composite standing waves as a single standing wave. With this convention,
(and allowing waves to have zero strength), the admissible solution of the Riemann
problem always consists of three elementary waves: a negative speed nonlinear wave
followed by a single standing wave, followed by a positive speed nonlinear wave.

Discussion of Figure 15 [gu < 0; UL to the left of T ]. A multiplicity of
solutions occurs when UR lies within the interior of the region ABC, e.g., UR = H.
The three solutions are: UL → F → H, UL → D → G → H, and UL → E → H.
(Here, e.g., UL → F denotes the elementary shock wave taking UL on the left to
F on the right. Since F lies to the right of the zero speed shock curve (the dotted
line), and since fuu < 0, UL → F is a shock wave of negative speed.) All of these
solutions have the same Lz-value, but only the solution UL → F → H minimizes
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Lw. Indeed, consider region UL, F,H,E of Figure 15, which is described in Figure
19. Lw(UL → F → H) − Lw(UL → E → H) = L∗

w(UL → F → H) + δ(F →
H) − L∗

w(UL → E → H) = L∗
w(UL → F → H) + δ(F → H) − L∗

w(UL → I →
K → H) = L∗

w(I → F → H) − L∗
w(I → K → H) + δ(F → H) = L∗

w(I → F →
H) − L∗

w(M → F → H) + L∗
w(M → N → H) − L∗

w(I → K → H) = L∗
w(I →

M → N) − L∗
w(I → K → N) < 0 by Lemma 2.7. Similarly we can show that

Lw(UL → F → H) − Lw(UL → D → G → H) < 0. It follows that UL → F → H is
the unique solution of the Riemann problem selected by the Lw minimization principle.

Discussion of Figure 16 [gu < 0; UL to the right of T ]. A multiplicity of
solutions that minimize the total variation in a (but do not necessarily minimize Lz)
occurs when UR lies within the interior of the region ABC, e.g., UR = H. The three
solutions are UL → F → H, UL → A → E → H, and UL → A → D → G → H.
The Lz-value is minimized only on the first of these, and thus in this case the Lz

minimization principle selects a unique admissible solution. The functional Lw is
also minimized on the solution UL → F → H. For example, referring to Figure
20, Lw(UL → F → H) − Lw(UL → A → E → H) = L∗

w(F → H) + δ(F →
H) − L∗

w(F → A → B → H). But δ(F → H) = L∗
w(I → K) + L∗

w(K → H) −
L∗
w(F → H) − L∗

w(F → I), L∗
w(K → H) − L∗

w(B → H) = −L∗
w(B → K), and

L∗
w(I → K) ≤ L∗

w(A → B) (by the Corollary to Lemma 2.7). Substituting these as
inequalities into the previous line gives Lw(UL → F → H) − Lw(UL → A → E →
H) ≤ − [L∗

w(F → I) + L∗
w(F → A) + L∗

w(B → K)] < 0. The case for Lw(UL → F →
H) − Lw(UL → A → D → G → H) < 0 is similar.

Discussion of Figure 17 [gu > 0; UL to the left of T ]. A multiplicity
of solutions that minimize the total variation in a occurs when UR lies within the



838 JOHN HONG AND BLAKE TEMPLE

T
U*

UL

E

I

K N

M F

H

Fig. 19.

T
U*

E

ULI F

K H

A

D

B

J
G

Fig. 20.

interior of the region CEADB, e.g., UR = H. The three solutions are UL → I → H,
UL → F → G → H, and UL → J → K → G → H. In this case the Lz and Lw

minimization principles both pick out the unique solution UL → I → H. Note that on
the boundary, say UR = M, where the wave structure changes, there is a multiplicity
of two distinct solutions, UL → I → M and UL → N → M, and at this boundary, the
Lz and Lw values of both solutions are equal, a requirement for the continuity of the
functionals with respect to UL and UR. (cf. the paragraph preceding (2.29)). As an
example, we verify that Lw(UL → I → H)−Lw(UL → F → G → H) < 0, (see Figure
21). To this end, write Lw(UL → I → H) − Lw(UL → F → G → H) = L∗

w(UL →
I → H) + δ(UL → I) − L∗

w(UL → L → G → H) = L∗
w(UL → I) + L∗

w(I → H) +
[L∗

w(UL → P ) + L∗
w(P → Q) − L∗

w(UL → I) − L∗
w(I → Q)]−L∗

w(UL → L)−L∗
w(L →

G) − L∗
w(G → H) = L∗

w(P → Q → H) − L∗
w(P → L → G) − L∗

w(G → H) < 0 by
Lemma 2.7.

Discussion of Figure 18 [gu > 0; UL to the right of T ]. In this case the
solution that minimizes the total variation in a is unique.

We now summarize the main results regarding the solution of the Riemann prob-
lem.

Proposition 2.10. The admissible solution of the Riemann problem [UL, UR]
always consists of a sequence of three connected waves, a negative speed nonlinear
wave γ1 followed by a standing wave γ0 followed by a positive speed nonlinear wave
γ2, where we allow γi = 0, and we treat the composite zero speed waves of type UL →
P → Q → R in Figure 15 as a single wave γ0. We write

[UL, UR] = γ1γ0γ2.(2.35)

Proposition 2.11. The functional Lw([UL, UR]) is a continuous function of UL

and UR throughout the domain Ω.
Proposition 2.12. The convex side, (i.e., lower side when fuu < 0), of each

standing wave curve is an invariant region for admissible solutions of the Riemann
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problem.
Proof. Proposition 2.10 is clear by construction. The proof of Propositions 2.11

has been indicated above and follows directly via a case by case inspection of the
Riemann problem. Note that the continuity of Lw follows upon verifying that the
only places where L∗

w([UL, UR]) is discontinuous were identified in the discussion fol-
lowing Corollary 2.8, and the deficit was accounted for by the correction term δ(γ).
Proposition 2.12 follows immediately from the fact that all intermediate states in the
admissible solution of the Riemann problem lie on the convex side of the outer of the
two standing wave curves through UL and UR.

Proposition 2.12 implies an L∞ bound on Glimm approximate solutions generated
by the admissible solution of the Riemann problem.

3. The generalized Glimm method. In this section we construct the approx-
imate Glimm scheme solutions U∆x(x, t) and prove the compactness of approximate
solutions under the assumption that the initial data is of bounded total variation in
(a, z) (which implies that the initial data is of bounded total variation in (a,w)). We
call this a generalized Glimm scheme because the standing waves are generalized weak
solutions of system (1.1) due to the presence of the a′ in the term a′g on the right-
hand side of (1.1). The proof of convergence of the residual must be modified because
a piecewise constant approximation of a(x) does not give an L∞ approximation of
a′g, and so the residual does not converge strongly, but rather weakly. This argument
was first given in the strictly hyperbolic case in [6], and for completeness, we include
the argument adapted to the problem here (in section 6).

To begin, assume that the initial data U0(x) takes values in a neighborhood Ω
which lies below a standing wave curve and above a curve a = const contained within
a neighborhood of U∗, where the unique solution of the Riemann problem exists as
constructed in the previous section, and small enough so that Lemmas 2.4–2.7 and
Propositions 2.10–2.12 hold throughout Ω. Since Ω is an invariant region for Riemann
problems, it follows that Ω is also an invariant region for the Glimm scheme, which
is therefore defined for all time for any mesh length. To construct the approximate
solutions, first discretize R× [0,∞) by spatial mesh length ∆x and time mesh length
∆t such that

∆x

∆t
= λ,(3.1)

where

λ ≡ 2 sup
(a,u)∈Ω

{∣∣∣∣∂f∂u
∣∣∣∣
}
.(3.2)

We let xi = i∆x, tj = j∆t so that (xi, tj) denote the mesh points of the approximate
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solution. Define

Sj = {(x, t) : tj ≤ t < tj+1}.

The approximate solution U∆x generated by the Glimm scheme is defined as follows.
First, fix a sample sequence θ = {θij} ∈ Θ, where Θ denotes the infinite product of
intervals (0, 1) indexed by mesh points (with Lebesgue measure) so that Θ = Π(0, 1)ij
and θij ∈ (0, 1), −∞ < i < ∞, j ≥ 0 [4, 24]. (We randomize in space and time to
facilitate the proof of convergence of the residual; cf. [25]). To initiate the scheme at
j = 0, approximate the initial data by piecewise constant states by setting

U0
i = U∆x(x, 0) = U0(xi + θi0∆x), xi < x < xi+1.(3.3)

Assuming that U∆x(x, t) has been constructed for (x, t) ∈
⋃j−1

j=0 Sj , then define U∆x

in Sj as the solution of (1.1) with the initial values

U j
i = U∆x(x, tj+) = U∆x(xi + θij∆x, tj−), xi < x < xi+1.(3.4)

In other words, at each time tj , a piecewise constant approximation U∆x(x, tj+) is
obtained by sampling the solution U∆x(x, tj−) in each interval of the mesh at time
level tj , so that the solution in Sj can be constructed by solving the Riemann problems

[U j
i−1, U

j
i ] posed at each point of discontinuity (xi, tj), i ∈ Z. The Courant–Friedrichs–

Levy restriction (3.1) ensures that the Riemann problem solutions in each Sj do not
interact before time tj+1 [13].

We need to define the I-curves for the analysis of the nonlocal functional F defined
below; cf. [4]. An I-curve J is a continuous space-like piecewise linear curve in the
(x, t)-plane that connects adjacent mesh points of type (xi + θj∆x, tj) to ones of type
(xi, tj+1/2), where (xi, tj+1/2) = (i∆x, (j+1/2)∆t). Given an I-curve J1 that extends
from i = −∞ to i = +∞, we obtain a successor J2 of J1 by lifting the point (xi, tj−1/2)
to the point (xi, tj+1/2) when the points (xi−1 + θj∆x, tj) and (xi + θj∆x, tj) both
lie on J1. We call the region (xi, tj−1/2), (xi, tj+1/2), (xi−1 + θj∆x, tj), (xi + θj∆x, tj)
between J1 and J2 the interaction diamond ∆. We let Jj denote the I-curve that
contains all of the sample points (xi + θj∆x, tj) at time level tj . The I-curve Jj

crosses all of the waves in the Riemann problems posed in U∆x at time level tj , and
the I-curve Jj can be obtained by a sequence of successive I-curves. (Note that lifting
the mesh point (xi + θj∆x, tj) to (xi + θj∆x, tj+1) when mesh points (xi−1, tj+1/2)
and (xi, tj+1/2) both lie on J, does not change the waves that J crosses, and so we can
consider these to be equivalent.) It follows that to show that a functional F satisfies
F (Jj) ≤ F (J0), it suffices only to prove that F (J2) ≤ F (J1) for any pair of successive
mesh curves J1 and J2 [4].

We have the following theorem; cf. [13].
Theorem 3.1. If the neighborhood Ω containing U∗ is chosen to be small enough,

then the Glimm approximate solutions U∆x(x, t) are defined for all time. Moreover,

Lz(J
j+1) ≤ Lz(J

j)(3.5)

for each j ≥ 0, where Jj identifies the sequence of elementary waves appearing in the
approximate solution U∆x in the strip Sj , and Lz is defined in (2.14).

Proof. The proof of (3.5) was given in [13]. The supnorm bound on solutions
follows from Proposition 2.11 which asserts the existence of convex invariant regions
for Riemann problems in a neighborhood of U∗. The main point in the proof of (3.5)
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is that the solutions of the Riemann problems used in the construction of the Glimm
approximate solutions are admissible solutions of the Riemann problem, and so were
selected to minimize the Lz-value of the elementary waves among all possible so-
lutions of the Riemann problem. But Lz has the further property of being min-
imized on the solution of the Riemann problem among all connected sequences of
elementary waves that take UL to UR. (This was proven in [13].) Using this, esti-
mate (3.5) follows because Lz decreases across any interaction diamond ∆ij lying
between the two successive I-curves J1 and J2 with interaction diamond centered
on (xi, tj). Indeed, the Glimm scheme replaces the sequence of waves that take U j

i−1

to U j
i at time level tj− by the waves that solve the Riemann problem [U j

i−1, U
j
i ] at

t = tj + .
Theorem 3.1 leads directly to the following compactness result for approximate

solutions generated by the Glimm method.
Theorem 3.2. Assume that the initial data U0(x) ∈ Ω satisfies the condition

Varz{U0(·)} = Vz < ∞ and Var{a(·)} = Va < ∞. Then U∆x(x, t) ∈ Ω for all x, t ≥ 0,
Varz{U∆x(·, t)} < 4Vz for all t ≥ 0, and a subsequence of {U∆x} converges boundedly,
almost everywhere, to a bounded measurable function U(x, t) as ∆x tends to zero.

Proof. See Theorem 3.2 [18].
From here on out we assume that U∆x(x, t) is a sequence of Glimm approximate

solutions that converges boundedly, pointwise almost everywhere to a function U(x, t),
and satisfies the estimate

Varz{U∆x(·, t)} < 4Vz.(3.6)

In section 6 we conclude this argument by showing that the limit function U(x, t) is
a classical weak solution of (1.1) when a′ has no delta function singularities.

4. The interaction potential d(γ0, γr). Assume that U∆x(x, t) is an approx-
imate Glimm scheme solution starting from initial data U0(x) of bounded total varia-
tion in (a, u) and hence (a,w) as well. Then the total variation in (a, z) of U∆x(·, 0) is
uniformly bounded, and hence the existence theory of section 3 applies. Thus, with-
out loss of generality, we can assume that U∆x → U, where U(x, t) is a weak solution
of (1.1) of bounded total variation in z at each fixed time. (The convergence is in L1

loc

at each fixed time, uniformly on compact sets.) We now estimate the growth of the
total variation in w (and hence in u) in the approximate solutions U∆x(x, t).

Our idea is to use the functional Lw to estimate the total variation in w at each
time in an approximate solution U∆x(x, t). The problem of estimating Lw is more
difficult than the problem of estimating Lz because in the case of Lw, it is not true
that Lw(Jj+1) ≤ Lw(Jj) across interactions. The point is that Lw is minimized on
the admissible solution of the Riemann problem among all solutions of the Riemann
problem, but it is not minimized on the admissible solution of the Riemann problem
among all connected sequences of elementary waves that take UL to UR, even if there
is just a single standing wave within the sequence. Indeed, if a fast rarefaction wave
followed by a slow standing wave interacts to produce a slow standing wave followed
by a fast rarefaction wave, then Lw increases across this interaction. This is because
rarefaction wave-standing wave interactions, in which incoming and outgoing waves
all lie on one side of T , always have the effect of moving the standing wave closer to the
transition curve—this increases the Lw because it shifts the total variation in u from
the nonlinear waves to the standing waves, which are weighted by the larger factors
of 2 and 4 over the weight on the nonlinear waves. We verify this in two examples
below. The remarkable fact that the functional Lw increases only on rarefaction
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wave/standing wave interactions, and is nonincreasing on all other interactions, is
discussed after the examples. Our strategy is then to define a potential for the increase
in Lw due to the interaction of a standing wave and a rarefaction wave and to prove
that Lw plus the sum of all potential interaction terms define a nonlocal functional
F that bounds the total variation in w and decrease across interactions.

We begin by verifying that Lw increases on rarefaction wave/standing wave in-
teractions in two salient examples: the case when gu < 0 and the standing wave is a
strong standing wave on the right of T , and the case when gu > 0 and the standing
wave is a strong standing wave on the left of T . These two examples clarify the prob-
lem of bounding the increase in Lw on interactions. So consider first the interaction
diagrammed in Figure 22, the case when gu < 0, and a standing wave γIN

0 starting to
the left of a negative speed rarefaction wave γIN

r interacts to produce a negative speed
rarefaction wave γOUT

r followed by a standing wave γOUT
0 . (For simplicity we assume in

this example that all waves lie to the right of T .) Then [UL, UR] = (γOUT
r , γOUT

0 ), but
Lw(γOUT

r , γOUT
0 )−Lw(γIN

r , γIN
0 ) = L∗

w(γOUT
r ) +L∗

w(γOUT
0 ) + δ(γOUT

0 )−L∗
w(γIN

r )−
L∗
w(γIN

0 )−δ(γIN
0 ) = L∗

w(UL → B → UR)+δ(γOUT
0 )−L∗

w(UL → A → UR)−δ(γIN
0 ) =

L∗
w(U ′

L → B′ → U ′
R) − L∗

w(U ′
L → A′ → U ′

R) > 0 by Lemma 2.7.

Consider next the case of the interaction diagrammed in Figure 23, the case when
gu > 0, and a positive speed rarefaction wave γIN

r starts to the left of a standing
wave γIN

0 and interacts to produce a standing wave γOUT
0 followed by (that is, to the

left of) a positive speed rarefaction wave γOUT
r . (Again, for simplicity, we assume in

this example that all waves lie to the left of T .) Then [UL, UR] = (γOUT
0 , γOUT

r ), but
Lw(γOUT

0 , γOUT
r )−Lw(γIN

0 , γIN
r ) = L∗

w(γOUT
0 ) + δ(γOUT

0 ) +L∗
w(γOUT

r )−L∗
w(γIN

0 )−
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δ(γIN
0 )−L∗

w(γIN
r ) = L∗

w(UL → B → UR)+δ(γOUT
0 )−L∗

w(UL → A → UR)−δ(γIN
0 ) =

L∗
w(U ′

L → B′ → U ′
R) − L∗

w(U ′
L → A′ → U ′

R) > 0 by Lemma 2.7. One can verify that
Lw is nonincreasing on shock wave-standing wave interactions that lie on one side of
T by similar examples. This concludes the examples.

What is remarkable is that the increase in Lw due to rarefaction wave-standing
wave interactions that are not transonic (that is, all waves in the interaction lie en-
tirely on the same side of T ) accounts for all of the ways Lw can increase, even for
complicated transonic wave interactions that carry waves across the transition curve.
The proof that we need only a potential interaction term for nontransonic rarefac-
tion wave-standing wave interactions is a consequence of our proof below that the
nonlocal functional F is nonincreasing on all interactions, but in the proof it is diffi-
cult to see the reason for the decrease in the functional in the complicated case when
the interactions are transonic. To motivate the argument, consider a standing wave
γ0 that takes UL = (aL, uL) to UR = (aR, uR). Then this wave lies entirely on one
side of T , or else it is a composite wave of type UL → P → Q → R of Figure 15.
Let a∗ = max{aL, aR}, and let U∗ = (a∗, u∗) denote the point on T that lies at level
a = a∗. Consider now the region V (γ0) that lies below the standing wave curves on the
left and right of T that pass through the state U = U∗; cf. Figure 24. The claim then
is that any rarefaction wave that lies in the region V (γ0) in an approximate solution
that contains the wave γ0 cannot interact with γ0 in such a way as to produce an in-
crease in Lw. For example, one can verify that when the connected sequence of waves
γrγ0 or γ0γr interact to produce the waves in the Riemann problem [UL, UR], Lw will
be nonincreasing and the wave γr will be eliminated by the interaction when γr in
V (γ0). This helps explain why we needn’t include such portions of the rarefaction
wave in the definition of the interaction potential d(γ0, γr) below.

We now define d(γ0, γr), the potential for the increase in Lw due to the interaction
of a standing wave γ0 that approaches a rarefaction wave γr; cf. [4]. (Although there
is an ordering of the waves in the (x, t)-plane implied by the condition that two waves
approach, we assume no ordering in d, so that d(γ0, γr) ≡ d(γr, γ0).) So assume that
γ0 and γr are waves that cross the same I-curve J in an approximate Glimm scheme
solution U∆x. We say that γ0 and γr approach on J if the faster of the two waves
is positioned to the left of the slower wave on J in the (x, t)-plane. Any two such
waves will interact at a later time in the approximate solution U∆x. Note that standing
waves always have zero speed, and to make the definition of approaching unambiguous,
assume that all rarefaction waves have purely positive or negative speed by treating
any rarefaction wave that crosses T as two separate waves by partitioning such a
rarefaction wave into its positive and negative speed parts. (In this case, the wave
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will be partitioned at the point where the wave crosses T since this is the curve of
zero characteristic speed.) If α and β are indices that identify two waves that cross
J, then we write (α, β) ∈ App(J) if γα approaches γβ on J.

In order to define d(γ0, γr) for two approaching waves γ0 and γr, we first define
what we call the interaction region ∆(γ0, γr), the region in U -space where the inter-
action of γr and γ0 will take place (assuming the rarefaction wave is not canceled out
before the interaction occurs). To this end, we first define what we call the trajectory
of the waves γr and γ0. If the waves interact, then the interaction will occur within the
region determined by the intersection of the two trajectories. Since the standing wave
curves and nonlinear wave curves act like Riemann invariants for the system (1.1),
it follows that when a rarefaction wave interacts with a standing wave, the standing
wave is just translated along the nonlinear wave curves and the rarefaction wave is
translated along the standing wave curves. Thus let γ0 = [U0

L, U
0
R] and γr = [Ur

L, U
r
R]

denote a standing wave and a rarefaction wave, respectively. In the case when the
standing wave γ0 is a composite wave of type UL → P → Q → R of Figure 15, we
define

d(γ0, γr) = d(γ′
0, γr),(4.1)

where γ′
0 denotes the standing wave in the projection P (γ0) (e.g., γ′

0 = T → R in
Figure 15). Thus to define d(γ0, γr), it suffices to assume that the standing wave γ0

lies entirely on one side of T (admissible, noncomposite standing waves do not cross
the transition curve), and we can assume that the rarefaction wave γr lies entirely on
one side of T because rarefaction waves are partitioned so as to have unambiguous
positive or negative speed. For the rarefaction wave γr let S(Ur

L),S(Ur
R) denote the

standing wave curves that pass through states Ur
L, U

r
R, respectively. We can now

define the trajectory of a rarefaction wave γr and a standing wave γ0; cf. Figure 25.
Definition 4.1. Let γr = [Ur

L, U
r
R] denote a rarefaction wave that lies entirely

one side of the transition curve, say γr ≤ T or γr ≥ T . Then the trajectory Traj(γr)
of γr is the region in U -space between the two standing wave curves S(Ur

L) and S(Ur
R),

intersected with u ≤ T or u ≥ T , according to whether γr ≤ T or γr ≥ T , respec-
tively.

Definition 4.2. The trajectory Traj(γ0) of a standing wave γ0 is the region
between the curves a = a0

L and a = a0
R, i.e., the region between the two nonlinear

wave curves through U0
L and U0

R, respectively.
We note that Traj(γr) includes only the region on the side of T that contains the

wave γr because a rarefaction wave cannot cross T without being canceled out by a
shock wave, but Traj(γ0) contains the region on both sides of T because a standing
wave can cross T as a result of interaction. It follows that the interaction of γ0 and
γr can only take place on the side of T that contains γr.
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We now define the interaction region ∆(γ0, γr). To this end, consider the region
equal to the intersection between Traj(γr) and Traj(γ0), which lies entirely on the
same side of T as the rarefaction wave γr. If there exists a full set of four intersection
points between the curves S(Ur

L),S(Ur
R) and a = a0

L, a = a0
R that all lie on the

same side of T as the wave γr (diagrammed A,B,C,D in Figure 26), then define the
interaction region ∆(γ0, γr) to be the region ABCD, which is exactly equal to the
intersection of the trajectory of γ0 and the trajectory of γr. If the curves S(Ur

L),S(Ur
R)

and a = a0
L, a = a0

R do not intersect in four distinct points on the same side of T as
γr, we must modify the definition of ∆(γ0, γr) to account for the fact that portions of
the rarefaction wave γr will be canceled out before γ0 can interact with the standing
wave γ0. To this end, let U∗ denote the highest point on T where the trajectory of
γ0 intersects T , i.e., let U∗ = (amax, uT (amax)), where amax = max{a0

L, a
0
R}; see

Figure 27. Consider then the standing wave S(U∗) that passes through the point
U∗, and ask whether S(U∗) lies within the trajectory of γr. If it does not (which
means the trajectory of γr lies below U∗), then we say that the interaction region
∆(γ0, γr) = φ, the empty set; that is, there is no potential for interaction of the waves
γr and γ0. If S(U∗) does lie within the trajectory of γr, then let ∆(γ0, γr) denote the
intersection of the trajectory of γ0 with the trajectory of γr and take away all points
U that lie below the standing wave curve S(U∗). In this case, ∆(γ0, γr) = ABU∗D,
as diagrammed in Figure 27. This completes the definition of ∆(γ0, γr). Note that
in every case, ∆(γ0, γr) consists of a region on the side of the transition curve that
contains γr, bounded on the right and left by standing wave curves and above and
below by nonlinear wave curves, determined by four vertices, which we label ABCD
as in Figure 28.

Now for any approaching waves γr and γ0 (assuming rarefaction waves are parti-
tioned at points where they cross T ), define d(γ0, γr) in terms of ∆(γ0, γr) as follows.
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The interaction potential d(γ0, γr) is equal to the change in Lw between the waves
that enter and the waves that leave the interaction region ∆(γ0, γr), as determined
by the orientation of the original waves γ0 and γr. That is, there is only one way to
project the waves γr and γ0 to incoming waves on the boundary of ∆(γ0, γr) so that
γr is projected to a rarefaction wave, γ0 is projected to a standing wave that pre-
serves the increasing/decreasing of a across the wave, and the projected waves define
a connected sequence of waves that preserve the left/right orientation of the original
waves γr and γ0. Thus, there are four cases in which γr and γ0 can approach, labeled
in Figure 29. These are determined by whether a increases or decreases across the
standing wave γ0 and whether the wave γr lies to the left or right of T . In the four
cases (1)–(4) labeled in Figure 29, d(γ0, γr) in each case is defined by

d(γ0, γr) = Lw(A → B → C) − Lw(A → D → C).(4.2)

Therefore, assuming that all rarefaction waves have been partitioned at points on T ,
equation (4.2) defines d(γ0, γr) for any pair of approaching waves γr and γ0, and we
set d(γ0, γr) = 0 for any pair of nonapproaching waves. For our arguments below, we
wish to index the waves in an approximate Glimm scheme solution as they are given
in the solution of the Riemann problems themselves, without further partitioning.
Thus for a rarefaction wave γr that crosses T and is partitioned into γr = γa

r γ
b
r

at the point where it crosses T , we say γr approaches a standing wave γ0 if γa
r

approaches γ0 or γb
r approaches γ0, and we define d(γ0, γr) = d(γ0, γ

a
r ) + d(γ0, γ

b
r).

It follows that for any partitioning of a rarefaction wave γr = γa
r · · · γb

r , we have that
d(γ0, γr) = d(γ0, γ

a
r ) + · · · + d(γ0, γ

b
r). This completes the definition of d(γ0, γr) for

any pair of waves γ0, γr that crosses an I-curve J in an approximate Glimm scheme
solution of (1.1).

We note that the potential d(γ0, γr) is symmetric, d(γ0, γr) = d(γr, γ0), and is con-
structed so that if a standing wave γ0 is displaced to γ̂0 by interaction with a nonlinear
wave and a rarefaction wave γr is displaced to γ̂r by interaction with a standing wave,
then (assuming no cancellation of shock and rarefaction waves) d(γ0, γr) = d(γ̂0, γ̂r).
Thus, d(γ0, γr) is invariant under such interactions even though |γ0|w �= |γ̂0|w and
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|γr|w �= |γ̂r|w. Remarkably, this statement holds even when γ0 is a composite wave of
form UL → P → Q → R of Figure 15. Therefore, even though wave strengths change
as waves evolve in the solution, the potential interaction between waves is constructed
so as to be an invariant of interactions (assuming no cancellation of rarefaction waves
by shock waves).

The following proposition gives the main property that tells how rarefaction wave
trajectories change when waves interact. To state the proposition, note that the
rarefaction waves in any admissible solution of the Riemann problem [UL, UR] can
always be partitioned into a positive speed rarefaction wave γL

r on the left of T and
a negative speed rarefaction wave γL

r on the right of T . The fact that one can always
uniquely identify exactly two such waves for every choice of UL and UR (allowing
for one or both of the waves to be zero) can be verified directly in Figures 15–18.
(Recall that a rarefaction wave cannot cross T in any admissible solution of the
Riemann problem unless the standing wave is zero, in which case the solution is a
single rarefaction wave γr that can be partitioned into γr ∼ γR

r γ
L
r ; cf. Figure 30.)

Proposition 4.3. Let γL
r and γR

r denote the left and right rarefaction waves
in the solution of the Riemann problem [UL, UR], and let γ̄1γ̄0γ̄2 be any connected
sequence of elementary waves that takes UL to UR such that γ̄1, γ̄2 are nonlinear waves
and γ̄0 is a standing wave. Then Traj(γL

r ) ⊆ Traj(γ̄L
r ) and Traj(γR

r ) ⊆ Traj(γ̄R
r ),

where γ̄L
r and γ̄R

r denote the union of all left and right rarefaction waves, respectively,
among γ̄i, i=1, 2.

Proof. The proof of Proposition 4.3, which can be verified case by case from the
admissible solution of the Riemann problem, is postponed until the appendix.

5. The nonlocal functional. In this section we define the nonlocal functional
F (J) that bounds the total variation in w for the waves that cross an I-curve J in
an approximate Glimm scheme solution. We then prove that F is nonincreasing on
approximate solutions. To start, let J denote a fixed I-curve, and for notational
convenience let Λ be an index set such that γα

q , α ∈ Λ, q ∈ {0, r, s}, lists all of waves
that cross J. Here q = 0, r, s means that the wave is a standing wave, rarefaction
wave, or shock wave, respectively, so that, for example, {γα

0 }α∈Λ denotes the set of all
standing waves that cross J, etc. (To achieve such an indexing just allow for arbitrarily
many zero waves.) Thus the local functional Lw(J) is defined by

Lw(J) =
∑

α∈Λ,q∈{0,r,s}
|γα

q |w.(5.1)

Define the functional F (J) by

F (J) = Lw(J) + P (J),(5.2)
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where P (J) is the nonlocal potential interaction functional defined by

P (J) =
∑

(α,β)∈App(J)

d(γα
0 , γ

β
r ),(5.3)

where we use the notation (α, β) ∈ App(J) if and only if γα
0 approaches γβ

r on J.
Since F (J) is determined by the connected sequence of waves that cross J, we can
similarly define F (γa · · · γb) for any connected sequence of elementary waves. (Two
waves in the sequence approach if the left wave is faster than the right wave in the
sequence, etc.) Then, for example, F ([UL, UR]) = Lw([UL, UR]) because the solution
of the Riemann problem contains no pairs of approaching waves. We now prove the
following theorem.

Theorem 5.1. If J2 is a successor of J1 in an approximate Glimm scheme
solution of system (1.1), then

F (J2) − F (J1) ≤ 0.(5.4)

The proof of Theorem 5.1 is a consequence of the following lemma. (We think of
bar, tilde, and hat as identifying incoming waves and unbarred waves as representing
outgoing waves, and [UL, UR] denotes the admissible solution of the Riemann problem,
where the strength of each zero speed composite wave γ0 has a strength equal to the
strength of the waves in its projection P (γ0).)

Proposition 5.2. Let γ̄1γ̄0γ̄2 denote any connected sequence of three elementary
waves that takes UL to UR such that γ̄1, γ̄2 are nonlinear waves, and γ̄0 is a standing
wave.

F (γ1γ0γ2) ≤ F (γ̄1γ̄0γ̄2),(5.5)

where γ1γ0γ2 = [UL, UR].
The proofs of Propositions 4.3 and 5.2 involve a case by case study of the Riemann

problem and will be dealt with together in the appendix. Assuming Propositions 4.3
and 5.2, we now give the following proof.

Proof of Theorem 5.1. Assume that Propositions 4.3 and 5.2 hold, and assume
that J2 is an immediate successor of J1 in the approximate Glimm scheme solution
U∆x of system (1.1). We show that F (J2) ≤ F (J1). Let ∆ denote the interaction
diamond between J1 and J2, let J ′

1, J
′
2 denote the restriction of J1, J2 to the region

∆, respectively, and let J0 denote the restrictions of J1 and J2 to the region outside
∆; cf. [4, 24]. Thus we write J1 = J0 ∪ J ′

1 and J2 = J0 ∪ J ′
2. Note that since we use

an unstaggered grid, the states UL and UR that lie at the right and left vertices of ∆
are consecutive sample points at some time level tj in the approximate solution U∆x,
and thus there is at most one standing wave between UL and UR on both J ′

1 and
J ′

2. It follows that there are at most five incoming waves that cross J ′
1, i.e., at most

two nonlinear waves γ̄a
1 and γ̄b

1, followed by a standing wave γ̄0, followed by at most
two nonlinear waves γ̄a

2 γ̄
b
2. (Subscripts 1, 2 denote nonlinear waves, and subscript 0

denotes a standing wave.) Thus let γ̄a
1 γ̄

b
1γ̄0γ̄

a
2 γ̄

b
2 denote the connected sequence of

elementary waves that take UL to UR and cross the curve J ′
1, the incoming waves for

the interaction diamond ∆. The waves that leave the interaction diamond ∆ cross J ′
2

and hence solve the Riemann problem [UL, UR].
Now first let γ̄1 and γ̄2 denote the nonlinear waves such that γ̄1 ∼ γ̄a

1 γ̄
b
1 and

γ̄2 ∼ γ̄a
2 γ̄

b
2. Define J̄ ′

1 to be the I-curve obtained by replacing the waves on J ′
1 by the
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waves γ̄1γ̄0γ̄2, and set J̄1 = J0 ∪ J̄ ′
1. Then the proof of Theorem 5.1 is complete once

we prove the following claim.
Claim. The following inequalities hold:

F (J2) ≤ F (J̄1) ≤ F (J1).(5.6)

Proof of claim. The second inequality holds because in replacing the nonlin-
ear waves γ̄a

i γ̄
b
i by γ̄i, i = 1, 2, there can be no increase in wave strength—only

a cancellation of wave strength can occur, this happening when one of γ̄a
i , γ̄

b
i is a

shock wave and the other is a rarefaction wave. Thus Lw(J̄1) − Lw(J1) ≤ 0. More-
over, since the potential d(γ0, γr) is in general independent of the partitioning of the
nonlinear wave γr, it follows that d(γ0, γ̄i) ≤ d(γ0, γ̄

a
i ) + d(γ0, γ̄

b
i ) for any standing

wave γ0 on J0, i = 1, 2. From this it readily follows that P (J̄1)−P (J1) ≤ 0, and hence
F (J̄1) − F (J1) = Lw(J̄1) − Lw(J1) + P (J̄1) − P (J1) ≤ 0.

To verify that F (J2) ≤ F (J̄1), write

F (J2)−F (J̄1) = F (J ′
2)−F (J̄ ′

1)+P (J ′
2, J0)−P (J̄ ′

1, J0)+P (J ′
2, J

′
2)−P (J̄ ′

1, J̄
′
1).(5.7)

(Here we use the notation that if Ja, Jb ⊂ J, then P (Ja, Jb) =
∑

d(γα, γβ), where
the sum is taken over all approaching waves on J such that γα ∈ Ja, γ

β ∈ Jb.) But
P (J ′

2, J
′
2) = 0 because the solution of the Riemann problem contains no approaching

waves, and by Proposition 5.2, F (J ′
2) − F (J̄ ′

1) ≤ 0. Moreover, P (J ′
2, J0) ≤ P (J̄ ′

1, J0)
because, by Proposition 4.3, the trajectories of the rarefaction waves on J̄ ′

1 contains
the trajectories of the rarefactions waves on J ′

2; hence there will be an interaction
potential between rarefaction waves in J̄ ′

1 and standing waves in J0 that cancels any
interaction potential between rarefaction waves in J ′

2 and standing waves in J0. Thus
(5.7), F (J2) − F (J̄1) ≤ 0, and the proof of the claim is complete.

The final theorem follows directly from Theorem 5.1.
Theorem 5.3. If the initial I-curve Jt=0 satisfies F (Jt=0) < ∞ in a Glimm

approximate solution U∆x, then the total variation of U∆x(·, t) < const.F (Jt=0) for
all t > 0.

6. Convergence of the residual. In this section we give the proof of con-
vergence of the residual for the approximate Glimm scheme solution constructed in
section 3. The residual for system (1.1) is defined by

R(a, u, ϕ) =

∫ +∞

−∞

∫ +∞

−∞
{uϕt + fϕx + a′gϕ} dx dt +

∫ +∞

−∞
u0(x)ϕ(x, 0) dx.(6.1)

Then (a, u) is a weak solution of (1.1) if and only if R(a, u, ϕ) = 0 for all compactly
supported smooth test functions ϕ = ϕ(x, t). Assume that U∆x is a sequence of Glimm
approximate solutions that satisfy

VarzU∆x(·, t) < Vz(6.2)

for some constant Vz independent of ∆x (cf. (3.6)), and assume U∆x(x, t) =
(a∆x(x), u∆x(x, t)) → U(x, t) = (a(x), u(x, t)) piecewise a.e. and in L1

loc at each fixed
time, uniformly on compact sets (the conclusion of the Oleinik compactness argument;
cf. [25]). Note that for fixed initial data, U∆x is a function of both ∆x and the sample
sequence θ = {θij} ∈ Θ. Assume that a(x) is Lipschitz continuous, so that there exists
a constant M such that

|a(x) − a(y)| ≤ M |x− y| for all x, y ∈ R,(6.3)

|a(x) − a∆x(x)| ≤ M∆x for all x ∈ R.(6.4)
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For an approximate solution U∆x, define

R∆x(a∆x, u∆x, ϕ) ≡
∫ +∞

−∞

∫ +∞

−∞
{u∆xϕt + f(a∆x, u∆x)ϕx + a′g(a∆x, u∆x)ϕ} dx dt

+

∫ +∞

−∞
u∆x(x, 0)ϕ(x, 0) dx(6.5)

(obtained by replacing U by U∆x in (6.1) everywhere except at a′). We prove the
following theorem; cf. [4].

Theorem 6.1. There exists a set N of measure zero in Θ such that, if θ ∈ Θ/N ,
then

R(a, u, ϕ) = lim
∆x→0

R∆x(a∆x, u∆x, ϕ) = 0(6.6)

for all test functions ϕ of compact support in −∞ < x < ∞, t ≥ 0. Thus, in particular,
passing the limit through the integral sign, we conclude that U(x, t) is a weak solution
of (1.7).

Proof of Theorem 6.1. To start, let γ1
ij and γ2

ij denote the negative and positive
speed waves positioned at mesh point (xi, tj) in the approximate solution U∆x. Let
Uij(x, t) denote the approximate solution U∆x restricted to the mesh rectangle Rij =
[xi, xi+1) × [tj , tj+1), and let VarzUij and VaruUij denote the total variation of Uij

in x at fixed time t ∈ (tj , tj+1), xi ≤ x < xi+1. For the proof of Theorem 6.1, we
introduce three regularization parameters ε, ε̂, and δ, whose values will be chosen at
the end: ε is a regularization parameter for the standing waves described below; ε̂
measures distance to the transition curve so that

S(ε̂) ≡ {U : |U − T | ≤ ε̂} ;

and δ is a mollification parameter for g∆x (so that we can integrate the source term
in (6.6) by parts),

(g · U∆x)δ = (g · U∆x) ∗ ψδ,

where ψδ =( 1
δ2 )ψ(xδ ,

t
δ ) denotes the standard convolution kernel supported on |(x, t)| ≤

δ.

For the mollification of the standing waves, let U ε
∆x(x, t) ≡ (aε(x), uε

∆x(x, t))
denote the regularization of U∆x obtained by translating γ1

ij (respectively, γ2
ij) ε∆x

units to the left (respectively, right) at each mesh point (xi, tj) and then replacing
each standing wave discontinuity γ0

ij at (xi, tj) by the smoothed out standing wave on
the interval xi− ε∆x < x < xi + ε∆x, as described in the discussion after (2.4). Thus,
states on the smoothed out standing wave γ0,ε

ij lie on the standing wave curve between

the same left and right states as γ0
ij so that VarzU

ε
ij = VarzUij and VaruU

ε
ij = VaruUij .

(Indeed, recall that in Section 2, standing wave discontinuities were constructed as
limits of smooth standing waves under rescaling into discontinuities; cf. [6].) Since U ε

satisfies the same total variation bounds as U∆x, by taking appropriate subsequences,
we can assume that at each ε > 0, lim∆x→0U

ε
∆x = U ε, where convergence is in the

same sense as U∆x → U. (We are forced to introduce U ε
∆x because our approximate

solutions are constructed to (formally) meet (6.6) with a′∆x, not a′.)

We use the following lemmas.
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Lemma 6.2. There exists a constant C0 > 0 and a function K̂(ε̂) independent of
∆x such that

VaruU∆x(·, t) ≤ C0ε̂ + K̂(ε̂)VarzU∆x(·, t),(6.7) ∫
E

|U ε
∆x − U∆x| dx dt ≤ C0|E|ε,(6.8) ∣∣∣∣ ∂∂x (g · U ε

∆x)δ

∣∣∣∣ ≤ C0

δ
.(6.9)

By (6.8) we know that
∫
E
|U ε − U | dxdt < O(1)ε for each compact set E.9

Proof. Estimate (6.7) follows from the fact that the mapping (a, z) → (a, u) is
one-to-one and regular except at the transition curve T and any wave that lies entirely
within S(ε̂) has amplitude order ε̂; cf. [25]. For (6.8), observe that meas{(x, t) ∈ E :
U ε

∆x �= U∆x} = O(1)|E|ε, where |E| denotes the measure of the set E. Estimate (6.9)
follows directly from the definition of convolution.

Lemma 6.3. For every compact set E in −∞ < x < ∞, t ≥ 0, there exists a
function K(ε) independent of δ such that∫

E

|(g · U ε
∆x)δ − (g · U ε

∆x)| dxdt =

∫
E

|(g · U ε)δ − (g · U ε)| dxdt + o(∆x)K(ε),

(6.10)∫
E

|(g · U ε
∆x)δ − (g · U∆x)| dxdt =

∫
E

|(g · U ε)δ − (g · U)| dxdt + o(∆x)K(ε).

(6.11)

Here we mean that o(∆x) is independent of ε, ε̂, and δ, and lim∆x→0o(∆x) = 0.
Proof. Both (6.10) and (6.11) follow directly from the convergence of U ε

∆x → U ε

and U∆x → U.
The next lemma is the main step in the proof of Theorem 6.1.
Lemma 6.4. Let

Rε
φ ≡ R(aε, u

ε
∆x, ϕ) =

∫ ∫
t≥0

U ε
∆xφt + f(U ε

∆x)φx + a′εg(U
ε
∆x)φdxdt(6.12)

+

∫ +∞

−∞
U0(x)φ(x, 0)dx,

and write Rε
φ ≡ Rε

φ(θ) to express the dependence on θ ∈ Θ when ∆x and φ are fixed.
Then there exists a constant C1 such that∫

Θ

(
Rε

φ

)2
dθ ≤ O(1)

{
ε̂ + K̂(ε̂)∆x + ε(C0ε̂ + K̂(ε̂))2

}
.(6.13)

Proof of Lemma 6.4. Since U ε
∆x is an exact solution in each strip tj < t < tj+1,

integrating (6.13) over each mesh rectangle Rij gives

Rε
φ =

∑
i,j

Dε
ij(θ,∆x, φ),(6.14)

9We use the notation that C0, C1 denote constants that can depend on the equations and the
initial data but are independent of ε, ε̂, δ,∆x, and the test function φ, while O(1) denotes a constant
that is independent of ε, ε̂, δ, and ∆x, the convergence parameters.
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where for j > 0,

Dε
ij(θ,∆x, φ) =

∫ xi+1

xi

{
U ε
θ,∆x(x, tj+) − U ε

θ,∆x(x, tj−)
}
φ(x, tj−)dx

≡
∫ xi+1

xi

[U ε
ij ]φ|dx(6.15)

and

Dε
i0(θ,∆x, φ) =

∫ xi+1

xi

{
U ε
θ,∆x(x, 0) − U0(x)

}
φ(x, 0)dx

≡
∫ xi+1

xi

[U ε
i0]φ|dx.(6.16)

(We take definitions (6.14)–(6.16) as applying also at ε = 0, U0
∆x = U∆x.) It follows

directly from (6.15) and (6.16) that∣∣Dε
ij(θ,∆x, φ)

∣∣ ≤ |Supp(φ)| ||φ||∞∆xVaruU
ε
ij .(6.17)

Now let O(1) denote a constant that is independent of ε, ε̂, δ, and ∆x.

Claim. The following estimate holds:∣∣∣∣
∫

Θ

Dε
ijD

ε
kldθ

∣∣∣∣ ≡ |〈Dε
ij , D

ε
kl〉| ≤ O(1)ε∆x2 · VaruU

ε
ij · VaruU

ε
kl.(6.18)

Proof of claim. First, neglecting higher order terms in ∆x, we can assume without
loss of generality that φ is constant on mesh rectangles, φ = φij = const on Rij .
Following the argument in [6], we first note that if j < l, then Uij is independent

of akl, and so we can pass dak through the integral to the factor
∫ 1

0

∫ xk+1

xk
Dkldxdak,

which is equal to zero as in Glimm’s original argument. Thus,∫
Θ

Dε
ijDkldθ = 0.(6.19)

Therefore, ∣∣〈Dε
ij , D

ε
kl〉

∣∣ =
∣∣〈Dε

ij , D
ε
kl〉 − 〈Dε

ij , Dkl〉
∣∣

=
∣∣〈Dε

ij , D
ε
kl −Dkl〉

∣∣ ≤ ||Dε
ij ||∞||Dε

kl −Dkl||∞
≤ O(1)VaruU

ε
ij ||Dε

kl −Dkl||∞∆x.(6.20)

But

||Dε
kl −Dkl||∞ ≤

∫ xk+1

xk

|[U ε
kl] − [Ukl]| |φ|dx ≤ O(1)ε∆xVaruUkl,(6.21)

and using this in (6.20) gives∣∣〈Dε
ij , D

ε
kl〉

∣∣ ≤ O(1)ε∆x2 · VaruUij · VaruUij(6.22)

as claimed.



RESONANT NONLINEAR BALANCE LAWS 853

Thus we can estimate

∫
Θ

(
Rε

φ

)2
dθ =

∫
Θ

⎛
⎝∑

ij

Dε
ij

⎞
⎠

2

dθ

=
∑
i

∫
Θ

(
Dε

ij

)2
dθ +

∑
ij,kl

∫
Θ

Dε
ijD

ε
kldθ(6.23)

= I + II,(6.24)

where

|I| ≤
∑
ij

(∫ xi+1

xi

[U ε
ij ]φdx

)2

≤ O(1)
∑
ij

∆x2
(
VaruU

ε
ij

)2
≤ O(1)

{
C0ε̂ + K̂(ε̂)

}
∆x(6.25)

and

|II| ≤
∑
ij,kl

O(1)ε∆x2 · VaruUij · VaruUkl

≤
∑
ij,kl

O(1)ε∆x2 · (C0ε̂ + K̂(ε̂))2.(6.26)

Thus

|I| + |II| ≤ O(1)
{
ε̂ + K̂(ε̂)∆x + ε(C0ε̂ + K̂(ε̂))2

}
,(6.27)

which verifies (6.13) of Lemma 6.4.
Now that we have an estimate for Rε

φ in Lemma 6.4; we obtain an estimate for
Rφ ≡ R∆x(a∆x, u∆x, ϕ) by estimating the difference |Rε

φ −Rφ|,

|Rφ| ≤
∣∣Rε

φ −Rφ

∣∣ +
∣∣Rε

φ

∣∣ .(6.28)

Lemma 6.5. The following estimate holds:

∣∣Rε
φ −Rφ

∣∣ ≤ O(1)

{
ε + o(∆x)K(ε) +

∆x

δ
(6.29)

+

∫ ∫
E

|(g · U ε)δ − g(U ε)| dx dt

+

∫ ∫
E

|(g · U ε)δ − g(U)| dx dt
}
,

where E denotes the support of φ and O(1) denotes a constant independent of ε, ε̂, δ,
and ∆x.

Proof of Lemma 6.5. Starting with (6.5) and (6.12), we obtain∣∣Rε
φ −Rφ

∣∣ ≤ ∫ ∫
t≥0

|U ε
∆x − U∆x| |φt| dx dt

+

∫ ∫
t≥0

|f(U ε
∆x) − f(U∆x)| |φx| dx dt

+

∣∣∣∣
∫ ∫

t≥0

{a′εg(U ε
∆x) − a′g(U∆x)}φdx dt

∣∣∣∣
= I1 + I2 + I3.(6.30)
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It follows from (6.9) that

|I1| ≤ O(1)ε,(6.31)

|I2| ≤ O(1)ε,(6.32)

and it remains to estimate I3. But

|I3| ≤
∫ ∫

t≥0

|a′ε| |g(U ε
∆x) − (g · U ε

∆x)δ| |φ| dx dt

+

∫ ∫
t≥0

|a′ε| |(g · U ε
∆x)δ − g(U∆x)| |φ| dx dt

+

∣∣∣∣
∫ ∫

t≥0

d

dx
(aε − a) (g · U ε

∆x)δ φdx dt

∣∣∣∣
= I3a + I3b + I3c,

and using Lemma 6.3 we obtain

|I3a| ≤ O(1)

{
1

ε

∫ ∫
t≥0

|(g · U ε)δ − g(U ε)| dx dt + o(∆x)K(ε)

}
(6.33)

and

|I3b| ≤ O(1)

{∫ ∫
t≥0

|(g · U ε)δ − g(U)| dx dt + o(∆x)K(ε)

}
.

(6.34)

Finally, integrating I3c by parts and using (6.9) we obtain

|I3c| ≤ O(1)

∫ ∫
t≥0

|aε − a|
∣∣∣∣ ddx (g · U ε)δ

∣∣∣∣ dx dt ≤ O(1)
∆x

δ
.

(6.35)

Putting (6.31)–(6.35) into (6.30) yields (6.29) of Lemma 6.5.
We can now give the following proof.
Proof of Theorem 6.1. To establish (6.6) for R∆x(a∆x, u∆x, ϕ) ≡ Rφ, we show

that

lim∆x→0

∫
Θ

R2
φ dθ = 0.(6.36)

To this end, using (6.28) we can write∫
Θ

R2
φ dθ ≤ 2

∫
Θ

(
Rε

φ

)2
dθ + 2

∫
Θ

∣∣Rε
φ −Rφ

∣∣2 dθ

≤ O(1)
{
ε̂ +

[
K̂(ε̂)∆x

]
1

+
[
ε(ε̂ + K̂(ε̂)

]
2

}
(6.37)

+O(1)

{[
ε +

∫ ∫
E

|(g · U ε)δ − g(U ε)| dx dt

+

∫ ∫
E

|(g · U ε)δ − g(U)| dx dt
]
3

+

[
o(∆x)K(ε) +

∆x

δ

]
4

}2

,
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where we have applied (6.13) and (6.29). Now let τ be any small positive number.
Then, to make

∫
Θ
R2

φ dθ < τ, choose ε̂, ε, δ and ∆x � 1 in order as follows (the
brackets and O(1) refer to quantities defined in (6.37)). First choose ε̂ � 1 so that

O(1)ε̂ <
τ

4
;(6.38)

choose ε < ε0 � 1 so that

O(1) [·]2 <
τ

4
;(6.39)

choose ε � ε0 and δ � 1 so that

[·]3 <
1

2

√{
τ/4

O(1)

}
;(6.40)

finally, choose ∆x � 1 so that

[·]1 <
τ

4
and [·]4 <

1

2

√{
τ/4

O(1)

}
.(6.41)

Putting (6.38)–(6.41) into (6.37), we obtain∫
Θ

R2
φ dθ <

τ

4
+

τ

4
+

τ

4
+

1

2

(τ
4

+
τ

4

)
< τ.(6.42)

From (6.42) we conclude (6.36), from which we conclude that Rφ → 0 off a set of
measure zero in Θ. Theorem 6.1 now follows by taking a countable dense set of test
functions, extracting a set of measure for each one, and taking θ ∈ Θ/N , where N is
the union of the measure zero sets for each of the countable list of test functions; cf.
[4]. This completes the proof of Theorem 6.1.

7. Appendix. In this appendix, we verify Propositions 4.3 and 5.2.
Proof of Proposition 4.3. Let γ̄1γ̄0γ̄2 be any connected sequence of incoming

waves that take UL → UR, and let [UL, UR] = γ1γ0γ2. To verify the proposition, we
can list the sixteen possibilities for γ̄1γ̄0γ̄2 according to whether γi are shock waves
or rarefaction waves (i = 1, 2, four cases), whether γ0 lies to the left or right of T ,
and whether a increases or decreases across γ0. (Since the issue involves only the
location of the standing wave curves, it is not important whether gu > 0 or gu < 0.)
In each case it is easy to verify that the rarefaction waves in the solution of the
Riemann problem lie within the standing wave curves that bound the rarefaction
waves among the incoming waves γ̄1γ̄0γ̄2. It follows that Traj(γL

r ) ⊆ Traj(γ̄L
r ) and

Traj(γR
r ) ⊆ Traj(γ̄R

r ) in each case. The details are omitted.
Proof of Proposition 5.2. We show that F (γ1γ0γ2) ≤ F (γ̄1γ̄0γ̄2) for any connected

sequence of incoming waves γ̄1γ̄0γ̄2 that take UL to UR, where the outgoing waves
γ1γ0γ2 = [UL, UR]P . (Recall that [UL, UR]P is obtained from [UL, UR] by replacing
every triple composite wave by its projection. Note that no wave can precede or
follow, a triple composite wave in [UL, UR] when gu < 0 or gu > 0, respectively, so that
[UL, UR]P always consists of three waves γ1γ0γ2.) We verify F (γ1γ0γ2) ≤ F (γ̄1γ̄0γ̄2) in
four salient cases diagrammed in Figure 31. All other cases follow by a concatenation
of these cases.
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Fig. 31.

Cases (a) and (b) of Figure 31 deal with regular interactions in which the standing
waves lie on the same side of T before and after interaction (the case γ0, γ̄0 < T is
considered). The point here is that when γ̄0 interacts with a shock wave (Case (a))
F decreases because L∗

w decreases on standing wave–shock wave interactions, and
this decrease dominates the change in the corrective terms δ(γ̄0) and δ(γ0) which
were added to make Lw continuous. Cases (c) and (d) deal with the case when the
standing waves γ̄0 and γ0 lie on opposite sides of the transition curve, and the crossing
occurs by rarefaction wave and shock wave, respectively. We now discuss the cases
(a)–(d) of Figure 31 in detail.

Case (a). In this case, F ([UL, UR]P )−F (γ̄1γ̄0γ̄2) = Lw(UL → A → C)−Lw(UL →
B → C). When gu < 0, δ(γ̄0) = 0 = δ(γ0) because these correction terms are added
to standing waves on the right of T in this case. So when gu < 0, Lw(UL → A →
C) − Lw(UL → B → C) = L∗

w(UL → A → C) − L∗
w(UL → B → C) < 0 by Lemma

2.7. On the other hand, when gu > 0, we have Lw(UL → A → C) − Lw(UL →
B → C) = L∗

w(UL → A → C) − L∗
w(UL → B → C) + δ(γ0) − δ(γ̄0) − δ < 0, because

δ+δ(γ0)−δ(γ̄0) < 0 by Lemma 2.7. (That is, the decrease −δ in L∗
w due to interaction

with the shock wave A → C dominates the change δ(γ0) − δ(γ̄0).)
Case (b). In this case, F ([UL, UR]P ) − F (γ̄1γ̄0γ̄2) = Lw(UL → C) − Lw(UL →

A → B → C). (Here, dr(γ̄0, γ̄2) = 0 because the waves γ̄0 and γ̄2 do not approach.)
Now if gu < 0, then δ(γ0) = 0 = δ(γ̄0) (because these correction terms are added to
the waves on the right of T when gu < 0), so we have Lw(UL → C)−Lw(UL → A →
B → C) = L∗

w(UL → C) − L∗
w(UL → A → B → C) ≤ 0 by Lemma 2.7. On the other

hand, when gu > 0 we have Lw(UL → C) = L∗
w(UL → C)+ δ(γ0) and Lw(UL → A →

B → C) = L∗
w(UL → A → B → C) + δ(γ̄0). But L∗

w(γ0) + L∗
w(C → B) − L∗

w(UL →
A → B) = −δ < 0, and so L∗

w(γ0) − L∗
w(UL → A → B → C) ≤ −δ − L∗

w(C → B).
Thus, Lw(UL → C)−Lw(UL → A → B → C) = −δ−L∗

w(C → B)+δ(γ0)−δ(γ̄0) ≤ 0
as claimed.

Case (c). In this case, F ([UL, UR]P )− F (γ̄1γ̄0γ̄2) = Lw(A → C)−Lw(A → B →
UR) ≤ L∗

w(A → B → C) − L∗
w(A → B → UR) = −L∗

w(C → UR) < 0 by Lemma 2.7.
(Here, dr(γ̄0, γ̄2) = 0 because B → C lies below the standing wave curve through γ̄0,
and C → UR does not approach γ̄0.)

Case (d). In this case, choose D between C and UR and B between A and E
such that A,C,B,D lie on the same standing wave curve and Lw(A → C → D) =
Lw(A → B → D). Then F ([UL, UR]P ) − F (γ̄1γ̄0γ̄2) = Lw(A → E → UR) − Lw(A →
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C → UR) = Lw(A → E → UR) − Lw(A → B → D → UR) = Lw(B → E →
UR) − Lw(B → D → UR) ≤ 0 by the analysis of Case (a) (that is, we reduced the
problem to the case of regular interaction on the right of T ).
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