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Abstract. We derive and analyze the equations that extend the results in [20,21] to
the case of non-critical expansion k # 0. By an asymptotic argument we show that the

equation of state p = %p plays the same distinguished role in the analysis when k # 0
as it does when k = 0: only for this equation of state does the shock emerge from the
Big Bang at a finite nonzero speed — the speed of light. We also obtain a simple closed
system that extends the case ¢ = g = const. considered in [20, 21} to the case of a

general positive, increasing, convex equation of state p = p{p).
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1. Introduction

We derive the equations that extend the work in [20,21] to the case of non-critical
expansion k # 0. In [20,21] we derived a system of equations that describe a shock
wave cosmology in which a wave at the leading edge of the expansion ot the galaxies
is modeled by a shock wave in a critically expanding Friedmann-Robertson-Walker
(FRW) universe. In the shock wave model, the Big Bang is a bounded explosion of
finite total mass that generates a shock wave, and for the case in [20,21], the shock
wave lies beyond one Hubble length from the FRW center. The main point is that
when the shock wave lies beyond one Hubble length, an arbitrarily large region of
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uniform expansion can be created behind the wave at the instant of the Big Bang,
but this also implies that the total mass inside the shock wave satisfies % > 1, and
in this sense the solution evolves inside a Black Hole. One of the real surprises in the
analysis was that the equation of state p = op, 0 = %, correct for the earliest stage
of Big Bang physics, plays a distinguished role in the analysis — only for o = 933
does the shock wave emerge from the Big Bang at a finite nonzero speed, and this
speed calculates out to be exactly the speed of light (the shock wave then decelerates
to subluminous speed for all times after the Big Bang). This naturally raises the
question as to whether this result is special to the case of critical expansion k£ = 0.
In this note we show that this is not the case. That is, we derive the corresponding
equations for the case k # 0, and by asymptotic analysis we show that again the
shock wave emerges at the Big Bang at finite nonzero speed only for the case o = 933,
and again this nonzero speed is the speed of light.

In either of the cases k = 0 or k # 0, there are two ODE’s that determine
the evolution of the FRW metric inside the shock wave, and three ODE’s that
determine the metric bevond the shock (which we called the TOV metric inside
the Black Hole); since one also needs an equation for the shock position, it might
appear at the start that in total six equations are necessary. We showed in [20,21]
that when k = 0, certain transformations of the variables uncouple the equations,
and thus reduce the six equations to the solution of a non-autonomous scalar equa-
tion which can be completely analyzed in the phase plane. However, when k # 0, the
corresponding changes of variables lead only to a reduction to a system of three cou-
pled, non-autonomous equations, and this is more complicated to analyze. For this
reason we content ourselves with an asymptotic analysis at the rest point that cor-
responds to the Big Bang. In [20,21] we only considered the case o = const., k =0,
but an unexpected corollary of the analysis here leads to the derivation of a sim-
plified set of equations for the general case when o is not constant, and the FRW
equation of state p = p(p) is any given function of the density p satisfying p’(p) > 0,
p"(p) > 0. Furthermore, when ¢ = const. but k¥ # 0, the transformation of
the variables leads to a reduction to a system of two coupled non-autonomous
equations.

In Sec. 2 we derive the shock equations for the case £ # 0, and in Sec. 3
we do the asymptotics that give the shock speed as a function of ¢ at the rest
point that corresponds to the Big Bang. In the final section we discuss the case
when o = g is not constant. For references to shock waves and general relativity
see [1,3,6,8,9,22,23] as well as the authors’ prior work in [9-21].

2. Derivation of the Equations

In [20,21] we derived a set of ODE’s that describe the matching of a k = 0, FRW
metric to what we termed the TOV metric inside the Black Hole, across a shock
wave interface. The initial conditions were then determined by an entropy condition
(the condition that the shock be compressive, cf. [4,7]) and this condition, which we
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showed held globally along the orbit, broke the time svmmetry of the solution and
picked the explosion over the implosion. In this section. we derive the corresponding
equations when k # 0.

To start. recall that the line element for the FRW metric in standard coordinates
takes the form

dr?
1 — kr?

ds® = —dt® + R(t)* ( + 72 d§22> , (2.1)

and the line element for the TOV metric inside the Black Hole takes the form
ds? = —Bdi® + A~V di? + 72 dQ°. (2.2)

with A = A(F) and B = B(7). Both metrics assume a stress tensor for a perfect
fluid co-moving with the metric g.

T9 = (pc* + pyw'w’ + pg". (2.3)

where p is the pressure, p is the density, w is the velocity vector, dO? = do® +
sin’0 d¢? denotes the line element on the unit 2-sphere, and we assume the speed
of light ¢ = 1 when convenient. For the TOV metric we assume

2M

A=1-

<0, (2.4)

which is equivalent to the condition > 1. This implies that ¢ is the spacelike
variable and 7 is the timelike variable in the TOV metric (2.2), and it is in this
sense that we say the solution lies inside the Black Hole.

In the case of the FRW metric. R(t) is the cosmological scale factor, sign(k)
determines the curvature of the 3-surfaces at constant t, and by rescaling the radial
coordinate r. we can assume k takes one of the values {—1,0,1}. The Einstein
equations G = kT for the FRW metric reduce to the two equations

2M
7

2

o _ (B _r
H" = (R) =3P~ Fo (2.5)
p— —3(p+ p)H. (2.6)

cf. [23]. Here H denotes the Hubble constant

H=H(t) = % (2.7)
and the variable 7.
7= R(t)r. (2.8)

measures arc length in the radial direction at each fixed time of an FRW spacetime.
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In the case of the TOV metric inside the Black Hole, the Einstein equations,
derived in [20,21], take the form®

L, _p+p N

_ 2.9
P=="~N-7m (2.9)
N/_—_ -—{—;_—ﬂ—liﬁf}, (2.10)
B 1 (N
B___ Lt N 2.11
B N-1{f+"p}’ 211)

where prime denotes ?141':’ and the equations only apply when N =1— A > 1.

To match the FRW to the TOV metric inside the Black Hole across a shock
interface, we transform the FRW metric over to standard Schwarzschild coor-
dinates where the line element takes the form (2.2) with A = Apgpw(7,?) and
B = Brrw (7, 1), and equate the corresponding A(7), B(F) of the TOV metric inside
the Black Hole. Formulas for Arprw(7,t) and Bprw(T,t), were derived in [20,21],
and are given by

Appw =1 — kr? — (FH)Q, (2.12)
1 1—kr?
Brrw = ) (1 v (FH)Z) . (2.13)

Thus, matching the di?, dt? and d2? components of the metric lead to the following
identities that hold at the shock surface:

N=1-A=kr?+7FH? (2.14)
1—kr?

AB = Aprw Brrw = w;,r , (2.15)

7 = R(t)r. (2.16)

Here, we let A, B unsubscripted denote the TOV metric components that depend
only on 7, and ¥ is an integrating factor that arises from the transformation of the
FRW metric over to standard Schwarzschild coordinates, cf. [20,21). Putting (2.5)
into (2.14) gives the condition which holds at the shock surface,

M= gpf‘?’ & N = g—pFQ, (2.17)
where M = M (7) comes from the TOV side of the shock and p = p(t) comes from
the FRW side. Equation (2.17) implicitly determines the shock surface 7 = 7(t).
Equations (2.12)—(2.17) determine a Lipschitz continuous matching of a general
FRW metric to a general TOV metric inside the Black Hole. It remains to derive
a conservation condition that rules out any delta function sources that can lie on

2Recall that the essential reason why the equations for the TOV metric inside the Black Hole take
a different form than the standard TOV equations “outside the Black Hole”, is that the assumption
that the fluid is co-moving with the metric puts the nonzero component of the velocity vector w
on the timelike coordinate 7 when A < 0, and on the timelike coordinate £ when A > 0, cf. {20,21].
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the shock surface due to the fact that the Einstein equations are second order in
the metric components. We showed in |20, 21] that. for this purpose, it suffices to
determine a condition that implies det|Thgpw — Thgy] = 0 in standard (barred)
Schwarzschild coordinates. on the shock surface. (Note that the necessity of this
condition follows from the Rankine-Hugoniot jump conditions because [T} - n =0
implies det[T"] = 0.) To obtain such a condition. a calculation gives that

Trov = —(p+ D) [0 0] + pA y? , (2.18)
0 ———
1 — kr?
252 - 1 0
pro 7~ YHT 9
Tyrw = (P + D) [wm 2 ] + pA 0 W . (2.19)

1 — kr2
The latter is obtained by mapping the components of the FRW stress tensor over
from unbarrred to barred coordinates using the Jacobian

aj_p 4 1-— ICTQ — A wR R

. - p , 2

o YR g

¢ 1 — kr? ( " )

where 2% = (¢,7), a = (0,1), but # = (r,t), u = (0,1) because A < 0 implies that
7 is timelike inside the Black Hole. Subtracting TG, from the second matrix in
(2.19) gives

p+p 0
A p—p . (2.20)
0 Y/ N
iy

Using this gives that TE%., — THZ,, is equal to
g g FRW TOV q

(1—kr2)— 2" P4 oIkl A
p+p
(p+p) 2 b . (2.21)
WI—EZ—A — |1~ k) PP
1 r l—er( kr<) p+pA

A calculation using (2.21) shows that

5

5+ (PP DA,

1—

1 , )
@det{ll =(p—p)p—p)

so det{T] = 0 holds if and only if
0= plp— 14 222
—pl(p —P)A = Blp +p)(1 — kr®) + p(p + p)(1 — kr?)].
Solving (2.22) for p gives

p+p 1—kr®
P+ o=pg—a P

1 — p+p 1—~kr? °
p—p A

p=
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which, using the identities N = 1 — A o= f;, u= g, and v = g, is equivalent to

1+g 1—kr?
_ 1+ a—z 1—]:7 u (2 23)
v= 1 — 1te 1—kr2 - :
o—u 1-N

We call condition (2.23) the conservation constraint because it is equivalent to
det[T] = 0, and so (2.23) implies that there are no delta functions sources at the
shock, cf. [20,21]. We can now derive the equations that give the simultaneous
evolution of the TOV metric inside the Black Hole, together with the shock position.

Using the shock identity N = £pF? equivalent to (2.17), Eq. (2.10) is

equivalent to
dar 2 1
—_—= [ -], 2.24
dN N (1 + 3u> (2.24)
Using this, we obtain that (2.9) is equivalent to

—_— [ ——

dp ¢ _p+p 1
dN ~ N’ 2 N_-1° (2.25)

This leads to

d(2 7]
du _4G) _1[dp_ dp] (2.26)
dN aN p |dN anN

But using N = £57? again we get

ldp 3 d (N 3 14w (2.27)

pdN  kpdN\72)  NI+3u '
where we have used (2.24). Therefore, (2.26) can be written in the form

du u+4ov 1 1+u 1

N~ T2 No1 T m N (2.28)

To obtain our final form for Eq. (2.28), we eliminate v by means of the conservation
constraint (2.23). A calculation shows that

_ 14w
u+v= -—-——-1_ pETyEy——
o—u 1-N
and thus
du 1 (1+u)(o—u) 3u(l+u) 1

dN ~ 5[(N—1)(o—u)+(l+a)(1 —kr2)]  1+3u N’
which simplifies to the final form
du —(1+u) (0 —w)Bu—1)N +6u(u+1— (1 +0)kr?)
dN = 21130N { (0 —0)(N-1) 1 (1 —F?)(1+0) } -+ (2.29)
We conclude that the Eq. (2.29) together with (2.24) gives the equations that

describe the evolution of the shock position 7 and the TOV density u when N
Is taken as the independent variable. The difference between the case k = 0 and
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k # 0 is that Eq. (2.29) contains the variable r which represents the shock position
in FRW variables, and this couples the equations to the FRW metric when &k # 0,
even when ¢ is constant. Thus, to close the system, we need an additional equation
for ;—;,, or some equivalent FRW variable. We state the result in the following
theorem:

Theorem 2.1. Assume that a given FRW metric is fized, and let z = In(r?). Then

the system of equations

du _ —(1+w) .{(o~u)(3u—1)N+6u(1+u—(1+a)kez)} (2.30)
AN 214 30N 0 -w)(N-—D+ 1 =ke*)(1+0) ) &
dz 2 (u—o) (2.31)

dN ~ N(QQ+3u(l+o0)
df:ui( ! > (2.32)

dN N \1+3u

determines the pressure u = % together with the shock positions ¥ and v = ve* as
a function of the variable N > 1. In particular, the system closes when the FRW
equation of state satisfies o = % = const.

Note that the first two equations alone close when ¢ = const. Note also that by
(2.14), the variable vV N — kr? is exactly equal to the number of Hubble lengths
from the shock wave to the FRW center at fixed FRW time, reducing to exactly
VN when k = 0, cf. [20.21]. Of course, Eqgs. (2.30)-(2.32) only apply for N > 1,
that is, they apply inside the Black Hole. because the TOV system (2.9)-(2.11) is
only valid for N > 1.

Proof. The Egs. (2.30) and (2.32) follow directly from (2.29) and (2.24) upon elim-
inating r in favor of z. Thus it remains only to derive (2.31). For this, a calculation
starting from (2.17) gives

. . 5 . ) 2r
N =N = g[pf~ + 207 = N [3 + 4 , (2.33)
0
so that.
N 5 _F
—_ =+ 2-. 2.34
N * P ( )
On the other hand, by (2.32),
N, 143u.
~NrE T (2.35)
so using this in (2.33) leads to
r 1 p
=T 2.
T 3(1+u)p (2.36)
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Using (2.36) to eliminate ; from (2.35), we obtain
N _ 1+3up
N  3(1+u)p’

and using (2.6) to eliminate g from this last equation gives

N_ (14 3u)(1+0)
N H (2.37)

We use (2.37) to obtain an expression for g—ﬁ as follows:

dN RdN . lN___(1+3u)(1+a)

dR  RdR' T H 1+u ’
so that
dR l14+u R
—_— —_ 2.38
d (14+3u)1+0)N (2.38)

Note that at this stage, Eq. (2.38) closes the system (2.30), (2.32) by means of the
identity z = In(r2) = 2In (%) -
Finally, to obtain the Eq. (2.31) for z directly, write

S-SSG-2GE 58w
which, upon using (2.32) and (2.38), gives
&2 (u-o)
dN N (1+3u)(1+0)’
as desired. o

3. The Shock Speed at the Big Bang

In this section we assume o = g =const., 0 < 0 < ¢? =1, and study solutions

of system (2.30)-(2.32) asymptotically in the limit of the Big Bang® N — oc. Our
goal here is to show that the shock emerges at the instant of the Big Bang at finite
nonzero speed only at the value of ¢ = 03—2, (correct for the earliest stage of Big Bang
physics [23]), in which case the shock emerges at the speed of light. This extends
the corresponding result in [20,21] to the case k # 0.

Following the lead in |20, 21}, we first transform system (2.30)-(2.32) over to
the independent variable § = %, (so that the domain co > N > 1 goes over to

0<S<1,and § — 0 corresponds to the Big Bang) and then we study the rest

bBy (2.32) the limit N — oo is the limit 7 — 0, (assuming u tends to a finite positive value). By
(2.17), this is the limit p — oo, which is the limit of the Big Bang on the FRW side of the shock.
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points of the resulting system on S = 0. Making the substitution S = 1/N, system
(2.30)—(2.32) is equivalent to the following system which we now study:

du 1 (1+u) .{(0—u)(3u—1)+6u[1+u—(1+0)kez]5} (3.1)
dS S 2(1+ 3u) (0 —u)+ [1+u~(1+0)ke*]|S ’ '
dF 7 1

S~ S 1+3u>’ (3.2)

dz 2 (u— o)
dS ~  S(Q+3uw1+o0) (3:3)

Following the analysis in [20,21] for the case k = 0, we write Eq. (3.1) as a first-order
autonomous system

u' = (1+u){(c —u)(Bu—1)+6ull +u— (14 0)ke?|S}, (3.4)
S =25(1+4+3u){(c —u)+[1+u—(1+0)ke*]S}. (3.5)

Note that when k& = 0, these equations decouple from the 2z equation, and there
are two rest points on S = 0, namely, P, = (0,0) and P, = (0,1/3). In {20, 21],
we proved that there is a unique solution u,(S) of (3.4)-(3.5) satisfying the correct
entropy condition, and u,(S) increases in backwards “time” S — 0 into the rest
point P; when 0 < ¢ < 1/3, and into the rest point P» when 1/3 < ¢ < 1 (that is,
the orbit tends to the minimum of {¢,1/3} as S — 0). Moreover, u,(S) < o for all
S > 0 when k = 0, and thus by Eq. (3.3), z = In(r?) decreases to its minimum value
2. = In(r?) in backwards time as S — 0. In the case k # 0, the system (3.4)—(3.5)
has the same two rest points P; and P> at S = 0. We now show asymptotically that
near S = 0 there are solutions in the cases & # 0 that are qualitatively the same as
the u,(S) of the case k = 0. That is, we assume the existence of solutions that tend
to the same rest points, and are qualitatively the same as u,(S) asymptotically
near S = 0, and then we verify that the asymptotics area consistent.

Thus, in the case ¢ < 1/3. we assume a solution of (3.1)-(3.3) that tends to rest
point P; with asymptotic form

uo(S) =0 —m,S —n.5%+hot., asS—0. (3.6)

In the case 0 = 1/3, we assume a solution of (3.1)—(3.3) that tends to rest point
Py = P, with asymptotic form

Uy (S) = 0 —m.VS+hot., asS—0. (3.7
In the case o > 1/3 we assume only that the orbit asymptotically satisfies
1
Uy (S) — 3 88 S — 0. (3.8)

Note that in all three cases, u < ¢ near S = 0, and therefore (3.3) implies that z is
monotone decreasing in backwards time, so that z decreases to its minimum value
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2« > 0 as S — 0. Thus we can assume
ke* — kr: as S — 0. (3.9)

From this we can conclude that u,(S) asymptotically satisfies the single equation
obtained from (3.1) by replacing e* with the constant value r2 >0, namely,
du 1 (1+w) {(0——u)(3u— 1)+6u[1+u—(1+a)krf]5’} (3.10)
dS  S2(1+3u) (6 —u)+[1+u—(1+0)kr2|S B
It remains then to determine the values of m, and n. such that us(S) satisfies
(3.10) asymptotically as S — 0. The value of m, determines the shock speed at the
Big Bang S = 0.
Consider first the case 0 < o < 1/3. Substituting (3.6) into (3.10) and retaining
terms to order S we obtain

du 140 A
— T — —_— . 1
SdS 2(1+30){B}’ (3.11)

where
A={-(1-30)m,+60(1+0)(1— kr?)}
+{—(1 = 30)n. + 3mu(—m. — 20 — 2(1 + o)(1 — kr2))}S,  (3.12)
B =m, + (1+0)(1—kr2)+0(S). (3.13)

Now noticing that the LHS of (3.11) is O(S) as S — 0, it follows that, for the
ansatz (3.6) to be consistent, we must choose m, so that the leading order term in
A vanishes. This gives
. = 60(1+0)(1 — krf).
1-30

(In particular, this tells us that, as in the case k = 0, the solution orbit comes
into the rest point P; tangent to the u-isocline when o < 1/3, [20,21].) Assuming
this value of m., the consistency of the ansatz (3.6) when ¢ < 1/3 follows from
the fact that for this choice, both sides of (3.11) are O(S), and since the coefficient
of n. in (3.13) is equal to (30 — 1) # 0, we can solve for a unique value of nx to
satisfy Sg—g = —m,S to leading order in (3.11). Note that 1 — kr2 > 0 in an FRW
metric even when k > 0. We conclude from (3.14) that m, > 0 as required by the
assumption u < o in (3.3). This verifies the asymptotics of u,(S) when k # 0 and
0<o<1/3.

Next we consider the case ¢ = 1 /3, the case when P, = P, is a non-regular
singular point. Putting the ansatz (3.7) into (3.11) and keeping only the leading
O(V/S) terms gives

(3.14)

du 1-3m2+§(1—kr2) /5.

Using the fact that the ansatz (3.7) implies that
du m,

B~ o
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we can set the RHS of (3.15) equal to — %5 V'S and solve for m, to obtain

4
m. = =y/1 —kr2 > 0. (3.16)

3

We can now prove the following theorem for the case k # 0.

Theorem 3.1. The solution trajectories u,(S) given asymptotically by (3.6)—(3.8)
determine the shock speed s,(S) at the limit of the Big Bang S — 0 as follows:

Ifo <1/3,

élir%] 54(5) =0, (3.17)
if o =1/3,

éLmO 55(85) =1, (3.18)
and if o > 1/3,

éi_% 54(S) = oc. (3.19)

For the proof we need the following lemma:

Lemma 3.2. The speed of the shock wave relative to an observer fized with the
fluid co-moving with the FRW metric, as determined by (3.1)—(3.3), is given by

59(8) = 1/ 11__’“]::25 (?;Z) % (3.20)

Assuming the lemma we can give the following proof:

Proof of Theorem 3.1. Substituting the ansatz (3.6), (3.8) into (3.20) and taking
the limit S — 0 immediately gives (3.17), (3.19) respectively.

Consider now the most interesting case 0 = 1/3. In this case, substituting (3.7)
into (3.20) vields an expression that is O(1) as S — 0 because, special to the case
0 =1/3,0 —uis O(vS) as § — 0, and this cancels the O(ﬁ) in (3.20). Thus,
when ¢ = 1/3, the value of s,(S) in the limit S — 0 is determined by the value of
m. in (3.16). Putting (3.7) and (3.16) into (3.20) and taking the limit S — 0 gives

— k2 3. /1 — kr2
limsl(S):lim\/1 krS (3 %)
§—0 3 s—0V 1—kr? 1+u
/1 —kr?
- 1 (3 LI (3.21)
1— kr2 1+1/3

This completes the proof of Theorem 3.1. ]
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Proof of Lemma 3.2. We first show that the speed of the shock wave relative to a
locally inertial coordinate frame co-moving with the FRW fluid at any given point
in a solution of system (3.1)—(3.3), is given by

R
V1—kr?
To see this, recall that the (¢, 7)-portion of the FRW line element is given by
dr?
1—kr?
Since the FRW fluid is fixed with respect to coordinate r, to obtain the invariant
speed of a shock with coordinate speed 7 relative to the FRW fluid at a given point,

we need only transform the r coordinate over to r = ¢(7) so that the FRW line
element in (¢, 7)-coordinates is Minkowskian at the point, and then

_ar
T odt’

Changing (3.23) over to (t,7) coordinates gives

Sg =T (3.22)

ds® = —dt? + R? (3.23)

(3.24)

So

2_ 2, p2d(F)di?
ds® = —dt +R_—_—1—kr2 ,

and thus the resulting metric is Minkowskian at a point where

¢'(7) = 1—;2]&2- (3.25)

We conclude from (3.24) that the shock speed at a given point in a solution of
system (3.1)—(3.3) is given by

dr T . R

@ gF ik
as claimed in (3.22). Thus the proof of Lemma 3.2 and the verification of (3.20) is

complete once we show that the shock speed 7 at a point in a solution of (3.1)-(3.3)
satisfies

(3.26)

Sg =

VN —kr?2 (o0—u (3.27)
- R 1 +u . L
That is, (3.20) follows from (3.26) upon making the substitution (3.27), and recalling
that N =1/8.
To finish, we now verify (3.27). Differentiating (2.17) with respect to ¢ we obtain
N = g,bf2 + %’fpf?
_ B ALl
= 5o (=3(1+0)H) + 3T =
N'_

= 3N(1+o)H + 22T (3.28)

F b
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where we have used (2.6). On the other hand, using (2.10), we can write

N =N'r= —% {N + kpr?u} 7

= g(l + 3u)r, (3.29)
where we have used (2.17). Equating (3.28) and (3.29) and solving for ¥ we obtain
1+ oy

r o= .3
r o (3.30)
But,
d /7 T,
F=— (1)Y= 1 (F_ HF
T @ <R) g~ H)
Hrio—u
= — , 3.31
R 1+u’ (3.31)

where we have used (3.30). Using Eq. (2.5) to eliminate p in the equation for N in
(2.17), we obtain

N = H?F + kr?,
which gives

H?*? = N — kr®. (3.32)
Substituting (3.32) into (3.31) gives (3.27) as claimed. This completes the proof of

Lemma 3.2. O

4. Closing the Equations for General o = %

In this section we obtain an equation for dii]% that closes the system (2.30)-(2.31)
when o = % is not constant, and the FRW equation of state p = p(p) is given. To
this end, starting with (2.17), write

dp _ d (3N\ _3({1 Nadr (a1)

dN ~ dN \k#2) k|72 BdN/[’ '
and so using (2.32) we obtain the equation for Ed]% that closes system (2.30)-(2.31),
namely,

dp 3 (24 3u _ P (2+3u (4.2)

dN =~ k2 \143u) N\1+3u/’ ‘

As a corollary,.we prove the following theorem:

Theorem 4.1. Assume that the FRW eguation of state p = p(p) > 0 is given and
satisfies p'(p) > 0, p"(p) > 0. Then o is a non-decreasing function of N along
solutions of system (2.30)-(2.32), (4.2), so long as w > 0 and N > 1.
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Proof. Using o = ﬂpﬁl and (4.2), we can write

do _dodp _ (p,(p)_p(p)) 3 {2+3u}’

and so

dN ~ dpdN ~ p ) kp? |1+ 3u
do 1 (, p(P)\ [2+ 3u
dN_ N (p 0 == N\ TH3a) (4:3)

The result follows from (4.3) upon noting that

(p'(p) - ‘E-(pﬁ) >0,

because p is a positive, increasing, convex function of p- =i
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