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Abstract. We consider how the finite mass shock wave cosmology introduced by the authors in
[6] could connect up with Guth’s original theory of inflation.
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1. Introduction. In [Smoller-Temple, Shock wave cosmology inside a black hole,
Proc. Natl. Acad. Sci., September 2003] the authors constructed an exact shock
wave solution of the Einstein equations by matching a k = 0 Friedmann-Robertson-
Walker (FRW) metric to what we termed a Tolman-Oppenheimer-Volkoff (TOV)
metric inside the black hole across a subluminal, entropy-satisfying shock wave out
beyond one Hubble length in the FRW metric3. We needed 2M

r̄ > 1 in order for the
solution to contain a sufficiently large region of uniform expansion near the center of
the explosion consistent with observations of the expanding universe of galaxies. In
this construction we identifed the TOV metric inside the black hole as the simplest
matter-filled spacetime metric that can cut off the FRW mass at a finite value via
shock matching. The matching of these two metrics across a shock wave interface in
[6], resulted in a physically plausible scenario in which the Big Bang appears something
like a classical explosion of finite mass with a shock wave at the leading edge of the
FRW expansion.

However, although there is a shock wave and the total mass is finite, the solution
isn’t exactly like a classical explosion because the spacetime still begins with a “Big
Bang” spacetime singularity at t = 0. In our exact solution, the density and pressure
on both sides of the shock wave, (that separates the FRW from the TOV metrics), tend
to the same value, and both tend to the same (correct) equation of state, (p = c2/3 ρ),
in the limit t → 0. This suggests that our exact shock wave solution represents an
idealization of a finite mass, shock wave cosmology in which the Big Bang begins like
the standard Big Bang, (in the sense that immediately after the singularity, the density
and pressure are everywhere constant throughout a spacelike hypersurface at fixed
time), but the total mass is finite at each time. To be consistent with observations,
on the t = const. hypersurfaces, the spacetime should be FRW in a region near the
center, but would asymptote out to a TOV metric somewhere out beyond one Hubble
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3A TOV metric inside the black hole is a metric in standard Schwarzschild coordinates in which
the non-angular metric entries depend only on r̄, where r̄ = Rr measures arclength distance at each
fixed time on the FRW side of the shock wave, but is the timelike coordinate on the TOV side when
2M

r̄
> 1. Here R is the cosmolgical scale factor and r is the FRW radial coordinate, [6].
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length’s distance from the center, because the total mass is finite. As a consequence,
far out from center, the pressure and density would evolve differently from the pressure
and density in the FRW universe that surrounds the center. Our exact solution shows
that the pressure and density drop faster in the TOV part of the solution than in
the FRW part, and so, in such a finite mass cosmology, a gradient in the density and
pressure would develop as time evolves, eventually breaking into a strong outgoing
wave. We expect that the resulting spacetime would evolve qualitatively like the exact
solution constructed in [6], where the wave is modeled exactly by a pure shock wave.
Said differently, to get an exact solution that represents such a finite mass cosmology,
in [6] we take the finite mass cutoff of the FRW metric at each fixed time to be
exactly the constant mass TOV spacetime inside the black hole, and we determine the
pressure in the TOV solution exactly so that the wave is modeled by a single shock
wave interface between the two metrics. The shock wave must lie beyond one Hubble
length from the center of the FRW metric in order to make the radial coordinate
timelike, which is required for the total mass, (a function of the radial coordinate),
to provide a finite mass cutoff, constant at each fixed time. Since 2M/r > 1 beyond
one Hubble length in the standard model, it follows as a result that in a finite mass
shock wave cosmology, the Big Bang begins inside a time-reversed black hole.

In this paper we discuss how such a finite mass shock wave cosmology might
connect up with inflation. Our main conclusion is that, due to the high degree of
symmetry of the inflationary spacetime, the spacelike slice at fixed time in the uni-
verse at the end of inflation could just as well be a spacelike slice of finite total mass.
In this case, the spacetime thereafter evolves into a finite mass cosmological model
as described above, because the constant density and pressure at the end of infla-
tion would then develop a gradient which would develop into a wave by the same
mechanism as in the above scenario without inflation.

In our original exact shock wave solution [6], the solution decays time asymptoti-
cally to a classical k = 0 Oppenheimer-Snyder solution, a finite ball of mass expanding
into empty space outside the black hole, something like a gigantic supernova. That is,
as a consequence of the entropy condition, the TOV spacetime decays to the empty
space Schwarzschild spacetime at the event horizon of the black hole, while the FRW
spacetime continues as an expanding matter-filled universe outside the black hole4.
Here we consider how the finite mass shock wave solution contructed in [6] connects
up with the theory of inflation; that is, we consider how a finite mass shock wave
cosmology might arise from an inflationary spacetime. We restrict attention to the
original inflationary model of Guth, [1]. Although there is a large literature on infla-
tion, Guth’s original inflationary model is the simplest, and is the point of departure
for later developments.

Inflation is an epoch of explosive increase in scale incorporated into the stan-
dard model of cosmology. The interest in inflation rests on the fact that an explosive
increase in the scale factor R(t) of the standard FRW metric at a very early time
resolves several problems with the standard model of cosmology, the foremost being
the flatness problem, the problem of why the universe is so close to flat, [1, 7]. In
Guth’s original model of inflation, the universe is modeled by an FRW metric before,
during and after the inflationary epoch which occurs between time 10−35 to 10−30 sec-
onds after the Big Bang. During the inflationary epoch the spacetime evolves as an

4Actually, the entropy condition selects the white hole explosion over its time reversal, the black
hole collapse, but in this paper we loosely use the term black hole to refer to the region where
2M/r̄ > 1.
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FRW metric with inflationary source term taking the form of a cosmological constant
Tij = λgij , where the energy density ρ∗ = −λ > 0, [7]. A mathematically rigorous
discussion of how inflation resolves the flatness problem is given in [7], and exact
fomulas for inflationary FRW metrics are derived. The fact that there was a period
of rapid expansion early on in the universe is compelling in light of the fact that the
microwave background radiation coming from different directions is at the same tem-
perature even though, in the standard model, radiation from opposite directions was
some seventy or more horizon distances apart at the time the radiation was emitted,
[1]. Indeed, the idea that there was a period of rapid expansion early on might be
more compelling than any of the theories for the mechanisms that might have caused
this expansion. In this paper we do not discuss any of these mechanisms, but con-
sider the more modest problem of how our shock wave solutions in [6] might naturally
emerge from the simplest inflationary FRW spacetime—the inflationary spacetime in
Guth’s original model. In particular, we assume only that the universe emerged from
an inflationary epoch, making no assumption about the spacetime before inflation.

To connect the shock wave solution in [6] with Guth’s inflationary spacetime,
it is natural to first construct the inflationary FRW and TOV metrics, match them
across a radial interface, and then ask how this matched solution might evolve to the
correspondingly matched perfect fluid FRW-TOV shock wave solution in [6], at the
end of inflation. To understand this, note that the difference between the inflationary
regime and the post inflationary regime is that the stress tensor changes from the
inflationary form Tij = −ρ∗gij to that of a perfect fluid Tij = (ρ + p)uiuj + pgij .
The main difference between these two source terms is that the perfect fluid defines
a special coordinate frame, the frame co-moving with the fluid velocity u; but the
inflationary source term, being proportional to the metric tensor itself, has all of the
Lorentz invariance properties of the vacuum, and thus defines no preferred coordinate
frame. For example, in the standard model of cosmology after inflation, the FRW
coordinates are special because the perfect fluid is co-moving with respect to the FRW
time slices, and the flatness problem is to explain why these spacelike 3-surfaces turn
out to be flat–that is, why k ≈ 0. There are no such preferred frames in the inflationary
epoch. Thus, for a solution defined by the matching of an inflationary FRW metric
to an inflationary TOV metric to evolve into a corresponding shock wave solution of
this form at the end of inflation, the perfect fluid that evolves out of the inflationary
regime would have to become co-moving with respect to the spacelike slices of the
matched inflationary FRW–TOV metrics at the end of the inflationary epoch. Our
original plan was to construct the class of metrics consisting of an inflationary FRW
metric, (constructed in [7]), attached on the inside to an inflationary TOV metric,
(constructed in Section 2 below), such that there is a smooth matching at the interface,
and then to consider how it could be that the perfect fluid which emerges from inflation
might become co-moving with respect to the spacelike time slices of this FRW-TOV
inflationary spacetime. However, what we found was that the inflationary FRW and
TOV metrics can be matched smoothly across any surface. We then discovered that
this is because all the inflationary k-FRW metrics, as well as the inflationary TOV
metric, are equivalent to the same underlying metric, the Einstein-de Sitter metric,
represented in different coordinate systems. That is, all of these metrics represent
different time-slicings of the same underlying metric. Thus the matching of a k-
inflationary metric to an inflationary TOV metric can be achieved across any interface.
Assuming the interface is radial and satisfies 2M/r̄ > 1 as in [6], the matched metric
simply defines a different time slicing of the de Sitter spacetime; namely, the constant
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curvature surfaces of the k-FRW metric inside the interface, and the constant mass
surfaces of the TOV metric beyond the interface. This then leads to the question as
to what are the spacelike time slices that one would expect the perfect fluid to become
co-moving with respect to, at the end of inflation? In this paper our main objective
is to point out that there are many natural time slices of the standard inflationary
spacetime, and if the perfect fluid which emerges from the inflationary epoch is co-
moving with respect to the simplest time slices of finite total mass, (the time slices
of the matched inflationary FRW-TOV metrics), then the universe will evolve from
inflation as a finite mass explosion similar to the one constructed in [6].

We begin Section 2 by reviewing the exact formulas for the inflationary FRW
metrics—that is, metrics of FRW type, assuming an inflationary source term of the
form Tij = −ρ∗gij , where the energy density ρ∗ is constant. In Section 3 we derive
exact formulas for the inflationary TOV metrics. In Section 4 we show that all of
the inflationary FRW and TOV metrics are coordinate equivalent to the Einstein-de
Sitter metric. We do this by deriving the class of inflationary metrics in standard
Schwarzschild coordinates, which we show depend on only two parameters—λ and
M0, (c.f. [1, 4] and [8] page 116). In particular, the two parameter family of infla-
tionary spacetimes in standard Schwarzschild coordinates represents an interpolation
between the inflationary FRW metrics and the Schwarzschild metric. We then trans-
form to standard Schwarzschild coordinates to show that all the inflationary FRW
and TOV metrics5 are coordinate equivalent to the case M0 = 0. Then since all of
the inflationary FRW metrics represent different time slices of the same inflationary
spacetime, it follows that there are constant curvature, homogeneous, isotropic space-
like 3-surfaces of arbitrary curvature passing through every spacetime point of Guth’s
standard inflationary spacetime, (c.f. Corollary 1 of Theorem 6 below). We use these
results to make the point that a further argument is required to explain which of these
3-surfaces the perfect fluid becomes co-moving with respect to, when it emerges at
the end of inflation.

In the resolution of the flatness problem, (c.f. [7]), it is implicitly assumed that at
the end of inflation the perfect fluid becomes co-moving with respect to k = 0 FRW
time slices—in a sense, the argument replaces the assumption that k = 0 at present
time by the assumption that k = 0 at the end of inflation. If on the other hand, at the
end of inflation, the perfect fluid should become co-moving with respect to different
3-surfaces in different regions of spacetime, then waves would be generated at the
interfaces. Thus we argue that if the perfect fluid becomes co-moving with respect to
the k = 0 FRW spacelike time slices, (as in the standard inflationary scenario), inside
some radius r̄ < r̄0, but co-moving with respect to the constant time surfaces r̄ = r̄0
of the TOV coordinates beyond the FRW metric6, where r̄0 is large enough so that
2M/r̄0 > 1, then our shock wave solution in [6] would approximate the spacetime
that would emerge at the end of inflation. Since 2M/r̄ > 1 implies that r̄ is the
timelike coordinate in a TOV metric, and since the mass function M depends only
on r̄ in a TOV metric, it follows that the spacelike 3-surface r̄ = r̄0 in a TOV metric
is equivalent to the 3-surface M = M0 ≡ M(r̄0); that is, in TOV metric inside the
black hole, the 3-surface r̄ = r̄0 it is a spacelike 3-surface of constant mass. Such a
surface is close to isotropic when the radial variable r̄0 is sufficiently large. It follows

5Hawking and Gibbons [4] showed that the inflationary TOV metric has a Kruskal extension,
c.f. [2]

6Recall that r̄ is a spacelike coordinate measuring arclength distance at fixed time in the FRW
metric, but is the timelike coordinate of the TOV metric when 2M/r̄ > 1.



SHOCK WAVES AND INFLATION 455

that when 2M/r̄0 > 1, the time slices of the matched inflationary FRW-TOV metrics
can be viewed as the simplest time slices of the de Sitter spacetime on which the mass
function M is bounded. This shows that there are natural finite mass time slices of
the inflationary de Sitter spacetime, and if the perfect fluid at the end of inflation
should become co-moving with respect to these, then a finite mass cosmology similar
to the shock wave cosmology given in [6] would emerge from the inflationary epoch.
In this sense our shock wave model represents a simple finite mass cosmology which
could emerge from an inflationary spacetime, and demonstrates the consistency of the
constraint of finite total mass in cosmology by the introduction of a wave.

2. The Inflationary FRW Metric. In this section we summarize the results
in [7] regarding the metrics of FRW type that solve the Einstein equations when the
stress tensor is the inflationary source term

Tij = −ρ∗gij . (2.1)

The stress tensor for a perfect fluid is given by

Tij = (ρc2 + p)uiuj + pgij , (2.2)

so (2.1) is the special case of a perfect fluid when p = −ρ. (Note that Tij = −ρgij

implies that ρ = const. in light of divT = 0.) Here ρc2 is the energy density, p is the
pressure, ui is the i′th component of the 4-velocity of the fluid, gij is the gravitational
metric tensor, and we use the convention that we take the speed of light c = 1 and
Newton’s constant G=1 when convenient. Note that the main difference between the
inflationary source and the perfect fluid source is that the inflationary source has all
of the Lorentz invariance properties of the metric tensor, and so, like a true vacuum,
defines no preferred frame. But the perfect fluid defines the special frame co-moving
with the fluid; that is, the frame in which u = ∂

∂t .
The standard FRW metric of cosmology takes the form, [9],

ds2 = −dt2 +R(t)2
{

dr2

1 − kr2
+ r2dΩ2

}

, (2.3)

where R(t) is the cosmological scale factor, k is the curvature parameter, k
R2 is the

spatial curvature at each fixed time t, and dΩ2 is the standard metric on the unit
2-sphere. The FRW metric is invariant under the scaling

R → ωR,

r → ω−1r (2.4)

k → ω2k,

for any positive constant ω. Under this scaling both r̄ = rR and the scalar curvature

K = k/R2, (2.5)

of a 3-surface t = const, are invariant, and we can rescale k to one of the values
{−1, 0, 1} , or we can set R(t0) = 1 at any given time t0, (but not both unless k = 0).
Putting (2.3) and (2.2) into the Einstein equations

G = κT, κ =
8πG
c4

, (2.6)
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and assuming the fluid is co-moving with the FRW metric, we obtain the FRW equa-
tions for R and ρ :

H2 =
κ

3
ρc2 − k

R2
, (2.7)

ρ̇ = −3(ρ+ p)H, (2.8)

where H ≡ H(t) denotes the Hubble constant,

H =
Ṙ

R
, (2.9)

and overdot denotes differentiation with respect to FRW time d/d(ct). Equations (2.7),
(2.8) close when an equation of state p = p(ρ) is specified. If p = p(ρ) is specified,
then a measurment of the density ρ(t0) and Hubble constant H(t0) at an initial time
t = t0, together with an arbitrary assignment of R(t0) = R0 determines k through
(2.7), and then system (2.7), (2.8) determines a unique evolution for t ≥ t0. Note that
the curvature k

R2(t0)
is determined by the density and Hubble constant through (2.7),

and these three quantities are invariant under the scaling (2.4)).
In [7] we derived the following exact solution of the FRW equations (2.7), (2.8)

for arbitrary values of the curvature parameter k ∈ R in the case of inflation, when
Tij = −ρ∗gij :

Theorem 1. The general solution of the FRW equations (2.7), (2.8) when Tij =
−ρgij , ρ∗ > 0, is given by,

ρ ≡ ρ∗ = const. > 0 (2.10)

R(t) =
k

4γ2C
e−γct + Ceγct, (2.11)

where

γ =

√

κρ∗c2

3
, (2.12)

and ρ∗ > 0 and C are constants of integration.

In the case k = 0, (2.11) agrees with the Einstein-de Sitter metric, and Theorem
1 shows that the spacelike slices of the inflationary k-FRW metrics given in (2.11) all
decay exponentially to the Einstein-di Sitter metric. A carefull analysis of this in the
context of the flatness problem was given in [7].

3. The Inflationary TOV Metric Inside the Black Hole. A TOV metric
is a metric of the form

ds2 = −B(r̄)dt̄2 +
1

A(r̄)
dr̄2 + r̄2dΩ2, (3.1)

where A = 1
1−2M/r̄ defines the mass function M ≡ M(r̄), c.f. [6]. If we assume that

the fluid is co-moving with respect to the metric, (that is, that the fluid is fixed relative
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to the spacelike coordinates), then the character of solutions of the Einstein equations
for (3.1) changes from static to dynamical as the sign of A changes from positive to
negative because the timelike vector changes from ∂/∂t to ∂/∂r̄, respectively, and
in this paper we are interested in the case A < 0, which is equivalent to 2M

r̄ > 1.
Assuming that the stress tensor takes the form (2.2) of a perfect fluid, the Einstein
equations for (3.1) in the case 2M

r̄ > 1 are given by,

p̄′ =
ρ̄+ p̄

2

N ′

N − 1
, (3.2)

(r̄N)′ = −κp̄r̄2, (3.3)

B′

B
= − 1

(N − 1)

{

N

r̄
− κρ̄r̄

}

. (3.4)

Here N = 2M
r̄ , and we use bar to indicate standard Schwarzschild coordinates for the

TOV metric, c.f., [6]. The equations close when an equation of state p̄ = p̄(ρ̄) is given,
and we recover the case of a cosmological constant Tij = −ρ∗gij by setting p̄ = −ρ̄,
in which case (3.2) implies that ρ̄ = ρ∗ = const. We will need the following theorem:

Theorem 2. Assume that the equation of state is given by p̄ = σ̄ρ̄ for some
constant σ̄ 6= 0. Then

p̄ = p̄0

(

N − 1

N0 − 1

)

1+σ̄
2σ̄

, (3.5)

where p̄0 and N0 are values taken at some reference value r̄0.

Proof. Set p = σρ and write (3.2) in the form

p̄′

p̄
=

1 + σ̄

2σ̄

(N − 1)′

N − 1
.

and integrate.

We consider now the TOV metrics of form (3.1) that solve the Einstein equations
when the equation of state is given by p̄ = −ρ̄. In this case, system (3.2)-(3.4) can be
solved exactly. We record the solution in the following theorem:

Theorem 3. Assume the conditions for inflation p̄ = −ρ̄, ρ̄ > 0, and assume
that A < 0, N > 1. Then the solution of the TOV equations (3.2), (3.3) and (3.4) is
given by,

p̄ = −ρ∗ = −ρ̄, (3.6)

N =
N0

r̄
+
κ

3
ρ∗r̄

2, (3.7)

B = B0

(

N − N0

r̄
− 1

) (

γr̄ + 1

γr̄ − 1

)

γN0
2

e
−N0

r̄ . (3.8)
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for some constants ρ∗ > 0, B0 > 0 and N0 ∈ R. In this case, the TOV metric solves
the Einstein equations in the regime N > 1. In particular, if N0 = 0 then (3.4) has
the solution B = A = N − 1, and the TOV metric (3.1) reduces to the simple form

ds2 = − 1

(N − 1)
dr̄2 + (N − 1)dt̄2 + r̄2dΩ2, (3.9)

where r̄ is the timelike coordinate because A < 0.

We refer to the metric (3.9) as the inflationary TOV metric.

Proof. Since p̄ = −ρ̄ is the case σ = −1 of Theorem 2 above, it follows from (3.5)
that p̄ = −ρ∗ = −ρ̄ is the solution of (3.2), and we restrict here to the case ρ∗ > 0,
the case of a positive energy density. Substituting ρ̄ = ρ∗ into (3.3) and integrating
then gives (3.7). Substituting (3.6) and (3.7) into (3.4) leads to

ln
B

B0
=

∫ r̄

r̄0

2κρ∗

3 ξ
κρ∗

3 ξ2 − 1
dξ −

∫ r̄

r̄0

−N0

ξ2(γξ − 1)(γξ + 1)
dξ. (3.10)

The first integral integrates by the substitution u = κρ∗

3 ξ2 − 1, and the second one
integrates by partial fractions to give the result (3.8). When N0 = 0, (3.8) reduces to
B = B0(N − 1) where B0 is the (positive) constant of integration. Finally, rescaling
the coordinate t̄ we can scale B0 to unity and obtain (3.9).

4. Inflationary Spherically Symmetric Spacetimes. To construct a solu-
tion analogous to the shock solution in [6] for the inflationary case Tij = −ρ∗gij , the
most straightforward construction would be to match the inflationary TOV metric
(3.9) to the inflationary FRW metrics (2.11). The next theorem shows that a smooth
matching of these metrics for any k can be achieved across any smooth surface because
the metrics are all coordinate equivalent to the same metric, the Einstein-de Sitter
metric. It follows that there are many inflationary metrics that correspond to our
finite mass shock wave solution, and we will discuss this further in the next section.
The fact that each inflationary k-FRW metric (2.11), as well as the inflationary TOV
metric (3.9), are all coordinate equivalent to the inflationary k = 0 Einstein-de Sitter
metric is a consequence of the following theorem which characterizes the spherically
symmetric inflationary spacetimes in standard Schwarzschild coordinates, (c.f. [8],
page 116 and [5]).

Theorem 4. Let g be a spherically symmetric metric in standard Schwarzschild
coordinates

ds2 = −A(t̄, r̄)dt̄2 +B(t̄, r̄)dr̄2 + r̄2dΩ2. (4.1)

Assume g solves the Einstein equations with inflationary source term

Tij = −ρ∗gij .

Then under a possible change of time coordinate t̄→ φ(t̄)
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A = −
(

1 − κ

3
ρ∗r̄

2 − 2M0

r̄

)

, (4.2)

B =

(

1 − κ

3
ρ∗r̄

2 − 2M0

r̄

)−1

, (4.3)

where M0 is an arbitrary constant.

As a corollary, we obtain the theorem stated in the introduction:

Theorem 5. Every inflationary k-FRW metric of the form

ds2 = −dt2 +R(t)2
{

dr2

1 − kr2
+ r2dΩ2

}

,

including the k = 0 de Sitter spacetime, is coordinate equivalent to the inflationary
TOV metric, that is, the metric (4.1), (4.2), (4.3) with M0 = 0.

Before giving the proof of Theorem 4, we first show that Theorem 5 is a consequence
of Theorem 4.

Proof of Theorem 5. Transforming the k-FRW metric over to standard Schwarz-
schild coordinates gives: (Set r̄ = Rr and use an integrating factor to eliminate the
mixed term; c.f. [6]),

ds2 = −
{

1 − kr2

1 − kr2 −H2r̄2

}

dt̄2

ψ2
+

dr̄2

1 − kr2 −H2r̄2
, (4.4)

where ψ solves the PDE

∂

∂r̄

{

ψ
1 − kr2 −H2r̄2

1 − kr2

}

− ∂

∂t̄

{

ψ
Hr̄

1 − kr2

}

= 0. (4.5)

In this case the coordinate t̄ in standard Schwarzschild coordinates is given by the
differential

dt̄ = ψ
1 − kr2 −H2r̄2

1 − kr2
dt− ψ

Hr̄

1 − kr2
dr̄, (4.6)

which is exact by (4.5). Using the FRW equation (2.7) leads to

ds2 = − 1

ψ2

{

1 − kr2

1 − κ
3 ρ∗r̄

2

}

dt̄2 +

{

1

1 − κ
3 ρ∗r̄

2

}

dr̄2. (4.7)

Observe now that the dr̄2 term is independent of k, and using Theorem 4 it must
agree with the dr̄2 term in (4.3). This implies that M0 = 0. It follows that the dt̄2

term must agree with the corresponding coefficient in (4.2) under some change of time
coordinate. Thus we conclude that all inflationary k-FRW metrics are equivalent to
inflationary TOV with M0 = 0, which is equivalent to the Einstein-de Sitter metric.
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Proof of Theorem 4. The Einstein equations for metrics in standard Schwarzschild
coordinates are given by, (c.f. [3]),

A

r2B

{

r
B′

B
+B − 1

}

= κA2T 00 (4.8)

−Bt

rB
= κABT 01 (4.9)

1

r2

{

r
A′

A
− (B − 1)

}

= κB2T 11 (4.10)

− 1

rAB2
{Btt −A′′ + Φ} =

2κr

B
T 22 (4.11)

where the quantity Φ in the last equation is given by,

Φ = −BAtBt

2AB
− B

2

(

Bt

B

)2

− A′

r
+
AB′

rB

+
A

2

(

A′

A

)2

+
A

2

A′

A

B′

B
,

and

T ij = −ρ∗gij .

(For notational convenience in the proof, we use unbarred coordinates (t, r) instead
of barred coordinates (t̄, r̄).) Then equation (4.9) gives

−Bt

rB
= κABT 01 = 0 ⇒ B ≡ B(r).

Equation (4.8) leads to

r
B′

B
= (3ar2 − 1)B + 1 (4.12)

where

a =
κρ∗
3
.

Now the substitution u = 1/B in (4.12) leads to the linear equation

−ru
′

u
= (3ar2 − 1)

1

u
+ 1,

or

−(ru′ + u) = (3ar2 − 1),

so
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−(ru)′ = 3ar2 − 1,

having the exact solution

B =
1

1 − ar2 − 2M0/r
. (4.13)

Equation (4.10) gives

1

r2

{

r
A′

A
− (B − 1)

}

= −3aB,

so that using (4.13) gives

r
A′

A
=

2ar2 − 2M0

r

(ar2 − 1) + 2M
r

.

Thus integrating gives

ln |A| =

∫

A′

A
=

∫

2ar − 2M0

r2

ar2 − 1 + − 2M0

r

=

∫

du

u
,

where

u = ar2 − 1 + −2M0

r
.

Thus

|A| = φ(t)2
∣

∣ar2 − 1 + 2M0/r
∣

∣ .

Since the sign of B is determined in equation (4.3), it follows that A must have the
opposite sign. Thus A takes the form (4.2).

Finally, to verify (4.11), note that

T 22 = −ρ∗
1

r2
=

−3a

κ

1

r2.
(4.14)

Since A and B depend only on r, we have At = 0 = Bt, and moreover, AB = 1. Thus
(4.11) reduces to

A′′

rAB2
− 1

rAB2
Φ =

2κr

B

(

−ρ∗
1

r2

)

= − 6a

Br
, (4.15)

so

A′′ = Φ − 6a.

Also
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Φ = −A
′

r
+
A2

r

(

−A′

A2

)

+
A

2

(

A′

A

)2

− A

2

(

A′

A

)2

.

= −2
A′

r
. (4.16)

Thus (4.15) reduces to

A′′ = −2A′

r
− 6a. (4.17)

Now using (4.2) we see that (4.17) holds. This completes the proof.

We use the final theorem, a consequence of Theorem 4, to show that there are
homogeneous isotropic 3-surfaces of arbitrary curvature passing through every point
of the Einstein-de Sitter spacetime.

Theorem 6. For each k and each point P of Einstein-de Sitter spacetime there
exists a coordinate system in which the metric takes the form of an inflationary k-FRW
metric, (2.3), (2.11), such that P is at the origin of the coordinates, corresponding to
r = 0, t = 0, and R(0) = 1.

Since a spacelike time slice t = t0 = const. of a k-FRW metric is a homogeneous
isotropic space of constant curvature k

R(t0)2 , (c.f. (2.5) and [9]), it follows that if P

is the origin of an k-FRW coordinate system with R(0) = 1, then the t = 0 spacelike
time slice passing through P has constant curvature k. In light of this, the following
Corollary is a immediate consequence of Theorem 6.

Corollary 1. For every real number k ∈ R, and every point P of an Einstein-de
Sitter spacetime, there exists homogeneous isotropic spacelike 3-surfaces of constant
curvature k passing through P.

Proof of Theorem (6). Consider first an inflationary k-FRW metric g of form (2.3),
(2.11). By Theorem (4) we know that there exists a coordinate transformation that
transforms g from k-FRW form (2.3) to the inflationary TOV form of the Einstein-de
Sitter spacetime. The following lemma gives precise formulas for this transformation:

Lemma 1. Let (t, r, φ, θ) be the coordinates of an inflationary k-FRW metric
(2.3), (2.11). Then the following coordinate transformation (t, r) → (t̄, r̄) maps the
k-FRW metric over to the inflationary TOV form, (4.1)-(4.3) with M0 = 0, of the
Einstein-de Sitter coordinates:

r̄ = Rr (4.18)

dt̄ =
dt√

1 − kr2
−

√

κ
3 ρ∗r̄

2 − kr2

1 − kr2
dr̄

1 − κ
3 ρ∗r̄

2
. (4.19)

In particular, the differential in (4.19) is exact, and therefore defines t̄ = t̄(t, r) to
within an additive constant.

To verify the lemma, first use (2.7) to show that

ψ =

√
1 − kr2

1 − kr2 −H2r̄2
=

√
1 − kr2

1 − κ
3 ρ∗r̄

2
, (4.20)
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then use r = r̄
R and a direct calculation to verify that (4.20) solves (4.5) for general

k. Using (4.20) in (4.6) gives (4.19). Note that in the case k = 0, (4.19) integrates to
give

t̄ = t− 1

2H
ln

∣

∣1 −H2r̄2
∣

∣ .

To prove Theorem 6, it follows from (4.18) and (4.19) that the mapping that
takes the inflationary k-FRW to the inflationary TOV form of the Einstein-de Sitter
spacetime, maps the center t = 0, r = 0 to the center t̄ = 0, r̄ = 0. Thus the inverse
mapping of the inflationary TOV form of the Einstein-de Sitter metric over to the
k = 0 FRW form also takes the center to the center. It follows that the composition
of these these two maps takes an inflationary k-FRW form of the Einstein-de Sitter
spacetime to the k = 0 form of this metric, and the transformation takes the center
t = 0, r = 0 in the k-FRW metric over to the center t = 0, r = 0 of the k = 0 form.
Since the center of the k = 0 FRW metric clearly can be taken to be any point P
of the Einstein-de Sitter spacetime, it follows that the mapping of this metric back
to the k-FRW form would also have P at the center. This completes the proof of
Theorem 6.

We see from Theorem 6 that at the end of inflation, there exist homogeneous
isotropic spacetimes of arbitrary curvature to which the perfect fluid formed from the
energy density ρ∗ might naturally become co-moving with respect to at the end of
inflation. Thus a further mechanism is required to explain why the perfect fluid would
choose a particular flat k = 0 time slice at the end of inflation.

5. Conclusion. The implicit assumption in the inflationary scenario is that the
inflationary universe eventually evolves into a spacetime modeled by an FRW metric
with perfect fluid sources and postive pressure and energy density. Thus at the end of
inflation, there must be some mechanism that determines the special coordinate frame
co-moving with the perfect fluid. That is, the co-moving frame of the perfect fluid
must somehow be determined during the transition from the inflationary epoch to the
perfect fluid regime. In the theory of inflation based on the Einstein-de Sitter metric, it
is presumed that the fluid after inflation becomes co-moving with respect to the critical
k = 0 FRW coordinates in order to resolve the flatness problem. But there is another
coordinate system of high symmetry available, the inflationary TOV coordinates. If
the perfect fluid became co-moving with respect to the TOV coordinates far out
where 2M/r̄ > 1, (recall here that r̄ measures radial arclength distance at each fixed
time in the FRW coordinates, but is the timelike coordinate in the TOV metric),
then after inflation the perfect fluid would evolve co-moving with respect to the TOV
coordinate system inside the black hole, a coordinate system in which the universe
has a constant density at each fixed time, as in the FRW coordinates, but in the
TOV coordinates, the mass function M is constant at each time r̄. Thus it is natural
to consider the case when the fluid at the end of inflation becomes co-moving with
respect to FRW coordinates inside a ball of radius r̄, but co-moving with respect to
the TOV coordinates beyond this radius, because this represents the simplest time-
slicing of the inflationary de Sitter spacetime for which the total mass in each time
slice is finite. We conclude that in this case, we would expect the spacetime after the
inflationary epoch, to evolve into a finite mass cosmology with a wave, similar to the
shock wave cosmological model we constructed in [6].
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