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1 Introduction

In the standard model of cosmology, the expanding universe of galaxies is described by a Friedmann-
Robertson-Walker (FRW) metric, which in spherical coordinates has a line element given by [2, 22],

ds2 = −dt2 + R2(t)
�

dr2

1− kr2
+ r2[dθ2 + sin2θ dφ2]

�
. (1)

In this model, which accounts for things on the largest length scale, the universe is approximated by a space
of uniform density and pressure at each fixed time, and the expansion rate is determined by the cosmological
scale factor R(t) that evolves according to the Einstein equations. Astronomical observations show that the
galaxies are uniform on a scale of about one billion lightyears, and the expansion is critical—that is, k = 0
in (1)—and so, according to (1), on the largest scale, the universe is infinite flat Euclidian space R3 at each
fixed time. Matching the Hubble constant to its observed values, and invoking the Einstein equations, the
FRW model implies that the entire infinite universe R3 emerged all at once from a singularity, (R=0), some
14 billion years ago, and this event is referred to as the Big Bang.

In this paper, which summarizes the work of the authors in [12, 19], we describe a two parameter family of
exact solutions of the Einstein equations that refine the FRW metric by a spherical shock wave cut-off. In
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these exact solutions the expanding FRW metric is reduced to a region of finite extent and finite total mass
at each fixed time, and this FRW region is bounded by an entropy satisfying shock wave that emerges from
the origin, (the center of the explosion), at the instant of the Big Bang t = 0. The shock wave, which marks
the leading edge of the FRW expansion, propagates outward into a larger ambient spacetime from time t = 0
onward. Thus, in this refinement of the FRW metric, the Big Bang that set the galaxies in motion is an
explosion of finite mass that looks more like a classical shock wave explosion than does the Big Bang of the
Standard Model3.

In order to construct a mathematically simple family of shock wave refinements of the FRW metric that
meet the Einstein equations exactly, we assume k = 0, (critical expansion), and we restrict to the case
that the sound speed in the fluid on the FRW side of the shock wave is constant. That is, we assume an
FRW equation of state p = σρ, where σ, the square of the sound speed

�
∂p

∂ρ
, is constant, 0 < σ ≤ c2. At

σ = c2/3, this catches the important equation of state p = c
2

3 ρ which is correct at the earliest stage of Big
Bang physics, [22]. Also, as σ ranges from 0 to c2, we obtain qualitatively correct approximations to general
equations of state. Taking c = 1, (we use the convention that c = 1, and Newton’s constant G = 1 when
convenient), the family of solutions is then determined by two parameters, 0 < σ ≤ 1 and r∗ ≥ 0. The second
parameter r∗ is the FRW radial coordinate r of the shock in the limit t → 0, the instant of the Big Bang4.
The FRW radial coordinate r is singular with respect to radial arclength r̄ = rR at the Big Bang R = 0,
so setting r∗ > 0 does not place the shock wave away from the origin at time t = 0. The distance from the
FRW center to the shock wave tends to zero in the limit t → 0 even when r∗ > 0. In the limit r∗ → ∞ we
recover from the family of solutions the usual (infinite) FRW metric with equation of state p = σρ. That is,
we recover the standard FRW metric in the limit that the shock wave is infinitely far out. In this sense our
family of exact solutions of the Einstein equations represents a two parameter refinement of the standard
Friedmann-Robertson-Walker metric.

The exact solutions for the case r∗ = 0 were first constructed in [12], (see also the notes [18]), and are
qualitatively different from the solutions when r∗ > 0, which were constructed later in [19]. The difference is
that when r∗ = 0, the shock wave lies closer than one Hubble length from the center of the FRW spacetime
throughout its motion, [17], but when r∗ > 0, the shock wave emerges at the Big Bang at a distance beyond
one Hubble length. (The Hubble length depends on time, and tends to zero as t → 0.) We show in [19] that
one Hubble length, equal to c

H
where H = Ṙ

R
, is a critical length scale in a k = 0 FRW metric because the

total mass inside one Hubble length has a Schwarzschild radius equal exactly to one Hubble length5. That
is, one Hubble length marks precisely the distance at which the Schwarzschild radius r̄s ≡ 2M of the mass
M inside a radial shock wave at distance r̄ from the FRW center, crosses from inside (r̄s < r̄) to outside
(r̄s > r̄) the shock wave. If the shock wave is at a distance closer than one Hubble length from the FRW
center, then 2M < r̄ and we say that the solution lies outside the Black Hole, but if the shock wave is at
a distance greater than one Hubble length, then 2M > r̄ at the shock, and we say the solution lies inside
the Black Hole. Since M increases like r̄3, it follows that 2M < r̄ for r̄ sufficiently small, and 2M > r̄ for
r̄ sufficiently large, so there must be a critical radius at which 2M = r̄, and in Section 2, (taken from [19]),
we show that when k = 0, this critical radius is exactly the Hubble length. When the parameter r∗ = 0,
the family of solutions for 0 < σ ≤ 1 starts at the Big Bang, and evolves thereafter outside the Black Hole,
satisfying 2M

r̄
< 1 everywhere from t = 0 onward. But when r∗ > 0, the shock wave is further out than

3The fact that the entire infinite space R
3 emerges at the instant of the Big Bang, is, loosely speaking, a consequence

of the Copernican Principle, the principle that the earth is not in a special place in the universe on the largest scale
of things. With a shock wave present, the Copernican Principle is violated in the sense that the earth then has a
special position relative to the shock wave. But of course, in these shock wave refinements of the FRW metric, there
is a spacetime on the other side of the shock wave, beyond the galaxies, and so the scale of uniformity of the FRW
metric, the scale on which the density of the galaxies is uniform, is no longer the largest length scale.

4Since when k = 0, the FRW metric is invariant under the rescaling r → αr and R → α
−1

R, we fix the radial
coordinate r by fixing the scale factor α with the condition that R(t0) = 1 for some time t0, say present time.

5Since c/H is a good estimate for the age of the universe, it follows that the Hubble length c/H is approximately
the distance of light travel starting at the Big Bang up until present time. In this sense, the Hubble length is a rough
estimate for the distance to the further most objects visible in the universe.
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one Hubble length at the instant of the Big Bang, and the solution begins with 2M

r̄
> 1 at the shock wave.

From this time onward, the spacetime expands until eventually the Hubble length catches up to the shock
wave at 2M

r̄
= 1, and then passes the shock wave, making 2M

r̄
< 1 thereafter. Thus when r∗ > 0, the whole

spacetime begins inside the Black Hole, (with 2M

r̄
> 1 for sufficiently large r̄), but eventually evolves to a

solution outside the Black Hole. The time when r̄ = 2M actually marks the event horizon of a White Hole,
(the time reversal of a Black Hole), in the ambient spacetime beyond the shock wave. We show that when
r∗ > 0, the time when the Hubble length catches up to the shock wave comes after the time when the shock
wave comes into view at the FRW center, and when 2M = r̄,

(assuming t is so large that we can neglect the pressure from this time onward), the whole solution emerges
from the White Hole as a finite ball of mass expanding into empty space, satisfying 2M

r̄
< 1 everywhere

thereafter. In fact, when r∗ > 0, the zero pressure Oppenheimer-Snyder solution outside the Black Hole gives
the large time asymptotics of the solution, (c.f. [7, 20, 14] and the comments after Theorems 6-8 below).

The exact solutions in the case r∗ = 0 give a general relativistic version of an explosion into a static, singular,
isothermal sphere of gas, qualitatively similar to the corresponding classical explosion outside the Black Hole,
[12]. The main difference physically between the cases r∗ > 0 and r∗ = 0 is that when r∗ > 0, (the case
when the shock wave emerges from the Big Bang at a distance beyond one Hubble length), a large region
of uniform expansion is created behind the shock wave at the instant of the Big Bang. Thus, when r∗ > 0,
lightlike information about the shock wave propagates inward from the wave, rather than outward from the
center, as is the case when r∗ = 0 and the shock lies inside one Hubble length6. It follows that when r∗ > 0,
an observer positioned in the FRW spacetime inside the shock wave, will see exactly what the standard
model of cosmology predicts, up until the time when the shock wave comes into view in the far field. In this
sense, the case r∗ > 0 gives a Black Hole cosmology that refines the standard FRW model of cosmology to
the case of finite mass. One of the surprising differences between the case r∗ = 0 and the case r∗ > 0 is that,
when r∗ > 0, the important equation of state p = 1

3ρ comes out of the analysis as special at the Big Bang.
When r∗ > 0, the shock wave emerges at the instant of the Big Bang at a finite non-zero speed, (the speed
of light), only for the special value σ = 1/3. In this case, the equation of state on both sides of the shock
wave tends to the correct relation p = 1

3ρ as t → 0, and the shock wave decelerates to subliminous speed for
all positive times thereafter, (see [19] and Theorem 8 below).

In all cases 0 < σ ≤ 1, r∗ ≥ 0, the spacetime metric that lies beyond the shock wave is taken to be a metric
of Tolmann-Oppenheimer-Volkoff (TOV) form, [8],

ds2 = −B(r̄)dt̄2 + A−1(r̄)dr̄2 + r̄2[dθ2 + sin2θ dφ2]. (2)

The metric (2) is in standard Schwarzschild coordinates, (diagonal with radial coordinate equal to the area
of the spheres of symmetry), and the metric components depend only on the radial coordinate r̄. Barred
coordinates are used to distinguish TOV coordinates from unbarred FRW coordinates for shock matching.
The mass function M(r̄) enters as a metric component through the relation,

A = 1− 2M(r̄)
r̄

. (3)

The TOV metric (2) has a very different character depending on whether A > 0 or A < 0; that is, depending
on whether the solution lies outside the Black Hole or inside the Black Hole. In the case A > 0, r̄ is a spacelike

6One can imagine that when r∗ > 0, the shock wave can get out through a great deal of matter early on when
everything is dense and compressed, and still not violate the speed of light bound. Thus when r∗ > 0, the shock wave
“thermalizes”, or more accurately “makes uniform”, a large region at the center, early on in the explosion.
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coordinate, and the TOV metric describes a static fluid sphere in general relativity.7 When A < 0, r̄ is the
timelike coordinate, and (2) is a dynamical metric that evolves in time. The exact shock wave solutions are
obtained by taking r̄ = R(t)r to match the spheres of symmetry, and then matching the metrics (1) and (2)
at an interface r̄ = r̄(t) across which the metrics are Lipschitz continuous. This can be done in general. In
order for the interface to be a physically meaningful shock surface, we use the result in Theorem 4 below,
(see [11]), that a single additional conservation constraint is sufficient to rule out delta function sources at
the shock, (the Einstein equations G = κT are second order in the metric, and so delta function sources
will in general be present at a Lipschitz continuous matching of metrics), and guarantee that the matched
metric solves the Einstein equations in the weak sense. The Lipschitz matching of the metrics, together with
the conservation constraint, leads to a system of ordinary differential equations (ODE’s) that determine the
shock position, together with the TOV density and pressure at the shock. Since the TOV metric depends
only on r̄, the equations thus determine the TOV spacetime beyond the shock wave. To obtain a physically
meaningful outgoing shock wave, we impose the constriant p̄ ≤ ρ̄ to ensure that the equation of state on
the TOV side of the shock is qualitatively reasonable, and as the entropy condition we impose the condition
that the shock be compressive. For an outgoing shock wave, this is the condition ρ > ρ̄, p > p̄, that the
pressure and density be larger on the side of the shock the receives the mass flux—the FRW side when the
shock wave is propagating away from the FRW center. This condition breaks the time reversal symmetry of
the equations, and is sufficient to rule out rarefaction shocks in classical gas dynamics, [10, 19]. The ODE’s,
together with the equation of state bound and the conservation and entropy constraints, determine a unique
solution of the ODE’s for every 0 < σ ≤ 1 and r̄∗ ≥ 0, and this provides the two parameter family of solutions
discussed here, [12, 19]. The Lipschitz matching of the metrics implies that the total mass M is continuous
across the interface, and so when r∗ > 0, the total mass of the entire solution, inside and outside the shock
wave, is finite at each time t > 0, and both the FRW and TOV spacetimes emerge at the Big Bang. The
total mass M on the FRW side of the shock has the meaning of total mass inside radius r̄ at fixed time, but
on the TOV side of the shock, M does not evolve according to equations that give it the interpretation as a
total mass because the metric is inside the Black Hole. Nevertheless, after the spacetime emerges from the
Black Hole, the total mass takes on its usual meaning outside the Black Hole, and time asymptotically the
Big Bang ends with an expansion of finite total mass in the usual sense. Thus, when r∗ > 0, our shock wave
refinement of the FRW metric leads to a Big Bang of finite total mass.

A final comment is in order regarding our overall philosophy. The family of exact shock wave solutions
described here are rough models in the sense that the equation of state on the FRW side satisfies σ =
const., and the equation of state on the TOV side is determined by the equations, and therefore cannot
be imposed. Nevertheless, the bounds on the equations of state imply that the equations of state are
qualitatively reasonable, and we expect that this family of solutions will capture the gross dynamics of
solutions when more general equations of state are imposed. For more general equations of state, other
waves, such as rarefaction waves and entropy waves, would need to be present to meet the conservation
constraint, and thereby mediate the transition across the shock wave. Such transitional waves would be
pretty much impossible to model in an exact solution. But the fact that we can find global solutions that
meet our physical bounds, and that are qualitatively the same for all values of σ ∈ (0, 1] and all initial shock
positions, strongly suggests that such a shock wave would be the dominant wave in a large class of problems.

In Section 2 we derive the FRW solution when σ = const., and discuss the Hubble length as a critical length
scale. In Section 3 we state the general theorems in [11] for matching gravitational metrics across shock
waves. In Section 4 we discuss the construction of the family of solutions in the case r∗ = 0, and in Section
5 we discuss the case r∗ > 0. (See [12, 19, 20] for details.)

7The metric (2) is, for example, the starting point for the stability limits of Buchdahl and Chandresekhar for
stars, [22, 15, 16].
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2 The FRW Metric

According to Einstein’s Theory of General Relativity, all properties of the gravitational field are determined
by a Lorentzian spacetime metric tensor g, whose line element in a given coordinate system x = (x0, ..., x3)
is given by

ds2 = gijdxidxj . (1)

(We use the Einstein summation convention whereby repeated up-down indices are assumed summed from
0 to 3.) The components gij of the gravitational metric g satisfy the Einstein equations,

Gij = κT ij , T ij = (ρc2 + p)wiwj + pgij , (2)

where we assume the stress-energy tensor T of a perfect fluid. Here G is the Einstein curvature tensor,

κ =
8πG
c4

(3)

is the coupling constant, G is Newton’s gravitational constant, c is the speed of light, ρc2 is the energy
density, p is the pressure, and w = (w0, ..., w3) are the components of the 4-velocity of the fluid, c.f. [22],
and again we use the convention that c = 1 and G = 1 when convenient.

Putting the metric ansatz (1) into the Einstein equations (2) gives the equations for the FRW metric, [22],

H2 =

�
Ṙ

R

�2

=
κ

3
ρ− k

R2
, (4)

and

ρ̇ = −3(p + ρ)H. (5)

The unknowns R, ρ and p are assumed to be functions of the FRW coordinate time t alone, and “dot”
denotes differentiation with respect to t.

To verify that the Hubble length r̄crit = 1/H is the limit for FRW-TOV shock matching outside a Black
Hole, write the FRW metric (1) in standard Schwarzschild coordinates x̄ = (r̄, t̄) where the metric takes the
form

ds2 = −B(r̄, t̄)dt̄2 + A(r̄, t̄)−1dr̄2 + r̄2dΩ2, (6)

and the mass function M(r̄, t̄) is defined through the relation

A = 1− 2M

r̄
. (7)

It is well known that a general spherically symmetric metric can be transformed to the form (6) by coordinate
transformation, [22, 4]. Substituting r̄ = Rr into (1) and diagonalizing the resulting metric we obtain, (see
[20] for details),
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ds2 = − 1
ψ2

�
1− kr2

1− kr2 −H2r̄2

�
dt̄2 +

�
1

1− kr2 −H2r̄2

�
dr̄2 + r̄2dΩ2, (8)

where ψ is an integrating factor that solves the equation

∂

∂r̄

�
ψ

1− kr2 −H2r̄2

1− kr2

�
− ∂

∂t

�
ψ

Hr̄

1− kr2

�
= 0, (9)

and the time coordinate t̄ = t̄(t, r̄) is defined by the exact differential

dt̄ =
�

ψ
1− kr2 −H2r̄2

1− kr2

�
dt +

�
ψ

Hr̄

1− kr2

�
dr̄. (10)

Now using (7) in (4), it follows that

M(t, r̄) =
κ

2

�
r̄

0
ρ(t)s2ds =

1
3

κ

2
ρr̄3. (11)

Since in the FRW metric r̄ = Rr measures arclength along radial geodesics at fixed time, we see from (11)
that M(t, r̄) has the physical interpretation as the total mass inside radius r̄ at time t in the FRW metric.
Restricting to the case of critical expansion k = 0, we see from (4), (11) and (10) that r̄ = H−1 is equivalent
to 2M

r̄
= 1, and so at fixed time t, the following equivalences are valid:

r̄ = H−1 iff
2M

r̄
= 1 iff A = 0. (12)

We conclude that r̄ = H−1 is the critical length scale for the FRW metric at fixed time t in the sense that
A = 1 − 2M

r̄
changes sign at r̄ = H−1, and so the universe lies inside a Black Hole beyond r̄ = H−1, as

claimed above. Now we proved in [15] that the standard TOV metric outside the Black Hole cannot be
continued into A = 0 except in the very special case ρ = 0. (It takes an infinite pressure to hold up a static
configuration at the event horizon of a Black Hole.) Thus to do shock matching beyond one Hubble length
requires a metric of a different character, and for this purpose, in [20] we introduce the TOV metric inside the
Black Hole—a metric of TOV form, with A < 0, whose fluid is co-moving with the timelike radial coordinate
r̄.

The Hubble length r̄crit = c

H
is also the critical distance at which the outward expansion of the FRW metric

exactly cancels the inward advance of a radial light ray impinging on an observer positioned at the origin
of a k = 0 FRW metric. Indeed, by (1), a light ray traveling radially inward toward the center of an FRW
coordinate system satisfies,

c2dt2 = R2dr2, (13)

so that

dr̄

dt
= Ṙr + Rṙ = Hr̄ − c = H(r̄ − c

H
) > 0, (14)

if and only if
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r̄ >
c

H
.

Thus the arclength distance from the origin to an inward moving light ray at fixed time t in a k = 0 FRW
metric will actually increase as long as the light ray lies beyond the Hubble length. An inward moving light
ray will, however, eventually cross the Hubble length and reach the origin in finite proper time, due to the
increase in the Hubble length with time.

We now calculate the infinite redshift limit in terms of the Hubble length. It is well known that light emitted
at (te, re) at wavelength λe in an FRW spacetime will be observed at (t0, r0) at wavelength λ0 if

R0

Re

=
λ0

λe

.

Moreover, the redshift factor z is defined by

z =
λ0

λe

− 1.

Thus, infinite redshifting occurs in the limit Re → 0, where R = 0, t = 0 is the Big Bang. Consider now a
light ray emitted at the instant of the Big Bang, and observed at the FRW origin at present time t = t0.
Let r∞ denote the FRW coordinate at time t → 0 of the furthestmost objects that can be observed at the
FRW origin before time t = t0. Then r∞ marks the position of objects at time t = 0 whose radiation would
be observed as infinitly redshifted, (assuming no scattering). Note then that a shock wave emanating from
r̄ = 0 at the instant of the Big Bang, will be observed at the FRW origin before present time t = t0 only if
its position r at the instant of the Big Bang satisfies r < r∞. To estimate r∞, note first that from (13) it
follows that an incoming radial light ray in an FRW metric follows a lightlike trajectory r = r(t) if

r − re = −
�

t

te

dτ

R(τ)
,

and thus

r∞ =
�

t0

0

dτ

R(τ)
. (15)

Using this, the following theorem is proved in [20].

Theorem 1 If the pressure p satisfies the bounds

0 ≤ p ≤ 1
3
ρ, (16)

then for any equation of state, the age of the universe t0 and the infinite red shift limit r∞ are bounded in
terms of the Hubble length by

1
2H0

≤ t0 ≤
2

3H0
, (17)

1
H0

≤ r∞ ≤ 2
H0

. (18)
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(We have assumed that R = 0 when t = 0 and R = 1 when t = t0, H = H0.)

The next theorem gives closed form solutions of the FRW equations (4), (5) in the case when σ = const. As
a special case we recover the bounds in (17) and (18) from the cases σ = 0 and 1/3.

Theorem 2 Assume k = 0 and the equation of state

p = σρ, (19)

where σ is taken to be constant,
0 ≤ σ ≤ 1.

Then, (assuming an expanding universe Ṙ > 0), the solution of system (4), (5) satisfying R = 0 at t = 0
and R = 1 at t = t0 is given by,

ρ = 4
3κ(1+σ)2

1
t2

, (20)

R =
�

t

t0

� 2
3(1+σ)

, (21)
H

H0
= t0

t
. (22)

Moreover, the age of the universe t0 and the infinite red shift limit r∞ are given exactly in terms of the
Hubble length by

t0 =
2

3(1 + σ)
1

H0
, (23)

r∞ =
2

1 + 3σ

1
H0

. (24)

From (24) we conclude that a shock wave will be observed at the FRW origin before present time t = t0 only
if its position r at the instant of the Big Bang satisfies r < 2

1+3σ

1
H0

. Note that r∞ ranges from one half to
two Hubble lengths as σ ranges from 1 to 0, taking the intermediate value of one Hubble length at σ = 1/3,
c.f. (18).

Note that using (20)-(21) in (11), it follows that

M =
κ

2

�
r̄

0
ρ(t)s2ds =

2r̄3

9(1 + σ)2t
2

1+σ

0

t
−2σ
1+σ , (25)

so Ṁ < 0 if σ > 0. It follows that if p = σρ, σ = const. > 0, then the total mass inside radius r = const.
decreases in time.
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3 The General Theory of Shock Matching

The matching of the FRW and TOV metrics in the next two sections is based on the following theorems
that were derived in [11]8 .

Theorem 3 Let Σ denote a smooth, 3-dimensional shock surface in spacetime with spacelike normal vector
n relative to the spacetime metric g, let K denote the second fundamental form on Σ, and let G denote
the Einstein curvature tensor. Assume that the components gij of the gravitational metric g are smooth on
either side of Σ, (continuous up to the boundary on either side separately), and Lipschitz continuous across
Σ in some fixed coordinate system. Then the following statements are equivalent:

(i) [K] = 0 at each point of Σ.

(ii) The curvature tensors Ri

jkl
and Gij , viewed as second order operators on the metric components gij ,

produce no delta function sources on Σ.

(iii) For each point P ∈ Σ there exists a C1,1 coordinate transformation defined in a neighborhood of P, such
that, in the new coordinates, (which can be taken to be the Gaussian normal coordinates for the surface), the
metric components are C1,1 functions of these coordinates.

(iv) For each P ∈ Σ, there exists a coordinate frame that is locally Lorentzian at P, and can be reached within
the class of C1,1 coordinate transformations.

Moreover, if any one of these equivalencies hold, then the Rankine-Hugoniot jump conditions, [G]σ
i
nσ = 0,

(which express the weak form of conservation of energy and momentum across Σ when G = κT ), hold at
each point on Σ.

Here [f ] denotes the jump in the quantity f across Σ, (this being determined by the metric separately on each
side of Σ because gij is only Lipschitz continuous across Σ), and by C1,1 we mean that the first derivatives
are Lipschitz continuous.

In the case of spherical symmetry, the following stronger result holds. In this case, the jump conditions
[Gij ]ni = 0, that express the weak form of conservation across a shock surface, are implied by a single
condition [Gij ]ninj = 0, so long as the shock is non–null, and the areas of the spheres of symmetry match
smoothly at the shock and change monotonically as the shock evolves. Note that in general, assuming that
the angular variables are identified across the shock, we expect conservation to entail two condtions, one
for the time and one for the radial components. The fact that the smooth matching of the spheres of
symmetry reduces conservation to one condition can be interpreted as an instance of the general principle
that directions of smoothness in the metric imply directions of conservation of the sources.

Theorem 4 Assume that g and ḡ are two spherically symmetric metrics that match Lipschitz continuously
across a three dimensional shock interface Σ to form the matched metric g ∪ ḡ. That is, assume that g and
ḡ are Lorentzian metrics given by

ds2 = −a(t, r)dt2 + b(t, r)dr2 + c(t, r)dΩ2, (1)

8Theorems 3 and 4 apply to non-lightlike shock surfaces. The lightlike case was done in [9].
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and
ds̄2 = −ā(t̄, r̄)dt̄2 + b̄(t̄, r̄)dr̄2 + c̄(t̄, r̄)dΩ2, (2)

and that there exists a smooth coordinate transformation Ψ : (t, r) → (t̄, r̄), defined in a neighborhood of a
shock surface Σ given by r = r(t), such that the metrics agree on Σ. (We implicitly assume that θ and ϕ are
continuous across the surface.) Assume that

c(t, r) = c̄(Ψ(t, r)), (3)

in an open neighborhood of the shock surface Σ, so that, in particular, the areas of the 2-spheres of symmetry
in the barred and unbarred metrics agree on the shock surface. Assume also that the shock surface r = r(t)
in unbarred coordinates is mapped to the surface r̄ = r̄(t̄) by (t̄, r̄(t̄)) = Ψ(t, r(t)). Assume, finally, that the
normal n to Σ is non–null, and that

n(c) �= 0 (4)

where n(c) denotes the derivative of the function c in the direction of the vector n.9 Then the following
are equivalent to the statement that the components of the metric g ∪ ḡ in any Gaussian normal coordinate
system are C1,1 functions of these coordinates across the surface Σ :

[Gi

j
]ni = 0, (5)

[Gij ]ninj = 0, (6)

[K] = 0. (7)

Here again, [f ] = f̄ − f denotes the jump in the quantity f across Σ, and K is the second fundamental form
on the shock surface.

4 FRW-TOV Shock Matching Outside the Black Hole—The Case
r∗ = 0

To construct the family of shock wave solutions for parameter values 0 < σ ≤ 1 and r∗ = 0, we match the
exact solution (20)-(22) of the FRW metric (1) to the TOV metric (2) outside the Black Hole, assuming
A > 0. In this case, we can bypass the problem of deriving and solving the ODE’s for the shock surface
and constraints discussed above, by actually deriving the exact solution of the Einstein equations of TOV

9I.e., we assume that the areas of the 2-spheres of symmetry change monotonically in the direction normal to the
surface. E.g., if c = r

2
, then ∂

∂t c = 0, so the assumption n(c) �= 0 is valid except when n = ∂
∂t , in which case the

rays of the shock surface would be spacelike. Thus the shock speed would be faster than the speed of light if our
assumption n(c) �= 0 failed in the case c = r

2
.
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form that meets these equations. This exact solution represents the general relativistic version of a static,
singular isothermal sphere—singular because it has an inverse square density profile, and isothermal because
the relationship between the density and pressure is p̄ = σ̄ρ̄, σ̄ = const.

Assuming the stress tensor for a perfect fluid, and assuming that the density and pressure depend only on
r̄, the Einstein equations for the TOV metric (2) outside the Black Hole, (that is, when A = 1 − 2M

r̄
> 0),

are equivalent to the Oppenheimer-Volkoff system

dM

dr̄
= 4πr̄2ρ̄, (1)

−r̄2 d

dr̄
p̄ = GMρ̄

�
1 +

p̄

ρ̄

� �
1 +

4πr̄3p̄

M

� �
1− 2GM

r̄

�−1

. (2)

Integrating (1) we obtain the usual interpretation of M as the total mass inside radius r̄,

M(r̄) =
�

r̄

0
4πξ2ρ̄(ξ)dξ. (3)

The metric component B ≡ B(r̄) is determined from ρ̄ and M through the equation

B�(r̄)
B

= −2
p̄�(r̄)
p̄ + ρ̄

. (4)

Assuming
p̄ = σ̄ρ̄, ρ̄(r̄) =

γ

r̄2
, (5)

for some constants σ̄ and γ, and substituting into (3), we obtain

M(r̄) = 4πγr̄. (6)

Putting (5)-(6) into (2) and simplifying yields the identity

γ =
1

2πG

�
σ̄

1 + 6σ̄ + σ̄2

�
. (7)

From (3) we obtain
A = 1− 8πGγ < 1. (8)

Applying (4) leads to

B = B0

�
ρ̄

ρ̄0

�− 2σ̄
1+σ̄

= B0

�
r̄

r̄0

� 4σ̄
1+σ̄

. (9)

By rescaling the time coordinate, we can take B0 = 1 at r̄0 = 1, in which case (9) reduces to

B = r̄
4σ̄

1+σ̄ . (10)

We conclude that when (7) holds, (5)-(8) and (9) provide an exact solution of the Einstein field equations of
TOV type10, for each 0 ≤ σ̄ ≤ 1. By (8), these solutions are defined outside the Black Hole, since 2M

r̄
< 1.

When σ̄ = 1/3, (7) yields γ = 3
56πG , (c.f., [22], equation (11.4.13)).

10In this case, an exact solution of TOV type was first found by Tolman [21], and rediscovered in the case σ̄ = 1/3
by Misner and Zapolsky, c.f. [22], page 320.
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To match the FRW exact solution (20)-(22) with equation of state p = σρ to the TOV exact solution (5)-
(10) with equation of state p̄ = σ̄ρ̄ across a shock interface, we first set r̄ = Rr to match the spheres of
symmetry, and then match the timelike and spacelike components of the corresponding metrics in standard
Schwarzschild coordinates. The matching of the dr̄2 coefficient A−1 yields the conservation of mass condition
that implicitly gives the shock surface r̄ = r̄(t),

M(r̄) =
4π

3
ρ(t)r̄3. (11)

Using this together with (6) and (6) gives the following two relations that hold at the shock surface:

r̄ =

�
3γ

ρ(t)
,

ρ =
3
4π

M

r̄(t)3
=

3γ

r̄(t)2
= 3ρ̄. (12)

Matching the dt̄2 coefficient B on the shock surface determines the integrating factor ψ in a neighborhood
of the shock surface by assigning initial conditions for (9). Finally, the conservation constraint [Tij ]ninj = 0
leads to the single condition

0 = (1−A)(ρ + p̄)(p + ρ̄)2 +
�

1− 1
A

�
(ρ̄ + p̄)(ρ + p)2 + (p− p̄)(ρ− ρ̄)2, (13)

which upon using p = σρ and p̄ = σ̄ρ̄ is satisfied assuming the condition

σ̄ =
1
2

�
9σ2 + 54σ + 49− 3

2
σ − 7

2
≡ H(σ). (14)

Alternatively, we can solve for σ in (14) and write this relation as

σ =
σ̄(σ̄ + 7)
3(1− σ̄)

. (15)

This guarantees that conservation holds across the shock surface, and so it follows from Theorem 4 that
all of the equivalencies in Theorem 3 hold across the shock surface. Note that H(0) = 0, and to leading
order σ̄ = 3

7σ + O(σ2) as σ → 0. Within the physical region 0 ≤ σ, σ̄ ≤ 1, H �(σ) > 0, σ̄ < σ, and
H(1/3) =

√
17− 4 ≈ .1231, H(1) =

√
112
2 − 5 ≈ .2915.

Using the exact formulas for the FRW metric in (20)-(22), and setting R0 = 1 at ρ = ρ0, t = t0, we obtain
the following exact formulas for the shock position:

r̄(t) = αt, (16)

r(t) = r̄(t)R(t)−1 = β t
1+3σ
3+3σ , (17)

where

α = 3(1 + σ)
�

σ̄

1 + 6σ̄ + σ̄2
,

β = α
1+3σ
3+3σ

�
3γ

ρ0

� 1
3+3σ

. (18)
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It follows from (6) that A > 0, and from (17) that r∗ = limt→0 r(t) = 0. The entropy condition that
the shock wave be compressive follows from the fact that σ̄ = H(σ) < σ. Thus we conclude that for each
0 < σ ≤ 1, r∗ = 0, the solutions constructed in (5)-(18) define a one parameter family of shock wave solutions
that evolve everywhere outside the Black Hole, which implies that the distance from the shock wave to the
FRW center is less than one Hubble length for all t > 0.

Using (16) and (17), one can determine the shock speed, and check when the Lax Characteristic condition,
[6], holds at the shock. The

result is the following11, (see [12] for details),

Theorem 5 There exist values 0 < σ1 < σ2 < 1, (σ1 ≈ .458, σ2 =
√

5/3 ≈ .745), such that, for 0 < σ ≤ 1,
the Lax characteristic condition holds at the shock if and only if 0 < σ < σ1; and the shock speed is less than
the speed of light if and only if 0 < σ < σ2.

The explicit solution in the case r∗ = 0 can be interpreted as a general relativistic version of a shock wave
explosion into a static, singular, isothermal sphere, known in the Newtonian case as a simple model for star
formation, (see [15, 3]). As the scenario goes, a star begins as a diffuse cloud of gas. The cloud slowly
contracts under its own gravitational force by radiating energy out through the gas cloud as gravitational
potential energy is converted into kinetic energy. This contraction continues until the gas cloud reaches the
point where the mean free path for transmission of light is small enough that light is scattered, instead of
transmitted, through the cloud. The scattering of light within the gas cloud has the effect of equalizing the
temperature within the cloud, and at this point the gas begins to drift toward the most compact configuration
of the density that balances the pressure when the equation of state is isothermal. This configuration is a
static, singular, isothermal sphere, the general relativistic version of which is the exact TOV solution beyond
the shock wave when r∗ = 0. This solution in the Newtonian case is also inverse square in the density and
pressure, and so the density tends to infinity at the center of the sphere. Eventually, the high densities at
the center ingnite thermonuclear reactions. The result is a shock-wave explosion emanating from the center
of the sphere, and this signifies the birth of the star. The exact solutions when r∗ = 0 represent a general
relativistic version of such a shock-wave explosion.

5 Shock Wave Solutions Inside the Black Hole—The case r∗ > 0.

When the shock wave is beyond one Hubble length from the FRW center, we obtain a family of shock wave
solutions for each 0 < σ ≤ 1 and r∗ > 0 by shock matching the FRW metric (1) to a TOV metric of form
(2) under the assumption that

A(r̄) = 1− 2M(r̄)
r̄

≡ 1−N(r̄) < 0. (1)

In this case, r̄ is the timelike variable. Assuming the stress tensor T is taken to be that of a perfect fluid
co-moving with the TOV metric, the Einstein equations G = κT, inside the Black Hole, take the form, (see
[20] for details),

p̄� =
p̄ + ρ̄

2
N �

N − 1
, (2)

11Note that even when the shock speed is larger than c, only the wave, and not the sound speeds or any other
physical motion, exceeds the speed of light. See [9] for the case when the shock speed is equal to the speed of light
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N � = −
�

N

r̄
+ κp̄r̄

�
, (3)

B�

B
= − 1

N − 1

�
N

r̄
+ κρ̄

�
. (4)

The system (2)-(4) defines the simplest class of gravitational metrics that contain matter, evolve inside the
Black Hole, and such that the mass function M(r̄) <∞ at each fixed time r̄. System (2)-(4) for A < 0 differs
substantially from the TOV equations for A > 0 because, for example, the energy density T 00 is equated
with the timelike component Grr when A < 0, but with Gtt when A > 0. In particular, this implies that,
inside the Black Hole, the mass function M(r̄) does not have the interpretation as a total mass inside radius
r̄ as it does outside the Black Hole.

The equations (3), (4) do not have the same character as (1), (2) and the relation p̄ = σ̄ρ̄ with σ̄ = const.
is inconsistent with (3), (4) together with the conservation constraint and the FRW assumption p = σρ for
shock matching. Thus, instead of looking for an exact solution of (3), (4) ahead of time, as in the case
r∗ = 0, we assume the FRW solution (20)-(22), and derive the ODE’s that describe the TOV metrics that
match this FRW metric Lipschitz continuously across a shock surface, and then impose the conservation,
entropy and equation of state constraints at the end. Matching a given k = 0 FRW metric to a TOV metric
inside the Black Hole across a shock interface, leads to the system of ODE’s, (see [20]) for details),

du

dN
= −

�
(1 + u)

2(1 + 3u)N

� �
(3u− 1)(σ − u)N + 6u(1 + u)

(σ − u)N + (1 + u)

�
, (5)

dr̄

dN
= − 1

1 + 3u

r̄

N
, (6)

with conservation constraint

v =
−σ (1 + u) + (σ − u)N

(1 + u) + (σ − u)N
, (7)

where

u =
p̄

ρ
, v =

ρ̄

ρ
, σ =

p

ρ
. (8)

Here ρ and p denote the (known) FRW density and pressure, and all variables are evaluated at the shock.
Solutions of (5)-(7) determine the (unknown) TOV metrics that match the given FRW metric Lipschitz
continuously across a shock interface, such that conservation of energy and momemtum hold across the
shock, and such that there are no delta function sources at the shock, [5, 13]. Note that the dependence of
(5)-(7) on the FRW metric is only through the variable σ, and so the advantage of taking σ = const. is that
the whole solution is determined by the inhomogeneous scalar equation (5) when σ = const. We take as the
entropy constraint the condition that

0 < p̄ < p, 0 < ρ̄ < ρ, (9)

and to insure a physically reasonable solution, we impose the equation of state constriant on the TOV side
of the shock12.

0 < p̄ < ρ̄. (10)

Condition (9) implies that outgoing shock waves are compressive. Inequalities (9) and (10) are both implied
by the single condition, (see [20])),

1
N

<

�
1− u

1 + u

� �
σ − u

σ + u

�
. (11)

12This is equivalent to the dominant energy condition, [2].
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Since σ is constant, equation (5) uncouples from (6), and thus solutions of system (5)-(7) are

determined by the scalar non-autonomous equation (5). Making the change of variable S = 1/N, which
transforms the “Big Bang” N →∞ over to a rest point at S → 0, we obtain,

du

dS
=

�
(1 + u)

2(1 + 3u)S

� �
(3u− 1)(σ − u) + 6u(1 + u)S

(σ − u) + (1 + u)S

�
. (12)

Note that the conditions N > 1 and 0 < p̄ < p restrict the domain of (12) to the region 0 < u < σ < 1,
0 < S < 1. The next theorem gives the existence of solutions for 0 < σ ≤ 1, r∗ > 0, inside the Black Hole,
c.f. [19]:

Theorem 6 For every σ, 0 < σ < 1, there exists a unique solution uσ(S) of (12), such that (11) holds on
the solution for all S, 0 < S < 1, and on this solution, 0 < uσ(S) < ū, limS→0 uσ(S) = ū, where

ū = Min {1/3, σ} , (13)

and

lim
S→1

p̄ = 0 = lim
S→1

ρ̄. (14)

For each of these solutions uσ(S), the shock position is determined by the solution of (6), which in turn is
determined uniquely by an initial condition which can be taken to be the FRW radial position of the shock
wave at the instant of the Big Bang,

r∗ = lim
S→0

r(S) > 0. (15)

Concerning the the shock speed, we have:

Theorem 7 Let 0 < σ < 1. Then the shock wave is everywhere subluminous, that is, the shock speed
sσ(S) ≡ s(uσ(S)) < 1 for all 0 < S ≤ 1, if and only if σ ≤ 1/3.

Concerning the shock speed near the Big Bang S = 0, the following is true:

Theorem 8 The shock speed at the Big Bang S = 0 is given by:

lim
S→0

sσ(S) = 0, σ < 1/3, (16)

lim
S→0

sσ(S) =∞, σ > 1/3, (17)

lim
S→0

sσ(S) = 1, σ = 1/3. (18)

Theorem 8 shows that the equation of state p = 1
3ρ plays a special role in the analysis when r∗ > 0, and only

for this equation of state does the shock wave emerge at the Big Bang at a finite non-zero speed, the speed
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of light. Moreover, (13) implies that in this case, the correct relation p̄

ρ̄
= σ̄ is also achieved in the limit

S → 0. The result (14) implies that, (neglecting the pressure p at this time onward), the solution continues
to a k = 0 Oppenheimer-Snyder solution outside the Black Hole for S > 1.

It follows that the shock wave will first become visible at the FRW center r̄ = 0 at the moment t = t0,
(R(t0) = 1), when the Hubble length H−1

0 = H−1(t0) satisfies

1
H0

=
1 + 3σ

2
r∗, (19)

where r∗ is the FRW position of the shock at the instant of the Big Bang. At this time, the number of
Hubble lengths

√
N0 from the FRW center to the shock wave at time t = t0 can be estimated by

1 ≤ 2
1 + 3σ

≤
√

N0 ≤
2

1 + 3σ
e
√

3σ( 1+3σ
1+σ ).

Thus, in particular, the shock wave will still lie beyond the Hubble length 1/H0 at the FRW time t0 when
it first becomes visible. Furthermore, the time tcrit > t0 at which the shock wave will emerge from the
White Hole given that t0 is the first instant at which the shock becomes visible at the FRW center, can be
estimated by

2
1 + 3σ

e
1
4 σ ≤ tcrit

t0
≤ 2

1 + 3σ
e

2
√

3σ
1+σ , (20)

for 0 < σ ≤ 1/3, and by the better estimate

e
√

6
4 ≤ tcrit

t0
≤ e

3
2 , (21)

in the case σ = 1/3. Inequalities (20), (21) imply, for example, that at the Oppenheimer-Snyder limit σ = 0,

�
N0 = 2,

tcrit

t0
= 2,

and in the limit σ = 1/3,

1.8 ≤ tcrit

t0
≤ 4.5, 1 <

�
N0 ≤ 4.5.

We can conclude that the moment t0 when the shock wave first becomes visible at the FRW center, the shock
wave must lie within 4.5 Hubble lengths of the FRW center. Throughout the expansion up until this time,
the expanding universe must lie entirely within a White Hole—the universe will eventually emerge from this
White Hole, but not until some later time tcrit, where tcrit does not exceed 4.5t0.

6 Conclusion

We believe that the existence of a wave at the leading edge of the expansion of the galaxies is the most likely
possibility. The alternatives are that either the universe of expanding galaxies goes on out to infinity, or else
the universe is not simply connected. Although the first possibility has been believed for most of the history
of cosmology based on the Friedmann universe, we find this implausible and arbitrary in light of the shock
wave refinements of the FRW metric discussed here. The second possibility, that the universe is not simply
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connected, has received considerable attention recently13. However, since we have not seen, and cannot
create, any non-simply connected 3-spaces on any other length scale, and since there is no observational
evidence to support this, we view this as less likely than the existence of a wave at the leading edge of
the expansion of the galaxies, left over from the Big Bang. Recent analysis of the microwave background
radiation data shows a cut-off in the angular frequencies consistent with a length scale of around one Hubble
length, [1]. This certainly makes one wonder whether this cutoff is evidence of a wave at this length scale,
especially given the consistency of this possibility with the case r∗ > 0 of the family exact solutions discussed
here.
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