Shock Wave Cosmology
Inside a Black Hole:
A Computer Visualization

Joel Smoller. Blake Temple, and Zeke Vogler

ABsTRACT. We introduce and discuss a computer visualization
of the shock wave cosmological model introduced by Smoller and
Tewmple in [12].

1. Introduction

Our starting point is the following question: Could there be a wave at the leading
cdge of the expansion of the galaxies set in motion by the Big Bang? Such a
wave would mark the boundary between the region of expanding galaxies and a
different. spacetime heyond the wave. If the wave exists. then the total mass of
the galaxices inside the wave would be finite, and so we ask, could the Big Bang
have been an explosion of finite total mass with a wave at the leading edge of the
expansion, similar to a classical explosion? In the standard model of cosmology
hased on the Friedmann universe, the Big Bang is an explosion of infinite mass and
infinite extent. (the critical Fricdmann universe is infinite at each time after the Big
Bang)— so there is nothing beyond the galaxies in the standard model. Now not
knowing anyvthing about the spacetime beyond the wave, one might think that any
spacetime could be on the other side of it. But if the explosion is large enough, so
(hat the wave is far enough out to be believable, then, since the total mass A/ inside
radius 7 increases like %, far enough out we must have 2A//r > 1, the condition for
heing inside a black hole in the Schwarzschild spacetime. In this sense, if the wave
lies bevond a sufficiently large radial distance. then the whole spacetime lies inside
. black hole—and so there are constraints. and not everyvthing is possible. Based
on this. we pose the following mathematical question: Is the possibility that the
Big Bang was an explosion of finite total mass. and the existence of a consequent
wave at the leading edge of the expanding galaxies far enough out to be believable,
consistent. with the the principles of general relativity? In [12. 13] the authors
confirm the consistency of this possibility in an exact solution. The purpose of this
talk is to describe the solution in [12]. and to present a computer visualization of
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the cosmological model implied by this solution. (For a longer version with details,
see [12, 13, 14]).

2. Cosmology With a Shock Wave Inside a Black Hole

In the standard model of cosmology, the expanding universe of galaxies is described
by a Friedmann-Robertson-Walker (FRW) metric, which in spherical coordinates
has a line element given by [1, 16, 17],

2
1 — kr?
In this model, which accounts for things on the largest length scale, the universe
is approximated by a space of uniform density and pressure at each fixed time,
and the expansion rate is determined by the cosmological scale factor R(t) that
evolves according to the Einstein equations. Astronomical observations show that
the galaxies are uniform on a scale of about one billion lightyears, and to within
experimental error, the expansion is critical—that is, k = 0 in (1)—and so, accord-
ing to (1), on the largest scale, the universe is infinite flat Euclidian space R> at
each fixed time, with arclenth radial distance give by ¥ = Rr. Matching the Hubble
constant H = R /R to its observed values, and invoking the Einstein equations, the
FRW model implies that the entire infinite universe R3 emerged all at once from
a singularity, (R=0), some 14 billion years ago, and this event is referred to as the

(1) ds? = —dt? + R%(t) { + r2[d#? + sin? 6 d¢2]} :

Big Bang.
Now in the standard Schwarzschild metric outside a central point mass M,
(2) ds* = —Bd#? + A~1dr? + 72d02,
2M
T

the Schwarzschild radius ¥ = 2M plays a critical role, this being the transition
from the region outside the black hole (2M /7 < 1) to the region inside the black
hole (2M/7 > 1). Thus if there is a wave at the leading edge of the expansion of
the galaxies, (which to start we can model as a discrete shock wave), the following
natural question presents itself: What is the critical (smallest) radius 7..;; at each
fixed time t > 0 in a k = 0 FRW metric such that the total mass inside a shock
wave positioned beyond that radius puts the universe inside a black hole in the
sense that % > 1?* The answer is that when k = 0, 7erit is exactly equal to the
Hubble length 7.pi = % » where ¢ denotes the speed of light. To see this, use that
the total mass inside radius 7 at fixed time ¢ > 0 in the FRW spacetime is equal to
the integral at fixed ¢t of the FRW energy density p(t),

4For our purposes here we refer to the region where 2M/7 > 1 as the region inside the black
hole, independent of the time orientation of the solution. Of course, in an FRW spacetime, this
region is relative to the choice of center for the coordinates, but in a finite mass solution the region
has geometric significance independent of the center.
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and then relate the energy density p(t) to the Hubble length through the FRW
equation

5 H =",

3
which follows from the Einstein equations, [12]. Substituting (5) into (4) we see
that the condition 20/ /7 = 1 is equivalent to Ferir = 1 /H, which is & when units of
time are included. Alternatively, transforming (1) over to standard Schwarzschild
coordinates, (coordinates in which the metric takes the general form (2) with M

and B as general functions of (f,7)), gives

‘ 1 1 — 1
6 ds®> = —— < ————= 2 dt* +{ ——5 di? + 72 dQ2,
(6) P2 {1 - Iﬂfz} 1 — H?7
where ¢ is an integrating factor that determines the time coordinate %, c.f.
[12]. Thus the coefficient of di? is = ,]{g,i,,_, = 1_2']\ 7 and we see that like the

Schwarzschild metric, 7., = ¢/H plays the role of a coordinate singularity for the
FRW metric in standard Schwarzschild coordinates. In fact, the coordinates (t,7)
in (1) regularize the singularity in (6) just as the Eddington-Finkelstein or Kruskall
coordinates regularize the Schwarzschild singularity 7 = 2A/ in (2), c.f. [12]. Of
course, the Hubble constant is only approximately constant over small enough time
scales, and, in general, H = H(t) is a decreasing function, and so the Hubble length
¢/H(t) is an increasing function of FRW time . The Hubble length ¢/H, at time
to is estimated to be on the order of 10! light years.

The Hubble length ¢/H is a measure of the furthest a viewer can see in the
visible universe. That is, 1/H(t) is a good estimate of the age of the universe at
time ¢ > 0 in the standard model, so the Hubble length ¢/H is the distance that a
lightlike signal will travel starting at the Big Bang and ending at time t. (Of course,
you must choose a coordinate system with respect to which travel distance can be
measured, and it turns out that measuring at fixed time in FRW coordinates, the
visible universe extends out beyond one Hubble length.) Thus we have the following
picture: the radius to which you would have to squeeze a mass to form a black hole
‘s the Schwarzschild radius for that mass. The Schwarzschild radius 7 = 2M for
the mass of the earth is on the order of a centimeter, for the mass of the sun on
the order of a kilometer, for the mass of a typical galaxy that has some 10'? solar
masses on the order of 102 kilometers; and if you ask how far you would have to
squeeze all of the mass of the visible universe to form a black hole, the answer is
not at all—the Schwarzschild radius of all of the galaxies and matter in the visible
universe out to one Hubble length in a k = 0 FRW spacetime, is exactly one Hubble
length.
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The Hubble length as a critical length scale explains the limitations in the au-
thors’ previous examples (7, 11] of shock matching outside the black hole, the case
when 2 o 9 (c.f. Section 6, [11]). In these examples, we obtained exact shock
wave solutions of the Einstein equations by matching a k = 0 FRW metric to a sta-
tionary metric of the form (2) outside the black hole, by which we mean that A and
B depend only on 7, and 7 < 20/ , (A >0), throughout the solution. Stationary,
spherically symmetric, matter filled spacetimes based on metrics of form (2) with
A >0, describing static fluid spheres in general relativity, were first studied by
Tolmann, Oppenheimer and Volkoff, and the Chandresekhar and Bukdahl stability
limits in stars are based on an analysis of the Einstein equations for such metrics,
[10]. We call a stationary solution of the Einstein equations of form (2) when 4 > 0,
a Tolmann-Oppenhemier-Volkoff (TOV) metric outside the black hole.

The limitation in our previous work [11] was that we could not find & shock wave

matching of a k£ = 0 FRW metric to a TOV metric outside the black hole for any

purpose of [12] is to show that the total mass of the FRW metric can be cut off by
a shock wave positioned out beyond one Hubble length, and that in the resulting
solution, the Big Bang reduces to an explosion of finite total mass. The idea is

point is that this TOV metric inside the black hole is not just any old metric, it is
exactly what we need, because the total mass M (7) of the TOV metric beyond the
shock interface is constant at each fixed time 7, and since the mass function M is
continuous across a shock wave, (c.f. [2, 6, 15]), the TOV metric inside the black
hole provides the simplest metric that cuts off the total mass to a finite value at
each fixed time.

For our solution in [12, 13], we construct a simple class of exact, entropy satisfying
shock wave solutions of the Einstein equations for a perfect fluid by matching a
k =0 FRW metric to a TOV metric inside the black hole, [3, 5]. For simplicity, we
assume an FRW equation of state of the form p = op, 0 = constant, 0 < o < 1, 5
and the TOV density and pressure p and p are determined by the equations, subject
to the physical condition 0 < p < p, and the entropy condition for an outward

. . 2 . . .
5This catches the equation of state p = S p correct at the earliest stage of Big Bang physics.
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plosion, p < p. p < p. (If we were to impose the TOV equation of state. then
“ther waves like rarefaction waves would be present - a case pretty much impossible
o deseribe globally in closed form). One can view [I 2] as a natural extension of
“he Oppenhieimer-Snyder (OS) model to the case of non-zero pressure, inside the
“luck hole, .f. [1]. These solutions put forth a new cosmological model in which
he expanding Iricdmann-Robertson-Walker (FRW) universe emerges from the Big
lang with a shock wave at the leading edge of the expansion, analogous to a classical

hock wave explosion, except. that. like the standard model of cosmology. the entire
pacetime is created at the instant of the Big Bang. Unlike the standard model,
however, the Big Bang is an explosion of finite total mass, but it is large enough to
secount for the enormous scale on which the galaxies and the background radiation
appear uniform. In these models, the shock wave must lie beyond one Hubble
length from the FRW center, this threshhold being the boundary across which the
hounded mass lies inside its own Schwarzschild radius, 2Af /r > 1, and in this
rnse the shock wave solution evolves inside a black hole. The entropy condition,
which breaks the time symmetry by selecting the explosion over the implosion, also
nnplies that the shock wave must weaken until it eventually settles down to a zero
pressure OS interface, bounding a finite total mass, that cmerges from the white
hole event horizon of an ambient Schwarzschild spacetime. For cach o, the total
mass of the end state of the explosion is determined by a free parameter in the
model, and by choice of this parameter. the mass can be arbitrarily large, and the
hock wave arbitrarily far out. One of the interesting surprises is that. unlike shock
matching outside black hole, the equation of state p = l‘ p. the equation of state
a1 the earliest stage of Big Bang physics. is distinguished at the instant of the Big
Bang—tor this equation of state alone. the shock wave emerges from the Big Bang
At a finite nonzero speed, the speed of light, decelerating to a subluninal wave
from that time onward. These shock wave solutions indicate a new cosmological
model in which the Big Bang arises from a localized white hole explosion occurring
mside a matter filled universe that eventually evolves outward through the white
hole event horizon of an asymptotically flat Schwarzschild spacetime.

More precisely. letting S = 1/n? where 1 equals the munber of Hubble lengths
from the FRW center # = 0 to the shock wave at time ¢ > 0. and letting u =
- we show that the TOV metries that match the given FRW metric Lipschitz
rontinuously across a shock wave n Hubble lengths out. such that there are no delta
limction sources at the shock, and such that conservation of energy and momentun
hold at the shock. are determined by solutions of the non-autonomous ODE for «
viven by

) du { (14 u) } { (3u—1)(o = u) + 6u(l + LL)S} |

ds 2(1 4+ 3u)S (0 —u)+(1+u)S

When o is constant. a solution u(S) of (7) determines all other quantities in an
FRW-TOV shock wave solution inside the black hole. Here 0 < S < 1. where S = (
represents the Big Bang. and S = 1 marks the time when the shock wave is exactly
one Hubble length from the FRW center. the instant when the solution emerges
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from the white hole. We show that the entropy condition D <p, p < p,and the
TOV equation of state bound 0 < D < p are equivalent to the single condition

1—-u oc—-u
8 S < .
®) (1 + u) <a + u)
Using this we prove the following theorem:
Theorem 2.1 ([12]). For every 0, 0 <o < 1, there erists a unigue solution Uy (S)

of (7), such that (8) holds on the solution for all S,0 < S < 1, and on this solution,
0 <uy(S) < i, limg_q ug(S) = @, where @ = Min {1/3,0}, and

lim p =0 = lim p.
9 SEyP=0=

Concerning the the shock speed, we have:
Theorem 2.2 ([12]). Let0 < o < 1. Then the shock wave is everywhere subluminal,

that is, the shock speed 50(9) = s(us(9)) < 1 for all 0 < S < 1, of and only if
o < 1/3. Moreover, concerning the shock speed at the Big Bang S = 0, we have

(10) %in}) 50(5) =0, o<1/3,
(11) %in})s(,(S) =00, 0>1/3,

(12) b[lgbso(S): I, o=1/3.

3. A Computer Visualization

In our cosmological interpretation of the FRW metric, we (loosely) identify the
motion of the galaxies with the motion of the FRW fluid, a perfect fluid with
nonzero pressure, co-moving with the FRW metric. Assuming this, the shock wave
moves outward through the galaxies, (7 > 0), and the Hubble length increases with
time, but the number of Hubble lengths from the FRW center to the shock wave,
as well as the total mass behind the shock wave, both decrease in time, tending to
infinity in backwards time at the instant of the Big Bang. This is no contradiction
because the FRW pressure p is assumed nonzero, c.f. [13]. Since the Hubble length
increases with time, more and more galaxies pass inside of the threshold distance of
one Hubble length and come into view at the FRW center as time evolves. After the
Big Bang, the shock wave in our exact solution continues to weaken as it expands
outward, satisfying the entropy condition for shocks all the way out until the Hubble
length eventually catches up to the shock wave. At this instant the shock wave lies
at the critical distance of exactly one Hubble length from the FRW center. From
this time onward, the shock wave can be approximated by a zero pressure, k = 0
Oppenheimer-Snyder (OS) interface that emerges from the white hole event horizon
of an ambient Schwarzschild metric of finite mass. The entropy condition implies
that the TOV density and pressure tend to zero as the shock interface approaches
the critical distance of one Hubble length. Thereafter the interface continues on
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i1 1o infinity along a geodesic of the Schwarzschild metric outside the the black
Ao Thus the OS solution gives the large time asymptotics of this new class of
nock wave solutions that evolve inside a black hole.
\ computer visualization of this evolution was developed by Zeke Vogler as
research project in our Graduate Group in Applied Mathematics at UC-Davis
Jiring the sunumer of 2004. A full color version is soon to be found on our website
4 http:/ Swunw.math.ucdavis. edu/~temple, but for purposes of exposition we include
cveral snapshots here. Figure 1.a represents the initial Big Bang. Note here that,
. in the standard model, the whole FRW spacetime inside the shock wave, as well
. the TOV solution beyond the shock wave, are created at the instant of the Big
Bang t = 0. The shock wave emerges from the FRW center 7 = 0, and the total
mass of the explosion is finite at every ¢ > 0. (Of course, it is pure speculation
o+ to whether the Einstein equations actually apply all the way back to the Big
iang singularity at ¢t = 0.) In Figure 1.b, we see the solution a short time after the
iy Bang. The shock wave is represented by the thick grey, (which is red in the
color version), circular region that describes the transition between the inner white
region of the FRW metric to the outer black TOV spacetime that lies beyond the
ontermost circle. The region inside this shock layer represents our FRW expanding
nniverse, and the region beyond this layer represents the TOV spacetime inside the
hlack hole. The inner grey region in Figure 1.b represents the region of the FRW
pacetime at the center of the explosion that has received no information about
the shock wave. The grey region is special to shock wave explosions inside the
hlack hole and is not present in FRW-TOV shock wave models outside the black
hole, {7, 11]. At a given time, the inner grey region can be arbitrarily large, and
so can persist for an arbitrarily long time, depending on a free parameter in the
model that can be inferpreted as the total mass of the explosion. Loosely speaking,
we could say that for models inside the black hole, information about the shock
wave propagates inward from the wave, while outside the black hole information
propagates outward from the center of the explosion. The outer boundary of this
circlular grey region represents an incoming lightlike signal emanating from the
shock wave at ¢+ = 0+, an instant after the Big Bang. It propagates inward until
it reaches the center, marking the time when the grey region disappears, and the
shock wave is visible to all observers inside. In a sense, the shock wave is able to
zet far out early on when the spacetime is highly compressed, and after that, the
propagation of information communicating its position is restricted by the speed of
light bound. The outgoing thin white circle, (which is yellow in the color version),
represents the points exactly one Hubble length ¢/ H () from the FRW center. This
curve emanates from the center of the explosion at ¢ = 04, an instant after the Big
Bang, and evolves outward through the grey region, and beyond, from that time
onward as the Hubble length increases. A calculation shows that the grey region in
the center will degenerate to zero, (marking the first time when the shock wave is
visible at the FRW center), before the Hubble length catches up to the shock wave.
FFigure 1.c depicts a time after the grey region has disappeared, the white region
iniside the shock layer has evolved into galaxies, and the outward propagating white
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circle representing the Hubble length has not yet caught up to the shock—and so at
this stage the whole solution remains inside the black hole. Eventually, the white
circle representing the Hubble length will catch up to the shock wave, and at this
instant, the wave is exactly one Hubble length from the center of the explosion.
This is the critical time terit at which the solution emerges from the black hole
and satisfies 2M/F < 1 fromn this time onward. Assuming that the pressure is
zero after time t.,;, the solution emerges from the white hole event horizon of a
Schwarzschild metric, and evolves as a zero pressure Oppenheimer-Snyder solution
outside the black hole, from time terit onward. At the end, the solution looks like
a finite ball of mass expanding into empty space, outside the black hole, something
like a giant supernova. This final stage is represented in Figure 1.d. At this stage,
the grey region beyond the shock is the Schwarzschild metric outside the black hole.
A calculation shows that the time ..y is no more than about four times the time
it takes for the shock wave to become visible at the FRW center, c.f. [12].

One might ask how an observer near the FRW center would first detect evidence
of such a cosmic shock wave. Since the shock wave emerges from the Big Bang
beyond the Hubble length, the model would imply a uniform expansion throughout
a region that is initially well beyond the backward light cone of an observer posi-
tioned near the FRW center. If the shock wave were initially far enough out, then
the uncoupling of matter from radiation at about 300, 000 years after the Big Bang
would produce an extended region with a uniform background radiation field. This
region of uniformity would persist until roughly the time when the Hubble length
catches up to the shock wave, a time determined by the initial conditions. The in-
fluence of the solution beyond the shock wave would propagate into this radiation
field at the speed of light, first appearing to an observer that is off center on the
FRW side of the shock as a disturbance in the background radiation field at a point,
in the sky in the direction nearest the shock wave, and this disturbance would grow
from that time onward. Since, in our model, the density and pressure are smaller
beyond the shock wave, we would expect this disturbance to show itself as a second
temperature, lower than the microwave background radiation temperature, in the
direction of the shock wave.
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4. Concluding Remarks

These shock wave solutions of the Einstein equations inside the black hole confirm
the mathematical consistency of an FRW universe of finite extent and non-zero
pressure expanding outward from behind an entropy satisfying shock wave emerging
from the origin at subluminal speed beyond one Hubble length at the instant of
the Big Bang, a prerequisite for early Big Bang physics. Since the shock wave
emerges from the Big Bang beyond one Hubble length, it would account for the
uniform thermalization of radiation in an arbitrarily large central region that, for
some time, would appear to an observer to be no different from the FRW metric
by itself. Surprisingly, unlike shock matching outside the Black Hole, the equation
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(¢) (d)

Firaure 1. Stages of the Big Bang (a) The beginning (h) Early
stage inside the black hole (¢) Late stage inside the black hole (d)
Last stage outside the black hole
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of state p = % p of early Big Bang physics, plays a special role in the equations, and
for this equation of state alone, the behavior of the shock wave at the instant of the
Big Bang is distinguished. The entropy condition, (that the density and pressure
be larger on the side that receives the mass flux), breaks the time symmetry of the
Einstein equations, implies that the shock wave is compressive, and leads to the
determination of a unique solution-—the FRW metric expanding outward behind
a shock wave emanating from a White Hole is entropy satisfying, while its time
reversal, the FRW metric contracting into a Black hole, is entropy violating.

Thus, these exact shock wave solutions give the global dynamics of strong gravi-
tational fields in an exact solution, the dynamics is qualitatively different from the
dynamics of solutions when the pressure p = 0, (c.f. [13]), and the solution sug-
gests a Big Bang cosmological model in which the expanding universe is bounded
throughout its expansion. But these solutions are only rough qualitative models
because the equation of state on the FRW side of the shock takes the simplified
form p = op for 0 = constant, and the equation of state on the TOV side is de-
termined by the equations, and therefore cannot be imposed. For more general
equations of state, other waves, (e.g. rarefaction waves), would need to be present
to meet the conservation constraint, and thereby mediate the transition across the
shock wave. Such transitional waves would be pretty much impossible to model
in an exact solution. But the bounds on the pressure in these models imply that
the equations of state are qualitatively reasonable, and qualitative phenomena, in
general relativity, like the stability limits in stars, are rather insensitive to the fine
details of a given equation of state. Moreover, since the qualitative features of the
solutions are the same for all values of o, and for all values of the total mass of the
explosion, we expect that these solutions will capture the gross dynamics arising
when more accurate equations of state are imposed.

Thus our attempt to incorporate a shock wave beyond one Hubble length has led
to unexpected and interesting connections between Big Bang Cosmology and black
holes, and we suggest that general relativity pretty much forces the qualitative
behavior we see here into any reasonable model that assumes the spacetime is
simply connected, close to spherically symmetric, and relaxes the assumption in
the standard model that the Big Bang was an explosion of infinite total mass.
Moreover, the models imply the existence of a wave out beyond the galaxies that
could in principle be observable.
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