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Abstract

We discuss a computer visualization of the shock wave cosmological model introduced by
Smoller and Temple in [12].

1 Introduction

Our starting point is the following question: Could there be a wave at the leading edge of the
expansion of the galaxies set in motion by the Big Bang? Such a wave would mark the boundary
between the region of expanding galaxies and a different spacetime beyond the wave. If the wave
exists, then the total mass of the galaxies inside the wave would be finite, and so we ask, could
the Big Bang have been an explosion of finite total mass with a wave at the leading edge of the
expansion, similar to a classical explosion? In the standard model of cosmology based on the
Friedmann universe, the Big Bang is an explosion of infinite mass and infinite extent, (the critical
Friedmann universe is infinite at each time after the Big Bang)—so there is nothing beyond the
galaxies in the standard model. Now not knowing anything about the spacetime beyond the wave,
one might think that any spacetime could be on the other side of it. But if the explosion is large
enough, so that the wave is far enough out to be believable, then, since the total mass M inside
radius r increases like r

3
, far enough out we must have 2M/r > 1, the condition for being inside a

black hole in the Schwarzschild spacetime. In this sense, if the wave lies beyond a sufficiently large
radial distance, then the whole spacetime lies inside a black hole—and so there are constraints,
and not everything is possible. Based on this, we pose the following mathematical question: Is the
possibility that the Big Bang was an explosion of finite total mass, and the existence of a consequent
wave at the leading edge of the expanding galaxies far enough out to be believable, consistent with
the the principles of general relativity? In [12, 13] the authors confirm the consistency of this
possibility in an exact solution. The purpose of this talk is to describe the solution in [12], and to
present a computer visualization of the cosmological model implied by this solution. (For a longer
version with details, see [12, 13, 14]).
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2 Cosmology With a Shock Wave Inside a Black Hole

In the standard model of cosmology, the expanding universe of galaxies is described by a Friedmann-
Robertson-Walker (FRW) metric, which in spherical coordinates has a line element given by [1, 16,
17],

ds
2 = −dt

2 + R
2(t)

�
dr

2

1− kr2
+ r

2[dθ
2 + sin

2
θ dφ

2]
�

. (1)

In this model, which accounts for things on the largest length scale, the universe is approximated by
a space of uniform density and pressure at each fixed time, and the expansion rate is determined by
the cosmological scale factor R(t) that evolves according to the Einstein equations. Astronomical
observations show that the galaxies are uniform on a scale of about one billion lightyears, and to
within experimental error, the expansion is critical—that is, k = 0 in (1)—and so, according to (1),
on the largest scale, the universe is infinite flat Euclidian space R

3 at each fixed time, with arclenth
radial distance give by r̄ = Rr. Matching the Hubble constant H = Ṙ/R to its observed values,
and invoking the Einstein equations, the FRW model implies that the entire infinite universe R

3

emerged all at once from a singularity, (R=0), some 14 billion years ago, and this event is referred
to as the Big Bang.

Now in the standard Schwarzschild metric outside a central point mass M,

ds
2 = −Bdt̄

2 + A
−1

dr̄
2 + r̄

2
dΩ2

, (2)
B = A = 1− 2M

r̄
, (3)

the Schwarzschild radius r̄ = 2M plays a critical role, this being the transition from the region
outside the black hole (2M/r̄ < 1) to the region inside the black hole (2M/r̄ > 1). Thus if there
is a wave at the leading edge of the expansion of the galaxies, (which to start we can model as a
discrete shock wave), the following natural question presents itself: What is the critical (smallest)
radius r̄crit at each fixed time t > 0 in a k = 0 FRW metric such that the total mass inside a
shock wave positioned beyond that radius puts the universe inside a black hole in the sense that
2M

r̄
> 1?4 The answer is that when k = 0, r̄crit is exactly equal to the Hubble length r̄crit = c

H
,

where c denotes the speed of light. To see this, use that the total mass inside radius r̄ at fixed time
t > 0 in the FRW spacetime is equal to the integral at fixed t of the FRW energy density ρ(t),

M(r̄, t) = 4π

�
r̄

0
ρ(t)ξ2

dξ =
4π

3
ρ(t)r̄3

, (4)

and then relate the energy density ρ(t) to the Hubble length through the FRW equation

H
2 =

8π

3
ρ, (5)

4
For our purposes here we refer to the region where 2M/r̄ > 1 as the region inside the black hole, independent of

the time orientation of the solution. Of course, in an FRW spacetime, this region is relative to the choice of center

for the coordinates, but in a finite mass solution the region has geometric significance independent of the center.
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which follows from the Einstein equations, [12]. Substituting (5) into (4) we see that the condition
2M/r̄ = 1 is equivalent to r̄crit = 1/H, which is c

H
when units of time are included. Alternatively,

transforming (1) over to standard Schwarzschild coordinates, (coordinates in which the metric takes
the general form (2) with M and B as general functions of (t̄, r̄)), gives

ds
2 = − 1

ψ2

�
1

1−H2r̄2

�
dt̄

2 +
�

1
1−H2r̄2

�
dr̄

2 + r̄
2
dΩ2

, (6)

where ψ is an integrating factor that determines the time coordinate t̄, c.f. [12]. Thus the coefficient
of dr̄

2 is 1
1−H2r̄2 = 1

1−2M/r̄
, and we see that like the Schwarzschild metric, r̄crit = c/H plays the

role of a coordinate singularity for the FRW metric in standard Schwarzschild coordinates. In fact,
the coordinates (t, r) in (1) regularize the singularity in (6) just as the Eddington-Finkelstein or
Kruskall coordinates regularize the Schwarzschild singularity r̄ = 2M in (2), c.f. [12]. Of course,
the Hubble constant is only approximately constant over small enough time scales, and, in general,
H = H(t) is a decreasing funtion, and so the Hubble length c/H(t) is an increasing function of
FRW time t. The Hubble length c/H0 at time t0 is estimated to be on the order of 1010 light years.

The Hubble length c/H is a measure of the furthest a viewer can see in the visible universe. That
is, 1/H(t) is a good estimate of the age of the universe at time t > 0 in the standard model, so the
Hubble length c/H is the distance that a lightlike signal will travel starting at the Big Bang and
ending at time t. (Of course, you must choose a coordinate system with respect to which travel
distance can be measured, and it turns out that measuring at fixed time in FRW coordinates, the
visible universe extends out beyond one Hubble length.) Thus we have the following picture: the
radius to which you would have to squeeze a mass to form a black hole is the Schwarzschild radius
for that mass. The Schwarzschild radius r̄ = 2M for the mass of the earth is on the order of a
centimeter, for the mass of the sun on the order of a kilometer, for the mass of a typical galaxy
that has some 1012 solar masses on the order of 1012 kilometers; and if you ask how far you would
have to squeeze all of the mass of the visible universe to form a black hole, the answer is not at
all—the Schwarzschild radius of all of the galaxies and matter in the visible universe out to one
Hubble length in a k = 0 FRW spacetime, is exactly one Hubble length.

The Hubble length as a critical length scale explains the limitations in the authors’ previous exam-
ples [7, 11] of shock matching outside the black hole, the case when 2M

r̄
< 1, (c.f. Section 6, [11]).

In these examples, we obtained exact shock wave solutions of the Einstein equations by matching
a k = 0 FRW metric to a stationary metric of the form (2) outside the black hole, by which we
mean that A and B depend only on r̄, and r̄ < 2M, (A > 0), throughout the solution. Stationary,
spherically symmetric, matter filled spacetimes based on metrics of form (2) with A > 0, describing
static fluid spheres in general relativity, were first studied by Tolmann, Oppenheimer and Volkoff,
and the Chandresekhar and Bukdahl stability limits in stars are based on an analysis of the Einstein
equations for such metrics, [10]. We call a stationary solution of the Einstein equations of form (2)
when A > 0, a Tolmann-Oppenhemier-Volkoff (TOV) metric outside the black hole.

The limitation in our previous work [11] was that we could not find a shock wave matching of a
k = 0 FRW metric to a TOV metric outside the black hole for any shock wave with radial position
r̄ > c/H. We now understand this as follows: we cannot match a critically expanding FRW metric
to a classical TOV metric beyond one Hubble length without continuing the TOV solution into
the black hole region 2M

r̄
> 1, and we showed in [9] that the standard TOV metric cannot be
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continued smoothly across the boundary of the black hole 2M/r̄ = 1 except in the limiting case of
the Schwarzschild metric, the case when there is no matter present. The purpose of [12] is to show
that the total mass of the FRW metric can be cut off by a shock wave positioned out beyond one
Hubble length, and that in the resulting solution, the Big Bang reduces to an explosion of finite
total mass. The idea is to construct an exact solution of the Einstein equations by matching the
k = 0 FRW metric to what we call the TOV metric inside the black hole, a metric of the form (2)
restricted to the case 2M/r̄ > 1. In this case, the character of the metric and the character of the
Einstein equations that describe it are different. In particular, when 2M/r̄ > 1, the coordinate r̄

is timelike and t̄ is spacelike, so rather than describing a stationary metric, the equations describe
a metric evloving in time, such that everything is a function of the timelike variable r̄. The crucial
point is that this TOV metric inside the black hole is not just any old metric, it is exactly what we
need, because the total mass M(r̄) of the TOV metric beyond the shock interface is constant at
each fixed time r̄, and since the mass function M is continuous across a shock wave, (c.f. [2, 6, 15]),
the TOV metric inside the black hole provides the simplest metric that cuts off the total mass to a
finite value at each fixed time.

For our solution in [12, 13], we construct a simple class of exact, entropy satisfying shock wave
solutions of the Einstein equations for a perfect fluid by matching a k = 0 FRW metric to a TOV
metric inside the black hole, [3, 5]. For simplicity, we assume an FRW equation of state of the form
p = σρ, σ = constant, 0 < σ < 1,

5 and the TOV density and pressure ρ̄ and p̄ are determined
by the equations, subject to the physical condition 0 < p̄ < ρ̄, and the entropy condition for an
outward explosion, p̄ < p, ρ̄ < ρ. (If we were to impose the TOV equation of state, then other
waves like rarefaction waves would be present—a case pretty much impossible to describe globally
in closed form). One can view [12] as a natural extension of the Oppeheimer-Snyder (OS) model
to the case of non-zero pressure, inside the black hole, c.f. [4]. These solutions put forth a new
cosmological model in which the expanding Friedmann-Robertson-Walker (FRW) universe emerges
from the Big Bang with a shock wave at the leading edge of the expansion, analogous to a classical
shock wave explosion, except that, like the standard model of cosmology, the entire spacetime is
created at the instant of the Big Bang. Unlike the standard model, however, the Big Bang is an
explosion of finite total mass, but it is large enough to account for the enormous scale on which the
galaxies and the background radiation appear uniform. In these models, the shock wave must lie
beyond one Hubble length from the FRW center, this threshhold being the boundary across which
the bounded mass lies inside its own Schwarzschild radius, 2M/r > 1, and in this sense the shock
wave solution evolves inside a black hole. The entropy condition, which breaks the time symmetry
by selecting the explosion over the implosion, also implies that the shock wave must weaken until it
eventually settles down to a zero pressure OS interface, bounding a finite total mass, that emerges
from the white hole event horizon of an ambient Schwarzschild spacetime. For each σ, the total
mass of the end state of the explosion is determined by a free parameter in the model, and by choice
of this parameter, the mass can be arbitrarily large, and the shock wave arbitrarily far out. One
of the interesting surprises is that, unlike shock matching outside black hole, the equation of state
p = 1

3ρ, the equation of state at the earliest stage of Big Bang physics, is distinguished at the instant
of the Big Bang—for this equation of state alone, the shock wave emerges from the Big Bang at a
finite nonzero speed, the speed of light, decelerating to a subluminous wave from that time onward.
These shock wave solutions indicate a new cosmological model in which the Big Bang arises from
a localized white hole explosion occurring inside a matter filled universe that eventually evolves
outward through the white hole event horizon of an asymptotically flat Schwarzschild spacetime.

5
This catches the equation of state p =

c2

3 ρ correct at the earliest stage of Big Bang physics.
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More precisely, letting S = 1/n
2 where n equals the number of Hubble lengths from the FRW

center r̄ = 0 to the shock wave at time t > 0, and letting u = p̄

ρ
, we show that the TOV metrics

that match the given FRW metric Lipschitz continuously across a shock wave n Hubble lengths out,
such that there are no delta function sources at the shock, and such that conservation of energy
and momentum hold at the shock, are determined by solutions of the non-autonomous ODE for u

given by

du

dS
=

�
(1 + u)

2(1 + 3u)S

� �
(3u− 1)(σ − u) + 6u(1 + u)S

(σ − u) + (1 + u)S

�
. (7)

When σ is constant, a solution u(S) of (7) determines all other quantities in an FRW-TOV shock
wave solution inside the black hole. Here 0 < S < 1, where S = 0 represents the Big Bang, and
S = 1 marks the time when the shock wave is exactly one Hubble length from the FRW center, the
instant when the solution emerges from the white hole. We show that the entropy condition p̄ < p,

ρ̄ < ρ, and the TOV equation of state bound 0 < p̄ < p are equivalent to the single condition

S <

�
1− u

1 + u

� �
σ − u

σ + u

�
. (8)

Using this we prove the following theorem:

Theorem 1 For every σ, 0 < σ < 1, there exists a unique solution uσ(S) of (7), such that (8)
holds on the solution for all S, 0 < S < 1, and on this solution, 0 < uσ(S) < ū, limS→0 uσ(S) = ū,

where ū = Min {1/3,σ} , and

lim
S→1

p̄ = 0 = lim
S→1

ρ̄. (9)

Concerning the the shock speed, we have:

Theorem 2 Let 0 < σ < 1. Then the shock wave is everywhere subluminal, that is, the shock speed
sσ(S) ≡ s(uσ(S)) < 1 for all 0 < S ≤ 1, if and only if σ ≤ 1/3. Moreover, concerning the shock
speed at the Big Bang S = 0, we have

lim
S→0

sσ(S) = 0, σ < 1/3, (10)

lim
S→0

sσ(S) =∞, σ > 1/3, (11)

lim
S→0

sσ(S) = 1, σ = 1/3. (12)
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3 A Computer Visualization

In our cosmological interpretation of the FRW metric, we (loosely) identify the motion of the
galaxies with the motion of the FRW fluid, a perfect fluid with nonzero pressure, co-moving with
the FRW metric. Assuming this, the shock wave moves outward through the galaxies, (ṙ > 0), and
the Hubble length increases with time, but the number of Hubble lengths from the FRW center to
the shock wave, as well as the total mass behind the shock wave, both decrease in time, tending
to infinity in backwards time at the instant of the Big Bang. This is no contradiction because
the FRW pressure p is assumed nonzero, c.f. [13]. Since the Hubble length increases with time,
more and more galaxies pass inside of the threshold distance of one Hubble length and come into
view at the FRW center as time evolves. After the Big Bang, the shock wave in our exact solution
continues to weaken as it expands outward, satisfying the entropy condition for shocks all the way
out until the Hubble length eventually catches up to the shock wave. At this instant the shock
wave lies at the critical distance of exactly one Hubble length from the FRW center. From this
time onward, the shock wave can be approximated by a zero pressure, k = 0 Oppenheimer-Snyder
(OS) interface that emerges from the white hole event horizon of an ambient Schwarzschild metric
of finite mass. The entropy condition implies that the TOV density and pressure tend to zero as
the shock interface approaches the critical distance of one Hubble length. Thereafter the interface
continues on out to infinity along a geodesic of the Schwarzschild metric outside the the black hole.
Thus the OS solution gives the large time asymptotics of this new class of shock wave solutions
that evolve inside a black hole.

A computer visualization of this evolution was developed by Zeke Vogler as a research project in
our Graduate Group in Applied Mathematics at UC-Davis during the summer of 2004. A full
color version is soon to be found on our website at http://www.math.ucdavis.edu/∼temple, but
for purposes of exposition we include several snapshots here. Figure 1.a represents the initial Big
Bang. Note here that, as in the standard model, the whole FRW spacetime inside the shock wave,
as well as the TOV solution beyond the shock wave, are created at the instant of the Big Bang
t = 0. The shock wave emerges from the FRW center r̄ = 0, and the total mass of the explosion
is finite at every t > 0. In Figure 1.b, we see the solution a short time after the Big Bang. The
shock wave is represented by the thick grey, (which is red in the color version), circular region that
describes the transition between the inner white region of the FRW metric to the outer black TOV
spacetime that lies beyond the outermost circle. The region inside this shock layer represents our
FRW expanding universe, and the region beyond this layer represents the TOV spacetime inside
the black hole. The inner grey region in Figure 1.b represents the region of the FRW spacetime
at the center of the explosion that has recieved no information about the shock wave. The grey
region is special to shock wave explosions inside the black hole and is not present in FRW-TOV
shock wave models outside the black hole, [7, 11]. At a given time, the inner grey region can be
arbitrarily large, and so can persist for an arbitrarily long time, depending on a free parameter in
the model that can be interpreted as the total mass of the explosion. Loosely speaking, we could
say that for models inside the black hole, information about the shock wave propagates inward
from the wave, while outside the black hole information propagates outward from the center of the
explosion. The outer boundary of this circlular grey region represents an incoming lightlike signal
emanating from the shock wave at t = 0+, an instant after the Big Bang. It propagates inward
until it reaches the center, marking the time when the grey region disappears, and the shock wave
is visible to all observers inside. In a sense, the shock wave is able to get far out early on when the
spacetime is highly compressed, and after that, the propagation of information communicating its
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position is restricted by the speed of light bound. The outgoing thin white circle, (which is yellow
in the color vesion), represents the points exactly one Hubble length c/H(t) from the FRW center.
This curve emanates from the center of the explosion at t = 0+, an instant after the Big Bang, and
evolves outward through the grey region, and beyond, from that time onward as the Hubble length
increases. A calculation shows that the grey region in the center will degenerate to zero, (marking
the first time when the shock wave is visible at the FRW center), before the Hubble length catches
up to the shock wave. Figure 1.c depicts a time after the grey region has disappeared, the white
region iniside the shock layer has evolved into galaxies, and the outward propagating white circle
representing the Hubble length has not yet caught up to the shock—and so at this stage the whole
solution remains inside the black hole. Eventually, the white circle representing the Hubble length
will catch up to the shock wave, and at this instant, the wave is exactly one Hubble length from the
center of the explosion. This is the critical time tcrit at which the solution emerges from the black
hole and satisfies 2M/r̄ < 1 from this time onward. Assuming that the pressure is zero after time
tcrit, the solution emerges from the white hole event horizon of a Schwarzschild metric, and evolves
as a zero pressure Oppenhiemer-Snyder solution outside the black hole, from time tcrit onward. At
the end, the solution looks like a finite ball of mass expanding into empty space, outside the black
hole, something like a giant supernova. This final stage is represented in Figure 1.d. At this stage,
the grey region beyond the shock is the Schwarzschild metric outside the black hole. A calculation
shows that the time tcrit is no more than about four times the time it takes for the shock wave to
become visible at the FRW center, c.f. [12].

One might ask how an observer near the FRW center would first detect evidence of such a cosmic
shock wave. Since the shock wave emerges from the Big Bang beyond the Hubble length, the model
would imply a uniform expansion throughout a region that is initially well beyond the backward
light cone of an observer positioned near the FRW center. If the shock wave were initially far
enough out, then the uncoupling of matter from radiation at about 300, 000 years after the Big
Bang would produce an extended region with a uniform background radiation field. This region of
uniformity would persist until roughly the time when the Hubble length catches up to the shock
wave, a time determined by the initial conditions. The influence of the solution beyond the shock
wave would propagate into this radiation field at the speed of light, first appearing to an observer
that is off center on the FRW side of the shock as a disturbance in the background radiation field
at a point in the sky in the direction nearest the shock wave, and this disturbance would grow from
that time onward. Since, in our model, the density and pressure are smaller beyond the shock wave,
we would expect this disturbance to show itself as a second temperature, lower than the microwave
background radiation temperature, in the direction of the shock wave.

4 Concluding Remarks

These shock wave solutions of the Einstein equations inside the black hole confirm the mathematical
consistency of an FRW universe of finite extent and non-zero pressure expanding outward from
behind an entropy satisfying shock wave emerging from the origin at subluminal speed beyond one
Hubble length at the instant of the Big Bang, a prerequisite for early Big Bang physics. Since the
shock wave emerges from the Big Bang beyond one Hubble length, it would account for the uniform
thermalization of radiation in an arbitrarily large central region that, for some time, would appear
to an observer to be no different from the FRW metric by itself. Surprisingly, unlike shock matching
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outside the Black Hole, the equation of state p = 1
3ρ of early Big Bang physics, plays a special role

in the equations, and for this equation of state alone, the behavior of the shock wave at the instant
of the Big Bang is distinguished. The entropy condition, (that the density and pressure be larger on
the side that receives the mass flux), breaks the time symmetry of the Einstein equations, implies
that the shock wave is compressive, and leads to the determination of a unique solution—the FRW
metric expanding outward behind a shock wave emanating from a White Hole is entropy satisfying,
while its time reversal, the FRW metric contracting into a Black hole, is entropy violating.

Thus, these exact shock wave solutions give the global dynamics of strong gravitational fields in
an exact solution, the dynamics is qualitatively different from the dynamics of solutions when the
pressure p ≡ 0, (c.f. [13]), and the solution suggests a Big Bang cosmological model in which
the expanding universe is bounded throughout its expansion. But these solutions are only rough
qualitative models because the equation of state on the FRW side of the shock takes the simplified
form p = σρ for σ = constant, and the equation of state on the TOV side is determined by the
equations, and therefore cannot be imposed. For more general equations of state, other waves,
(e.g. rarefaction waves), would need to be present to meet the conservation constraint, and thereby
mediate the transition across the shock wave. Such transitional waves would be pretty much
impossible to model in an exact solution. But the bounds on the pressure in these models imply that
the equations of state are qualitatively reasonable, and qualitative phenomena in general relativity,
like the stability limits in stars, are rather insensitive to the fine details of a given equation of state.
Moreover, since the qualitative features of the solutions are the same for all values of σ, and for
all values of the total mass of the explosion, we expect that these solutions will capture the gross
dynamics arising when more accurate equations of state are imposed.

Thus our attempt to incorporate a shock wave beyond one Hubble length has led to unexpected
and interesting connections between Big Bang Cosmology and black holes, and we suggest that
general relativity pretty much forces the qualitative behavior we see here into any reasonable
model that assumes the spacetime is simply connected, close to spherically symmetric, and relaxes
the assumption in the standard model that the Big Bang was an explosion of infinite total mass.
Moreover, the models imply the existence of a wave out beyond the galaxies that could in principle
be observable.
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