
Preface

General relativity is the modern theory of the gravitational field. It is a deep
subject that couples fluid dynamics to the geometry of spacetime through
the Einstein equations. The subject has seen a resurgence of interest recently,
partly because of the spectacular satellite data that continues to shed new light
on the nature of the universe...Einstein’s theory of gravity is still the basic
theory we have to describe the expanding universe of galaxies. But the Einstein
equations are of great physical, mathematical and intellectual interest in their
own right. They are the granddaddy of all modern field equations, being the
first to describe a field by curvature, an idea that has impacted all of physics,
and that revolutionized the modern theory of elementary particles. In these
notes we describe a mathematical theory of shock wave propagation in general
relativity. Shock waves are strong fronts that propagate in fluids, and across
which there is a rapid change in density, pressure and velocity, and they can
be described mathematically by discontinuities across which mass, momentum
and energy are conserved. In general relativity, shock waves carry with them
a discontinuity in spacetime curvature. The main object of these notes is to
introduce and analyze a practical method for numerically computing shock
waves in spherically symmetric spacetimes. The method is locally inertial in
the sense that the curvature is set equal to zero in each local grid cell. Although
it formally appears that the method introduces singularities at shocks, the
arguments demonstrate that this is not the case.

The third author would like to dedicate these notes to his father, Paul
Blake Temple, who piqued the author’s interest in Einstein’s theory when
he was a young boy, and whose interest and encouragement has been an
inspiration throughout his adult life.

Blake Temple
Davis California

July 15, 2006
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1

Introduction

These notes present a self contained mathematical treatment of the initial
value problem for shock wave solutions of the Einstein equations in General
Relativity. The first two chapters provide background for the introduction
of a locally inertial Glimm Scheme in Chapter 3, a non-dissipative numeri-
cal scheme for approximating shock wave solutions of the Einstein equations
in spherically symmetric spacetimes. In Chapter 4 a careful analysis of this
scheme provides a proof of the existence of (shock wave) solutions of the spher-
ically symmetric Einstein equations for a perfect fluid, starting from initial
density and velocity profiles that are only locally of bounded total variation.
To keep the analysis as simple as possible, we assume throughout that the
equation of state is of the form p = σ2ρ, σ = const. For these solutions, the
components of the gravitational metric tensor are only Lipschitz continuous
functions of the spacetime coordinates at shock waves, and so it follows that
these solutions satisfy the Einstein equations, as well as the relativistic com-
pressible Euler equations, only in the weak sense of the theory of distributions.
The existence theory presented here establishes the consistency of the initial
value problem for the Einstein equations at the weaker level of shock waves,
for spherically symmetry spacetimes.

The material of Chapter 4 is taken from the work of Groah and Temple
[13], and relies on the results of Chapters 2 and 3. The material of Chapter 3 is
taken from the work of Groah and Temple, [12], and Chapter 2 is taken from
the work of Smoller and Temple [27]. The introductory material in Sections
1.1 and 1.2 of Chapter 1 is taken mostly from [30, 31], while the material in
Sections 1.3 and 1.4 is from [12, 13].

Chapter 2 outlines the simplest possible setting for shock wave propa-
gation in Special Relativity; namely, the case of a perfect fluid, under the
assumption that the equation of state is given by p = σ2ρ, where the sound
speed σ is assumed to be constant, 0 < σ < c. The assumption that σ < c
ensures that wave speeds are uniformly bounded away from the speed of light
for arbitrarily large densities, and σ bounded away from zero prevents the
formation of vacuum states ρ = 0, a well known singularity in the compress-
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ible Euler equations, [26]. Although this is a model problem, it has a number
of interesting applications in General Relativity. The case σ2 = c2/3 is the
equation of state for the extreme relativisitic limit of free particles, as well
as for pure radiation, and for radiation in thermal equilibrium with matter
when the energy density of radiation dominates. In particular, this equation
of state applies in the early universe, and has been derived as a model for the
equation of state in a dense Neutron star, [35]. The equation of state p = σ2ρ
can also be taken to be the equation of state for isothermal flow, applicable
to simple models of star formation, [29].

The main part of Chapter 2 is devoted to a proof of global existence of
shock wave solutions of the initial value problem for the relativistic com-
pressible Euler equations in flat, (1 + 1)-dimensional Minkowski spacetime,
assuming σ is constant. The analysis establishes a special property of solu-
tions of the relativistic compressible Euler equations when σ = const. Namely,
in the absence of gravity, the total variation of ln ρ is non-increasing in time
on weak solutions of the initial value problem. This property of weak solutions
when p = σ2ρ was first discovered in the non-relativistic regime by Nishida,
[22], and extended to the relativistic case in [28]. (See also [19, 23, 11, 20].)
The method used to obtain these results is based on the celebrated Glimm
difference scheme, or random choice method. This Glimm scheme is an approx-
imation method by which the solution is discretized into piecewise constant
states, and approximated locally by solving the so called Riemann problem
posed at the discontinuities. The novelty of this method is that new constant
states are chosen by a random choice selection process. An advantage of this
random choice process is that it eliminates dissipation effects which arise in
classical finite difference schemes, (very difficult to analyze), and we prefer the
random choice method over the front tracking method as the latter introduces
errors that obscure the locally inertial character of the scheme when extended
to general relativity. The main result on the solution of the Riemann problem
is given in Theorem 4, and the general existence theorem based on the Glimm
scheme is stated in Theorem 5.

In Chapter 3 we show that the spherically symmetric Einstein equations
in standard Schwarzschild coordinates are weakly equivalent to a system of
conservation laws with source terms. The main result is given in Theorem
9 which provides a locally inertial expression of the Einstein equations that
admits a valid weak formulation. Interestingly, the Einstein equations them-
selves lack a differential equation for the timelike metric component, and the
locally inertial formulation provides conserved quantities in terms of which the
equations close. This is demonstrated in Theorem 8. (The results of Chapter
3 require no restriction on the equation of state.)

The locally inertial expression of the equations is amenable to study by
the locally inertial Glimm scheme, and this is the subject of Chapter 4. In
their locally inertial form, the conserved quantities are taken to be the flat
Minkowski spacetime energy and momentum densities. Thus, in Chapter 4, we
can exploit the estimates of Chapter 2 in the conservation law step (based on
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the Riemann problem) of a fractional step Glimm scheme that is introduced
for the analysis of the initial value problem for the full (spherically symmetric)
Einstein equations, c.f. [19, 10, 26]. We prove in Chapter 4 that this fractional
step Glimm appoximation scheme converges to a weak solution of the Einstein
equations as the mesh length tends to zero. The main result on the existence
and regularity of large BV solutions constructed by the Glimm scheme is
stated in Theorem 11.

In these notes we interpret our fractional step method as a locally inertial
Glimm scheme, in the sense that it exploits the locally flat character of space-
time. That is, the scheme has the property that it solves the compressible
Euler equations of Minkowski spacetime exactly in locally inertial coordinate
frames, (grid rectangles), and the transformations between neighboring coordi-
nate frames are accounted for by discontinuities at the coordinate boundaries.
In Chapter 1 we introduce General Relativity and the Einstein equations as a
locally flat theory, with an eye toward interpreting the numerical method of
Chapter 4 in these terms. Included in Chapter 1 is an introduction to shock
waves and perfect fluids. For a survey of existence theories for classical so-
lutions of the Einstein equations, we refer the reader to the article [25]. For
a nice discussion of relativistic fluids we refer the reader to [1]. For other
references see [2, 3, 4, 5, 6, 16].

1.1 Introduction to Differential Geometry and General
Relativity

In Einstein’s theory of General Relativity, all properties of the gravitational
field are determined by the gravitational metric tensor g, a Lorentzian metric
that describes a continuous field of symmetric bilinear forms of signature
(−1, 1, 1, 1), defined at each point of a four dimensional manifold M called
“spacetime.” Freefall paths through the gravitational field are the geodesics of
the metric; the non-rotating vectors carried by an observer in freefall are those
vectors that are parallel transported by the (unique symmetric) connection
determined by g; spatial lengths of objects correspond to the lengths of the
spacelike curves that define their shape—length measured by the metric g; and
time changes for an observer are determined by the length of the observer’s
timelike curve through spacetime, as measured by the metric g.

The length of a curve in spacetime is computed by integrating the ele-
ment of arclength ds along the curve, where, in a given coordinate system on
spacetime, ds is defined by

ds2 = gijdx
idxj . (1.1.1)

Here we adopt the Einstein summation convention whereby repeated up-down
indices are assumed to be summed from 0 to 3. A coordinate system on space-
time is a regular map that takes a neighborhood Ux of spacetime to R4, x :
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Ux → R4. Since spacetime is a manifold, it can be covered by coordinate
charts. We let x = (x0, x1, x2, x3) denote both the coordinate map and the
coordinates of a point x(P ) ∈ R4. The functions gij(x), i, j = 0, 1, 2, 3, are
the x-components of the metric g. At each point x, the matrix gij determines
the lengths of tangent vectors in terms of their components relative to the
x-coordinate basis

{
∂

∂xi

}
. That is, in x-coordinates, the tangent vector to a

curve x(ξ), (as parameterized in x-coordinates), is given by X(ξ) = ẋi ∂
∂xi ,

so that along the curve x(ξ), the increment dxi in the xi-coordinate, in the
direction of the curve, is given by dxi = ẋi. Thus, according to (1.1.1), the
increment in arclength along a curve x(ξ) is given in terms of the increment
in the parameter ξ by

ds2 = gij ẋ
iẋjdξ2 = ||X(ξ)||2dξ2,

so that, the length of an arbitrary vector X = Xi ∂
∂xi is given by

||X||2 = gijX
iXj ,

where again we assume summation over repeated up-down indices. We con-
clude that the length of a curve is just the integral of the g-length of its
tangent vector along the curve. Under change of coordinates x→ y, a vector
Xi ∂

∂xi transforms to Xα ∂
∂yα according to the tensor transformation laws

Xα =
∂yα

∂xi
Xi,

∂

∂yα
=
∂xi

∂yα

∂

∂xi
. (1.1.2)

(Our slightly ambiguous notation is that indices i, j, k, ... label components in
x-coordinates, and α, β, γ, ... label components in y-coordinates. So, for exam-
ple, Xi is the xi-component of the tangent vector X, Xα is the yα-component
of X, etc. This works quite well, but tensors must be re-labeled when indices
are evaluated.) It follows that the metric tensor transforms according to the
tensor transformation law

gαβ = gij
∂xi

∂yα

∂xj

∂yβ
. (1.1.3)

That is, at each point, g transforms by the matrix transformation law

ḡ = AtgA

for a bilinear form, because the matrix A = ∂xj

∂yβ transforms the vector com-

ponents of the y-basis
{

∂
∂yα

}
over to their components relative to the x-basis{

∂
∂xi

}
. The Einstein summation convention keeps track of the coordinate

transformation laws as in (1.1.2) and (1.1.3) so long as we keep the indices
on coordinate functions “up” (as in xi), coordinate basis indices “down” (as
in ∂

∂xi ), indices on vector components “up”, (as in Xi so that X = Xi ∂
∂xi ),
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indices on basis 1-forms “up” (as in dxi), and indices on components of 1-
forms down (as in ωi so that ω = ωidx

i). In general, a tensor of type (k, l) is
said to have k-contravariant indices (up) and l-covariant indices (down) if the
components in a given coordinate system transform according to the tensor
transformation law

Tα1,...,αk

β1,...,βl
= T i1,...,ik

j1,...,jl

∂yα1

∂xi1
· · · ∂y

αk

∂xik

∂xj1

∂yβ1
· · · ∂x

jl

∂yβl
.

Here the (matrix) Jacobian satisfies ∂x
∂y =

(
∂y
∂x

)−1

, and by letting

gij = g−1
ij ,

we can raise or lower an index by contracting the index with the metric; that
is, for example,

T i
j = Tσjg

σi

raises the index i. In the modern theory of differential geometry, T i1,...,ik

j1,...,jl
are

viewed as the components of the tensor products{
∂

∂xi1
⊗ · · · ⊗ ∂

∂xik
⊗ dxj1 ⊗ · · · ⊗ dxjl

}
,

which form a basis for the set of operators that act linearly on k copies of
T ∗M and l copies of TM, c.f. [8].

Freefall paths through a gravitational field are geodesics of the spacetime
metric g. For example, the planets follow geodesics of the gravitational metric
generated by the Sun, (approximated by the Schwarzschild metric beyond the
surface of the Sun, and by the Tolman-Oppenheimer-Volkoff (TOV) metric
inside the surface of the Sun, [33, 24]), and according to the standard theory of
cosmology, the galaxies follow geodesics of the Friedmann-Robertson-Walker
(FRW) metric. In spherical coordinates x = (t, r, θ, φ), the Schwarzschild line
element is given by

ds2 = −
(

1− 2GM0

r

)
dt2 +

(
1− 2GM0

r

)−1

dr2 + r2dΩ2, (1.1.4)

the TOV line element is given by

ds2 = −B(r)dt2 +
(

1− 2GM(r)
r

)−1

dr2 + r2dΩ2, (1.1.5)

and the FRW line element is given by

ds2 = −dt2 +R(t)2
(

dr2

1− kr2
+ r2dΩ2

)
. (1.1.6)
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The line element determines the metric components gij through the identity
(1.1.1). Here G denotes Newton’s gravitational constant, M0 denotes the mass
of the Sun (or a star), M(r) denotes the total mass inside radius r, (a func-
tion that tends smoothly to M0 at the star surface), B(r) is a function that
tends smoothly to 1 − 2GM0/r at the star surface, H = Ṙ(t)

R(t) is the Hubble
“constant”, and dΩ2 = dθ2 + sin2(θ)dφ2 denotes the standard line element
on the unit 2-sphere. (Here 2GM = 2GM

c2 , and we take c = 1, [8].)
Each of the metrics (1.1.4)-(1.1.6) is a special case of a general spherically

symmetric spacetime metric of the form

ds2 = −A(r, t)dt2 +B(r, t)dr2 + 2D(r, t)drdt+ C(r, t)dΩ2, (1.1.7)

where A,B,C,D are arbitrary, smooth, positive functions. A spherically sym-
metric metric is said to be in standard Schwarzschild coordinates, (or the
standard coordinate guage), if it takes the simpler form

ds2 = −A(r, t)dt2 +B(r, t)dr2 + r2dΩ2. (1.1.8)

It is well known that, (under generic conditions), there always exists a coor-
dinate transformation that takes an arbitrary metric of form (1.1.7) over to
the simpler form (1.1.8), (see (3.1.4)-(3.1.8) in Chapter 3 below, and [35, 12]).
In these notes we deal exclusively with metrics in the form (1.1.8).

The geodesics of a metric are paths x(s) of extremal length, determined
by the geodesic equation

d2xi

ds2
= Γ i

jk

dxj

ds

dxk

ds
, (1.1.9)

where the so called Christoffel symbols or connection coefficients Γ i
jk are de-

fined by

Γ i
jk =

1
2
gσi {−gjk,σ + gσj,k + gkσ,j} . (1.1.10)

(Here “, k” denotes the classical derivative in direction xk.) The Christof-
fel symbols Γ i

jk are the central objects of differential geometry that do not
transform like a tensor. Indeed, they fail to be tensorial by exactly the amount
required to convert coordinate differentiation of vector components into a ten-
sorial operation. That is, for a vector field Y, let Y i denote the xi-component
of Y. The covariant derivative ∇ is defined by

∇ ∂
∂xσ

Y = Z,

where Z defines a vector field with x-components

Zi = Y i
;σ ≡

∂Y i

∂xσ
− Γ i

jkX
jXk. (1.1.11)
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For arbitrary vector fields X and Y, one defines the covariant derivative ∇XY
by

∇XY = Xσ∇ ∂
∂xσ

Y ≡ XσY i
;σ

∂

∂xi
.

We say that a vector field Y is parallel along a curve whose tangent vector is
X if

∇XY = 0,

all along the curve. It follows that the covariant derivative ∇XY measures the
rate at which the vector field Y diverges from the parallel translation of Y in
the direction of X. In a similar fashion, one can define the covariant derivative
∇T of any (k, l) tensor T as the (k, l + 1) tensor with components

T i1,...,ik

j1,...,jl;σ
.

For example, for a (1, 1) tensor T,

T i
j;σ = T i

j,σ − Γ i
τσT

τ
j + Γ τ

jσT
i
τ . (1.1.12)

More generally, to compute ∇T for a (k, l) tensor T, include a negative term
for every contravariant index, (contract the index with Γ as above), and a
positive term (as above) for every covariant index in T. We say that T is
parallel along a curve with tangent vector X if ∇XT = 0 all along the curve.
It follows that ∇XT measures the rate at which T diverges from the parallel
translation of T in direction X. For a (2, 0) tensor T we define the covariant
divergence of T to be the vector field defined by

divT = T iσ
;σ

∂

∂xi
. (1.1.13)

The covariant derivative commutes with contraction and the raising and low-
ering of indices, [35], and by (1.1.12), ∇ reduces to the classical derivative at
any point where the Christoffel symbols Γ i

jk vanish.
It follows from (1.1.10) that Γ i

jk = 0 at a point in a coordinate system
where gij,k = 0, all i, j, k = 0, ..., 3. The existence of such coordinate frames
at a point follows directly from the fact that the metric components gij are
smoothly varying, and transform like a symmetric bilinear form under co-
ordinate transformation. If in addition, gij = diag(−1, 1, 1, 1), then such a
coordinate system is said to be locally inertial, or locally Lorentzian at the
point. The notion of geodesics and parallel translation have a very natural
physical interpretation in General Relativity in terms of the locally inertial
coordinate frames. Indeed, General Relativity makes contact with (the flat
spacetime theory of) Special Relativity by identifying the locally Lorentzian
frames at a point as the “locally non-rotating” inertial coordinate systems in
which spacetime behaves as if it were locally flat. Thus physically, the non-
rotating vector fields carried by an observer in freefall should be the vector
fields that are locally constant in the locally inertial coordinate frames defined
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at each point along the curve. But since Γ i
jk = 0 at the center of a locally in-

ertial coordinate system, it follows from (1.1.11) that a vector field is parallel
translated along a curve, (in the sense that ∇XY = 0 along a curve), if and
only if its components are (locally) constant in the locally inertial coordinate
frames defined at each point along the curve. Thus we see that the non-rotating
vector fields carried by an observer in freefall are exactly the vectors that are
parallel transported by the unique symmetric connection (1.1.10) determined
by the gravitational metric g. Similarly, the geodesics of the metric g are just
the curves that are “locally straight lines” in the locally inertial coordinate
frames.

The fundamental tenet of General Relativity is the principle that there is
no apriori global inertial coordinate system on spacetime. Rather, in General
Relativity, inertial coordinate systems are local properties of spacetime in the
sense that they change from point to point. For example, if there were a global
Newtonian absolute space, then there would exist global coordinate systems
in which freefalling objects do not accelerate, and any two such coordinate
systems would be related by transformations from the 10 parameter Galilean
Group–the set of coordinate transformations that do not introduce acceler-
ations. In Special Relativity, the existence of absolute space would presume
the existence of global coordinate systems related by the transformations of
Special Relativity; that is, in Special Relativity, the 10 parameter Poincare
group replaces the 10 parameter Galilean Group as the set of transforma-
tions that introduce no accelerations. The Poincare Group is obtained from
the Galilean group by essentially replacing Euclidean translation in time by
Lorentz transformations, and this accounts for time dilation. The spacetime
metric can then be viewed as a book-keeping device for keeping track of the
location of the local inertial reference frames as they vary from point to point
in a given coordinate system–the metric locates the local inertial frames at a
given point as those coordinate systems that diagonalize the metric at that
point, gij = diag(−1, 1, 1, 1), such that the derivatives of the metric com-
ponents also vanish at the point. Thus, the earth moves “unaccelerated” in
each local inertial frame, but these frames change from point to point, thus
producing apparent accelerations in a global coordinate system in which the
metric is not everywhere diagonal. The fact that the earth moves in a periodic
orbit around the Sun is proof that there is no coordinate system that globally
diagonalizes the metric, and this is an expression of the fact that gravitational
fields produce nonzero spacetime curvature. Indeed, in an inertial coordinate
frame, when a gravitational field is present, one cannot in general eliminate
the second derivatives of the metric components at a point by any coordinate
transformation, and the nonzero second derivatives of the metric that cannot
be eliminated, represent the gravitational field. These second derivatives are
measured by the Riemann Curvature Tensor associated with the Riemannian
metric g.

Riemann introduced the curvature tensor in his inaugural lecture of 1854.
In this lecture he solved the longstanding open problem of describing curva-
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ture in surfaces of dimension higher than two. Although the curvature tensor
was first developed for positive definite “spatial” metrics, Einstein accounted
for time dilation by letting Lorentz transformations play the role of rotations
in Riemann’s theory, and except for this, Riemann’s theory carries over es-
sentially unchanged. The Riemann Curvature Tensor Ri

jkl(x) is a quantity
that involves second derivatives of gij(x), but which transforms like a tensor
under coordinate transformation; that is, the components transform like a
sort of four component version of a vector field, even though vector fields are
constructed essentially from first order derivatives. The connection between
General Relativity and geometry can be summarized in the statement that
the Riemann Curvature Tensor associated with the metric g gives an invari-
ant description of gravitational accelerations. The components of the Riemann
Curvature Tensor are given in terms of the Christoffel symbols by the formula,
[34],

Ri
jkl = Γ i

jl,k − Γ i
jk,l +

{
Γ σ

jlΓ
i
σk − Γ σ

jkΓ
i
σl

}
. (1.1.14)

One can interpret this as a “curl” plus a “commutator”.

1.2 Introduction to the Einstein Equations

Once one makes the leap to the idea that the inertial coordinate frames change
from point to point in spacetime, one is immediately stuck with the idea that,
since our non-rotating inertial frames here on earth are also non-rotating with
respect to the fixed stars, the stars must have had something to do with the
determination of our non-accelerating reference frames here on earth, (Mach’s
Principle). Indeed, not every Lorentzian metric can describe a gravitational
field, which means that gravitational metrics must satisfy a constraint that
describes how inertial frames at different points of spacetime interact and
evolve. In Einstein’s theory of gravity, this constraint is given by the Einstein
gravitational field equations. These field equations were first introduced by
Albert Einstein in 1915 after nine years of struggle.

The Einstein equations can be written in the compact form

G = κT. (1.2.1)

Here G denotes the Einstein curvature tensor, T the stress energy tensor,
(the source of the gravitational field), and κ is a universal constant. In a given
coordinate system x, the field equations (1.2.1) take the component form

Gij(x) = κTij(x), (1.2.2)

where
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Gij ≡ Rσ
iσj −

1
2
Rστ

στgij , (1.2.3)

denote the x-components of the Einstein curvature tensor, and Tij the x-
components of the stress energy tensor. We let 0 ≤ i, j ≤ 3 refer to components
in a given coordinate system, and again we assume the Einstein summation
convention whereby repeated up-down indices are assumed to be summed from
0 to 3. The components of the stress energy tensor give the energy density
and i-momentum densities and their fluxes at each point of spacetime. When
the sources are modeled by a perfect fluid, T is given (in contravariant form)
by

T ij = (ρ+ p)wiwj + pgij , (1.2.4)

where w denotes the unit 4-velocity vector of the fluid, (the tangent vector to
the world line of the fluid particle), ρ denotes the energy density, (as measured
in the inertial frame moving with the fluid), and p denotes the fluid pressure.
The four velocity w has components wi = dxi

ds when the fluid particle traverses
a (timelike) path x(s) in x-coordinates, and s is taken to be the arclength
parameter (1.1.1) determined by the gravitational metric g. It follows that
w is a unit timelike vector relative to g, and thus only three of the four
components of w are independent.

The constant κ in (1.2.1) is determined by the principle that the theory
should incorporate Newton’s theory of gravity in the limit of low velocities
and weak gravitational fields, (correspondence principle). This leads to the
value

κ = 8πG/c4.

Here c denotes the speed of light and G denotes Newton’s gravitational con-
stant. Newton’s constant first appears in the inverse square force law

Force = Ma = −GMM0

r3
r. (1.2.5)

In (1.2.5), M is the mass of a planet, M0 is the mass of the sun, and r is
the position vector of the planet relative to the center of mass of the system.
The Newton law (1.2.5) starts looking like it isn’t really a “fundamental law”
once one verifies that the inertial mass M on the LHS of (1.2.5) is equal to
the gravitational mass M on the RHS of (1.2.5), (Equivalence Principle). In
this case, M cancels out, and then (1.2.5) (remarkably) becomes more like
a law about accelerations than a law about “forces”. That is, once M can-
cels out, the force law (1.2.5) is independent of any properties of the object
(planet) whose motion it purports to describe. Thus, in Newton’s theory, the
“gravitational force”, which is different on different objects of different masses,
miraculously adjusts itself perfectly so that every object, (subject to the same
initial conditions), traverses exactly the same path. Thus Einstein was led
to suspect that the Newtonian gravitational force was some sort of artificial
device, and that the fundamental objects of the gravitational field were the
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“freefall paths”, not the forces. From this point of view, the field equations
(1.2.1) are more natural than (1.2.5) because they are, at the start, equa-
tions for the gravitational metric, and the gravitational metric fundamentally
describes the paths of “freefalling” objects by means of the geodesic equa-
tion of motion (1.1.9)—which just expresses “local non-acceleration in locally
inertial coordinate frames”. In Newton’s theory of gravity, the non-rotating
frames here on earth are aligned with the stars because there is a global iner-
tial coordinate system that connects us. In contrast, according to the modern
theory of cosmology, which is based on Einstein’s theory of gravity, the non-
rotating inertial frames here on earth are aligned with the stars because the
FRW metric (1.2.1) maintains this alignment, and (1.2.1) solves the Einstein
equations for an appropriate choice of R(t). (This is still a bit unsatisfying!)

In the limit that a finite set of point masses tends to a continuous mass
distribution with density ρ, Newton’s force law is replaced by the Poisson
equation for the gravitational potential φ,

−∆φ = 4πGρ. (1.2.6)

Indeed, in the case of a compactly supported density ρ(x), one can use the
fundamental solution of Laplacian to write the solution of (1.2.6) as

φ(x) =
∫

R3

G
|x− y|

ρ(y)d3y, (1.2.7)

so the Newtonian acceleration at a point x is given by

a = −∇φ =
∫

R3

G
|x− y|3

(x− y)ρ(y)d3y. (1.2.8)

Thus we recover (1.2.5) from (1.2.8) by approximating ρ in (1.2.8) by a finite
number of point masses.

The Einstein equations play the same role in General Relativity that the
Poisson equation (1.2.6) plays in the Newtonian theory of gravity—except
there is a very significant difference: the Poisson equation determines the
(scalar) gravitational potential φ given the mass density ρ, but in Newton’s
theory this must be augmented by some system of conservation laws in order
to describe the time evolution of the mass density ρ as well. For example, if we
assume that the density evolves according to a perfect fluid with pressure p
and 3-velocity v, then the coupling of Newton’s law of gravity with the Euler
equations for a perfect fluid leads to the Euler-Poisson system

ρt + div(ρv) = 0,
(ρvi)t + div(ρviv + pei) = −ρ∇φ, (1.2.9)

−∆φ = 4πGρ.
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The first four equations are the compressible Euler equations with the grav-
itational forcing term on the RHS. The first equation, the continuity equa-
tion, expresses conservation of mass, the next three express conservation of
i-momentum, i = 1, 2, 3, (for a perfect fluid this really says that the time rate
of change of momentum is equal to the sum of the force of the pressure gra-
dient plus the force of the gravitational field; ei denotes the i’th unit vector
in R3), and the last equation expresses the continuum version of Newton’s
inverse square force law. Note that for the fluid part of (1.2.9), information
propagates at the sound (and shock) speeds, but the gravitational potential φ
is updated “instantaneously”, depending only on the density ρ(x, t), according
to the formula (1.2.7). In contrast, for Einstein’s theory of gravity, the time
evolution of the gravitational metric is determined simultaneously with the
time evolution of the sources through system (1.2.1), and all of the compo-
nents of the stress tensor directly influence the components of the gravitational
field gij . This principle is the basis for the discovery of the Einstein equations.
Indeed, since the 0-column of the stress-energy tensor (1.2.4) gives the energy
and momentum densities, and the i-column gives the corresponding i-fluxes,
(in the relativistic sense), it follows that conservation of energy-momentum in
curved spacetime reduces to the statement

Div(T ) = 0, (1.2.10)

where (capital) Div denotes the covariant divergence for the metric g, so that
it agrees with the ordinary divergence in each local inertial coordinate frame.
In this way equations (1.2.10) reduce to the relativistic compressible Euler
equations in flat Minkowski spacetime. Since the covariant derivative depends
on the metric components, the conservation equation (1.2.10) is essentially
coupled to the equation for the gravitational field g. But the stress tensor T
is symmetric, Tij = Tji, and so the tensor on the LHS of (1.2.2) must also be
symmetric. Therefore the Einstein equations (1.2.2) supply ten independent
equations in the ten independent unknown metric components gij , together
with the four independent functions among ρ and the unit vector field w.
(For example, assume p is determined by ρ through an equation of state of
the form p = p(ρ).) But (1.2.2) assumes no coordinate system, and thus in
principle we are free to give four further relations that tie the components of
G and T to the coordinate system. This leaves ten equations in ten unknowns,
and thus there are no further constraints allowable to couple system (1.2.1)
to the conservation laws (1.2.10). The only way out is to let (1.2.10) follow
as an identity from (1.2.1), and this determines the LHS of (1.2.1), namely,
the Einstein tensor Gij is the simplest tensor constructable from Ri

jkl such
that (1.2.10) follows identically from the Bianchi identities of Riemannian
geometry, (Ri

j[kl,m] = 0, where [kl,m] denotes cyclic sum, c.f., [35]). 4 Thus,

4 This is the simplest known route to the field equations (1.2.1). Of course, since
(1.2.1) represents a new starting point, it follows that there must be a “conceptual
leap” at some stage of any “derivation” of (1.2.1).
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the simplest and most natural field equations of form (1.2.1) are uniquely
determined by the equation count, [35]. The next simplest tensor for the LHS
of (1.2.1) that meets (1.2.10) is

Gij + Λgij ,

where Λ is the famous cosmological constant first identified by Albert Einstein
in his attempt to construct a cosmological model that was static, c.f. [35]. In
these notes we always assume Λ = 0. One can show that in the limit of
low velocities and weak gravitational fields, the equations (1.2.10) reduce to
the first four equations of (1.2.9), and the (0, 0) component of the Einstein
equations (1.2.2) reduces to the Poisson equation (1.2.6), thus fixing the choice
κ = 8πG/c4, [35]. This establishes the correspondence of Einstein’s theory of
gravity with the Newtonian theory.

To summarize, in Einstein’s theory of gravity, based on (1.2.1), the con-
servation of energy and momentum (1.2.10) are not imposed, but follow as
differential identities from the field equations (1.2.1). In a specified system of
coordinates, (1.2.1) determines a hyperbolic system of equations that simulta-
neously describes the time evolution and interaction of local inertial coordinate
frames, as well as the time evolution of the fluid according to (1.2.10). Since
GR is coordinate independent, we can always view the time evolution (1.2.1)
in local inertial coordinates at any point in spacetime, in which case (1.2.10)
reduces to the classical relativistic Euler equations at the point. This tells
us that, heuristically, shock waves must form in the time evolution of (1.2.1)
because one could in principle drive a solution into a shock while in a neigh-
borhood where the equations remained a small perturbation of the classical
Euler equations. (This is much easier to say than to demonstrate rigorously,
and as far as we know, such a demonstration has not been given.)

In these notes, we assume that shock waves are as fundamental to the time
evolution of solutions of the Einstein equations for a perfect fluid, as they are
for the time evolution of the classical compressible Euler equations (1.2.9). At
a shock wave, the fluid variables ρ, w and p are discontinuous. Notice that
(1.2.1) implies that the Einstein curvature tensor G will be discontinuous at
any point where T is discontinuous. Since G involves second derivatives of
the metric tensor g, the only way (1.2.1) can hold in the classical pointwise
a.e. sense at the shock is if the component functions gij are continuously
differentiable at the shock, with bounded derivatives on either side; that is, if
gij ∈ C1,1. Thus we expect from (1.2.1) that the spacetime metric g should be
C1,1 at shock waves. However, we now show that for a spherically symmetric
metric in standard Schwarzschild coordinates (1.1.8), the best one can expect
is that g ∈ C0,1.
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1.3 The Simplest Setting for Shock Waves

In these notes we assume the simplest possible setting for shock wave prop-
agation in General Relativity: namely, the case of a spherically symmetric
metric in standard Schwarzschild coordinates (1.1.8), assuming a perfect fluid
(1.2.4) with equation of state

p = σ2ρ, 0 < σ < c, (1.3.1)

where σ, the sound speed, is assumed to be constant.5 Using MAPLE to
put the metric ansatz (1.1.8) into the Einstein equations (1.2.1) produces the
following system of four coupled partial differential equations, (c.f. (3.20)-
(3.23) of [12]),

A

r2B

{
r
B′

B
+B − 1

}
= κA2T 00, (1.3.2)

−Bt

rB
= κABT 01, (1.3.3)

1
r2

{
r
A′

A
− (B − 1)

}
= κB2T 11, (1.3.4)

− 1
rAB2

{Btt −A′′ + Φ} =
2κr
B
T 22, (1.3.5)

where the quantity Φ in the last equation is given by,

Φ = −BAtBt

2AB
− B

2

(
Bt

B

)2

− A′

r
+
AB′

rB

+
A

2

(
A′

A

)2

+
A

2
A′

A

B′

B
.

Here “prime” denotes ∂/∂r, “dot” denotes ∂/∂t, κ = 8πG
c4 is again the coupling

consant, G is Newton’s gravitational constant, c is the speed of light, T ij ,
i, j = 0, ..., 3 are the components of the stress energy tensor, and A ≡ A(r, t),
B ≡ B(r, t) denote the components of the gravitational metric tensor (1.1.8)
in standard Schwarzschild coordinates x = (x0, x1, x2, x3) ≡ (t, r, θ, φ). The
mass function M is defined through the identity

5 This simplifying assumption, as well as insuring that wave speeds are bounded by
the speed of light for arbitrarily strong shock waves, also prevents the formation of
vacuum states, and allows us to exploit special properties of the relativistic com-
pressible Euler equations derived in Chapter 2. The results of Chapter 3 regarding
the weak equivalence of the Einstein equations with a system of conservation laws
with time dependent sources, hold for general p.
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B =
(

1− 2M
r

)−1

, (1.3.6)

and M ≡M(r, t) is interpreted as the mass inside radius r at time t. In terms
of the variable M, it follows directly that equations (1.3.2) and (1.3.3) are
equivalent to

M ′ = 1
2κr

2AT 00, (1.3.7)

and

Ṁ = − 1
2κr

2AT 01, (1.3.8)

respectively. Using the perfect fluid assumption (1.2.4), the components T ij

satisfy

T 00 =
1
A
T 00

M , (1.3.9)

T 01 =
1√
AB

T 01
M , (1.3.10)

T 11 =
1
B
T 11

M , (1.3.11)

where T ij
M denote the components of T in flat Minkowski spacetime. When

p = σ2ρ, the components of TM are given by

T 00
M =

c4 + σ2v2

c2 − v2
ρ, (1.3.12)

T 01
M =

c2 + σ2

c2 − v2
cvρ, (1.3.13)

T 11
M =

v2 + σ2

c2 − v2
ρc2, (1.3.14)

c.f., [27, 12]. Here v, taken in place of w, denotes the fluid velocity as measured
by an observer fixed with respect to the radial coordinate r. It follows from
(1.3.7) together with (1.3.12)-(1.3.14) that, if r ≥ r0 > 0, then

M(r, t) = M(r0, t) +
κ

2

∫ r

r0

T 00
M (r, t)r2 dr; (1.3.15)

it follows from (1.2.2) together with (1.3.12)-(1.3.14), that the scalar curvature
R is proportional to the density,

R = (c2 − 3σ2)ρ; (1.3.16)

and it follows directly from (1.3.12)-(1.3.14) that
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∣∣T 01
M

∣∣ < T 00
M , (1.3.17)

σ2

c2+σ2T
00
M < T 11

M < T 00
M . (1.3.18)

Equations (1.3.1)-(1.3.18) define the simplest possible setting for shock wave
propagation in the Einstein equations.

1.4 A Covariant Glimm Scheme

When shock waves are present in solutions of (1.3.2)-(1.3.5), T is discontin-
uous, and so it follows from (1.3.2) and (1.3.4) that A and B will be at best
Lipschitz continuous, and so equation (1.3.5) can only hold in the weak sense.
We prove the existence of such weak solutions of the Einstein equations in
Chapter 4. In Chapter 3 we show that when A and B are Lipschitz contin-
uous functions of (t, r), and T is bounded in L∞, system (1.3.2)-(1.3.5) is
weakly equivalent to the system obtained by replacing (1.3.3) and (1.3.5) by
the system DivT = 0 in the form,

{
T 00

M

}
,0

+

{√
A

B
T 01

M

}
,1

= − 2
x

√
A

B
T 01

M , (1.4.1)

{
T 01

M

}
,0

+

{√
A

B
T 11

M

}
,1

= −1
2

√
A

B

{
4
x
T 11

M +
(B − 1)

x
(T 00

M − T 11
M ) (1.4.2)

+2κxB(T 00
M T 11

M − (T 01
M )2)− 4xT 22

}
.

(We use x in place of r when the equations are expressed as a system of con-
servation laws.) This is a nice formulation of DivT = 0 because the conserved
variables u = (T 00

M , T 01
M ) are the Minkowski energy and momentum densities,

(c.f. (1.3.12), (1.3.13)), and thus do not depend on the metric components
A ≡ (A,B). Note that all terms involving time derivatives of A and B have
cancelled out from the RHS of (1.4.1), (1.4.2), a nice feature of this choice of
variables. (Note also that there is no Ȧ equation among (1.3.2)-(1.3.5) with
which to eliminate Ȧ terms, so some change of variables is required to elim-
inate such terms from DivT = 0, c.f. (3.3.3), (3.3.4) below.) What results is
a system of conservation laws with source terms which can be written in the
compact form

ut + f(A, u)x = g(A, u, x), (1.4.3)
A′ = h(A, u, x), (1.4.4)

where the first equation is (1.4.1),(1.4.2), and the second equation is
(1.3.2),(1.3.4), so that
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u = (T 00
M , T 01

M ) ≡ (u0, u1),
A = (A,B),

f(A, u) ≡ (f0, f1) =

√
A

B

(
T 01

M , T 11
M

)
,

and g = (g0, g1) is determined from the RHS of (1.4.1), (1.4.2), while
h = (h0, h1) is determined from the RHS of (1.3.4), (1.3.2) upon solving
for (A′, B′), respectively, (c.f. (4.1.12)-(4.1.13) below).

The existence theory in Chapter 4 is based on a fractional step Glimm
scheme first introduced in [13]. The fractional step method employs a Riemann
problem step, (the Riemann problem is discussed in Chapter 2, c.f. [26]), that
simulates the source free conservation law ut + f(A, u)x = 0, (A ≡ Const),
followed by an ODE step that accounts for the sources present in both f
and g. The idea for the numerical scheme is to stagger discontinuities in the
metric with discontinuities in the fluid variables so that the Riemann problem
step, as well as the ODE step of the method, are both generated in grid
rectangles on which the metric components A = (A,B), (as well as x), are
constant. The equation A′ = h(A, u, x) is solved at the end of each time step,
and Glimm’s method of random choice is employed to re-discretize at the
start of the next time step. (See Section 4.3 for a precise definition of the
fractional step scheme.) Part of the proof of existence involves showing that
the ODE step ut = g(A, u, x)−∇Af ·A′, with h substituted for A′, accounts
for both the source term g, as well as the effective sources that are due to
the discontinuities in the metric components at the boundaries of the grid
rectangles.

Because only the flux f in the Riemann problem step depends on A, it
follows that the only effect of the metric on the Riemann problem step of
the method is to change the wave speeds, but except for this, the solution
of the Riemann problem in each grid rectangle agrees with the solution in
flat Minkowski spacetime. At this stage, we can apply the estimates which we
obtain in Chapter 2 for the problem divT = 0 in flat Minkowski spacetime–the
total variation of ln ρ∆x(·, t) is non-increasing on the Riemann problem step of
the method. Thus to obtain compactness of approximate solutions, one needs
only show that the increase in the total variation of ln ρ∆x(·, t) produced by
the ODE step and the imposition of the constraints, is order ∆x. The main
technical problem in achieving this is to keep track of the order of choice of
constants and to show that the total mass M∞ = κ

2

∫∞
r0
ρr2 dr is bounded.

The problem is that, in the estimates, the growth of ρ depends on M and the
growth of M depends on ρ, and M is defined by a non-local integral. Thus,
an error estimate of order ∆x for ∆ρ after one time step, is not sufficient to
bound the total mass M∞ after one time step.

We conclude the Introduction by returning to our theme that the fractional
step method of Chapter 4 can be viewed as a locally inertial version of Glimm’s
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method in the sense that it exploits the locally flat character of spacetime.
To see this, note that the Riemann problem step solves the equations ut +
f(A, u)x = 0 inside grid rectangles Rij where A ≡ Const. Thus each grid
rectangle is a local inertial reference frame because the metric is flat when
A ≡ Const. The boundaries between these local inertial reference frames
are the discontinuities that appear along the top, bottom and both sides of
the grid rectangles. These discontinuities are determined through the ODE
step ut = g(A, u, x) − ∇Af · A′, followed by the random choice and the
imposition of the constraint A′ = h(A, u, x). The term −∇Af · A′ on the
RHS of the ODE step accounts for the discontinuities in A along the sides
of the grid rectangles Rij , and the term g in the ODE step, together with
the constraint A′ = h(A, u, x) at the end of each timestep, both account for
the discontinuities in A at the top and bottom of each Rij . It follows that
once the convergence of an approximate solution is established, one can just
as well replace the true approximate solution by the solution of the Riemann
problem in each grid rectangle Rij–the two differ by only order ∆x. The
resulting appoximation scheme converges to a weak solution of the Einstein
equations, and has the property that it solves the compressible Euler equations
exactly in local inertial coordinate frames, (grid rectangles), and accounts for
the transformations between neighboring coordinate frames by discontinuities
at the coordinate boundaries.

We conclude by reiterating that the fractional step Glimm method intro-
duced in Chapter 4 for the analysis of the initial value problem, (material
taken from [13]), is natural for the Einstein equations because it is a locally
inertial method that exploits the locally flat character of spacetime. Such
a method requires that shock waves be accounted for because the Riemann
problem is essentially incomplete without shock waves.

We begin Chapter 2 with a discussion of the relativistic compressible Euler
equations divT = 0 in flat Minkowski spacetime.
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The Initial Value Problem in Special Relativity

2.1 Shock Waves in Minkowski Spacetime

We consider the relativistic equations for a perfect fluid

divT = 0, (2.1.1)

in flat Minkowski spacetime,

ds2 = ηijdx
idxj = −d(ct)2 + d(x1)2 + d(x2)2 + d(x3)2, (2.1.2)

where
T ij = (p+ ρc2)wiwj + pηij , (2.1.3)

denotes the stress-energy tensor for the fluid. Recall that in Minkowski space-
time,

divT ≡ T i
j,i (2.1.4)

where again we assume summation over repeated up-down indices, “, i” de-
notes differentiation with respect to the variable xi, and in general all indices
run from 0 to 3 with x0 ≡ ct. In (2.1.3), c denotes the speed of light, (we take
c = 1 when convenient), p the pressure, w = (w0, ..., w3) the 4−velocity of
the fluid particle, ρ the mass-energy density, and ηij ≡ ηij ≡ diag(−1, 1, 1, 1).

In this section we study the initial value problem for (2.1.1) in a two
dimensional spacetime (x0, x1), so that ρ and w are unknown functions of
(x0, x1), and

ηij =
[
−1 0
0 1

]
. (2.1.5)

Under these assumptions the stress-energy tensor (2.1.3) takes the form

T ij =
[

(p+ ρc2)w0w0 − p (p+ ρc2)w0w1

(p+ ρc2)w0w1 (p+ ρc2)w1w1 + p

]
. (2.1.6)
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For our theorem we assume that p and ρ satisfy an equation of state of
the form

p = σ2ρ, (2.1.7)

where σ2, the sound speed, is taken to be constant, σ < c. In particular,
when σ2 = c2/3, (2.1.7) gives the important relativistic case p = (c2/3)ρ
discussed above. Since the background metric is the flat Minkowski metric
ηij , the increment of proper time τ, (Minkowski arclength), along a curve is
given by the formula

d(ξ)2 = −ηijdx
idxj , (2.1.8)

where we use the notation ξ = cτ. In this way the coordinate time t and the
proper time τ have the dimensions of time, while x0 and ξ have the dimensions
of length. Since wi = dxi/d(cτ), (where differentiation is taken along a particle
path), defines the dimensionless velocity of the fluid, we must have

w0 =
√

1 + (w1)2. (2.1.9)

Thus letting w ≡ w1, the equations we consider are

∂

∂x0
{(p+ ρc2)(1 + w2)− p}+

∂

∂x1
{(p+ ρc2)w

√
1 + w2} = 0,

(2.1.10)
∂

∂x0
{(p+ ρc2)w

√
1 + u2}+

∂

∂x1
{(p+ ρc2)w2 + p} = 0,

together with the initial data

ρ(0, x1) = ρ0(x1), w(0, x1) = w0(x1). (2.1.11)

The equations (2.1.10) form a system of nonlinear hyperbolic conservation
laws in the sense of Lax [17]. Thus if one seeks global (in time) solutions, then
due to the formation of shock waves, one must extend the notion of solution, in
the usual way, [26], in order to admit as solutions such discontinuous functions.

In the classical limit, the relativistic system (2.1.10) reduces to the clas-
sical version of the compressible Euler equations. In order to observe this
correspondence throughout, we set x ≡ x1, choose x ≡ (x, t) as the indepen-
dent variables, and replace w in system (2.1.10) in favor of its expression in
terms of the classical coordinate velocity v ≡ dx/dt of the particle paths of
the fluid. To accomplish this, note that by (2.1.9),

dt

dτ
=
dx0

dξ
=
√

1 + w2,

so we can write

v =
dx1

dt
=
dx1

dξ

dξ

dt
= cw

1√
1 + w2

, (2.1.12)

which solving for w gives
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w = v/
√
c2 − v2. (2.1.13)

The mapping w → v in (2.1.13) defines a smooth 1 − 1 mapping from
(−∞,+∞) to (−c, c), and so there is no loss of generality in taking v as
the state variable instead of w.

Now writing system (2.1.10) in terms of ρ and v and multiplying the first
equation by 1/c, we obtain the general system

∂

∂t

{
(
p+ ρc2)

c2
v2

c2 − v2
+ ρ

}
+

∂

∂x

{
(p+ ρc2)

v

c2 − v2

}
= 0,

(2.1.14)
∂

∂t

{
(p+ ρc2)

v

c2 − v2

}
+

∂

∂x

{
(p+ ρc2)

v2

c2 − v2
+ p

}
= 0.

Restricting to the case p = σ2ρ, (2.1.14) reduces to

∂

∂t

{
ρ[
(
σ2 + c2

c2

)
v2

c2 − v2
+ 1]

}
+

∂

∂x

{
ρ[(σ2 + c2)

v

c2 − v2
]
}

= 0,

(2.1.15)
∂

∂t

{
ρ[(σ2 + c2)

v

c2 − v2
]
}

+
∂

∂x

{
ρ[(σ2 + c2)

v2

c2 − v2
+ σ2]

}
= 0,

together with the initial conditions

ρ(x, 0) = ρ0(x), v(x, 0) = v0(x). (2.1.16)

Note that in the limit c → ∞, the system (2.1.14) reduces to the classical
system

ρt + (ρv)x = 0,
(2.1.17)

(ρv)t + (ρv2 + σ2ρ)x = 0.

The main purpose of this chapter is to prove the following theorem:

Theorem 1 Let ρ0(x) and v0(x) be arbitrary initial data satisfying

V ar {ln(ρ0(·))} <∞, (2.1.18)

and

V ar

{
ln
(
c+ v0(·)
c− v0(·)

)}
<∞, (2.1.19)

where V ar{f(·)} denotes the total variation of the function f(x), x ∈ R. Then
there exists a bounded weak solution (ρ(x, t), v(x, t)) of (2.1.15) satisfying

V ar {ln(ρ(·, t))} ≤ V0, (2.1.20)
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and

V ar

{
ln
(
c+ v(·, t)
c− v(·, t)

)}
≤ V1, (2.1.21)

where (2.1.20) and (2.1.21) are Lorentz invariant statements, and V0 and V1

are Lorentz invariant constants depending only on the initial total variation
bounds assumed in (2.1.18) and (2.1.19). Moreover, the solution is a limit of
approximate solutions (ρ∆x, v∆x) which satisfy the “energy inequality”

V ar {ln(ρ∆x(t+, ·))} ≤ V ar {ln(ρ∆x(s+, ·))} , (2.1.22)

for all times 0 ≤ s ≤ t. The approximate solutions are generated by Glimm’s
method [10], and converge pointwise a.e., and in L1

loc at each time, uniformly
on bounded subsets of (x, t)-space.

In one space dimension, the total variation of a solution at a fixed time
t ≥ 0 is a natural measure of the total wave strength present in the solution
at time t. The existence of a function of the state variables like ln(ρ) whose
total variation in time is non-increasing, is a very special property of system
(2.1.15), there being no way to construct such a function for a general 2 × 2
system of conservation laws [10]. We conjecture that the inequality (2.1.22) is
valid for the weak solutions themselves, i.e., that

V ar{ln(ρ(·, t+))} ≤ V ar{ln(ρ(·, s+))}, (2.1.23)

for all s ≤ t. Such an inequality would provide a Lorentz invariant mono-
tonicity property of the weak solutions of (2.1.15) that refines the estimate
(2.1.20).

To prove Theorem 1, we develop an analysis which parallels that first given
by Nishida (1968) in [22] for the classical system (2.1.17). Nishida’s result
provided the first “big data” global existence theorem for weak solutions of
the classical compressible Euler equations, and it remains the only argument
for stability of solutions in a derivative norm that applies to arbitrarily large
initial data. (Nishida originally treated the Lagrangian formulation of system
(2.1.17), [7, 26]. A Lagrangian formulation of the relativistic model can be
found in [32].) Theorem 1 shows (surprisingly!) that the ideas of Nishida
generalize to the relativistic case (2.1.15) where the equations are significantly
more complicated. Indeed, the special properties of the system (2.1.15) that
lead to the estimates (2.1.20) and (2.1.21) require not only that p be linear
in ρ, but are also highly dependent on the specific form of the velocity terms;
these appearing in a different and more complicated form in the relativistic
equations (2.1.15) than in the classical equations (2.1.17). The technique of
Nishida is to analyze solutions via the Glimm difference scheme [10] through
an analysis of wave interactions in the plane of Riemann invariants. The main
technical point in his analysis involves showing that the shock curves based
at different points are congruent in the plane of Riemann invariants. We show
that this property carries over to the relativistic case by obtaining a new
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global parameterization of the shock curves. Of course, in the relativistic case,
the shock curves are given by considerably more complicated functions. Our
analysis exploits the Lorentz invariance properties of system (2.1.15), and thus
we take care to develop the geometric properties of the constructions used in
our analysis.

Note that if we non-dimensionalize systems (2.1.15) and (2.1.17) by mul-
tiplying through by the appropriate powers of c and replacing ∂/∂t in terms
of ∂/∂x0, we obtain two systems in the variables ρ and v/c, each parameter-
ized by the dimensionless quantity σ/c. Thus we can say that Theorem 1 and
Nishida’s result [22] establish a “large data” existence theorem for the two
distinct one parameter families of dimensionless systems which correspond to
(2.1.15) and (2.1.17). But note also that system (2.1.17) is obtained by taking
the limit c→∞ in (2.1.15), and thus we can obtain the congruence property
of the shock curves for (2.1.17) by applying the limit c→∞ to our formulas
for (2.1.15), and in this sense we can view Theorem 1 as a generalization of
Nishida’s theorem [22]. This is done at the end of Section 2.5.

In his original paper [22], Nishida did not exactly obtain the result that the
invariant quantity, V ar{ln(ρ)}, is non-increasing on approximate solutions.
The idea for (2.1.22) in Nishida’s case came from Liu, and a similar idea was
exploited by Luskin and Temple in [19]; see also [23].

The organization of this Chapter is as follows: In Section 2 we put the
problem (2.1.15), (2.1.16) in the context of the general theory of conservation
laws, prove the regularity of the mapping from the plane of conserved quan-
tities to the (ρ, v)-plane, and we show that (2.1.20) and (2.1.21) are Lorentz
invariant statements. In Section 3 we use the Rankine Hugoniot jump rela-
tions to derive the wave speeds λi and Riemann invariants for (2.1.14) in the
case of a general barotropic equation of state p = p(ρ). In this general set-
ting, we shall also derive necessary and sufficient conditions (on the function
p(ρ)) for the system (2.1.15) to be strictly hyperbolic and genuinely nonlinear
in the sense of Lax [17, 26]. We note that the assumption that wave speeds
are bounded by c imposes a linear growth rate on p(ρ) as ρ → ∞, and thus
there is a possibilty of losing genuine nonlinearity of the system in this limit.
Thus, in Section 3 we describe the properties of what we call the relativistic
p-system. In Sections 4-7 we restrict to the case p = σ2ρ and develop the
geometry of the shock curves in the coordinate system of Riemann invariants,
solve the Riemann problem, and use the Glimm difference scheme to prove
Theorem 1. In the appendix we derive the transformation properties of the
Rankine Hugoniot jump relations for general relativistic conservation laws.
The analysis applies to arbitrary nonlinear spacetime coordinate transforma-
tions in 4-dimensional spacetime with arbitrary Lorentzian spacetime metric.
We use this to give a simple derivation of the covariance properties of the
characteristics, and the transformation formulas for the characteristic speeds
and shock speeds in 2-dimensional Special Relativity.
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2.2 The Relativistic Euler Equations as a System of
Conservation Laws

In this section we put the problem (2.1.15), (2.1.16) in the context of the gen-
eral theory of conservation laws, and discuss the Lorentz invariant properties
of the system.

The problem (2.1.15) and (2.1.16) is a special case of the initial value
problem for a general system of nonlinear hyperbolic conservation laws in the
sense of Lax [17, 26],

ut + F (u)x = 0, (2.2.24)

u(x, 0) = u0(x), (2.2.25)

where in our case

u ≡ (u0, u1) =

(
ρ[

(
σ2 + c2

)
c2

v2

c2 − v2
+ 1], ρ(σ2 + c2)

v

c2 − v2

)
, (2.2.26)

and

F (u) ≡ (F 0, F 1) =
(
ρ(σ2 + c2)

v

c2 − v2
, ρ[(σ2 + c2)

v2

c2 − v2
+ σ2]

)
.

(2.2.27)
In order to apply Glimm’s method (c.f. Section 7), we need the following

result.

Proposition 1 The mapping (ρ, v) → (u1, u2) = u is 1−1, and the Jacobian
determinant of this mapping is both continuous and nonzero in the region
ρ > 0, |v| < c.

Proof: If the mapping were not 1−1, then there would be points (ρ, v), (ρ̄, v̄)
such that u(ρ, v)) = u(ρ̄, v̄). Since ∂u1

∂ρ 6= 0, we may assume that v 6= v̄. Now
using (2.2.26), we have

ρ

ρ̄

{
σ2 + c2

c2
v2

c2 − v2
+ 1
}

=
{
σ2 + c2

c2
v̄2

c2 − v̄2
+ 1
}
,

and
ρ

ρ̄

{
v

c2 − v2

}
=

v̄

c2 − v̄2
.

Eliminating ρ
ρ̄ and simplifying gives

(v − v̄)
{
σ2

c2
vv̄ − c2

}
= 0.

Since v 6= v̄, this implies
σ2

c2
vv̄ − c2 = 0,
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which contradicts the assumptions |σ| < c, |v| < c and |v̄| < c. Thus the
mapping is 1− 1. A straightforward calculation shows that

det

(
∂(u1, u2)
∂(ρ, v)

)
=

ρ(σ2 + c2)
c2(c2 − v2)2

{
c4 − v2σ2

}
> 0.2

It is important to note that the systems (2.1.14) and (2.1.15) are Lorentz

invariant. This means that under any Lorentz transformation (t, x) → (t̄, x̄),
one obtains an identical system in the barred coordinates once the velocity
states are renamed in terms of the coordinate velocities as measured in the
barred coordinate system. Thus, in particular, under Lorentz transformations,
ρ(t, x) is a scalar invariant, and thus it takes the same value in the barred and
unbarred coordinates that name the same geometric point in the background
spacetime manifold. On the other hand, the velocity v is not a scalar, since
it is formed from the entries of the vector quantity (u0, u1). In this section
we will exploit the transformation law for velocities by calculating the shock
curves and shock speeds in a frame in which the particle velocity v is zero,
and then applying the Lorentz transformation law for velocities to obtain
these quantities in an arbitrary frame. The velocity transformation law can
be given as follows (c.f. [35]): If in a Lorentz transformation, the barred frame
(t̄, x̄) moves with velocity µ as measured in the unbarred frame (t, x), and if
v denotes the velocity of a particle as measured in the unbarred frame, and v̄
the velocity of the same particle as measured in the barred frame, then

v =
µ+ v̄

1 + µv̄
c2

. (2.2.28)

Since under Lorentz transformations ρ transforms like a scalar but v does
not, it follows that the estimate (2.1.20), which is based on the scalar ρ and
not the velocity v, expresses a Lorentz invariant property of the weak solutions
of (2.1.14), (2.1.15). On the other hand, the estimate (2.1.21) is based on the
quantity ln

(
c+v
c−v

)
, which is not a Lorentz invariant scalar quantity. Neverthe-

less, it turns out, (remarkably!), that V ar{ln
(

c+v(·,t)
c−v(·,t)

)
} is Lorentz invariant,

and thus (2.1.21), as well as (2.1.20), is a Lorentz invariant statement. This
is a consequence of the following result.

Proposition 2 Let v(x, t) be any velocity field which satisfies the velocity
transformation law (2.2.28) under Lorentz transformations. Then

V arx

{
ln
(
c+ v(x, t)
c− v(x, t)

)}
= V arx

{
ln
(
c+ v̄(L(x, t))
c− v̄(L(x, t))

)}
, (2.2.29)

where L is any Lorentz transformation, x̄ = Lx, and v and v̄ are related by
(2.2.28).
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Proof: By (2.2.28), v and v̄ are related by the equation

v(x, t) =
µ+ v̄(L(x, t))

1 + µv̄(L(x,t))
c2

,

where µ is the velocity of the barred frame x̄ as measured in the unbarred
frame x. Then for any xi−1 < xi, this implies

ln
{
c+ v(xi, t)
c− v(xi, t)

)
} − ln

{
c+ v(xi−1, t)
c− v(xi−1, t)

}
= ln

{(
c+ v(xi, t)
c− v(xi, t)

)(
c+ v(xi−1, t)
c− v(xi−1, t)

)−1
}

= ln
{(

c+ v̄(xi, t)
c− v̄(xi, t)

)(
c+ v̄(xi−1, t)
c− v̄(xi−1, t)

)}
= ln

{
c+ v(xi, t)
c− v(xi, t)

}
− ln

{
c+ v(xi−1, t)
c− v(xi−1, t)

}
,

from which (2.2.29) follows.2

2.3 The Wave Speeds

In this section we construct the eigenvalues and Riemann invariants that are
associated with a the system of conservation laws (2.1.15).

First recall the three important velocities associated with a system (2.1.15):
the particle velocity v, the wave speeds λi(ρ, v) and the shock speeds si(ρ, v),
i = 1, 2. The wave speeds are the speeds of propagation of the characteris-
tic curves, and for (2.2.24), the λi are the eigenvalues of the 2 × 2 matrix of
derivatives dF ≡ ∂F/∂u. Thus dF ·Ri = λiRi, where Ri denotes the i’th right
eigenvector of dF. For weak solutions of (2.2.24), discontinuities propogate at
the shock speeds si which are determined from the Rankine-Hugoniot jump
relations (see [17])

s[u] = [F ]. (2.3.30)

Here [f ] ≡ fL − fR denotes the jump in the function f(u) between the left
and right hand states along the curve of discontinuity in the xt-plane. It is
not apriori clear that a characteristic curve or shock curve (x(τ), t(τ)), com-
puted in one Lorentz coordinate system will transform to the same spacetime
curve when computed in a different Lorentz frame. In the Appendix we will
show that both properties are a consequence of the conservation form of the
equations. It follows that the derivative (x′(τ), t′(τ)) transforms like a vector
field and that the corresponding speed x′(τ)/t′(τ) transforms by the relativis-
tic transformation law for velocities. Thus we can conclude that λi and si

transform according to (2.2.28) under a Lorentz transformation. Since in the
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system (2.1.15), the flux F is given implicitly as a rather complicated function
of u, it is convenient to note that λi, Ri, and si can all be calculated from
the jump relation (2.3.30) alone. For this we need the following well-known
theorem due to Lax, [17, 26]:

Theorem 2 Assume that the system (2.2.24) is strictly hyperbolic; i.e., that
λ1 < λ2 in the physical domain of u. Then, for a fixed state uL, the solutions
u and s of the Rankine-Hugoniot relation s(u − uL) = F (u) − F (uL) can be
described (in a neighborhood of uL) by two families of smooth curves u =
Si(ε),Si(0) = uL, with corresponding speeds si(ε), i = 1, 2. Moreover, as
ε→ 0, we have si(ε) → λi(uL) and u′i(ε) → Ri. Here, the parameter ε can be
taken to be (Euclidean) arclength along the shock curve Si in u-space.

We now use Theorem 2 to obtain the eigenpairs (λi, Ri), i = 1, 2, for system
(2.1.15) in the case of a general equation of state of the form p = p(ρ). To
start, write system (2.1.15) in the form

At +Bx = 0,
(2.3.31)

Bt + Cx = 0,

where

A =
(p+ ρc2)

c2
v2

c2 − v2
+ ρ,

B = (p+ ρc2)
v

c2 − v2
, (2.3.32)

C = (p+ ρc2)
v2

c2 − v2
+ p.

Then by (2.3.30), for fixed (ρL, vL), the state (ρ, v) ≡ (ρR, vR) lies on a shock
curve if and only if

[B]2 = [A][C], (2.3.33)

where, for example, [A] ≡ A − AL and A ≡ A(ρ, v) is a function of the
unknowns ρ and v along the shock curve. Now assuming that (2.3.33) defines
v implicitly as a function of ρ, (this assumption is justified by the construction
of the solution itself) differentiate (2.3.33) with respect to ρ and divide by [B]
to obtain

2B′ =
[A]
[B]

C ′ +
[C]
[B]

A′, (2.3.34)

where prime denotes d/dρ. We first obtain a formula for dv/dρ evaluated at
ρ = ρL. To this end, note that by L’Hospital’s rule,

lim
ρ→ρL

[A]
[B]

=
A′

B′
,
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where the right hand side is evaluated at ρ = ρL. Thus, at ρ = ρL, equation
(2.3.34) reduces to

(B′)2 = A′C ′. (2.3.35)

Using (2.3.32) we find

A′ =
(p′ + c2)

c2
e+

(p+ ρc2)
c2

de

dv
v′ + 1,

B′ = (p′ + c2)
e

v
+ (p+ ρc2)

(v de
dv − e)v′

v2
, (2.3.36)

C ′ = (p′ + c2)e+ (p+ ρc2)
de

dv
v′ + p′,

where

e ≡ v2

c2 − v2
, (2.3.37)

de

dv
=

2c2v
c2 − v2

, (2.3.38)

and all terms are evaluated at ρ = ρL. Substituting (2.3.36) into (2.3.35) and
collecting like powers of v′ yields

0 = (v′)2{(p+ ρc2)2
(v de

dv − e)2

v4
− (p+ ρc2)2

c2
(
de

dv
)2}1 (2.3.39)

+ v′{ 2
v3

(p′ + c2)(p+ ρc2)e(v
de

dv
− e)− (p+ ρc2)

c2
e′(p′ + 2(p′ + c2)e+ 1)}2

+ {(p′ + c2)2
e2

v2
− (p′ + c2)e

c2
+ 1)((p′ + c2)e+ p′)}3.

Here we label the brackets so that we can evaluate them separately. A calcu-
lation using (2.3.37) and (2.3.38) in (2.3.39) gives

{·}1 =
(p+ ρc2)2

(c2 − v2)2
,

{·}2 = 0,
{·}3 = −p′.

Substituting these into (2.3.39) we conclude

v′

c2 − v2
=+
−

√
p′

p+ ρc2
. (2.3.40)

We can now solve for the Riemann invariants associated with system (2.1.15).
Recall that a Riemann invariant for (2.2.24) is a scalar function f,∇f 6= 0,
which is constant along the integral curves of one of the eigenvector fields
of matrix field dF. By Theorem 2, the shock curves Si are tangent to the



2.3 The Wave Speeds 31

eigenvectors Ri at ρ = ρL, and thus the Riemann invariants for system (2.1.15)
satisfy the differential equations

dv

dρ
=+
−

√
p′(c2 − v2)
p+ ρc2

,

which have the solutions

1
2

ln
(
c+ v

c− v

)
=+
− c

∫ √
p′(s)

p(s) + c2s
ds. (2.3.41)

Thus we may define a pair of Riemann invariants r and s for system (2.1.15)
as

r =
1
2

ln
(
c+ v

c− v

)
− c

∫ ρ

1

√
p′(s)

p(s) + c2s
ds, (2.3.42)

s =
1
2

ln
(
c+ v

c− v

)
+ c

∫ ρ

1

√
p′(s)

p(s) + c2s
ds. (2.3.43)

the eigenvalues λi(ρ, v) of system (2.1.15). By Theorem 2, these are obtained
as the limit of s in (2.3.30) as ρ→ ρL. Solving for s in (2.3.31) we obtain

s[A] = [B].

Thus, again assuming that v = v(ρ), Theorem 2 implies

λi = lim
ρ→ρL

[B]
[A]

= lim
ρ→ρL

c
(p+ ρc2)e+ p

(p+ ρc2)e+ ρc2

= lim
ρ→ρL

c
(p′ + c2)e+ (p+ ρc2) de

dvv
′ + p′

(p′ + c2)e+ (p+ ρc2) de
dvv

′ + c2
, (2.3.44)

where we have applied L’Hospital’s rule. But from (2.3.40),

dv

dρ
=+
−

√
p′

p+ ρc2
(c2 − v2), (2.3.45)

so substituting (2.3.45) into (2.3.44) and simplifying gives

λ1 =
v −

√
p′

1− v
√

p′

c2

, (2.3.46)

and

λ2 =
v +

√
p′

1 + v
√

p′

c2

. (2.3.47)
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One can now verify directly that r [resp.s] is a 1-[resp. 2-] Riemann invari-
ant for system (2.1.15), by which we mean that r [resp. s] is constant along
integral curves of R2 [resp. R1].

We now utilize the formulas (2.3.42), (2.3.43), (2.3.46) and (2.3.47) to ob-
tain conditions on p under which the system (2.1.15) is strictly hyperbolic and
genuinely nonlinear in the sense of Lax [17]. Recall that a system of conser-
vation laws (2.2.24) is said to be genuinely nonlinear in the i’th characteristic
family (λi, Ri) if ∇uλi · Ri 6= 0 at each point u in state space. (Here, the ∇
denotes the standard Euclidean gradient on state space (ρ, v).) The following
theorem gives necessary and sufficient conditions for system (2.1.15), with
barotropic equation of state p = p(ρ), to be strictly hyperbolic and genuinely
nonlinear.

Theorem 3 System (2.1.15) is strictly hyperbolic at (ρ, v) if and only if√
p′(ρ) < c. (2.3.48)

Moreover, assuming (2.3.48), system (2.1.15) is genuinely nonlinear at each
(ρ, v) if and only if

p′′(ρ) ≥ −2
(c2 − p′)p′

p+ ρc2
. (2.3.49)

Inequality (2.3.48) is also necessary and sufficient for the sound speeds λi

to be bounded by c.Moreover, note that the condition for genuine nonlinearity
is a geometric condition, being a condition involving only a function of the
scalar invariant ρ. Indeed, by Lorentz invariance we know apriori that the
condition for genuine nonlinearity could not have involved the state variable
v, for if it did, then we reach the absurd conclusion that a Lorentz change of
frame could change the wave structure of solutions.

Proof: When
√
p′(ρ) = c, λi = +

−c, so (2.3.48) is required for |λ| ≤ c. It
is straightforward to verify that when

√
p′(ρ) < c, λ1 < λ2 holds. To verify

(2.3.49), note that r and s are constant on integral curves of R2 and R1,
respectively, so that we may take R1 and R2 parallel to ∂

∂r = ∂ρ
∂r

∂
∂ρ + ∂v

∂r
∂
∂v

and ∂
∂s = ∂ρ

∂s
∂
∂ρ + ∂v

∂s
∂
∂v , respectively. Differentiating r + s = ln

(
c+v
c−v

)
and

s − r = c
∫ ρ

1

√
p′(s)

p(s)+c2sds, we can solve for the partials of ρ and v with respect
to r and s and obtain, (up to positive scale factor),

R1 ≡
(

−c
c2 − v2

,
c
√
p′

p+ ρc2

)t

, (2.3.50)

and

R2 ≡
(

c

c2 − v2
,
c
√
p′

p+ ρc2

)t

. (2.3.51)
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Using these it is straightforward to verify that

∇λ1 ·R1 =
c2

(
√
p′v − c2)2

{
(c2 − p′)

√
p′

p+ ρc2
+

p′′

2
√
p′

}
> 0 (2.3.52)

and

∇λ2 ·R2 =
c2

(
√
p′v + c2)2

{
(c2 − p′)

√
p′

p+ ρc2
+

p′′

2
√
p′

}
> 0, (2.3.53)

if and only if (2.3.49) holds.2

Note that from the formulas (2.3.50) and (2.3.51) it follows that ρ decreases
[resp. increases] and v increases along the integral curves of R1 [resp. R2] in
the direction of increasing λ1 [resp. λ2]. Thus, the integral curves of Ri give
the oriented rarefaction curves for system (2.1.15), [17, 26].

2.4 The Shock Curves

In this section we restrict to the case p = σ2ρ and obtain global parameteriza-
tions of the shock curves Si and shock speeds si which are valid for arbitrary
ρL and vL. (Here we let Si denote the portion of Si(ε), defined in Theorem 2,
which corresponds to shocks satisfying the Lax condition. Upon normalizing
Ri by ∇λi ·Ri > 0, we can assume without loss of generality that Si is given
locally by ε ≤ 0, [17, 26].) We use our global parameterization to study the
geometry of the shock curves in Riemann invariant coordinates (r, s).

Lemma 1 Assume that (ρL, vL) and (ρ, v) ≡ (ρR, vR) satisfy the jump con-
ditions (2.3.30) for system (2.1.15) with equation of state (2.1.7). Then the
following relations hold:

ρ

ρL
= 1 + β

{
1 −

+

√
1 +

2
β

}
≡ f−

+
(β), (2.4.54)

where

β ≡ β(v, vL) =
(σ2 + c2)2

2σ2

(v − vL)2

(c2 − v2)(c2 − v2
L)
. (2.4.55)

The shock curve S1 is given by (2.4.54) and parameterized by ρ ≥ ρL when
we take a plus sign in (2.4.54), and S2 is given by (2.4.54) and parameterized
by ρ ≤ ρL when we take the minus sign.

Proof: For system (2.1.15), the Rankine-Hugoniot jump conditions (2.3.30)
give

s[ρ
(σ2 + c2)

c2
v2

c2 − v2
+ ρ] = [ρ(σ2 + c2)

v

c2 − v2
],
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and

s[ρ(σ2 + c2)
v

c2 − v2
] = [ρ(σ2 + c2)

v2

c2 − v2
+ ρσ2].

Eliminating the shock speed s and recalling u2 = v2/(c2 − v2) gives{
cρv

c2 − v2
− cρLvL

c2 − v2
L

}2

=
{

ρv2

c2 − v2
+

ρc2

σ2 + c2
− ρLv

2
L

c2 − v2
L

− ρLc
2

σ2 + c2

}
×
{

ρv2

c2 − v2
+

ρσ2

σ2 + c2
− ρLv

2
L

c2 − v2
L

− ρLσ
2

σ2 + c2

}
.

Now multiplying out gives

0 =
(
ρ− ρ0

ρ0

)2{
u4 + u2 − c2u4

v2
+

σ2c2

(σ2 + c2)2

}
1

+
(
ρ− ρ0

ρ0

){
2u2[u2] + [u2]− 2c2u2

v

[
u2

v

]}
2

(2.4.56)

+

{[
u2
]2 − c2

[
u2

v

]2}
3

.

Simplifying, we obtain

{·}1 =
σ2c2

(σ2 + c2)2
,

{·}2 = − c2(v − vL)2

(c2 − v2)(c2 − v2
L)
,

and

{·}3 = − c2(v − vL)2

(c2 − v2)(c2 − v2
L)
,

so that (2.4.56) becomes

0 =
(
ρ− ρ0

ρ0

)2{
σ2c2

(σ2 + c2)2

}
1

−
(
ρ− ρ0

ρ0

){
c2(v − vL)2

(c2 − v2)(c2 − v2
L)

}
2

(2.4.57)

−
{

c2(v − vL)2

(c2 − v2)(c2 − v2
L)

}
3

.

Now substituting β (given in (2.4.55)) in (2.4.57) and solving for (ρ− ρ0)/ρ0

yields (2.4.54).
From Theorem 2 together with (2.3.50) and (2.3.51), it follows that for

the shock curve Si, which is tangent to Ri at ρ = ρL, we must take a plus
sign for i = 1 and a minus sign when i = 2. Moreover, by Theorem 2 together
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with (2.3.52) and (2.3.53), the S1 is parameterized when ρ ≥ ρL, and S2 is
parameterized when ρ ≤ ρL.2

The general theory of conservation laws only guarantees that the “Lax
shock conditions” hold on Si near ρ = ρL, [26]. We will show that these actu-
ally hold all along the shock curves Si. We state this as part of the following
lemma.

Lemma 2 Let p = σ2ρ. Then the the shock speed si is monotone all along
the shock curve Si of system (2.1.15), i = 1, 2, and moreover, the following
inequalities (Lax shock conditions) hold at each state uR 6= uL on the shock
curve Si :

λi(ρL, vL) < si < λi(ρR, vR). (2.4.58)

Proof: First, since the shock speeds si and wave speeds λi transform by
the velocity transformation law (2.2.28) (see appendix), it suffices to verify
(2.4.58) in the case vL = 0. In this case we set ρL = ρ0. Note that by Lemma
1, v ≤ vL = 0 all along both S1 and S2. We first obtain si and λi along Si in
terms of the parameter β defined in (2.4.55). So, assuming p = σ2ρ, the jump
conditions (2.3.30) applied to system (2.1.15) directly give

s2 =
{(

z
z− 1

)
c2v2

c2 − v2
+

c2σ2

c2 + σ2

}
/

{(
z

z− 1

)
v2

c2 − v2
+

c2

c2 + σ2

}
,

(2.4.59)
where we have set

z =
ρ

ρ0
. (2.4.60)

Now it follows from (2.4.54) that

z
z− 1

=
β −

+

√
β2 + 2β

β −
+

√
β2 + 2β

,

and from (2.4.55) that

v2 = c2K
β

1 +Kβ
,

where we set

K =
2σ2c2

(σ2 + c2)2
. (2.4.61)

Using these in (2.4.59) gives (after simplification)

s2 = c2
f −

+
(β) + σ2

c2

f −
+

(β) + c2

σ2

, (2.4.62)

where
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f −
+

(β) = 1 + β −
+

√
β2 + 2β. (2.4.63)

Note that the plus/minus sign in the above formulas agrees with the plus/minus
sign in (2.4.54). Thus, S1, is parameterized by 0 ≤ β < ∞ (starting at
(ρL, vL)) when we choose the plus sign in (2.4.63) and S2 is parameterized by
0 ≤ β <∞ when we choose the minus sign in (2.4.63). Specifically, on S1,

s1(β) = −c

√√√√1 + β +
√
β2 + 2β + σ2

c2

1 + β +
√
β2 + 2β + c2

σ2

; (2.4.64)

and on S2,

s2(β) = −c

√√√√1 + β −
√
β2 + 2β + σ2

c2

1 + β −
√
β2 + 2β + c2

σ2

. (2.4.65)

We now obtain a corresponding parameterization of λi with repect to β
along Si. In the case p = σ2ρ, the formulas (2.3.46) and (2.3.47) give

λ1 =
v − σ

1− σv
c2

, (2.4.66)

and
λ2 =

v + σ

1 + σv
c2

. (2.4.67)

Thus

λ1 = c2
σ +

√
c2K β

1+Kβ

−σ
√
c2K β

1+Kβ − c2
, (2.4.68)

and

λ2 = c2
σ −

√
c2K β

1+Kβ

−σ
√
c2K β

1+Kβ + c2
, (2.4.69)

where we have used v ≤ 0.
Now differentiating (2.4.62) gives (for β 6= 0, σ < c,)

ds2i
dβ

= c2

(
c2

σ2 − σ2

c2

)
f ′−

+
(β)(

f−
+
(β) + c2

σ2

)2 6= 0, (2.4.70)

from which the monotonicity of shock speeds along the shock curves easily
follows. The inequality si < λi(ρL, 0) thus holds. It remains to show that
λi < si along the shock curve Si. We do the case i = 1. To this end, let
x ≡ σ/c and set z ≡ ρ/ρ0 = f−(β). Substituting into (2.4.64) and (2.4.66)
yields
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s21 − λ2
1 = c2

(
x−

√ √
K(z−1)√

2z+K(1−z)2

)2

x2(z + 1
x2 )

·


x2(z + x2)(

x−
√ √

K(z−1)√
2z+K(1−z)2

)2 −
z + 1

x2(
1
x −

√ √
K(z−1)√

2z+K(1−z)2

)2



=
c2x−2(z + 1

x2 )−1

(
x−

√ √
K(z−1)√

2z+K(1−z)2

)2

(
x
√

2z +K(1− z)2 −
√
K(z− 1)

)2

·


√

2z +K(1− z)2(
1
x

√
2z +K(1− z)2 −

√
K(z− 1)

)2

 {·}∗ ,
(2.4.71)

where

{·}∗ =
(
x2(z + x2)

)( 1
x

√
2z +K(1− z)2 −

√
K(z− 1)

)2

−
(

z +
1
x2

)(
x
√

2z +K(1− z)2 −
√
K(z− 1)

)2

.

Thus it suffices to show that {·}∗ < 0. A calculation using the identities

x4 + x2 + 1
x2

=
2
K
− 1,

and
x2 + 1
x

=
2
K
,

leads to

{·}∗ = (1− x2)(1− z)
{

2
K

+
23/2

K

√
2z +K(1− z)2

}
. (2.4.72)

But by (2.4.72) it follows that {·} < 0 for z > 1, and thus by (2.4.71) we must
have s21 − λ2

1 < 0. Since both s1 < 0 and λ1 < 0 along S1 when vL = 0, it
follows that λ1 < s1 all along S1, thus finishing the proof of Lemma 2.2

2.5 Geometry of the Shock Curves

In this section we study the special geometry of the shock curves in the plane
of Riemann invariants for system (2.1.15), the case p = σ2ρ. In this case the
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the shock curves are given by (2.4.54) and (2.4.55), and using (2.3.42) and
(2.3.43), the Riemann invariants r and s are given in this case by, (see Figure
1),

r =
1
2

ln
(
c+ v

c− v

)
− K0

2
ln(ρ), (2.5.73)

s =
1
2

ln
(
c+ v

c− v

)
+
K0

2
ln(ρ), (2.5.74)

where

K0 =

√
K

2
=

σc

c2 + σ2
,

and K is defined in (2.4.61).

The plane of Riemann invariants.

Figure 1
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s + r = ln
(

c+v
c−v

)
s = 1

2
ln
(

c+v
c−v

)
+ 1

2
K0 ln(ρ)

r = 1
2

ln
(

c+v
c−v

)
− 1

2
K0 ln(ρ)

s− r = K0 ln(ρ)

Our main result of this section is that the i-shock curves are independent
of the base point (ρL, vL) in the sense that, when graphed in the rs-plane, all
i-shock curves are rigid translations of one another; and moreover, the 1-shock
curve based at a given point is the reflection of the 2-shock curve based at
the same point about an appropriate axis of rotation. On an algebraic level,

this happens because, along a shock curve, ρρ−1
L and

{
c+v
c−v

}{
c+vL

c−vL

}−1

in the
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definitions of r and s turn out to be functions of the parameter β alone, and
the functions that give ρρ−1

L as a function of β are reciprocal on the 1-and
2-shock curves, respectively. We begin with the following lemma, which gives
a parameterization of the i-shock curves for system (2.1.15) in the rs-plane:

Lemma 3 Let r ≡ r(ρ, v), s ≡ s(ρ, v), ∆r ≡ r(ρ, v) − r(ρL, vL) and ∆s ≡
s(ρ, v) − s(ρL, vL) where we let (ρ, v) ≡ (ρR, vR). Then the 1-shock curve S1

for system (2.1.15) based at (rL, sL) is given by the following parameterization
with respect to the parameter β, 0 ≤ β <∞ :

∆r = −1
2

ln{f+(2Kβ)} −
√
K

2
ln{f+(β)}, (2.5.75)

∆s = −1
2

ln{f+(2Kβ)}+

√
K

2
ln{f+(β)}; (2.5.76)

and the 2-shock curve S2 based at (rL, sL) is given for 0 ≤ β <∞, by

∆r = −1
2

ln{f+(2Kβ)} −
√
K

2
ln{f−(β)}, (2.5.77)

∆s = −1
2

ln{f+(2Kβ)}+

√
K

2
ln{f−(β)}. (2.5.78)

Proof: For convenience, define

w ≡ c− v

c+ v
, (2.5.79)

so that
v

c
=

1− w

1 + w
,

and by (2.5.73) and (2.5.74),

r + s = − ln(w).

Then by the definition of β in (2.4.55) we have

Kβ(v, vL) =
(v

c −
vL

c )2

(1− v2

c2 )(1− v2
L

c2 )
(2.5.80)

=
(

1− w

1 + w
− 1− wL

1 + wL

)2 (1 + wL)2

4w
(1 + wL)2

4wL

=
1
4

{√
w

wL
−
√
wL

w

}2

,

which we can rewrite as
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Kβ =
1
4

{
exp{ r− rL

2
+

s− sL

2
} − exp{− r− rL

2
− s− sL

2
}
}2

= sinh2

(
∆r
2

+
∆r
2

)
. (2.5.81)

Now solving for w/wL in (2.5.80) gives

w

wL
= 1 + 2Kβ

(
1−+

√
1 +

2
Kβ

)
≡ f−

+
(2Kβ). (2.5.82)

Note that w is a monotone decreasing function of v, and v decreases along Si,
i = 1, 2. Thus w/wl ≥ 1 holds along Si, so that we must choose the plus sign
in (2.5.82) on both i-shock curves. On the other hand, by (2.4.54), along the
shock curves we have

ρ

ρL
= f−

+
(β), (2.5.83)

where we take the plus sign when i = 1 and the minus sign when i = 2.
Therefore, substituting (2.5.82) and (2.5.83) into (2.5.73) and (2.5.74), and
choosing the appropriate plus and minus signs, gives (2.5.75)-(2.5.78). This
completes the proof of Lemma 3.2

What is interesting about (2.5.75)-(2.5.78) is that the differences ∆r and
∆s along a shock curve depend only on the parameter β, and thus the geo-
metric shape of the shock curves in the rs-plane is independent of the base
point (rL, sL). This immediately implies that an i-shock curve based at one
point in the rs-plane can be mapped by a rigid translation onto the i-shock
curve based at any other point.

Lemma 4 The 2-shock curve based at an arbitrary point (rL, sL) is the re-
flection in the rs-plane of the 1-shock curve based at the same point, where the
axis of reflection is the line passing through (rL, sL), parallel to the line r = s.

Proof: This follows immediatly from (2.5.75)-(2.5.78) because using (2.4.63)
we have

f−(β)f+(β) =
(

1 + β − β

√
1 +

2
β

)(
1 + β + β

√
1 +

2
β

)
= 1. (2.5.84)

The following lemma gives further important geometric properties of the
shock curves which we shall need.

Lemma 5 The shock curves Si given in (2.5.75)-(2.5.78) define convex
curves in the rs-plane, and moreover,

0 ≤ ds
dr

<

√
2K − 1

−
√

2K − 1
< 1 (2.5.85)
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all along a 1-shock curve S1, and

0 ≤ dr
ds

<

√
2K − 1

−
√

2K − 1
< 1, (2.5.86)

all along a 2-shock curve S2.

Proof: By symmetry, it suffices to do the case i = 1. Differentiating (2.5.75)
with respect to β gives√

2
K

d∆r
dβ

= − 1√
2β + β2

− 1√
2β + 2Kβ2

,

and differentiating (2.5.76) with respect to β gives√
2
K

d∆s
dβ

=
1√

2β + β2
− 1√

2β + 2Kβ2
,

so that
d∆s
d∆r

=
ds
dr

= −
√

2β + 2Kβ2 −
√

2β + β2

−
√

2β + 2Kβ2 −
√

2β + β2
< 1,

because 2K ≤ 1. To verify the convexity of S1, we differentiate with respect
to β, and simplify to get

d

dβ

ds
dr

=
2(1− 2K)

β2

{√
2
β

+ 2K +
√

2
β

+ 1
}−2{√

2
β

+ 2K
√

2
β

+ 1
}−1

≥ 0.

(2.5.87)
Now (2.5.85) follows from the convexity of the shock curves together with the
inequality

lim
β→∞

ds
dr

=
√

2K − 1
−
√

2K − 1
≤ 1.2

A graph of the shock curves Si in the (r, s)-plane is given in Figure 2.
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The reflection property of shock curves.

Figure 2
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s + r

R2 R1

s− r

S1 S2

As a final comment in this section, we note that we can obtain a corre-
sponding parameterization of the shock curves for system (2.1.17) by taking
the limit c → ∞. To see this, note that taking the limit c → ∞ in (2.5.73)
and (2.5.74) we obtain

r̄ ≡ cr → v − σ ln(ρ),

and
s̄ ≡ cs → v + σ ln(ρ),

the right hand sides being the Riemann invariants for system (2.1.17). More-
over, under this limit, (2.4.54) remains unchanged, and by (2.4.55),

β → (v − vL)2

2σ2
.

Thus multiplying by c and taking the limit c → ∞, the formulas (2.5.75)-
(2.5.78) reduce to

∆r̄ = − σ√
2
β − σ ln{f+(β)},

∆s̄ = − σ√
2
β + σ ln{f+(β)};

and



2.6 The Riemann Problem 43

∆r̄ = − σ√
2
β − σ ln{f−(β)},

∆s̄ = − σ√
2
β + σ ln{f−(β)},

respectively, and this gives parameterizations of the shock curves for system
(2.1.17) that are equivalent to the formulas obtained by Nishida in [22].

2.6 The Riemann Problem

In this section we discuss the solution of the Riemann problem for system
(2.1.15). In the next section we shall exploit special properties of the solution
of the Riemann problem for this system to construct global weak solutions of
the general initial value problem by means of the Glimm difference scheme,
and to obtain the estimates (2.1.20), (2.1.21) and (2.1.22) .

The Riemann problem is the initial value problem when the initial data
u0(x) ≡ u(ρ0(x), v0(x)) consists of a pair of constant states uL ≡ u(ρL, vL)
and uR ≡ u(ρR, vR) separated by a jump discontinuity at x = 0,

u0(x) =
{
uL if x < 0,
uR if x > 0. (2.6.88)

Note that, in view of Proposition 1, the conserved quantities uL and uR of
system (2.1.14) are uniquely determined by (ρL, vL) and (ρR, vR). When uR

is sufficiently close to uL, the existence and uniqueness of the solution of
the Riemann problem for system (2.1.15) in the class of elementary waves
follows by a general theorem of Lax which applies to any sytem of conservation
laws which is strictly hyperbolic (λ1 < λ2) and genuinely nonlinear in each
characteristic field. (See Theorem 3, and [17, 26].) We verify that for system
(2.1.15), with p = σ2ρ, the solution of the Riemann problem (2.6.88) can be
(uniquely) constructed for all uL and uR provided that

ρL > 0, ρR > 0, (2.6.89)

and
−c < vL < c, −c < vR < c. (2.6.90)

To this end, fix uL and let u ≡ uR be variable. Let Ri ≡ Ri(uL) denote
the i-rarefaction curve and Si ≡ Si(uL) the i-shock curve associated with the
state uL, [26]. The i-rarefaction curve Ri at uL is defined to be the segment of
the integral curve of the eigenvector Ri which starts at uL, and continues in
the direction of increasing λi. Since the Riemann invariants r and s, defined in
(2.5.73) and (2.5.74), are constant on the 2- and 1-integral curves, respectively,
it follows from genuine nonlinearity and Theorem 3 that

R1(uL) = {u : s(u) = s(uL) and r(u) ≥ r(uL)},
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and
R2(uL) = {u : r(u) = r(uL) and s(u) ≥ s(uL)}.

Note that for each state uR ∈ Ri(uL), there is a rarefaction wave solution that
solves the Riemann problem (2.6.88). Indeed, this is constructed by letting
each state u on Ri between uL and uR propogate with speed λi(u).

The i-shock curve Si is given in (2.5.75)-(2.5.78) of Lemma 3. If uR ∈
Si(uL), then the Riemann problem (2.6.88) is solved (in the weak sense)
by a shock wave of speed si (given by (2.4.64) and (2.4.65)), and the shock
satisfies the Lax admissibility condition, (2.4.58). By Lax’s theorem, the curve
Si makes C2 tangency with the i’th integral curve at uL, and thus it follows
from (2.5.73), (2.5.74) and (2.5.75)-(2.5.78) that the composite wave curve Ti

defined by Ti ≡ Si

⋃
Ri is a C2 curve for each i = 1, 2. Let Ti(ε) denote the

Euclidean arclength parameterization of the i-wave curve Ti, with ε increasing
with increasing λi (ε > 0 on Ri, ε < 0 on Si. It follows from (2.5.73), (2.5.74)
and (2.5.75)-(2.5.78) that ln ρ decreases monotonically from +∞ to −∞ along
T1, and increases monotonely from −∞ to +∞ along T2; furthermore, v
increases monotonely from −c to +c along both T1 and T2. The wave curves
Ti ≡ Si

⋃
Ri are sketched in Figure 2.

To solve the Riemann problem, consider the wave curves T2(uM ) for
uM ∈ T1(uL). It is easily verified that any two such curves T2(uM ) and
T2(u′M ), uM , u′M ∈ T1(uL), are nonintersecting, and that the set of all such
curves covers the entire region ρ > 0,−c < v < c in the ρv-plane in a 1 − 1
fashion. In particular we use the fact (see Lemma 5) that |ds/dr| < 1 and
|dr/ds| < 1 all along the 1-shock and 2-shock curves, respectively. Now for
given states uL and uR, let uM ∈ T1(uL) denote the unique intermediate
state such that uR ∈ T2(uM ). Then the unique solution of the Riemann
problem in the class of elementary waves is given by a 1-wave connecting uL

to uM , followed by a 2-wave connecting uM to uR. It remains only to verify
that the 2-wave speed is always greater that the 1-wave speed in this construc-
tion. But this follows directly from (2.4.58) of Lemma 2; i.e., if uM ∈ S1(uL),
and uR ∈ S2(uM ) then by (2.4.58),

s1 ≤ λ1(uM ) < λ2(uM ) ≤ s2.

We state these results as a theorem:

Theorem 4 There exists a solution of the Riemann problem for system
(2.1.15) in the case of an equation of state of the form p = σ2ρ, 0 < σ < c,
so long as uL and uR satisfy (2.6.89) and (2.6.90). Moreover, the solution
is given by a 1-wave followed by a 2-wave, satisfies ρ > 0, and all speeds are
bounded by c. The solution is unique in the class of rarefaction waves and
admissible shock waves.

We note that in the case of an isentropic equation of state, (p(ρ) =
σ2ργ , γ > 1), the sound speed exceeds the speed of light for sufficiently large
ρ, except in the limiting case γ = 1. Thus, it is only in the limiting case γ = 1
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of the isentropic gas model that a big data global existence theorem for the
Riemann problem (such as Theorem 3 above) is possible without modifying
the equation of state at large densities.

2.7 The Initial Value Problem

In this section we use the Glimm difference scheme to prove Theorem 1. We
begin with a short discussion of this method.

Glimm’s method is a procedure for obtaining solutions of the general ini-
tial value problem by constructing a convergent sequence of approximate solu-
tions, the approximation scheme being based on the solution of the Riemann
problem. The scheme consists of approximating the solution at a fixed time
level by piecewise constant states, so that one can solve the resulting Riemann
problems thereby obtaining a sequence of elementary waves at that time level,
the goal being to estimate the growth in the amplitude of these elementary
waves as the waves interact during the time evolution of the solution. Glimm’s
method provides a scheme by which Riemann problems are re-posed at a sub-
sequent time level according to a random choice of the state appearing in the
waves of the previous time level. This has the advantage that waves at the
subsequent time level are determined through the interaction of waves at the
prior time level, and by this scheme, estimates on the amplitude changes in
waves during interactions can then be used to estimate the growth of a solu-
tion in general. The natural measure of the amplitude, or strength of a wave
γ, is the magnitude of the jump |uR−uL| ≡ |γ|. Thus, the total wave strength
present in an approximate solution at time t > 0 is given by∑

i

|γi|, (2.7.91)

where the sum is over all waves present in the approximate solution at time
t. The sum in (2.7.91) is equivalent to the total variation norm of the ap-
proximate solution at time t > 0. The total variation of the waves will in
general increase due to interactions because of the nonlinearity of the equa-
tions. Glimm showed that for a strictly hyperbolic, genuinely nonlinear (or
linearly degenerate [26]) system, if the total initial strength of waves in an
approximate solution is sufficiently small (

∑
i |γi| << 1) at time t = 0, then

the total strength of waves at time t > 0 is bounded by a constant times the
initial strength. His method is to define a nonlocal functional Q, quadratic in
wave strengths, which has the property that it decreases when waves interact,
and moreover this decrease dominates the increase in total wave strength,
when the initial wave strength is sufficiently small. This leads to the following
theorem:

Theorem 5 (Glimm, [10]) Consider the initial value problem (2.2.24),
(2.2.25) for a strictly hyperbolic, genuinely nonlinear system of conservation
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laws defined in a neighborhood of a state u∗. Then there exist constants 0 <
V << 1, C > 0, and a neighborhood u of u∗ such that, if the initial data u0

lies in u, and
V ar{u0(·)} < V, (2.7.92)

then there exists a global weak solution u(x, t) of (2.2.24), (2.2.25) obtained
by Glimm’s method, and this solution satisfies

V ar{u(·, t} ≤ CV ar{u0(·)}. (2.7.93)

Glimm’s method of analysis, based on the quadratic potential functional,
is the only method by which a time independent bound on wave strengths
has been rigorously proven for general systems of hyperbolic conservation
laws. In this section we show that system (2.1.15) is better than the general
case because it has the very special property that when p = σ2ρ, the total
variation of ln(ρ) is nonincreasing (in time) when elementary waves interact.
Thus, V ar{ln(ρ)} plays the role of an energy function, and one can use this
in place of the nonlocal functional Q in Glimm’s method. This fact enables
us to prove Theorem 1, a large data existence theorem, in this special case.
(This idea is due to Nishida [22].)

We now define the Glimm difference scheme for system (2.1.15) in detail,
and prove Theorem 1. Let ∆x denote a mesh length in x and ∆t a mesh length
in t, and let xi ≡ i∆x and tj ≡ j∆t denote the mesh points in an approximate
solution. Let u0(x) ≡ u(ρ0(x), v0(x)) denote initial data for system (2.1.15)
satisfying ρ0(x) > 0,−c < v0(x) < c. To define the Glimm scheme approx-
imate solution u∆x(x, t), we approximate the initial data by the piecewise
constant states ui0 = u0(xi+). To start the scheme, define

u∆x(x, 0) = ui0, for xi ≤ x < xi+1.

Now assume that the approximate solution u∆x has been defined for t ≤ tj−1,
and that the solution at time t = tj−1 is given by piecewise constant states

u∆x(x, tj−1) = ui,j−1, for xi ≤ x < xi+1.

In order to complete the definition of u∆x by induction, it suffices to define
u∆x(x, t) for tj−1 < t ≤ tj . For tj−1 < t < tj , let u∆x(x, t) be obtained by
solving the Riemann problems posed at time t = tj−1 as in Theorem 3. Note
that since all wave speeds are bounded by c, we assume that

∆x/∆t ≥ 2c,

in order to insure that waves do not interact within one time step. Now to
re-pose the constant states and the corresponding Riemann problems at time
level tj in the approximate solution, let a ≡ {aj} ∈ A denote a (fixed) random
sequence, 0 < aj < 1, where A denotes the infinite product of intervals (0, 1)
endowed with Lebesgue measure, j = 0, 1, 2, .... Then define
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u∆x(x, tj+) = uij , for xi ≤ x < xi+1,

where
uij = u∆x(xi + aj∆x, tj−).

This completes the definition of the approximate solution u∆x by induction.
(Note that u∆x depends on the choice of a ∈ A.) The restriction on the
random sequence a will come at the end. The important point is that the
waves in the solution u∆x at mesh point (xi, tj) solve the Riemann problem
with uL = u∆x(xi−1 + aj∆x, tj−) and right state uR = u∆x(xi + aj∆x, tj−),
these being states that appear in the waves of the previous time level. In the
case of system (2.1.15), we modify the above definition of wave strength |γ|
by defining

|γ| = | ln(ρR)− ln(ρL)|, (2.7.94)

where uL is the left state and uR the right state of the wave γ. The proof of
Theorem 1 is based on the following lemma:

Lemma 6 Let uL, uM and uR denote three arbitrary states satisfying (2.6.89)
and (2.6.90). Let αi, βi and γi denote the waves that solve the Riemann prob-
lems [uL, uM ], [uM , uR] and [uL, uR], respectively, i = 1, 2. Then

|γ1|+ |γ2| ≤ |α1|+ |α2|+ |β1|+ |β2|. (2.7.95)

Proof: Lemma 6 follows from the special geometry of the shock curves that
was obtained in Section 5. The important point is that the graphs of the
shock curves Si(uL) in rs-plane (the plane of Riemann invariants (2.5.73)
and (2.5.74)) have the same geometric shape, independent of uL; and the
1-shock curves are reflections of the 2-shock curves about the line r = s. It
is also important that Lemma 5 holds: namely, 0 ≤ |ds/dr| < 1 all along
the 1-shock curves S1, and 0 < |dr/ds| ≤ 1 along S2. In particular, these
latter conditions imply that the interaction of shock waves of the same family
produces a stronger shock in the same family, together with a rarefaction wave
of the opposite family. This special geometry is enough to imply that the sum
of the strengths of the waves as projected onto the (s − r)-axis (recall that
s− r = 2K0 ln(ρ)) is the same in the outgoing waves as in the incoming waves
for any interaction [uL, uM ], [uM , uR] → [uL, uR]-except in the case when
waves of the same family cancel, in which case the sum decreases. Note that
Lemma 5 guarantees that the strength |γ| is monotone in uR along Si, i = 1, 2,
and this is needed to ensure that the Euclidean strength |uL − uR| across a
wave γ can be bounded by the strength of the wave as defined in (2.7.94). The
best way to verify (2.7.95) in two wave interactions, the general case being a
straightforward generalization of these, and we omit the details. [22, 19].2

Now let γp
ij denote the p-wave that appears in the solution of the Riemann

problem posed at the mesh point (xi, tj) in the approximate solution u∆x, p =
1, 2.
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Lemma 7 Let u∆x denote an approximate solution of the random choice
method for initial data satisfying (2.6.89) and (2.6.90). Then∑

−∞<i<∞,p=1,2

|γp
i,j+1| ≤

∑
−∞<i<∞,p=1,2

|γp
ij |. (2.7.96)

Proof: Consider the portions of the elementary waves γp
i−1,j , γ

p
ij and γp

i+1,j

that, at time level t = tj+1, lie within the spacial interval [xi−1 +aj+1∆x, xi +
aj+1∆x). Let these waves be denoted αp

i−1,j , γ̄
p
i,j and βp

i+1,j according to
whether the wave emanates from the mesh point (xi−1, tj), (xi, tj) or (xi+1, tj),
respectively. Then the waves αp

i−1,j , p = 1, 2, are either all zero strength waves,
(the random point lies closer to x = xi than the states in the waves αp

i−1,j at
time level t = tj+1)), or else they are the waves that solve the Riemann prob-
lem with left state uL ≡ u∆x(xi−1 + aj+1∆x, tj+1−), and right state ui−1,j ;
the waves βp

i+1,j are similarly all zero or else they solve the Riemann problem
with left state uij and right state uR ≡ u∆x(xi+aj+1∆x, tj+1−); and γ̄p

ij solve
the Riemann problem with left state either uL or ui−1,j and right state either
uij or uL, depending on where the random points (xi−1 +aj+1∆x, tj+1−) and
(xi +aj+1∆x, tj+1−) fall relative to the waves γp

ij at time leve tj+1. Note that
in this notation, the waves γp

i,j+1 solve the Riemann problem [uL, uR]. Thus
by Lemma 6 we can conclude that∑

p=1,2

|γp
i,j+1| ≤

∑
p=1,2

{|αp
i−1,j |+ |γ̄p

ij |+ |βp
i+1,j |}. (2.7.97)

But summing i from −∞ to +∞ in (2.7.97) and rearranging terms gives∑
p,i

|γp
i,j+1| ≤

∑
p,i

{|αp
ij |+ |γ̄p

ij |+ |βp
ij |} ≤

∑
p,i

|γp
ij |,

the latter inequality holding because, by construction,

|αp
ij |+ |γ̄p

ij |+ |βp
ij | = |γp

ij |.

This completes the proof of Lemma 6. 2

We now complete the proof of Theorem 1. First, since ln(ρ) is monotone
along the wave curves Ti, it follows that at time level t ∈ (tj , tj+1) in an
approximate solution u∆x, the sum of the strengths of the waves at time t is
equivalent to the total variation in ln(ρ) of the approximate solution at time
t :

V ar{ln(ρ∆x(·, t))} =
∑
p,i

|γp
ij |. (2.7.98)

Thus, in the approximate solution,

V ar{ln(ρ∆x(·, t+))} ≤ V ar{ln(ρ∆x(·, s+))}, (2.7.99)
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whenever s ≤ t. We now note that by Helly’s theorem [26], L1 limits of
functions of uniformly bounded variation satisfy the same variation bound.
This gives the first inequality (2.1.20) of Theorem 1 for any weak solution
u(x, t) = u(ρ(x, t), v(x, t)) obtained as an L1 limit of approximate solutions
u∆x as ∆x → 0. Thus we show that (2.1.20) of Theorem 1 is a consequence
of the following lemma :

Lemma 8 (Glimm, [10]) Assume that the approximate solution u∆x satisfies

V ar{u∆x(·, t)} < V <∞ (2.7.100)

for all t ≥ 0. Then there exists a subsequence of mesh lengths ∆x → 0 such
that u∆x → u where u(x, t) also satisfies (2.7.100). The approximate solutions
converge pointwise a.e., and in L1

loc at each time, uniformly on bounded x
and t sets. Moreover, there exists a set N ⊂ A of Lebesgue measure zero such
that, if a ∈ A−N, then u(x, t) is a weak solution of the initial value problem
(2.1.15), (2.1.16).

Using Lemma 8, the proof of (2.1.20) and (2.1.21) of Theorem 1 is
completed once we show that the estimates (2.1.18) and (2.1.19) imply
(2.7.100) for the approximate Glimm scheme solutions. For this, note that
(2.1.18) and (2.1.19) imply that there exist states ρ∞ = limx→∞ ρ0(x) and
u∞ = limx→∞ u0(x). But (2.1.19) implies that the total variation in ln

{
c+v
c−v

}
is finite at time t = 0+ in the approximate solution u∆x, and thus

V ar{ln(ρ∆x(·, 0+))} < V0,

where V0 depends only on the initial total variation bounds in (2.1.18) and
(2.1.19). Thus, by (2.7.99),

V ar{ln(ρ∆x(·, t+))} < V0, (2.7.101)

for all positive times t > 0. But it follows directly from (2.5.86) and (2.5.85) of
Lemma 5 that the variation in ln{ c+v

c−v} is bounded uniformly by the variation
in ln(ρ) across every elementary wave in each approximate solution u∆x. Thus
(2.7.101) implies that

V ar{ln
(
c+ v

c− v

)
(·, t+)} < V1, (2.7.102)

at each t > 0 in an approximate solution u∆x, where V1 depends only on V0. It
now follows from (2.7.101) and (2.7.102) that for every ∆x and a ∈ A, ρ∞ =
limx→∞ ρ∆x(x, t) and v∞ = limx→∞ v∆x(x, t). This means that (ρ∞, v∞) is
a constant state appearing in the approximate solutions at each fixed time
level. This together with (2.7.101) and (2.7.102) implies that there exists a
constant M > 0 such that

1/M < ρ∆x(x, t) < M,
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and
−c+ 1/M < v∆x(x, t) < c− 1/M,

for all x and t ≥ 0, uniformly in ∆x. The desired result (2.7.100) follows
from these latter two bounds because, in light of Proposition 1, the Jacobian
determinant

∣∣∣∂(u0,u1)
∂(ρ,v)

∣∣∣ is bounded away from zero (uniformly in ∆x) on the
image of the approximate solutions u∆x. Thus by Lemma 8 there exists a sub-
sequence of mesh lengths ∆x→ 0 such that u∆x → u(ρ(x, t), v(x, t)) where u
satisfies (2.7.100), (2.1.20) and (2.1.21), and the convergence is pointwise a.e.,
and in L1

loc at each time, uniformly on bounded x and t sets. By Proposition
2, V0 and V1 must be Lorentz invariant constants.2

2.8 Appendix

In this section we show that the transformation properties of characteristics
and shocks in a relativistic system of conservation laws follows directly from
the covariance properties of the Rankine-Hugoniot jump relations. In par-
ticular, we show that the characteristic curves and shock curves associated
with a system of conservation laws divT = 0, transform, under under gen-
eral nonlinear spacetime coordinate transformations, like the level curve of
a scalar function. We assume that the divergence is taken with respect to a
Lorentz metric g defined in four dimensional spacetime. As a consequence, we
show that the wave speeds λi and the shock speeds si, defined for systems
(2.1.10) and (2.1.15), transform according to the special relativistic velocity
transformation law (2.2.28).

Thus, if gij denotes a fixed Lorentzian metric defined on a four dimensional
spacetime x ≡ (x0, ..., x3), x0 = ct, let Γ i

jk denote the Christoffel symbols
which define the unique symmetric connection associated with gij , namely

Γ i
jk ≡

1
2
giσ{gσj,k + gkσ,j − gjk,σ}.

Let Tij be a symmetric (0, 2)-tensor which we take to be the stress energy
tensor for some field in spacetime. Conservation of energy-momentum based
on the metric g then reads divT = 0, where the covariant divergence is given
in coordinates by [35, 8]

divT ≡ T σ
j;σ ≡ T σ

j,σ + Γ σ
τσT

τ
j − Γ τ

jσT
σ
τ . (2.8.103)

Here, “, i” denotes ∂/∂xi and “; i” denotes the covariant derivative.

Definition 1 Assume that Tij (defined in a given coordinate system x) is
smooth except for a jump discontinuity across a smooth surface φ(x) = 0,
where dφ ≡ nσdx

σ 6= 0. Then we say that T is a weak solution of divT = 0
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if this equation holds away from the surface φ(x) = 0, and across the surface
the following (Rankine-Hugoniot) jump conditions hold:

[T σ
j nσ] = 0. (2.8.104)

Here, as usual, the square brackets around a quantity denote the jump in the
quantity across the surface φ = 0,

[T σ
j nσ] ≡ (T σ

j nσ)R − (T σ
j nσ)L = [T σ

j ]nσ.

One can show that the jump relation 2.8.104 is implied by the weak formula-
tion of divT = 0 in the sense of the theory of distributions [26], and implies
conservation of the physical energy-momentum across the surface of disconti-
nuity φ = 0. The equivalence of the weak formulation follows from integration
by parts, observing that the non-divergence terms Γ σ

τσT
τ
j −Γ τ

jσT
σ
τ contain no

derivative of T.
From the jump conditions we obtain the following proposition:

Proposition A 1 A shock surface transforms (under arbitrary nonlinear
changes of spacetime coordinates) as the level curve of a scalar function de-
fined on spacetime.

Proof: If [T i
j ]ni = 0 holds on the surface φ = 0 in one coordinate system x

where dφ = nidxi then it holds in every other coordinate system because T
transforms like a (1,1)-tensor, and dφ is a 1-form.2

Now restricting to a 2−dimensional Minkowski spacetime, so that gij ≡
ηij , Proposition A1 implies that the shock curve has tangent vector dx/dτ =
X if and only if nidx

i(X) = 0, where nidx
i = dφ and φ is a function constant

along the shock curve. Thus, letting Xi denote the components of X, we
conclude that the shock speed s = dx1/dt is given by

s = c
X1

X0
= −cn0

n1
.

Proposition A 2 Under Lorentz transformations, the shock speeds s trans-
form according to the velocity transformation rule (2.2.28).

Proof: Consider a Lorentz transformation taking the unbarred coordinates xi

to the barred coordinates x̄α, such that the barred frame moves with velocity
µ as measured in the unbarred frame xi. Then

x̄α = Λ(µ)α
i x

i,

where

Λ(µ)α
i =

[
cosh(θ) sinh(θ)
sinh(θ) cosh(θ)

]
, (2.8.105)
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and tanh(θ) = µ/c, [35]. Then the vector X, tangent to the shock curve,
transforms as

X̄α = Λ(µ)α
i X

i.

Thus in the barred coordinates, the shock speed is given by

s̄ = c
X̄1

X0
= c

X0cosh(θ) +X1sinh(θ)
X0sinh(θ) +X1cosh(θ)

=
µ+ s

1 + µv
c2

.

This completes the proof of the Proposition A2.2

Proposition A 3 The characteristic curves for a system of conservation
laws (2.2.24) transform as level curves of functions in physical space. More-
over, under Lorentz transformations, the wave speeds λi (the eigenvalues of
dF ) transform according to the velocity transformation law (2.2.28).

Proof: By Theorem 2, λi = limε→0 si(ε). Thus, by continuity, λi transforms
as a velocity (2.2.28) under Lorentz transformations because si(ε) does for
each fixed ε. Since the characteristic curves are given by dx1/dt = λi and λi

transforms as a velocity, it follows that the characteristic curves must trans-
form like level curves of functions. Thus by duality, in two dimensional space-
time, the tangents to the shock curves and characteristic curves transform like
vectors.2
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A Shock Wave Formulation of the Einstein
Equations

3.1 Introduction

In this chapter we show that Einstein equations (1.3.2)-(1.3.5) are weakly
equivalent to the system of conservation laws with time dependent sources
(1.4.3),(1.4.4), so long as the metric is in the smoothness class C0,1, and
T is in L∞. Inspection of equations (1.3.2)-(1.3.5) shows that it is in gen-
eral not possible to have metrics smoother than Lipschitz continuous, (that
is, smoother than C0,1 at shocks), when the metric is written in standard
Schwarzschild coordinates. Indeed, at a shock wave, the fluid variables, and
hence T , suffer jump discontinuities. At such a discontinuity, (1.3.2)-(1.3.5)
imply that Ar, Br and Bt all suffer jump discontinuities as well.

We restrict to spacetime metrics g that are spherically symmetric, by which
we mean that g lies within the general class of metrics that take the form,

ds2 = gijdx
idxj ≡ −A(r, t)dt2 +B(r, t)dr2 + 2D(r, t)dtdr + C(r, t)dΩ2,

(3.1.1)
where the components A, B, C and D of the metric are assumed to be func-
tions of the radial and time coordinates r and t alone, dΩ2 ≡ dθ2 +sin2(θ)dφ2

denotes the line element on the 2-sphere, and x ≡ (x0, ..., x3) ≡ (t, r, θ, φ),
denotes the underlying coordinate system on spacetime, [35, 34, 14, 21]. In
this case we assume that the 4-velocity w is radial, by which we mean that
the x-components of w are given by

wi = (w0(r, t), w1(r, t), 0, 0), i = 0, ..., 3, respectively, (3.1.2)

for some functions w0 and w1.
Now it is well known that in general there exists a coordinate transforma-

tion (r, t) → (r̄, t̄) that takes an arbitrary metric of form (3.1.1) over to one
of form, [35],
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ds2 = gijdx
idxj ≡ −A(r, t)dt2 +B(r, t)dr2 + r2dΩ2. (3.1.3)

A metric of form (3.1.3) is said to be in the standard Schwarzschild coordi-
nates, or (standard coordinate guage), and it is our purpose here to establish
the weak formulation of the Einstein equations (1.3.2)-(1.3.5) for metrics of
the form (3.1.3) in the case when A and B are finite, and satisfy AB 6= 0.

The general problem of making sense of gravitational metrics that are only
Lipschitz continuous at shock surfaces was taken up in [29]. The analysis there
identifies conditions that must be placed on the metric in order to insure that
conservation holds at the shock, and that there do not exist delta-function
sources at the shock, [15]. When these conditions are met, the methods in
[29] imply the existence of a C1,1 coordinate transformation that improves
the level of smoothness of the metric components from C0,1 up to C1,1 at
the shock. However, the results in [29] apply only to smooth interfaces that
define a single shock surface for which G = κT holds identically on either
side. For general shock wave solutions of the form (3.1.3), (that can contain
multiplicities of interacting shock waves), it is an open question whether there
exists a coordinate transformation, (say to a metric in the more general class
(3.1.1)), that can increase the level of smoothness of the metric components
by one order. For this reason, we now show that the mapping (r, t) → (r̄, t̄)
that takes an arbitrary metric of form (3.1.1) over to one of form (3.1.3),
implies a loss of one order of differentiability in the metric components when
shock waves are present. This argues that our results are consistent with the
existence of such a smoothing coordinate transformation, but still leaves open
the problem of the existence of such a transformation.

Thus we now review the construction of the mapping (r, t) → (r̄, t̄) that
takes an arbitrary metric of form (3.1.1) over to one of form (3.1.3), [35]. To
start, one must assume that the metric component C(t, r) in (3.1.1) satisfies
the condition that for each fixed t, C increases from zero to infinity as r
increases from zero to infinity, and that

∂

∂r
C(r, t) 6= 0. (3.1.4)

(These are not unreasonable assumptions considering that C measures the
areas of the spheres of symmetry.) Define

r̄ =
√
C(r, t). (3.1.5)

Then the determinant of the Jacobian of the mapping (r, t) → (r̄, t) satisfies∣∣∣∣∂r̄∂r
∣∣∣∣ = ∂

∂r

√
C(r, t) 6= 0,

in light of (3.1.4). Thus the transformation to (r̄, t) coordinates is (locally) a
nonsingular transformation, and in (r̄, t) coordinates the metric (3.1.1) takes
the form
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ds2 = −A(r, t)dt2 +B(r, t)dr2 + 2E(r, t)dtdr̄ + r2dΩ2. (3.1.6)

(Here we have replaced r̄ by r and A, B and E stand in for the transformed
components.) It is easy to verify that, to eliminate the mixed term, it suffices
to define the time coordinate t̄ so that, cf. [35],

dt̄ = φ(r, t) {A(r, t)dt− E(r, t)dr} . (3.1.7)

In order for (3.1.7) to be exact, so that t̄ really does define a coordinate
function, the integrating factor φ must be chosen to satisfy the (linear) PDE

∂

∂r
{φ(r, t)A(r, t)} = − ∂

∂t
{φ(r, t)E(r, t)} . (3.1.8)

But we can solve (3.1.8) for φ(r, t) from initial data φ(r, t0), by the method of
characteristics. From this it follows that, (at least locally), we can transform
metrics of form (3.1.1) over to metrics of form (3.1.3) by coordinate transfor-
mation. To globalize this procedure, we need only assume that Cr(t, r) 6= 0,
and that C takes values from zero to infinity at each fixed t. Now note that
in general φ(r, t), the solution to (3.1.8), will have the same level of differ-
entiability as A(r, t) and E(r, t); and so it follows that the components of dt
and dr in (3.1.7) will have this same level of differentiability. This implies
that the t̄ transformation defined by (3.1.7) preserves the level of smoothness
of the metric component functions. On the other hand, the r̄ transformation
in (3.1.5) reduces the level of differentiablility of the metric components by
one order. Indeed, the level of smoothness of the transformed metric compo-
nent functions are in general no smoother than the Jacobian that transforms
them, and by (3.1.5), the Jacobian of the transformation contains the terms
Cr and Ct which will in general be only C0,1 when C ∈ C1,1. Thus, if we
presume, (motivated by [28]), that for general spherically symmetric shock
wave solutions of G = κT, that there exists a coordinate system in which the
metric takes the form (3.1.1), and the components of g in these coordinates
are C1,1 functions of these coordinates, then it follows that we cannot ex-
pect the transformed metrics of form (3.1.3) to be better than C0,1, that is,
Lipschitz continuous. The equations we derive below allow for metrics in the
smoothness class C0,1, but in general they do not admit solutions smoother
than Lipschitz continuous. It remains an open question whether solutions to
these equations can be smoothed by coordinate transformation when shock
waves are present.

In Section 3 we verify the equivalence of several weak formulations of the
Einstein equations that allow for shock waves, and that are valid for metrics
of form (3.1.3), in the smoothness class C0,1. In Section 4, we show that these
equations are weakly equivalent to the system (1.4.3)-(1.4.4) of conservation
laws with time dependent sources. In the next chapter, we give an existence
theory for these equations with general Cauchy data of bounded variation,
thereby demonstrating the consistency of the Einstein equations for weak
(shock wave) solutions within the class of C0,1 metrics.
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3.2 The Einstein Equations for a Perfect Fluid with
Spherical Symmetry

In this section we study the system of equations obtained from the Einstein
equations under the assumption that the spacetime metric g is spherically
symmetric. So assume that the gravitational metric g is of the form (3.1.1),
and to start, assume that T ij is any arbitrary stress tensor. To obtain the
equations for the metric components A and B implied by the Einstein equa-
tions (1.2.1), plug the ansatz (3.1.3) into the Einstein equations (1.2.1). The
resulting system of equations (1.3.2)-(1.3.5) is obtained using MAPLE. Equa-
tions (1.3.2)-(1.3.5) represent the (0,0), (0,1), (1,1) and (2,2) components of
Gij = κT ij , respectively, (as indexed by T on the RHS of each equation). The
(3,3) equation is a multiple of the (2,2) equation, and all remaining compo-
nents are identically zero. (Note that MAPLE defines the curvature tensor to
be minus one times the curvature tensor defined in (1.1.14).)

We are interested in solutions of (1.3.2)-(1.3.5) in the case when shock
waves are present. Since A and B have discontinuous derivatives when shock
waves are present, it follows that (1.3.5), being second order, cannot hold clas-
sically, and thus equation (1.3.5) must be taken in the weak sense, that is, in
the sense of the theory of distributions. To get the weak formulation of (1.3.5),
multiply through by AB2 to clear away the coefficient of the highest (second)
order derivatives, then multiply through by a test function and integrate the
highest order derivatives once by parts. It follows that if the test function is in
the class C1,1

0 , (that is, one continuous derivative that is Lipschitz continuous,
the subscript zero denoting compact support), and if the metric components
A and B are in the class C0,1, and T ij is in class L∞, then all terms in the
integrand of the resulting integrated expression are at most discontinuous,
and so all derivatives make sense in the classical pointwise a.e. sense.

In order to account for initial and boundary conditions in the weak for-
mulation, it is standard to take the test function φ to be nonzero at t = 0 or
at the specified boundary. In this case, when we integrate by parts to obtain
the weak formulation, the boundary integrals are non-vanishing, and their
inclusion in the weak formulation represents the condition that the boundary
values are taken on in the weak sense. Thus, for example, if the boundary
is r = r0 ≥ 0, we say φ ∈ C1,1

0 (r ≥ r0, t ≥ 0) to indicate that φ can be
nonzero initially and at the boundary r = r0, thereby implicitly indicating
that boundary integrals will appear in the weak formulation based on such
test functions.

We presently consider various equivalent weak formulations of equations
(1.3.2)-(1.3.5), and we wish to include the equivalence of the weak formulation
of boundary conditions in the discussion. Thus, in order to keep things as
simple as possible, we now restrict to the case of weak solutions of (1.3.2)-
(1.3.5) defined on the domain r ≥ r0 ≥ 0, t ≥ 0, and we always assume
that test functions φ lie in the space φ ∈ C1,1

0 (t ≥ 0, r ≥ r0) so that initial
and boundary values are accounted for in the weak formulation. (This is the
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simplest case in which to rigorously demonstrate the equivalence of several
weak formulations of initial boundary value problems. More general domains
can be handled in a similar manner.)

Note that because (1.3.2)-(1.3.4) involve only first derivatives of A and B,
and A,B ∈ C0,1, it follows that (1.3.2)-(1.3.4) can be taken in the strong sense,
that is, derivatives can be taken in the pointwise a.e. sense. The continuity
of A and B imply also that the initial and boundary values are taken on
strongly in any C0,1 weak solution of (1.3.2) − (1.3.4). On the other hand,
equation (1.3.5) involves second derivatives, and so this last equation is the
only one that requires a weak formulation. The weak formulation of (1.3.5)
is thus obtained on domain t ≥ 0, r ≥ r0 ≥ 0 by multiplying through by a
test function φ ∈ C1,1

0 (r ≥ r0, t ≥ 0) and integrating by parts. This yields the
following weak formulation of (1.3.5):

0 =
∫ ∞

r0

∫ ∞

0

{
− Btφt

rAB2
− Btφ

r

(
− At

A2B2
− 2Bt

AB3

)
+

A′φ′

rAB2

+ A′φ

(
− 1
r2AB2

− A′

rA2B2
− 2B′

rAB3

)
+

φ

rAB2
Φ+

2κr
B
φT 22

}
drdt

−
∫ ∞

r0

Bt(r, 0)φ(r, 0)
rA(r, 0)B2(r, 0)

dr +
∫ ∞

0

A′(r0, t)φ(r0, t)
r0A(r0, t)B2(r0, t)

dt (3.2.1)

Our first proposition states that the weak formulation (3.2.1) of equation
(1.3.5) may be replaced by the weak formulation of the conservation laws
divT = 0, so long as A and B are in C0,1 and T ij ∈ L∞.

Proposition 3 Assume that A,B ∈ C0,1(r ≥ r0, t ≥ 0), T ij ∈ L∞(r ≥
r0, t ≥ 0) and assume that A, B and T solve (1.3.2)-(1.3.4) strongly. Then A,
B and T solve T 1i

;i = 0, (the 1-component of DivT = 0), weakly if and only if
A, B and T satisfy (3.2.1).

Proof: The proof strategy is to modify (3.2.1) and the weak form of con-
servation using (1.3.2)-(1.3.4) as identities, and then observe that the two
are identical at an intermediate stage. To begin, substitute for Bt and A′ in
several places in (3.2.1) to obtain the equivalent condition

0 =
∫ ∞

r0

∫ ∞

0

{
κT 01ϕt + κT 11ϕ′ +

∂

∂r

(
ϕ

(B − 1)
r2B2

)
+ ϕ

[
− ∂

∂r

(
B − 1
r2B2

)
+
Bt

r

(
At

A2B2
+

2Bt

AB3

)
+A′

(
− 1
r2AB2

− A′

rA2B2
− 2B′

rAB3

)
+

1
rAB2

Φ+
2κr
B
T 22

]}
dr dt

+κ
∫ ∞

r0

T 01(r, 0)ϕ(r, 0) dr + κ

∫ ∞

0

ϕ(r0, t)
[
T 11(r0, t)

B(r0, t)− 1
r20B

2(r0, t)

]
dt
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=
∫ ∞

r0

∫ ∞

0

{
κT 01ϕt + κT 11ϕ′ + ϕ

[
B′(B − 2)
r2B3

+ 2
(B − 1)
r3B2

+
Bt

r

(
At

A2B2
+

2Bt

AB3

)
+A′

(
− 1
r2AB2

− A′

rA2B2
− 2B′

rAB3

)
+

1
rAB2

Φ+
2κr
B
T 22

]}
dr dt

+κ
∫ ∞

r0

T 01(r, 0)ϕ(x, 0) dr + κ

∫ ∞

0

ϕ(r0, t)T 11(r0, t) dt. (3.2.2)

Now, the weak form of conservation of energy-momentum is given by

0 =
∫ ∞

r0

∫ ∞

0

{
T 01ϕt + T 11ϕ′ −

(
Γ i

i0T
01 + Γ i

i1T
11 (3.2.3)

+Γ 1
00T

00 + 2Γ 1
01T

01 + Γ 1
11T

11 + 2Γ 1
22T

22
)
ϕ
}
drdt

+
∫ ∞

r0

T 01(r, 0)ϕ(x, 0) dr +
∫ ∞

0

ϕ(r0, t)T 11(r0, t) dt.

Here, we have used the fact that T 22 = sin2 θT 33, T ij = 0 if i 6= j = 2 or 3,
and Γ 1

33 = sin2 θΓ 1
22. Next, we calculate the connection coefficients Γ i

jk using
(1.1.10) to obtain,

Γ i
i0 = 1

2

(
At

A + Bt

B

)
Γ i

i1 = 1
2

(
A′

A + B′

B + 4
r

)
Γ 0

00 = At

2A Γ 0
01 = A′

2A

Γ 0
11 = Bt

2A Γ 0
22 = 0 = Γ 0

33

Γ 1
00 = A′

2B Γ 1
01 = Bt

2B

Γ 1
11 = B′

2B Γ 1
22 = − r

B

Γ 1
33 = − r sin2 θ

B .

(3.2.4)

Substituting the above formulas for Γ i
jk into (3.2.3) and using (1.3.2)-(1.3.4)

as identities to eliminate some of the T ij in favor of expressions involving A,
B and r, we see that (3.2.3) is equivalent to:

0 =
∫ ∞

r0

∫ ∞

0

{
T 01ϕt + T 11ϕ′ +

ϕ

κ

[
1
2

(
At

A
+

3Bt

B

)
Bt

rAB2

−1
2

(
A′

A
+

2B′

B
+

4
r

)
1

r2B2

(
r
A′

A
− (B − 1)

)
(3.2.5)

− A′

2r2AB

(
r
B′

B
+ (B − 1)

)
+ 2κ

r

B
T 22

]}
drdt

+
∫ ∞

r0

T 01(r, 0)ϕ(r, 0) dr +
∫ ∞

0

ϕ(r0, t)T 11(r0, t) dt.
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After some simplification, it is clear that (3.2.2) is equal to (3.2.5). This com-
pletes the proof of Proposition 3. 2

We next show that the Einstein equations (1.3.2)-(1.3.4) together with
DivT = 0 are overdetermined. Indeed, we show that for weak solutions with
Lipschitz continuous metric, either (1.3.2) or (1.3.3) may be dropped in the
sense that the dropped equation will reduce to an identity on any solution
of the remaining equations, so long as the dropped equation is satisfied by
either the initial or boundary data, as appropriate. The following proposition
addresses the first case, namely, for weak solutions in which the metric is
Lipschitz continuous, the first Einstein equation (1.3.2) reduces to an identity
on solutions of (1.3.3)-(1.3.4), so long as (1.3.2) is satisfied by the intial data.

Theorem 6 Assume that A,B ∈ C0,1 and T ∈ L∞ solve (1.3.3), (1.3.4)
strongly, and solve DivT = 0 weakly. Then if A,B, and T satisfy (1.3.2) at
t = 0, then A, B, and T also solve (1.3.2) for all t > 0.

Proof: We first give the proof for the case when A, B and T are assumed to
be classical smooth solutions of (1.3.3), (1.3.4) and DivT = 0. This is followed
by several lemmas necessary for the extension of this to the weak formulation,
which is given in the final proposition. So to start, assume that A,B, and T
are all smooth functions, and thus solve DivT = 0 strongly. For the proof in
this case, define

Hij ≡ Gij − κT ij . (3.2.6)

Because (1.3.3) and (1.3.4) hold,H01 ≡ H11 ≡ 0. Since by assumption T ij
;i = 0

and since Gij
;i = 0 for any metric tensor as a consequence of the Bianchi

identities, it follows that

0 = Hij
;i = Hij

,i + Γ i
ikH

kj + Γ j
ikH

ik. (3.2.7)

In particular, setting j = 0,

0 = Hi0
;i = Hi0

,i + Γ i
ikH

k0 + Γ 0
ikH

ik. (3.2.8)

By hypothesis, Hi0 = 0 when i 6= 0. In addition, the connection coefficients
Γ 0

ik are zero unless i or k equal 0 or 1. Therefore, (3.2.8) reduces to the linear
ODE

0 = H00
,0 +

(
Γ i

i0 + Γ 0
00

)
H00, (3.2.9)

at each fixed r. By hypothesis, H00 is initially zero, and since we assume that
H00 is a smooth solution of (3.2.9), it follows that H00 must continue to be
zero for all t > 0.

Next, assume only that A,B ∈ C0,1 and T ∈ L∞ so that (1.3.3), (1.3.4)
hold strongly, (that is, in a pointwise a.e. sense), but that DivT = 0 is only
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known to hold weakly. In this case, the argument above has a problem because
when g ∈ C0,1, the Einstein tensor G, viewed as a second order operator on
the metric components A and B, can only be defined weakly when A and
B are only Lipschitz continuous. It follows that the Bianchi identities, and
hence the identity DivG = 0, (which involves first order derivatives of the
components of the curvature tensor), need no longer be valid even in a weak
sense. Indeed, G can have delta function sources at an interface at which the
metric is only Lipschitz continuous, c.f. [28]. However, the above argument
only involves the 0’th component of DivG = 0, and the 0’th component of
DivG = 0 involves only derivatives of the components Gi0, and as observed
in (1.3.2), (1.3.3), these components only involve first derivatives of A and B.
Specifically, the weak formulation of G0i

;i = 0 is given by,

0 =
∫ ∞

r0

∫ ∞

0

{
−φiG

i0 + φ
(
Γ i

ikG
k0 + Γ 0

ikG
ik
)}
drdt (3.2.10)

−
∫ ∞

r0

φ(r, 0)G00(r, 0)dr −
∫ ∞

0

φ(r0, t)G10(r0, t)dt,

and since, by (1.3.2), (1.3.3), Gi0 involves only first order derivatives of A
and B, it follows that the integrand in (3.2.10) is a classical function defined
pointwise a.e. when A,B ∈ C0,1. But (3.2.10) is identically zero for all smooth
A and B because DivG = 0 is an identity. Thus, when A,B ∈ C0,1, we can
take a sequence of smooth functions Aε, Bε that converge to A and B in the
limit ε → 0, (c.f. Theorem 7 below), such that the derivatives converge a.e.
to the derivatives of A and B. It follows that we can take the limit ε → 0
(3.2.10) and conclude that (3.2.10) continues to hold under this limit. Putting
this together with the fact that DivT = 0 is assumed to hold weakly, we
conclude that

H0i
;i = (G0i − T 0i) ;i = 0,

in the weak sense, which means that H00 is in L∞ and satisfies the condition

0 =
∫ ∞

r0

∫ ∞

0

{
−φ0H

00 + φ
(
Γ i

i0 + Γ 0
00

)
H00

}
drdt (3.2.11)

−
∫ ∞

r0

φ(r, 0)G00(r, 0)dr −
∫ ∞

r0

φ(r, 0)H00(r0, t)dr.

Therefore, to complete the proof of Theorem 6, we need only show that if
A, B and T solve (1.3.3), (1.3.4) classically and DivT = 0 weakly, then a
weak L∞ solution H00, (i.e., that satisfies (3.2.11)), of (3.2.9) must be zero
almost everywhere if it is zero initially. Thus it suffices to prove the following
proposition:
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Proposition 4 Assume that H, f ∈ L∞loc(R ×R). Then every L∞loc weak so-
lution to the initial value problem

Ht + fH = 0
H(x, 0) = H0(x).

(3.2.12)

with initial data H0 ≡ 0 is unique, and identically equal to zero a.e., for all
t > 0.

Proof: We use the following standard theorem, [9],

Theorem 7 Let U be any open subset of Rn. Then u ∈W 1,∞
loc (U) if and only

if u is locally Lipschitz continuous in U, in which case the weak derivative of
u agrees with the classical pointwise a.e derivative as a function in L∞loc(U).

Corollary 1 Let u and f be real valued functions, u, f : R → R, such that
u, f ∈ L∞[0, T ], and u is a weak solution of the initial value problem

ut + fu = 0,
u(0) = 0, (3.2.13)

on the interval [0, T ]. Then u(t) = 0 for all t ∈ [0, T ].

Proof of Corollary: Statement (3.2.13) says that the distributional deriva-
tive ut agrees with the L∞ function fu on the interval [0, T ], and thus we
know that u ∈ W 1,∞

loc (0, t). Therefore, by Theorem 7, u is locally Lipschitz
continuous on (0, T ), and the weak derivative ut agrees with the pointwise
a.e. derivative of u on (0, T ). Thus it follows from (3.2.13) that on any sub-
interval [a, b] of [0, T ] on which u 6= 0, we must have

d

dt
[lnu] =

ut

u
= −f, a.e. (3.2.14)

Moreover, since u is Lipschitz continuous, both u and ln(u) are absolutely
continuous on [a, b], so we can integrate (3.2.14) to see that

u(t) = u(a)e−
∫ t

0
f(ξ)dξ

, (3.2.15)

for all t ∈ [a, b]. But u is continuous, so (3.2.15) applies in the limit that a
decreases to the first value of t = t0 at which u(t0) = 0. Thus (3.2.15) implies
that u(t) = 0 throughout [a, b], and hence we must have u(t) = 0 for all
t ∈ [0, T ], and the Corollary is true.

The proof of Proposition 4 now follows because it is easy to show that if
H is an L∞ weak solution of (3.2.12), then H(x, ·) is a weak solution of the
scalar ODE Ht + fH = 0 for almost every x. (Just factor the test functions
into products of the form φ1(t)φ2(x).)

Using Proposition 4, we see that if equation (1.3.2) holds on the initial
data for a solution of (1.3.3), (1.3.4), and DivT = 0, then equation (1.3.2)
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will hold for all t. By a similar argument, it follows that if (1.3.3) holds for
the boundary data of a solution to (1.3.2), (1.3.4), and DivT = 0, then (1.3.3)
will hold for all r and t. We record this in the following theorem:

Theorem 8 Assume that A,B ∈ C0,1 and T ∈ L∞ solve (1.3.2), (1.3.4)
strongly, and solve DivT = 0 weakly, in r ≥ r0, t ≥ 0. Then if A,B, and T
satisfy (1.3.3) at r = r0, then A, B, and T also solve (1.3.2) for all r > r0.

3.3 The Einstein Equations as a System of Conservation
Laws with Sources

Conservation of energy and momentum is expressed by the equations

0 = (DivT )j = T ij
;i

= T ij
,i + Γ i

ikT
kj + Γ j

ikT
ik,

which, in the case of spherical symmetry, can be written as the system of two
equations:

0 = T 00
,0 + T 01

,1 + Γ i
ikT

k0 + Γ 0
ikT

ik (3.3.1)

0 = T 01
,0 + T 11

,1 + Γ i
ikT

k1 + Γ 1
ikT

ik. (3.3.2)

Substituting the expressions (3.2.4) for the connection coefficients (1.1.10)
into (3.3.1) and (3.3.2), gives the equivalent system

0 = T 00
,0 + T 01

,1 +
1
2

(
2At

A
+
Bt

B

)
T 00 +

1
2

(
3A′

A
+
B′

B
+

4
r

)
T 01

+
Bt

2A
T 11 (3.3.3)

0 = T 01
,0 + T 11

,1 +
1
2

(
At

A
+

3Bt

B

)
T 01 +

1
2

(
A′

A
+

2B′

B
+

4
r

)
T 11

+
A′

2B
T 00 − 2

r

B
T 22. (3.3.4)

Now if one could use equations to eliminate the derivative terms At, A
′, Bt

and B′ in (3.3.3) and (3.3.4) in favor of of expressions involving the undiffer-
entiated unknowns A, B and T , then system (3.3.3), (3.3.4) would take the
form of a system of conservation laws with source terms. Indeed, T 00 and T 01

serve as the conserved quantities, T 10 and T 11 are the fluxes, and what is left,
written as a function of the undifferentiated variables (A,B, T 00, T 01), would
play the role of a source term. (For example, in a fractional step scheme de-
signed to simulate the initial value problem, the variables A and B could be
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“updated” to time tj +∆t by the supplemental equations (1.3.2) and (1.3.4)
or (1.3.3) and (1.3.4) after the conservation law step is implemented using
the known values of A and B at time tj . We carry this out in detail in the
next chapter.) The system then closes once one writes T 11 as a function of
(A,B, T 00, T 01). There is a problem here, however. Equations (1.3.2)-(1.3.4)
can be used to eliminate the terms Ar, Bt and Br, but (3.3.3) and (3.3.4) also
contain terms involving At, a quantity that is not given in the initial data
and is not directly evolved by equations (1.3.2)-(1.3.4). The way to resolve
this is to incorporate the At term into the conserved quantities. For general
equations involving At, this is not possible. A natural change of T variables
that eliminates the At terms from (3.3.3), (3.3.4), is to write the equations in
terms of the values that T takes in flat Minkowski space. That is, define TM

in terms of T, by

T 00 =
1
A
T 00

M ,

T 01 =
1√
AB

T 01
M , (3.3.5)

T 11 =
1
B
T 11

M ,

where the subscript denotes Minkowski, c.f. (1.3.9)-(1.3.11). It then follows
that TM is given by

T 00
M =

{
(p+ ρc2)

c2

c2 − v2
− p

}
,

T 01
M = (p+ ρc2)

cv

c2 − v2
, (3.3.6)

T 11
M =

{
(p+ ρc2)

v2

c2 − v2
+ p

}
,

where v denotes the fluid speed as measured by an inertial observer fixed with
respect to the radial coordinate r, c.f. (1.3.12)-(1.3.14). Substituting (3.3.5)
into (3.3.3), (3.3.4), the At terms cancel out, and we obtain the system

0 =
{
T 00

M

}
,0

+

{√
A

B
T 01

M

}
,1

+
1
2
Bt

B

(
T 00

M + T 11
M

)
+

1
2

√
A

B

(
A′

A
+
B′

B
+

4
r

)
T 01

M (3.3.7)

0 =
{
T 01

M

}
,0

+

{√
A

B
T 11

M

}
,1

+
1
2

√
A

B

{
2
Bt√
AB

T 01
M +

(
B′

B
+

4
r

)
T 11

M

+
A′

A
T 00

M − 4rT 22

}
. (3.3.8)
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The following proposition states that system (3.3.7), (3.3.8) is equivalent, (in
the weak sense), to the original system DivT = 0.

Proposition 5 If A and B are given Lipschitz continuous functions defined
on the domain r ≥ r0, t ≥ 0, then TM is a weak solution of (3.3.7) and (3.3.8)
if and only if T is a weak solution of DivT = 0 in this domain.

Proof: For simplicity, and without loss of generality, take the weak formu-
lation with test functions compactly supported in r > r0, t > 0, so that the
boundary integrals do not appear in the weak formulations. (Managing the
boundary integrals is straightforward.) The variables T ij

M solve (3.3.7) weakly
if

0 =
∫ ∞

r0

∫ ∞

0

{
−T 00ϕt −

√
A

B
T 01ϕr

+

[
1
2
Bt

B

(
T 00 + T 11

)
+

1
2

√
A

B

(
A′

A
+
B′

B
+

4
r

)
T 01

]
ϕ

}
dr dt

=
∫ ∞

r0

∫ ∞

0

{
−T 00

M Aϕt − T 01
M Aϕr (3.3.9)

+
[
1
2
Bt

B

(
AT 00

M +BT 11
M

)
+

1
2
A

(
A′

A
+
B′

B
+

4
r

)
T 01

M

]
ϕ

}
dr dt.

Set ψ = Aϕ, whereby Aϕt = ψt − At

A ψ. Using this change of test function,
(3.3.9) becomes

0 =
∫ ∞

r0

∫ ∞

0

{
−T 00ψt + T 00At

A
ψ − T 01ψ′ + T 01A

′

A
ψ

+
[
1
2
Bt

B

(
T 00 +

B

A
T 11

)
+

1
2

(
A′

A
+
B′

B
+

4
r

)
T 01

]
ψ

}
dr dt.

=
∫ ∞

r0

∫ ∞

0

{
−T 00ψt − T 01ψ′ +

[
1
2

(
2At

A
+
Bt

B

)
T 00

+
1
2

(
3A′

A
+
B′

B
+

4
r

)
T 01 +

Bt

2A
T 11

]
ψ

}
dr dt, (3.3.10)

which is the weak formulation of (3.3.3). We deduce that TM solves (3.3.7)
for every Lipschitz continuous test function ϕ if and only if T solves (3.3.10),
(the weak form of T 0i

;i = 0), for all Lipschitz continuous test functions ψ. That
weak solutions of (3.3.8) are weak solutions of T 1i

;i = 0 follows by a similar
argument. 2

It is now possible to use equations (1.3.2)-(1.3.4) as identities to substitute
for derivatives of metric components A and B, thereby eliminating the corre-
sponding derivatives of A and B from the source terms of equations (3.3.7),
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(3.3.8). Doing this, we obtain the system of equations (1.4.1), (1.4.2), which
was our goal. However, depending on the choice of equation to drop, either
(1.3.2) or (1.3.3), it is not clear that if we use the dropped equation to substi-
tute for derivatives in (3.3.7), (3.3.8), that the resulting system of equations
will imply that DivT = 0 continues to hold, the assumption we based the
substitution on in the first place. The following theorem states that (1.4.1),
(1.4.2) is equivalent to DivT = 0 in the weak sense:

Theorem 9 Assume that A,B are Lipschitz continuous functions, and that
T ∈ L∞, on the domain r ≥ r0, t ≥ 0. Assume also that (1.3.2) holds at t = 0,
and that (1.3.3) holds at r = r0. Then A,B, T are weak solutions of (1.3.2),
(1.3.3), (1.3.4) and DivT = 0 if and only if A,B, TM are weak solutions
of either system (1.3.2), (1.3.4), (1.4.1), (1.4.2), or system (1.3.3), (1.3.4),
(1.4.1), (1.4.2).

Proof: Without loss of generality, we consider the case when we drop equation
(1.3.3), and use (1.3.2), (1.3.4) and DivT = 0 to evolve the metric, and we
ask whether we can take the modified system (1.4.1) and (1.4.2) in place of
DivT = 0. In this case, we must justify the use of (1.3.3) in eliminating the
Bt terms in going from DivT = 0 to system (1.4.1) and (1.4.2). That is, it
remains only to show that equations (1.3.2) and (1.3.4) together with system
(1.4.1) and (1.4.2) imply that (1.3.3) holds, assuming (1.3.3) holds at r = r0.
(If so, then by substitution, it then follows that DivT = 0 also holds.)

Note that we can almost reconstruct (3.3.3), the first component of
DivT = 0, by reverse substituting (1.3.2), (1.3.4) into (1.4.1). To see this,
first note that we can add (1.3.2) and (1.3.4) to obtain

A′

A
+
B′

B
− rBκ(T 00

M + T 11
M ) = 0. (3.3.11)

Equation (3.3.11) is an identity that we may add to (1.4.1) to obtain

0 =
{
T 00

M

}
,0

+

{√
A

B
T 01

M

}
,1

− 1
2
r
√
ABκ

(
T 00

M + T 11
M

)
T 01

M

+
1
2

√
A

B

(
A′

A
+
B′

B
+

4
r

)
T 01

M . (3.3.12)

Adding and subtracting
1
2
Bt

B

(
T 00

M + T 11
M

)
(3.3.13)

to the RHS of (3.3.12) and using

H01 = −Bt

rB
−
√
ABκT 01

M , (3.3.14)

(c.f. (1.3.3) and (3.2.6)), we have
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0 =
{
T 00

M

}
,0

+

{√
A

B
T 01

M

}
,1

+
1
2

√
A

B

(
A′

A
+
B′

B
+

4
r

)
T 01

M

+
1
2
Bt

B

(
T 00

M + T 11
M

)
+

1
2
r
(
T 00

M + T 11
M

)
H01. (3.3.15)

Note that all but the last term on the RHS of (3.3.15) is equal to the first
component of DivT, and so

T 0i
;i = −1

2
r
(
T 00

M + T 11
M

)
H01.

Therefore, if A, B, and TM are solutions to (1.3.2), (1.3.4), (3.3.15), and
(3.3.4), it follows that

Hi0
;i = Gi0

;i − κT i0
;i

= κ
rB2T 11

2
H01, (3.3.16)

because Gi0
;i = 0 is an identity. But H00 ≡ 0 holds because we assume (1.3.2),

and hence (3.3.16) implies that

H01
,1 + fH01 = 0,

where f ≡ Γ i
i1 + 2Γ 1

01 − κ rB2T 11

2 ∈ L∞. Since we assume that H01 = 0 on the
boundary r = r0, it follows from Corollary 1 that H01 ≡ 0. 2

It remains to identify conditions under which T 11
M is a function of (T 00

M , T 01
M )

assuming that T has the form of a stress tensor for a perfect fluid, (3.3.6). A
calculation shows that, in this case, the following simplifications occur:

T 00
M − T 11

M = ρc2 − p, (3.3.17)
T 00

M T 11
M − (T 01

M )2 = pρc2. (3.3.18)

Using (3.3.17) and (3.3.18) we see that only the first terms on the RHS of
(1.4.1), (1.4.2) depend on v, and the only term that is not linear in ρ and
p is the third term on the RHS of (1.4.2). We state and prove the following
theorem:

Theorem 10 Assume that 0 < p < ρc2, 0 < dp
dρ < c2. Then T 11

M is a function
of T 00

M and T 01
M so long as (ρ, v) lie in the domain D = {(ρ, v) : 0 < ρ, |v| < c}.

Proof: We may write (3.3.17) and (3.3.18) in the form

T 00
M − T 11

M = f1(ρ), (3.3.19)
T 00

M T 11
M − (T 01

M )2 = f2(ρ). (3.3.20)
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Since df1
dρ = c2− p′ ≥ c2− σ2 > 0, it follows that the function f1 is one-to-one

with respect to ρ. Also, df2
dρ = p′ρc2 + pc2 ≥ pc2 > 0, so the function f2 is also

one-to-one in ρ. Consequently, the function h = f2 · f−1
1 is one-to-one, and

thus

T 00
M T 11

M − (T 01
M )2 = h(T 00

M − T 11
M ). (3.3.21)

Now introduce the linear and invertible change of variables
x = T 00

M − T 11
M , y = T 01

M , z = T 11
M , whereby (3.3.21) becomes

(x+ z)z − y2 = h(x). (3.3.22)

Equation (3.3.22) is quadratic in z, and so we may solve it directly, obtaining

z =
−x±

√
x2 + 4(y2 + h(x))

2
. (3.3.23)

From (3.3.23), we conclude that for any (x, y), there are two values of z,
though only one of these will correspond to values of ρ and v in the domain
D. That is, since

x = T 00
M − T 11

M = ρc2 − p > 0, (3.3.24)

and z = T 11
M > 0, it follows that there is at most one solution of (3.3.23) in

the domain D, namely

z =
−x+

√
x2 + 4(y2 + h(x))

2
. (3.3.25)

We conclude that if (ρ, v) lies in the domain D, then for each value of T 00
M

and T 01
M , there exists precisely one value of T 11

M . 2

A calculation shows that in the case p = σ2ρ, σ = constant, the formula
for T 11

M in terms of (T 00
M , T 01

M ) is given by

T 11
M =

1 + 2K∗

2K∗

{
T 00

M −

√
(T 00

M )2 − 4K∗

(1 + 2K∗)2
(
K∗(T 00

M )2 + (T 01
M )2

)}
(3.3.26)

where

K∗ =
σ2c2

(c2 − σ2)2
. (3.3.27)

3.4 Statement of the General Problem

Our results concerning the weak formulation of the Einstein equations (1.3.2)-
(1.3.5) assuming spherical symmetry given in Theorem 9 can be summarized
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as follows. Assume that A,B are Lipschitz continuous functions, and that
T ∈ L∞, on the domain r ≥ r0, t ≥ 0. Then (1.3.2)-(1.3.5) are equivalent to
two different systems which take the form of a system of conservation laws
with source terms. In the first case, we have shown that weak solutions of the
system (1.3.2), (1.3.4) together with equations (3.3.7), (3.3.8) (for DivT = 0),
will solve (1.3.2)-(1.3.5) weakly, so long as (1.3.3) holds at r = r0. This reduces
the Einstein equations with spherical symmetry to a system of equations of
the general form

ut + f(u,A,B)x = ḡ(u,A,B,A′, Bt, B
′, x), (3.4.1)

Ax = h0(u,A,B, x), (3.4.2)
Bx = h1(u,A,B, x), (3.4.3)

where u = (T 00
M , T 01

M ) agree with the conserved quantities that appear in the
conservation law divTM = 0 in flat Minkowski space. (Here “prime” denotes
∂
∂x since we are using x in place of r.) It is then valid to use equations (1.3.2)-
(1.3.4) to eliminate all derivatives of A and B from the RHS of system (3.4.1),
by which we obtain the system (1.3.2), (1.3.4), (1.4.1), (1.4.2), a system that
closes to make a nonlinear system of conservation laws with source terms,
taking the general form

ut + f(u,A,B)x = g(u,A,B, x),
Ax = h0(u,A,B, x), (3.4.4)
Bx = h1(u,A,B, x),

which reproduces (1.4.3),(1.4.4) of Chapter 1. Weak solutions of (3.4.4) will
satisfy (1.3.3) so long as (1.3.3) is satisfied on the boundary r = r0.

In the second case, we have shown that weak solutions of the system
(1.3.3), (1.3.4) together with equations (3.3.7), (3.3.8) (for DivT = 0), will
solve (1.3.2)-(1.3.5) weakly, so long as (1.3.2) holds at t = 0. This reduces
the Einstein equations with spherical symmetry to an alternative system of
equations of the general form

ut + f(u,A,B)x = ḡ(u,A,B,A′, Bt, B
′, x), (3.4.5)

Ax = h0(u,A,B, x), (3.4.6)
Bt = h1

∗(u,A,B, x). (3.4.7)

It is then valid to use equations (1.3.2)-(1.3.4) to eliminate all derivatives of A
and B from the RHS of system (3.4.5), by which we obtain the system (1.3.3),
(1.3.4), (1.4.1), (1.4.2), a system that closes to make a nonlinear system of
conservation laws with source terms, taking the general form
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ut + f(u,A,B)x = g(u,A,B, x), (3.4.8)
Ax = h0(u,A,B, x), (3.4.9)
Bt = h1

∗(u,A,B, x). (3.4.10)

Weak solutions of (3.4.8) will satisfy (1.3.2) so long as (1.3.2) is satisfied at
t = 0.

3.5 Wave Speeds

In this section we conclude by calculating the wave speeds associated with
system (1.4.1)-(1.4.2). BecauseA andB enter as undifferentiated source terms,
it follows from (1.4.1)-(1.4.2) that for spherically symmetric flow, the only
wave speeds in the problem will be the characteristic speeds for the fluid.
Loosely speaking, the gravitational field is “dragged along” passively by the
fluid when spherical symmetry is imposed. From this we conclude that there
is no lightlike propagation, (that is, no gravity waves), in spherical symmetry,
even when there is matter present. (This is the conclusion of Birkoff’s theorem
for the empty space equations, [35].)

The easiest way to calculate the wave speeds for the fluid is from the
Rankine-Hugoniot jump conditions in the limit as the shock strength tends to
zero. To start, note that the components of the 4-velocity w for a spherically
symmetric fluid (1.2.4) are w0 = dt

ds , w1 = dr
ds , w2 = w3 = 0. Since −1 =

g(w,w), the components w0 and w1 are not independent, and in particular,
−1 = −(w0)2A+(w1)2B. We define fluid speed v as the speed measured by an
observer fixed in (t, r) coordinates. That is, the speed is the change in distance
per change in time as measured in an orthonormal frame with timelike vector
parallel to ∂t and spacelike vector parallel to ∂r. It follows that the speed is
given by v = x/a, where

w = a
∂t√
−g00

+ x
∂r√
g11

. (3.5.1)

Taking the inner product of w with ∂t and then with ∂r, we find that a =
w0√−g00 and x = w1√g11, and hence

v =
w1

w0

√
B

A
, (3.5.2)

whereby,

(w0)2 =
1

A(c2 − v2)
. (3.5.3)

Using (3.5.2) and (3.5.3) in (1.2.4), it follows that the components of the
energy-momentum tensor take the following simplified form, which is valid
globally in the (t, r) coordinate system:
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T 00 =
1
A

{
(p+ ρc2)

c2

c2 − v2
− p

}
T 01 =

1√
AB

(p+ ρc2)
cv

c2 − v2

T 11 =
1
B

{
(p+ ρc2)

v2

c2 − v2
+ p

}
.

Note that these components are equal to the components of the stress tensor
in flat Minkowski space, times factors involving A and B that account for
the fact that the spacetime is not flat. Using (1.3.9)-(1.3.11) we can write the
Rankine-Hugoniot jump conditions in the form

s[T 00
M ] =

√
A

B
[T 01

M ], (3.5.4)

s[T 01
M ] =

√
A

B
[T 11

M ]. (3.5.5)

From (3.5.4)-(3.5.5), we deduce that wave speeds for the system (1.4.1)-(1.4.2)
are

√
A/B times the wave speeds in the Minkowski metric case, and this holds

globally throughout the (t, r) coordinate system. (See [27].) Eliminating s from
(3.5.4) and (3.5.5), yields

[T 01
M ]2 = [T 00

M ][T 11
M ]. (3.5.6)

Now take the left fluid state on a shock curve to be (ρL, vL), and the right fluid
state to be (ρ, v). For a spherically symmetric perfect fluid, (3.5.6) defines the
right velocity v as a function of the right density ρ. Then to obtain the fluid
wave speeds, just substitute this function into (3.5.4), solve for s, and take
the limit as ρ→ ρL. Following this procedure, (3.5.6) simplifies to

(v − vL)2

(c2 − v2)(c2 − v2
L)

=
[p][ρ]

(p+ ρc2)(pL + ρLc2)
. (3.5.7)

Note that equation (3.5.7) can be written as a quadratic in v, and hence there
are two solutions. The ‘+’ solutions will yield the 2-shocks, and the ‘-’ the
1-shocks. Dividing both sides of (3.5.7) by (ρ − ρL)2 and taking the limit as
ρ→ ρL, we see that

dp

dρ
=

(p+ c2ρ)2

(c2 − v2)2

(
dv

dρ

)2

. (3.5.8)

Solving (3.5.5) for s we obtain,

s =

√
A

B

[
(p+ ρc2) v2

c2−v2 + p
]

[
(p+ ρc2) cv

c2−v2

] , (3.5.9)
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and taking the limit as ρ→ ρL, we obtain

λ± =

√
A

B

[
(p′ + c2) v2

c2−v2 + (p+ ρc2) 2vv′(c2−v2)+2v3v′

(c2−v2)2 + p′
]

[
(p′ + c2) cv

c2−v2 + (p+ ρc2) cv′(c2−v2)+2cv2v′

(c2−v2)2

] ,

=

√
A

B

[
(p′ + c2) v2

c2−v2 + (p+ ρc2) 2c2vv′

(c2−v2)2 + p′
]

[
(p′ + c2) cv

c2−v2 + (p+ ρc2) cv′(c2+v2)
(c2−v2)2

] .

(Here the plus/minus on RHS is determined by the two possible signs of
v′ = dv/dρ as allowed by (3.5.8).) After substituting for dv/dρ using (3.5.8),
and simplifying, we obtain

λ± =

√
A

B

[
(p′ + c2) v2

c2−v2 ±
2c2v

√
p′

(c2−v2) + p′
]

[
(p′ + c2) cv

c2−v2 ±
c(c2+v2)

√
p′

(c2−v2)

] ,
=

√
A

B

[
(p′ + c2)v2 ± 2c2v

√
p′ + p′(c2 − v2)

][
(p′ + c2)cv ± c(c2 + v2)

√
p′
] ,

= c

√
A

B

[
v2 ± 2v

√
p′ + p′

][
vp′ ± (c2 + v2)

√
p′ + c2v

] ,
= c

√
A

B

[
v ±

√
p′
]2[

v ±
√
p′
] [
c2 ± v

√
p′
] .

This gives the wave speeds as:

λ± = c

√
A

B

√
p′ ± v

v
√
p′ ± c2

. (3.5.10)

(For example, the formula for λ− results from choosing ‘-’ in (3.5.7).) The
following theorem demonstrates that the system (1.4.1)-(1.4.2) is strictly hy-
perbolic whenever the particles are moving at less than the speed of light:

Proposition 6 Assume that
|v| < c,

so that the particle trajectory has a timelike tangent vector. Then wave speeds
for the general relativistic Euler equations (1.4.1)-(1.4.2) satisfy λ− < λ+.

Proof: To determine where the wave speeds are equal, set λ− equal to λ+

and solve for v to obtain v2 = c2. Next, substitute v = 0 into λ− and λ+ to
verify that λ− < λ+ when v2 < c2A/B. Proposition 6 follows directly. 2
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As a final comment, we note that Proposition 6 is true because it is true in
a locally inertial coordinate system centered at any point P in spacetime.
Indeed, in such a coordinate system, the connection coefficients vanish at P,
and the metric components match those of the Minkowski metric to first order
in a neighborhood of P. As a result, the general relativistic Euler equations
reduce to the classical relativistic Euler equations at P. Since it is known in
Special Relativity that the Euler equations are strictly hyperbolic for timelike
particles, [27], it follows that the same must be true in General Relativity.
Other pointwise properties, such as genuine nonlinearity and the Lax entropy
inequalities, [26, 18], can be verified for the spherically symmetric general
relativistic equations in a similar manner.



4

Existence and Consistency for the Initial Value
Problem

4.1 Introduction

In this chapter, taken from [13], we present a proof that shock wave solutions
of (1.3.2)-(1.3.5), (1.2.4) and (1.3.1), defined outside a ball of fixed total mass,
exist up until some positive time T > 0, and we prove that the total mass
M∞ = limr→∞M(r, t) is constant throughout the time interval [0, T ). A local
existence theorem is all that we can expect for system (1.3.2)-(1.3.5) in general
because black holes are singularities in standard Schwarzschild coordinates,
B = 1

1− 2M
r

→ ∞ at a black hole, and black holes can form in finite time.
For these solutions, the fluid variables ρ, p and w, and the components of
the stress tensor T ij , are discontinuous, and the metric components A and
B are Lipschitz continuous, at the shock waves, c.f. (1.3.2) and (1.3.4). Since
(1.3.5) involves second derivatives of A and B, it follows that these solutions
satisfy (1.3.2)-(1.3.5) only in the weak sense of the theory of distributions.
Thus our theorem establishes the consistency of the initial value problem for
the Einstein equations at the weaker level of shock waves.

To be precise, assume the initial boundary conditions

ρ(r, 0) = ρ0(r), v(r, 0) = v0(r), for r > r0,

(4.1.1)
M(r0, t) = Mr0 , v(r0, t) = 0, for t ≥ 0,

where r0 and Mr0 are positive constants, and assume that the no black hole
and finite total mass conditions,

2M(r, t)
r

< 1, lim
r→∞

M(r, t) = M∞ <∞, (4.1.2)

hold at t = 0. For convenience, assume further that
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lim
r→∞

r2T 00
M (r, t) = 0, (4.1.3)

holds at t = 0, c.f., (1.3.15), (4.1.2). The main result of this chapter can be
stated as follows:

Theorem 11 Assume that the initial boundary data satisfy (4.1.1)-(4.1.3),
and assume that there exist positive constants L, V and v̄ such that the initial
velocity and density profiles v0(r) and ρ0(r) satisfy

TV[r,r+L] ln ρ0(·) < V, TV[r,r+L] ln
(
c+ v0(·)
c− v0(·)

)
< V, |v0(r)| < v̄ < c,

(4.1.4)
for all r0 ≤ r < ∞, where TV[a,b]f(·) denotes the total variation of the func-
tion f over the interval [a, b]. Then a bounded weak (shock wave) solution
of (1.3.2)-(1.3.5), satisfying (4.1.1) and (4.1.2), exists up to some positive
time T > 0. Moreover, the metric functions A and B are Lipschitz continuous
functions of (r, t), and (4.1.4) continues to hold for t < T with adjusted values
for V and v̄ that are determined from the analysis.

Note that the theorem allows for arbitrary numbers of interacting shock waves,
of arbitrary strength. Note that by (1.3.2), (1.3.4), the metric components A
and B will be no smoother than Lipschitz continuous when shocks are present,
and thus since (1.3.5) is second order in the metric, it follows that (1.3.5) is
only satisfied in the weak sense of the theory of distributions. Note finally
that limr→∞M(r, t) = M∞ is a non-local condition.

In the argument leading to (3.4.4) of Chapter 3, we showed that when the
metric components A and B are Lipschitz continuous, system (1.3.2)-(1.3.5) is
weakly equivalent to the following system of equations obtained by replacing
(1.3.3) and (1.3.5) with the 0- and 1-components of DivT = 0,

{
T 00

M

}
,0

+

{√
A

B
T 01

M

}
,1

= − 2
x

√
A

B
T 01

M , (4.1.5)

{
T 01

M

}
,0

+

{√
A

B
T 11

M

}
,1

= −1
2

√
A

B

{
4
x
T 11

M +
(B − 1)

x
(T 00

M − T 11
M ) (4.1.6)

+2κxB(T 00
M T 11

M − (T 01
M )2)− 4xT 22

}
,

B′

B
= − (B − 1)

x
+ κxBT 00

M , (4.1.7)

A′

A
=

(B − 1)
x

+ κxBT 11
M . (4.1.8)

This is the system of conservation laws with source terms which we have
written in the compact form (1.4.3), (1.4.4),
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ut + f(A, u)x = g(A, u, x),
A′ = h(A, u, x).

Here

u = (T 00
M , T 01

M ) ≡ (u0, u1),
A = (A,B),

f(A, u) =

√
A

B

(
T 01

M , T 11
M

)
, (4.1.9)

and it follows from (4.1.5)-(4.1.8) that

g(A, u, x) =
(
g0(A, u, x), g1(A, u, x)

)
, (4.1.10)

h(A, u, x) =
(
h0(A, u, x), h1(A, u, x)

)
, (4.1.11)

where

g0(A, u, x) = − 2
x

√
A

B
T 01

M , (4.1.12)

g1(A, u, x) = −1
2

√
A

B

{
4
x
T 11

M +
(B − 1)

x
(T 00

M − T 11
M ) (4.1.13)

+2κxB(T 00
M T 11

M − (T 01
M )2)− 4xT 22

}
,

and

h0(A, u, x) =
(B − 1)A

x
+ κxABT 11

M , (4.1.14)

h1(A, u, x) = − (B − 1)B
x

+ κxB2T 00
M . (4.1.15)

The vector h(A, u, x) was just obtained by solving (1.3.2) and (1.3.4) for A′

and B′. Note that we have set x ≡ x1 ≡ r, and will use x in place of r
in the analysis to follow since this is standard notation in the literature on
hyperbolic conservation laws. Note also that we write t when we really mean
ct, in the sense that t must be replaced by ct whenever we put dimensions of
time, i.e., factors of c, into our formulas. We interpret this as taking c = 1
when convenient.

Recall that a new twist in formulation (1.4.3), (1.4.4) is that the con-
served quantities are taken to be the the energy and momentum densities
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u = (u0, u1) = (T 00
M , T 01

M ) of the relativistic compressible Euler equations in
flat Minkowski spacetime–quantities that, unlike the entries of T, are inde-
pendent of the metric. Recall also that, (remarkably), all time derivatives of
metric components cancel out from the equations when this change of vari-
ables is made, c.f. Section 3.3 and [12]. We take advantage of this formulation
in the numerical method which we develop here for the study of the initial
value problem.

The proof of Theorem 1 is based on a fractional step Glimm scheme, c.f.
[19, 11]. The fractional step method employs a Riemann problem step that
simulates the source free conservation law ut + f(A, u)x = 0, (A ≡ Const),
followed by an ODE step that accounts for the sources present in both f and
g. The idea for the numerical scheme is to stagger discontinuities in the metric
with discontinuities in the fluid variables so that the conservation law step as
well as the ODE step of the method are both generated in grid rectangles on
which the metric components A = (A,B), (as well as x), are constant. At the
end of each timestep, we solve A′ = h(A, u, x) and re-discretize, to update
the metric sources. Part of our proof involves showing that the ODE step
ut = g(A, u, x)−∇Af ·A′, with h substituted for A′, accounts for both the
source term g, as well as the effective sources that are due to the discontinuities
in the metric components at the boundaries of the grid rectangles.

Because of our formulation (1.4.3), (1.4.4), only the flux f in the con-
servation law step, depends on A. From this dependence we conclude that
the only effect of the metric on the Riemann problem step of the method is
to change the wave speeds, but not the states of the waves that solve the
Riemann problem. Thus, on the Riemann problem step, when we assume
p = σ2ρ, we can apply the estimates derived in Chapter 2 for flat Minkowski
spacetime A = (1, 1). Applying these results, it follows that the Riemann
problem is globally solvable in each grid cell, and the total variation in ln ρ
is non-increasing on the Riemann problem step of our fractional step scheme,
(Lemma 7). Thus we need only estimate the increase in total variation of ln ρ
for the ODE step of the method, in order to obtain a local total variation
bound, and hence compactness of the numerical approximations up to some
time T > 0.

One nice feature of our method is that the ODE that accomplishes the
ODE step of the method, turns out to have surprisingly nice properties. In-
deed, a phase portrait analysis shows that ρ > 0, |v| < c is an invariant region
for solution trajectories. (Since x and A are taken to be constant on the ODE
step, the ODE’s form an autonomous system at each grid cell.) We also show
that even though the ODE’s are quadratic in ρ, solutions of the ODE’s do not
blow up, but in fact remain bounded for all time. It follows that the fractional
step scheme is defined and bounded so long as the Courant-Freidrichs-Levy
(CFL) condition is maintained, [26]. We show that the CFL bound depends
only on the supnorm of the metric component ‖B‖∞, together with the sup-
norm ‖S‖∞, where S ≡ S(x, t) = xρ(x, t). We go on to prove that all norms
in the problem are bounded by a function that depends only on ‖B‖∞ ‖S‖∞,
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and ‖TVL ln ρ(·, t)‖∞, where the latter denotes the sup of the total variation
over intervals of L. By this we show that the solution can be extended up
until the first time at which one of these three norms tends to infinity. (Our
analysis rules out the possibility that v → c before one of these norms blows
up.) The condition B → ∞ corresponds to the formation of a black hole,
and ρ→∞ corresponds to the formation of a naked singularity, (because the
scalar curvature satisfies R = {c2 − 3σ2}ρ). It is known that black holes can
form in solutions of the Einstein equations, and it is an open problem whether
or not naked singularities can form, or whether we can have ‖S‖∞ → ∞, or
‖TVL ln ρ(·, t)‖∞ →∞, in some other way.

The main technical problem is to prove that the total mass M∞ =
κ
2

∫∞
r0
ρr2 dr is bounded. The problem is that, in our estimates, the growth

of ρ depends on M and the growth of M depends on ρ, and M is defined by a
non-local integral. Thus, an error estimate of order ∆x for ∆ρ after one time
step, is not sufficient to bound the total mass M∞ after one time step.

In Section 4.2, we introduce the notation and state the main result, The-
orem 13. In Section 4.3 we define the fractional step scheme, the so called
locally inertial Glimm scheme. The fractional step scheme involves a Riemann
problem step to handle the hyperbolic part and an ODE step to account for
geometric and other sources in each grid cell. In Section 4.4 we analyze the
Riemann problem step of the fractional step method, and in Sections 4.5 and
4.6 we analyze the ODE solutions in each grid cell. Estimates for the syn-
thesis of the the Riemann step followed by the ODE step under iteration in
approximate solutions generated by the fractional step scheme are derived in
Section 4.7. Uniform bounds on the total variation of approximate solutions
at each fixed time are obtained in Sections 4.8. The method is to first assume
the relevant norms in the problem are bounded, and then to obtain estimates
derived in terms of these bounds that are strong enough to eliminate the start-
ing assumptions. The convergence of the residual, (the measure of how far the
approximate solutions are from true weak solutions), is proven in Section 4.9.
This involves cancellation of errors from the ODE step with errors from the
Riemann step, and justifies the incorporation of terms from the flux into the
ODE step. Concluding remarks are made in the final Section 4.10.

4.2 Preliminaries

The starting point of our analysis is the following theorem, which is a re-
statement of Theorem 2, Chapter 3. This theorem implies the equivalence
of system (1.4.3),(1.4.4) with the Einstein equations (1.3.2)-(1.3.5) for weak,
(shock wave), solutions, so long as (1.3.3) is treated as a constraint that holds
so long as it holds at the boundary x = r0. (Again, we use the variable x in
place of r in order to conform with standard notation, c.f. [26]).
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Theorem 12 Let u(x, t),A(x, t) be weak solutions of (1.4.3),(1.4.4) in the
domain

D ≡ {(x, t) : r0 ≤ x <∞, 0 ≤ t < T} , (4.2.1)

for some r0 > 0, T > 0. Assume that u is in L∞loc(D), and that A is locally
Lipschitz continuous in D, by which we mean that for any open ball B centered
at a point in D, there is a constant C > 0 such that

|A(x2, t2)−A(x1, t1)| ≤ C{|x2 − x1|+ |t2 − t1|}. (4.2.2)

Then u and A satisty all four Einstein equations (1.3.2)- (1.3.5) throughout
D if and only if the equation (1.3.3),

− Ḃ

xB
= κABT 01,

holds at the boundary x = r0. In this case, it follows that the equivalent forms
(1.3.7), (1.3.8) of (1.3.2),(1.3.3), respectively, also hold in the strong sense
throughout D.

Note that for our problem, the constraint (1.3.8), and therefore (1.3.3), is
implied by the boundary conditions

M(r0, t) = Mr0 , (4.2.3)
v(r0, t) = 0, (4.2.4)

alone, because, using (1.3.13), equation (1.3.8) translates into

Ṁ = −κ
2

√
A

B

c2 + σ2

c2 − v2
cvρx2,

which, in light of (4.2.3), (4.2.4), is an identity at the boundary x = r0.
It follows from Theorem 12 that in order to establish Theorem 11, it suffices

only to prove the corresponding existence theorem for system (1.4.3)-(1.4.4)
in domain D. The equation (1.3.3) will then follow as an identity on weak
solutions because it is met at the boundary. It follows that if we construct
weak solutions for which v is uniformly bounded and for which ρ decreases
fast enough, then we can apply (1.3.3) as x→∞ to conclude that

lim
x→∞

Ṁ(x, t) = 0. (4.2.5)

This is our strategy for proving that the total mass is finite.
Before stating the main theorem precisely, a few preliminary comments

regarding system (1.4.3)-(1.4.4) are in order. First note that system (1.4.3)-
(1.4.4) closes once we express T 11

M and T 22 on the RHS of (4.1.9), (4.1.10) and
(4.1.11), as a function of the conserved quantities u = (u0, u1) ≡ (T 00

M , T 01
M ).

From (1.2.4) it follows that
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T 22 =
p

x2
=
σ2ρ

x2
, (4.2.6)

and this can be expressed in terms of u via the mapping (4.2.21) discussed
below. To write T 11

M as a function of u, use the identities, (c.f. (4.69),(4,70) of
[12]),

T 00
M − T 11

M = ρc2 − p ≡ f1(ρ), (4.2.7)
T 00

M T 11
M − (T 01

M )2 = pρc2 ≡ f2(ρ). (4.2.8)

By (4.2.7),

ρ = f−1
1 (T 00

M − T 11
M ), (4.2.9)

and using this in (4.2.8), one can in general solve (4.2.8) for T 11
M . In the case

p = σ2ρ, a calculation gives

T 11
M =

2ζ + 1
2ζ

1−

√√√√1− 4ζ
(2ζ + 1)2

(
ζ +

[
T 01

M

T 00
M

]2)T 00
M , (4.2.10)

where

ζ =
σ2c2

(c2 − σ2)2
. (4.2.11)

It is readily verified that the quantity under the square root sign is positive
so long as [

T 01
M

T 00
M

]
< 1 +

1
2ζ
,

which holds in light of (1.3.17). It follows that (4.2.10) defines T 11
M as a smooth,

single valued function of the conserved quantities (u0, u1) ≡ (T 00
M , T 01

M ). Other
than its existence, we will not need the explicit formula for T 11

M given in
(4.2.10).

We are free to analyze the state space for system (1.4.3)-(1.4.4) in the plane
of conserved quantities u = (u0, u1) ≡ (T 00

M , T 01
M ), in the (ρ, u) plane, or in the

plane of Riemann invariants (r, s) which are defined in terms of ρ and v via
the special relativistic Euler equations in flat Minkowski spacetime, (assume
p = σ2ρ, c.f. (2.5.73), (2.5.74) of Chapter 2),

r =
1
2

ln
c+ v

c− v
− K0

2
ln ρ, (4.2.12)

s =
1
2

ln
c+ v

c− v
+
K0

2
ln ρ, (4.2.13)

where
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K0 =
σc

c2 + σ2
. (4.2.14)

(We use Roman “r” for the Riemann invariant to distinguish it from the radial
variable “r”, c.f. (2.5.73), (2.5.74).) In this section it is more convenient for
us to use the variables

z ≡ s− r = K0 ln ρ, (4.2.15)

w ≡ s + r = ln
c+ v

c− v
, (4.2.16)

and we let z denote the vector

z = (z, w) ≡
(
K0 ln ρ, ln

c− v

c+ v

)
. (4.2.17)

Given this, we use the following notation: As usual, the double norm ‖ · ‖
applied to a vector denotes Euclidean norm, so e.g., ‖u‖ ≡

√
(u0)2 + (u1)2

and ‖z‖ ≡
√

(z)2 + (w)2), and the single norm | · |, when applied to scalars,
denotes the the regular absolute value. But we use the special notation that
| · |, when applied to a vector, denotes the change in the z-component across
the vector, so that, e.g.,

|z| ≡ |z|. (4.2.18)

Similarly, if γ denotes a wave with left state zL and right state zL, (see (4.3.10)
and (4.4.13)-(4.4.15) below), then we let

‖γ‖ ≡
√
|zR − zL|2 + |wR − wR|2, (4.2.19)

|γ| ≡ |zR − zL|, (4.2.20)

and we refer to |γ| as the strength of the wave γ, c.f. [27, 19].
Equations (1.3.12), (1.3.13), and (4.2.12)-(4.2.16), define the mappings

Ψ : (ρ, v) → (u0, u1) and Φ : (ρ, v) → (z, w),(
u0

u1

)
= Ψ

(
ρ
v

)
≡

(
c4+σ2v2

c2−v2 ρc2

(c2+σ2)cv
c2−v2 ρ

)
, (4.2.21)

(
z
w

)
= Φ

(
ρ
v

)
≡
(
K0 ln ρ
ln c+v

c−v

)
. (4.2.22)

The following proposition states that the mappings Ψ and Φ define one to one
regular maps between the respective domains:
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Proposition 7 The mapping

Φ : D → R (4.2.23)

defined by (4.2.21) is smooth, one-to-one and onto, from domain

D = {(ρ, v) : 0 < ρ <∞, |v| < c}, (4.2.24)

to range

R = {(u0, u1) : 0 < u0 <∞, |u1| <∞}; (4.2.25)

and the mapping

Φ : D → R̂, (4.2.26)

defined in (4.2.22), is smooth, one-to-one and onto from domain D to

R̂ = {(z, w) : −∞ < z < +∞,−∞ < w < +∞}. (4.2.27)

Proof: This follows directly from (4.2.21) and (4.2.22).

The goal of this chapter is to prove the following theorem:

Theorem 13 Let

u0(x) ≡ (u0
0(x), u

1
0(x)) = Ψ(ρ0(x), v0(x)) = Ψ ◦ Φ−1(z0(x), w0(x)),

and A0(x) = (A0(x), B0(x)) denote initial data for system (1.4.3),(1.4.4),
defined for x ≥ r0. Assume that there exists positive constants V, L, and v̄,
such that

TV[x,x+L] ln ρ0(·) < V, (4.2.28)

TV[x,x+L] ln
c+v0(·)
c−v0(·) < V, (4.2.29)

|v0(x)| < v̄, (4.2.30)

for all x ≥ r0. Assume that B0(x) = 1

1− 2M0(x)
x

, where the initial mass function

M0(x) is given by

M0(x) = Mr0 +
κ

2

∫ x

r0

u0
0(r)r

2 dr, (4.2.31)

(c.f. (1.3.15)), and assume that M0 satisfies the conditions

lim
x→∞

M0(x) = M∞ <∞, (4.2.32)

and
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1− 2M0(x)
x

= B−1
0 (x) > B̄−1 > 0, (4.2.33)

respectively, for some fixed positive constants Mr0 < M∞, and B̄ < ∞. As-
sume finally that

A0(x) = Ar0 exp
∫ x

r0

{
B0(r)− 1

r
+ κrB0(r)T 11

M (u0(r))
}
dr (4.2.34)

for some fixed positive constant Ar0 > 0, so that

A0(r0) = Ar0 > 0. (4.2.35)

Given this, we conclude that there exists T > 0, and functions u(x, t),A(x, t)
defined on x ≥ r0, 0 ≤ t < T, such that u(x, t),A(x, t) is a weak solution
of system (4.1.5),(4.1.6), (1.3.2)-(1.3.4), together with the initial-boundary
conditions

ρ(x, 0) = ρ0(x), v(x, 0) = v0(x), (4.2.36)

A(r0, t) =
(
Ar0 ,

1

1−
2Mr0

r0

)
, (4.2.37)

v(r0, t) = 0. (4.2.38)

Moreover, the solution u,A satisfies the following:
(i) For each t ∈ [0, T ) there exists a constant V (t) <∞ such that

TV[x,x+L] ln ρ(·, t′) < V (t), (4.2.39)

TV[x,x+L] ln
c+ v(·, t′)
c− v(·, t′)

< V (t), (4.2.40)

for all t′ ≤ t.
(ii) For each x ≥ r0 and t ∈ [0, T ),

0 < A(x, t), B(x, t) <∞, (4.2.41)

and

lim
x→∞

M(x, t) = M∞. (4.2.42)

(iii) For each closed bounded set U ⊂ {(x, t) : x ≥ r0, 0 ≤ t < T}, there exists
a constant C(U) <∞ such that,

‖A(x2, t2)−A(x1, t1)‖ < C(U) {|x2 − x1|+ |t2 − t1|} , (4.2.43)

and ∫ x

r0

‖u(r, t2)− u(r, t1)‖dr < C(U)|t2 − t1|. (4.2.44)
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Here, (4.2.39) and (4.2.40) imply that the functions z(·, t) and w(·, t) are
functions of locally bounded total variation at each fixed time t < T, and
the bounds are uniform over bounded sets in x ≥ r0, 0 ≤ t < T. Estimates
(4.2.39) and (4.2.40) also imply that ρ > 0 and |v| < c, and therefore that
u0 > 0 throughout x ≥ r0, 0 ≤ t < T. The inequality (4.2.41) says that
B = 1

1− 2M
x

> 0, and hence that 2M
x < 1 for t < T, the condition that

no black holes have formed before time T. Inequality (4.2.43) says that the
metric components A and B are locally Lipschitz continuous functions in
x ≥ r0, 0 ≤ t < T, and (4.2.43) says that u(x, t) is L1-Lipschitz continuous in
time, uniformly on bounded sets. Note that (4.2.31), (4.2.34) are included to
guarantee that equations (1.3.2) and (1.3.4), (and so also (1.4.4)), are satisfied
at time t = 0.

4.3 The Fractional Step Scheme.

In this section we define the approximate solutions u∆x,A∆x = (A∆x, B∆x) of
system (1.4.3), (1.4.4) constructed by a fractional step Glimm scheme. Again,
we have set x ≡ x1 ≡ r, and we write t in place of ct, in the sense that t must
be replaced by ct whenever we put dimensions of time, (that is, factors of c),
into our formulas.

Let ∆x << 1 denote a mesh length for space and ∆t a mesh length for
time, and assume that

∆x

∆t
= Λ, (4.3.1)

so that Λ−1 is the Courant number. We choose

Λ ≥Max

{
2

√
A

B

}
, (4.3.2)

where the maximum is taken over all values that appear in the approximate
solution. This guarantees the Courant-Friedrichs-Levy (CFL) condition, the
condition that the mesh speed be greater than the maximum wave speed in

the problem. (That is,
√

A
B is the speed of light in standard Schwarzschild

coordinates, and the factor of two accounts for the fact that waves emanate
from the center of the mesh rectangles in our approximation scheme. Of course,
as part of our proof, we must show that the maximum on the RHS of (4.3.2)
exists.) Let (xi, tj) be mesh points in an unstaggered grid defined on the
domain

D = {r0 ≤ x ≤ ∞, t ≥ 0}, (4.3.3)

by setting
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xi = r0 + i∆r,

tj = j∆t.

Each mesh point (xi, tj), i ≥ 0, j ≥ 0, is positioned at the bottom center of
the grid rectangle Rij ,

Rij = {xi− 1
2
≤ x < xi+ 1

2
, tj ≤ t < tj+1}, (4.3.4)

where xi+−
1
2

= (i+−
1
2 )∆x. Let Ri0j denote the half rectangle {xi0 ≤ x <

xi0+
1
2
, tj ≤ t < tj+1} at the boundary x = r0. (This is diagrammed in

Figure 3.)

The mesh rectangles Rij .

Figure 3
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j

-

xi = 0
x = r0

i

i− 1
2 i+ 1

2

i− 1 i+ 1








R0,j−1
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J
J

J

Rij
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In the approximation scheme, the metric source A = (A,B) is approximated
by the constant value Aij in each grid rectangle Rij , so set

A∆x(x, t) = Aij for (x, t) ∈ Rij , (4.3.5)

for values of Aij to be defined presently. It follows that A∆x is discontinuous
along each line x = xi+ 1

2
, i = 0, ...,∞, and at each time t = tj . In our definition

below, values of Aij are determined from values Ai,j−1 and u∆x at time tj−,

by solving (1.4.4), using the boundary condition A = Ar0 =
(
Ar0 ,

1

1−
2Mr0

r0

)
at the boundary x = r0.
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We now define u∆x by induction. First assume that u∆x is given by piece-
wise constant states uij at time t = tj+ as follows:

u∆x(x, t) = uij for xi ≤ x < xi+1, t = tj + . (4.3.6)

This poses the Riemann problem

u0(x) =
{
uL = ui−1,j x < xi,
uR = uij x > xi,

(4.3.7)

for the system

ut + f(Aij , u)x = 0, (4.3.8)

at the bottom center of each mesh rectangle Rij , i ≥ 1. When i = 0, the
boundary condition v = 0 at x0 = r0 replaces the left state, and so in this
case, the piecewise constant state u0j at time t = tj+ poses the boundary
Riemann problem

u0(x) =
{
v = 0 x = r0,
uR = u0,j x > r0,

(4.3.9)

Let uRP
ij (x, t) denote the solution of (4.3.6), (4.3.7) for (x, t) ∈ Rij , and

let

uRP
∆x (x, t) = uRP

ij (x, t) for (x, t) ∈ Rij . (4.3.10)

Equation (4.3.10) defines the Riemann problem step of the fractional step
scheme. Note that since A∆x = Aij is constant in each Rij , it follows that
system (4.3.8) is just the special relativistic Euler equations for p = σ2ρ, with
a rescaled flux. We discuss the solution of this Riemann problem in detail
in Section 4.4. We conclude there that the solution uRP

ij (x, t) consists of a
1-wave γ1

ij followed by a 2-wave γ2
ij for all i > 0, it consists of a single 2-wave

γ2
0j = 0 at the boundary i = 0, and the waves γp

ij all have sub-luminous speeds
so long as (4.3.2) holds. It follows that (4.3.2) guarantees that the waves in
the Riemann problem (4.3.7), (4.3.7), never leave Rij in one time step, c.f.
Proposition 9 below.

The Riemann problem step of the method ignores the effect of the source
term g in system (1.4.3), and also ignores the effect of the discontinuities in
the flux f(A, u) due to discontinuities in A at the boundaries xi−+

1
2

of Rij .

These effects are accounted for in the ODE step. For the ODE step of the
fractional step scheme, the idea is to use the Riemann problem solutions as
initial data, and solve the ODE’s

ut = G(A, u, x) ≡ g −A′ · ∇Af, (4.3.11)

for one time step, thus defining the approximate solution in Rij . The first
term on the RHS of (4.3.11) accounts for the sources on the RHS of (1.4.3),
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and the second term accounts for the discontinuities in A at the boundaries
xi−+

1
2
. Now by (4.1.13),

g ≡ g(A, u, x) =
(
g0(A, u, x), g1(A, u, x)

)
,

where

g0(A, u, x) = − 2
x

√
A

B
T 01

M , (4.3.12)

g1(A, u, x) = −1
2

√
A

B

{
4
x
T 11

M +
(B − 1)

x
(T 00

M − T 11
M ) (4.3.13)

+2κxB(T 00
M T 11

M − (T 01
M )2)− 4xT 22

}
.

By (4.1.9),

∇Af ≡ ∇Af(A, u) ≡
(
∇Af

0,∇Af
1
)

=
(

1
2

1√
AB

T 01
M ,−1

2
1

B
√
AB

T 11
M

)
,

(4.3.14)
and by (4.1.15),

A′ = h ≡
(
h0(A, u, x)), h1(A, u, x))

)
, (4.3.15)

where

h0(A, u, x) =
(B − 1)A

x
+ κxABT 11

M ,

h1(A, u, x) = − (B − 1)B
x

+ κxB2T 00
M . (4.3.16)

It follows from (4.3.14)-(4.3.16) that

A′ · ∇Af(A, u, x) =
1
2

√
A

B
δ
(
T 01

M , T 11
M

)
, (4.3.17)

where

δ =
A′

A
− B′

B
=

2(B − 1)
x

− κxB
(
T 00

M − T 11
M

)
. (4.3.18)

Using (4.3.12), (4.3.13) and (4.3.18) and simplfying, we find that the ODE
step should be
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ut = G, (4.3.19)

where

G0(A, u, x) = −1
2

√
A

B
T 01

M

{
2(B + 1)

x
− κxB

(
T 00

M − T 11
M

)}
, (4.3.20)

G1(A, u, x) = −1
2

√
A

B

{
4
x
T 11

M +
B − 1
x

(
T 00

M + T 11
M

)
+ (4.3.21)

κxB
[
T 00

M T 11
M − 2

(
T 01

M

)2
+
(
T 11

M

)2]− 4xT 22
}
.

Since u = (T 00
M , T 01

M ), and T 11
M , T 22 are given as functions of u in (4.2.6),

(4.2.10), respectively, it follows that the right hand sides of (4.3.20) and
(4.3.21) determine well defined functions of (A, u, x). It follows that G, as
defined in (4.3.20), (4.3.21) also satisfies

G(A, u, x) = g(A, u, x)−A′ · ∇Af(A, u, x),

where (4.3.12), (4.3.13) and (4.3.17) define g and A′·f as functions of (A, u, x).
We can now define the ODE step of the method. Let û(t, u0) denote the

solution to the initial value problem

ût = G(Aij , û, x) = g(Aij , û, x)−A′ · ∇Af(Aij , û, x),
û(0) = u0, (4.3.22)

where G(A, û, x) is defined in (4.3.20), (4.3.21), and g(A, u, x) and A′ ·
f(A, u, x) are defined in (4.3.12), (4.3.13) and (4.3.17), respectively. It fol-
lows that

û(t, u0)− u0 =
∫ t

0

ût dt

=
∫ t

0

{g(Aij , û(ξ, u0), x)−A′ · ∇Af(Aij , û(ξ, u0), x)} dξ.

Define the approximate solution u∆x(x, t) on each mesh rectangle Rij by the
formula

u∆x(x, t) = uRP
∆x (x, t) +

∫ t

tj

{
G(Aij , û(ξ − tj , u

RP
∆x (x, t)), x)

}
dξ (4.3.23)

= uRP
∆x (x, t) +

∫ t

tj

{
g(Aij , û(ξ − tj , u

RP
∆x (x, t)), x)

}
dξ

−
∫ t

tj

{
A′ · ∇Af(Aij , û(ξ − tj , u

RP
∆x (x, t)), x)

}
dξ.
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Thus on each mesh rectangle Rij , u∆x(x, t) is equal to uRP
∆x (x, t) plus a cor-

rection that defines the ODE step of the method.
To complete the definition of u∆x by induction, it remains only to define

the constant states Ai,j+1 on Ri,j+1, and ui,j+1 = u∆x(x, tj+1+) for xi ≤ x <
xi+1, in terms of the values of u∆x,A∆x defined for tj ≤ t < tj+1. For this
we use Glimm’s method of random choice, c.f. [10, 26]. Thus let

a ≡ {aj}∞j=0 ∈ Π, (4.3.24)

denote a (fixed) random sequence, 0 < aj < 1, where Π denotes the infinite
product measure space Π∞

i=0(0, 1)j , where (0, 1)j denotes the unit interval
(0, 1) endowed with Lebesgue measure, 0 < j <∞. (For convenience, assume
WLOG that a0 = 1

2 .) Then, assuming that u∆x,A∆x is defined up to time
t < tj+1, define

ui,j+1 = u∆x(xi + aj+1∆x, tj+1−), (4.3.25)

M∆x(x, tj+1) = Mr0 +
κ

2

∫ x

r0

u0
∆x(r, tj+1−)r2 dr, (4.3.26)

c.f. (1.3.15).6 In terms of these, define the functions

B∆x(x, tj+1) =
1

1− 2M∆x(x,tj+1)
x

, (4.3.27)

and

A(x, tj+1) = Ar0 exp
∫ x

r0

{
B∆x(r, tj+1)− 1

r

+κrB∆x(r, tj+1)T 11
M (u∆x(r, tj+1))

}
dr, (4.3.28)

c.f. (1.3.6) and (1.3.4). Finally, in terms of these, define

Mi,j+1 = M(xi, tj+1), (4.3.29)

Bi,j+1 = B(xi, tj+1) =
1

1− 2Mi,j+1
xi

, (4.3.30)

and

Ai,j+1 = A(xi, tj+1). (4.3.31)

6 By (4.3.25),the approximate solution depends on the choice of sample sequence
a. In the last section, we prove that for almost every choice of sample sequence,
a subsequence of approximate solutions converges to a weak solution of (1.4.4).
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Let Ai,j+1 = (Ai,j+1, Bi,j+1) denote the constant value for A∆x on Ri,j+1.
This completes the definition of the approximate solution u∆x by induction.
Note that (4.3.26)-(4.3.28) imply that when ρ > 0, |v| < c, we have

B∆x(x, tj) ≥ 1, (4.3.32)
B∆x(r0, tj) = 1

1−
2Mr0

r0

≡ Br0 , (4.3.33)

A∆x(x, tj) ≥ Ar0 , (4.3.34)

for all x ≥ r0, j ≥ 0. Note also that as a consequence of (4.3.26), (4.3.27) and
(4.3.28), equations (1.3.2) and (1.3.4) hold in the form

B′
∆x(x,tj)

B = −B∆x(x,tj)−1
x + κB∆x(x, tj)xT 11

M (u∆x(x, tj)), (4.3.35)
A′

∆x(x,tj)
A = +B∆x(x,tj)−1

x + κB∆x(x, tj)xT 00
M (u∆x(x, tj)). (4.3.36)

Therefore,

∂

∂x
ln {A∆x(x, tj)B∆x(x, tj)} =

A′

A
+
B′

B

≤ 4κxB∆x(x, tj)(T 00
M (u∆x(x, tj)) + T 11

M (u∆x(x, tj))).

Integrating this from r0 to x yields

A∆x(x, tj)B∆x(x, tj) ≤ Ar0Br0 exp
{

8
r0

∫ x

r0

B∆x(x, tj)
κ

2
r2T 00

M (u∆x(x, tj))
}
.

(4.3.37)

Inequalities (4.3.35)-(4.3.37) directly imply the following proposition:

Proposition 8 Assume that there exist positive constants M̄, B̄, S̄, v̄, and
integer J > 0, such that the approximate solution u∆x,A∆x, defined as above,
exists and satisfies

M∆x(x, tj) ≤ M̄, (4.3.38)

B∆x(x, tj) ≤ B̄, (4.3.39)

0 ≤ S∆x(x, tj) ≡ |xρ∆x(x, tj)| ≤ S̄ <∞, (4.3.40)
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and

|v∆x(x, tj)| ≤ v̄ < c, (4.3.41)

for all x ≥ r0, j ≤ J, so that by (1.3.12),

0 ≤ xu0
∆x(x, tj) ≤

c2 + σ2v̄2

c2 − v̄2
S̄. (4.3.42)

Then

0 <
Ar0

B∆x(x, tj)
≤ A∆x(x, tj)
B∆x(x, tj)

≤ A∆x(x, tj) ≤ A∆x(x, tj)B∆x(x, tj)

≤ Ar0Br0exp

{
8B̄M̄
r0

}
≡ GAB(B̄, M̄), (4.3.43)

and

|A′∆x(x, tj)| ≤
(

1
r0

+ κ
c2 + σ2v̄2

c2 − v̄2
S̄

)
GAB(B̄, M̄), (4.3.44)

|B′∆x(x, tj)| ≤
(

1
r0

+ κ
c2 + σ2v̄2

c2 − v̄2
S̄

)
B̄2 (4.3.45)

for all x ≥ r0, and j ≤ J.

Note that by (4.3.30), (4.3.31), (4.3.43)-(4.3.45) apply with A∆x(x, tj),
B∆x(x, tj), replaced by Aij , Bij , respectively. Note also that (4.3.43) implies
that

Λ = 2
√
GAB (4.3.46)

suffices to guarantee the CFL condition (4.3.2), and note that (4.3.44) and
(4.3.45) imply

∥∥∥∥∆A∆x

∆x

∥∥∥∥ ≤ ( 1
r0

+ κ
c2 + σ2v̄2

c2 − v̄2
S̄

)
(B̄2 +GAB(B̄, M̄)), (4.3.47)

where

∆A∆x

∆x
=

Ai+1,j −Aij

∆x
, (4.3.48)

which gives the Lipschitz continuity in x of A∆x and B∆x, respectively.

Proof: Inequality (4.3.43) follows directly form (4.3.37) in light of (4.7.30)
and (4.3.26), and (4.3.44), (4.3.45) follow directly from (4.3.35), (4.3.36), and
(4.3.43).
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4.4 The Riemann Problem Step

In this section we discuss uRP
ij , the solutions which constitute the Riemann

problem step in the construction of u∆x. For fixed (i, j), uRP
ij (x, t) is defined

in (4.3.7), (4.3.8) as the solution of the Riemann problem

ut + f(Aij , u)x = 0, (4.4.1)

u0(x) =
{
uL = ui−1,j x < 0
uR = uij x ≥ 0

}
, (4.4.2)

with the origin translated to the bottom center (xi, tj) of the mesh rectangle
Rij ≡ {(x, t) : xi− 1

2
< x ≤ xi+ 1

2
, tj ≤ t < tj+1}. Vector Aij is constant on

Rij . Assuming p = σ2ρ, system (4.4.1) takes the form

(T 00
M ),t +

(√
Aij

Bij
T 01

M

)
,x

= 0, (4.4.3)

(T 01
M ),t +

(√
Aij

Bij
T 11

M

)
,x

= 0, (4.4.4)

where T 11
M is given as a function of T 00

M and T 01
M in (4.2.10).

Proposition 9 Assume that uL and uR correspond to values of ρ and v that
lie in the region ρ > 0, −c < v < c. Then the Riemann problem (4.4.1),
(4.4.2) has a unique solution consisting of elementary waves: shock waves and
rarefaction waves. The solution is scale invariant, (is a function of x/t), and
consists of a 1-wave γ1

ij followed by a 2-wave γ2
ij . Moreover, the CFL condition

(4.3.2) guarantees that the speeds of the waves are always smaller than the

mesh speed ∆x
∆t = Max

{
2
√

A
B

}
, and thus waves never interact during one

time step.

Proof: System (4.4.3)-(4.4.4) is the relativistic compressible Euler equations

DivTM = 0 in flat Minkowski spacetime, except for the constant factor
√

Aij

Bij

that multiplies the flux. Now the factor
√

Aij

Bij
changes the speeds of the waves,

but does not affect the values of u on the elementary waves γp
ij . Indeed, the

scale change t̄→ t/
√
Aij/Bij converts (4.4.1) into the Minkowski space prob-

lem DivTM = 0, and so it follows from the frame invariance of the com-
pressible Euler equations that (s, uL, uR) satisfies the Rankine-Hugoniot jump
conditions
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s[u] = [f ] =

√
Aij

Bij
[fM ], (4.4.5)

for system (4.4.1), if and only if (s̄, u) satisfies the Minkowski jump conditions

s̄[u] = [fM ], (4.4.6)

where

s =

√
Aij

Bij
s̄. (4.4.7)

(Recall that a shock with left state uL, right state uR, and speed s, is a weak
solution of a conservation law ut + f(u)x = 0 if and only if the Rankine-
Hugoniot jump relations s[u] = [f ] are satisfied.) Here f denotes the flux in
(4.4.1), fM = f(1, 1, u) denotes the standard Minkowski flux, and [·] denotes
the jump in a quantity from left to right across a shock. Thus the i-shock
curves for system (4.4.1) agree with the i-shock curves for the system ut +
fM (u)x) = 0, when Aij = (Aij , Bij) = (1, 1), [26]. Moreover, since [u] tends
to an eigen-direction and s tends to an eigenspeed as [u] → 0 across a shock,
it follows that the i-rarefaction curves Ri and i-shock curves Si for system
(4.4.1) are the same as the curves for the Minkowski system ut + fM (u)x = 0,

c.f. [26, 27, 10, 17, 7]. It follows that the factor
√

Aij

Bij
changes the speeds of

the waves, but does not affect the values of u on the elementary waves γp
ij , as

claimed.
It was shown in Chapter 2 that the Riemann problem for system ut +

fM (u)x = 0 has a unique solution consisting of a 1-wave followed by a 2-
wave, and all wave speeds are subluminous so long as ρ > 0, −c < v < c.
If we denote this solution by [uL, uR]M (x, t), then, (assuming ρ > 0, −c <
v < c), it follows from (4.4.7) that the solution of (4.4.1), (4.4.2) is given by

[uL, uR](x, t) = [uL, uR]M (x,
√

Aij

Bij
t). Since, by Theorem (4), Chapter 2, all

shock and characteristic speeds are sub-luminous for the Minkowski problem
DivTM = 0, p = σ2ρ, it follows from (4.4.7) that wave speeds in the solution of

the Riemann problem (4.4.1), (4.4.2) are bounded by
√

A
B , the speed of light

in standard Schwarzschild coordinates. This verifies that if ρ > 0, −c < v < c,
then the CFL condition (4.3.2) guarantees that all wave speeds in the solution
uRP

ij are bounded by the mesh speed ∆x
∆t = Λ. Note that this implies that the

constant states ui−1,j , uij are maintained along the left and right boundaries
of Rij in the approximate solution uRP

ij . 2

For fixed Aij = (Aij , Bij), let

[uL, uR] ≡ [uL, uR](x, t), (4.4.8)

denote the solution of the Riemann problem (4.4.1), (4.4.2), and write
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[uL, uR] = (γ1, γ2), (4.4.9)

to indicate that the solution [uL, uR](x, t) consists of the 1-wave γ1 followed
by the 2-wave γ2. An elementary wave γ is itself a solution of a Riemann
problem, in which case we write [uL, uR] = γ, and we call uL and uR the right
and left states of the wave γ, respectively. In this case, define |γ|, the strength
of the wave γ, by

|γ| = |K0 ln(uL)−K0 ln(uR)| =
∣∣∣∣K0 ln

(
uL

uR

)∣∣∣∣ . (4.4.10)

c.f. (4.2.14). (It is convenient in this section to incorporate K0 into the wave
strength so that the strength of the wave controls the jump in z across the
wave, c.f. (2.7.94), Chapter 2.) For the general case [uL, uR] = (γ1, γ2), we
define the strength of the Riemann problem as the sum of the strengths of its
elementary waves,

|[uL, uR]| = |γ1|+ |γ2|. (4.4.11)

The following proposition, special to the case p = σ2ρ, states that the sum of
the strengths of elementary waves are non-increasing during wave interactions,
so long as Aij is constant.

Proposition 10 Assume that Aij is fixed. Let uL, uM , and uR be any three
states in the region ρ > 0, −c < v < c. Then

|[uL, uR]| ≤ |[uL, uM ]|+ |[uM , uR]|. (4.4.12)

Proof: It was shown in Lemma 6 of Chapter 2, that (4.4.12) holds in the
special relativistic case divTM = 0. Since the effect of Aij is to change the
speeds of the elementary waves, but not the left and right states, in the solution
of (4.4.1), (4.4.2), it follows that the estimate (4.4.12) continues to hold for
arbitrary, (but constant), values of Aij . 2

Proposition 10 is a direct consequence of the geometry of shock and rar-
efaction curves derived in Chapter 2, and discussed further below, and is not
true except in the special case p = σ2ρ, [27]. It follows from Proposition 10
that the only increases in the total variation of ln ρ∆x(·, t) in an approximate
solution u∆x(·, t) is due to increases that occur during the ODE steps (4.3.22).
This is the basis for our analysis of convergence. Thus we analyze solutions
in the z-plane, z = (z, w) ≡ (K0 ln ρ, ln c−v

c+v ), a 45o rotation of the plane of
Riemann invariants (R,S), c.f.(4.2.12), (4.2.13).

Thus, let zL, zR be the left and right states of a single elementary wave γ,
and let γ denote both the name of the wave, as well as the vector

γ = zR − zL. (4.4.13)
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Let

‖γ‖ = ‖zR − zL‖, (4.4.14)

and so we have

|γ| = |K0 ln ρR −K0 ln ρL| = |zR − zL| ≤ ‖γ‖, (4.4.15)

where K0 is defined in (4.2.14). Note that because changes in A affect only
the speeds of waves, it follows that γ, |γ| and ‖γ‖ depend only on zL, zR, and
not on the value of Aij used in the construction. We write

[zL, zR] ≡ [uL, uR] = (γ1, γ2), (4.4.16)

to indicate that γ1, γ2 are the elementary 1- and 2-waves that solve the Rie-
mann Problem with left state zL = Φ◦Ψ−1uL and right state zL = Φ◦Ψ−1uR.
We now summarize the results in Section 2.4, Chapter 2, regarding the geom-
etry of shock and rarefaction curves as plotted in the z-plane.

Let Si(zL) denote the i-shock curve emanating from the left state zL. That
is, zR ∈ Si(zL) if and only if [zL, zR] is a pure i-shock, [26]. It was shown in
Section 2.4, Chapter 2, that all i-shock curves are translates of one another in
the z-plane, and 2-shock curves are just the reflection of the 1-shock curves
about lines z = const. The following formula for the 1-shock curve is given in
equations (2.5.75), (2.5.76) of Lemma 3, Chapter 2:

Lemma 9 A state zR lies on the 1-shock curve S1(zL) if and only if

∆r = −1
2

ln {f+(2Kζ)} − K0

2
ln {f+(ζ)} , (4.4.17)

∆s = −1
2

ln {f+(2Kζ)}+
K0

2
ln {f+(ζ)} , (4.4.18)

where

f+(ζ) = (1 + ζ) +
√
ζ(1 + ζ), (4.4.19)

for some 0 ≤ ζ <∞. Here

K =
2σ2c2

(c2 + σ2)2
, (4.4.20)

and ∆r = rR−rL, ∆s = sR−sL, denote the change in the Riemann invariants
across the shock.

Using (4.2.15),(4.2.16) we see that (4.4.17),(4.4.18) are equivalent to
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∆w = − ln {f+(2Kζ)} , (4.4.21)
∆z = −K0 ln {f+(ζ)} . (4.4.22)

Since (4.4.21),(4.4.22) describe the 1-shock curves for 0 ≤ ζ < ∞, it follows
directly from these that 1-shock curves S1(zL) have a geometric shape in the
z-plane that is independent of zL. Thus, all 1-shock curves are translates of
one another in the z-plane, as claimed in Section 2.5, Chapter 2. We also
showed in Chapter 2 that the 2-shock curve S2(zL) is the reflection of S1(zL)
about the line z = zL, (this follows directly from (2.5.77), (2.5.78) of Chapter
2.) From this, together with (4.4.21),(4.4.22), it follows that

|∆w| = ln
{
f+(K2

0ζ)
}
, (4.4.23)

|∆z| = K0 ln {f+(ζ)} . (4.4.24)

all along both the 1- and 2-shock curves. The next lemma implies the convexity
of shock curves in the case p = σ2ρ.

Lemma 10 The shock equations (4.4.23), (4.4.24) imply that

sinh
(
|∆w|

2

)
= K0 sinh

(
|∆z|
2K0

)
, (4.4.25)

from which it follows that (4.4.23), (4.4.24) define

|∆w| = H(|∆z|), (4.4.26)

where the function H is given by

H(|∆z|) = ln f+

(
2K2

0 sinh2

{
|∆z|
2K0

})
= 2 sinh−1

(
K0 sinh

|∆z|
2K0

)
.

(4.4.27)
The function H satisfies

H ′′(|∆z|) =
(c2 − σ2)2

2cσ(c2 + σ2)
sinh( |∆z|

2K0
)

cosh3( |∆w|
2 )

≥ 0. (4.4.28)

Proof: Solving equation (4.4.24) for ζ gives

ζ = 2
(

sinh
(
|∆z|
2K0

))2

. (4.4.29)

Substituting (4.4.29) into (4.4.23) yields (4.4.27), and the formula
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f−1
+ (y) = 2 sinh2(ln(y)). (4.4.30)

Using this to solve for ζ in (4.4.23), (4.4.24), equating, and taking square
roots, gives (4.4.25). Implicitly differentiating (4.4.25) and simplifying gives
(4.4.28). 2

It follows directly from Lemma 10 that H(|∆z|) is a monotone increasing
convex up function of |∆z| that is superlinear in the sense that

|∆z| < H(|∆z|) <∞, (4.4.31)

for ∆z 6= 0, and

lim
|∆z|→0

H(|∆z|)
|∆z|

= 1, (4.4.32)

c.f. Figure 4.

H is increasing, convex up.

Figure 4

6

-

|∆w|

|∆z|
#

#
#

#
#

#
#

#
#

#
#

|∆w| = |∆z|

|∆w| = H(|∆z|)

Since |∆w| = |∆z| along all 1- and 2-rarefaction curves, we have the fol-
lowing proposition:

Lemma 11 Let zL, zR be the left and right states of an elementary wave γ,
so that

γ = [zL, zR]. (4.4.33)

Then
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|∆w| ≤ H(|γ|), (4.4.34)

where

∆w = wR − wL, (4.4.35)
|γ| = |∆z| = |zR − zL|, (4.4.36)

and H is given in (4.4.27).

By the convexity of H and Jenson’s inequality we have:

Proposition 11 Let γ1, ..., γn be any set of elementary waves. Then

n∑
i=1

|γi| ≤
n∑

i=1

H(|γi|) ≤ H

(
n∑

i=1

|γi|

)
. (4.4.37)

The next Proposition summarizes results in Chapter 2, and follows directly
from Proposition 11:

Proposition 12 For any left and right states zL, zR ∈ R2, there exists a
unique solution of the Riemann Problem [zL, zR] consisting of a 1-shock or
1-rarefaction wave γ1, followed by a 2-shock or 2-rarefaction wave γ2, so that
we can write

(γ1, γ2) = [zL, zR]. (4.4.38)

The speed of the wave γ1 is always strictly less than the speed of γ2, and all
wave speeds are subluminous. Moreover, there exist C2 functions Γp : R2 →
R2, one for each p = 1, 2, such that (γ1, γ2) = [zL, zR] if and only if the vector
γp satisfies

γp = Γp(zR − zL), (4.4.39)

where,

|γp| = |Γp(zR − zL)| ≤
√

2‖zR − zL‖. (4.4.40)

Proof: The smoothness of Γp and the dependence on the difference zR − zL

follows from the C2 contact between shock and rarefaction curves, together
with the fact that shock wave curves, drawn in the z-plane, are translation
invariant. Estimate (4.4.40) can be verified in each of the four cases of the
Riemann Problem [zL, zR]; namely, if [zL, zR] is a 1-shock followed by a 2-
rarefaction wave or a 1-rarefaction wave followed by a 2-shock, then |γ1| +
|γ2| = |zR − zL|. In the other two cases one can verify (4.4.40) assuming
that the shock waves lie on the Riemann Invariants, and then see that the
divergence of shock and rarefaction curves only improves this estimate. 2
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We now discuss the boundary Riemann problems posed at mesh points
(x0, tj), j = 0, 1, 2, .., that lie along the boundary x0 = r0 in the approximate
solution u∆x. In this case, for fixed j, uRP

0j (x, t) is defined in (4.3.8), (4.3.9)
as the solution of (4.4.1) together with the initial-boundary data

u0(x) =
{
v = 0 x = 0
uR = u0j x ≥ 0

}
, (4.4.41)

with the origin translated to the bottom center (x0, tj) of the mesh rectangle
R0j ≡ {(x, t) : xr0<x≤x 1

2
,tj≤t<tj+1 . Again, vector A0j is constant on R0j .

The following theorem, which generalizes Proposition 9 to include boundary
Riemann problems, follows by similar reasoning. (The boundary Riemann
problem was not discussed in Chapter 2, but was discussed within the context
of a fractional step method in [19]. See also [26, 23].)

Proposition 13 Assume that uR lies in the region ρ > 0, −c < v < c.
Then the boundary Riemann problem (4.4.1), (4.4.41) has a unique solution
consisting of a single elementary 2-wave γ2

0j of positive speed. Moreover, the
CFL condition (4.3.2) guarantees that the speed of the wave γ2

0j is always

smaller than half the the mesh speed ∆x
∆t = Max

{
2
√

A
B

}
, and thus γ2

0j cannot
hit the boundary of R0j within one timestep.

For fixed A0j , let

[0, uR] ≡ [0, uR](x, t), (4.4.42)

denote the solution of the Riemann problem (4.4.1), (4.4.41), and write

[0, uR] = γ2, (4.4.43)

to indicate that the solution [0, uR](x, t) consists of the single wave γ2, a
2-wave. Again, define the strength of the Riemann problem [0, uR] as the
strength of its elementary wave,

|[0, uR]| = |γ2|. (4.4.44)

The following theorem generalizes Proposition 10 to include the boundary
Riemann problems, and this implies that the sum of the strengths of elemen-
tary waves are non-increasing during boundary wave interactions, so long as
Aij is constant.

Proposition 14 Assume that Aij is fixed. Let uM , and uR be any pair of
states in the region ρ > 0, −c < v < c. Then

|[0, uR]| ≤ |[0, uM ]|+ |[uM , uR]|. (4.4.45)
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4.5 The ODE Step

In this section we analyze the ODE step (4.3.22) of the fractional step scheme.
Recall that this arises by rewriting system (1.4.3) in the form ut + ∂f

∂uux =
g −A′ · ∇Af ≡ G(A, u, x) and neglecting the flux term containing ux. Then
the jumps in A at the vertical lines xi+ 1

2
, i = 0, 1, ..., are accounted for by

the A′ · ∇Af term on the RHS of this equation. Using (4.3.20), (4.3.21) and
the fact that (u0, u1) = (T 00

M , T 01
M ), system (4.3.22) takes the form

Ṫ 00
M = −1

2

√
A

B
T 01

M

{
2(B + 1)

x
− κxB

(
T 00

M − T 11
M

)}
≡ G0(A, u, x), (4.5.1)

Ṫ 00
M = −1

2

√
A

B

{
4
x
T 11

M +
(B − 1)

x

(
T 00

M + T 11
M

)
(4.5.2)

+κxB
[
T 00

M T 11
M − 2

(
T 01

M

)2
+
(
T 11

M

)2]− 4xT 22
}
≡ G1(A, u, x).

We now analyze the solution trajectories for system (4.5.1), (4.5.2) in the
(ρ, v)-plane. To this end, we record the following identities which are easily
derived from (1.3.12),(1.3.13),(1.3.14), and (4.2.6):

(
T 11

M

)2 − (T 01
M

)2
=
σ4 − v2c2

c2 − v2
ρ2c2, (4.5.3)

T 00
M T 11

M −
(
T 01

M

)2
= σ2ρ2c2, (4.5.4)(

T 11
M

)2 − 2
(
T 01

M

)2
+ T 00

M T 11
M =

(σ2 − v2)(c2 + σ2)
c2 − v2

ρ2c2, (4.5.5)

T 00
M + T 11

M =
(c2 + σ2)(c2 + v2)

c2 − v2
ρ, (4.5.6)

T 00
M − T 11

M = (c2 − σ2)ρ. (4.5.7)

Using (4.5.3)-(4.5.7) in the RHS of (4.5.1), (4.5.2), we obtain after simplifica-
tion,

G0 = −1
2

√
A

B

(
c2 + σ2

c2 − v2

)
cv
ρ

x

{
2(B + 1)− κB(c2 − σ2)ρx2

}
, (4.5.8)

G1 = −1
2

√
A

B

(
c2 + σ2

c2 − v2

)
ρ

x

{
4v2 + (B − 1)(c2 + v2) + κB(σ2 − v2)c2ρx2

}
.

(4.5.9)

Now differentiating the LHS of (4.5.1), (4.5.2) gives
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ρ̇
∂T 00

M

∂ρ
+ v̇

∂T 00
M

∂v
= G0, (4.5.10)

ρ̇
∂T 01

M

∂ρ
+ v̇

∂T 01
M

∂v
= G1. (4.5.11)

Thus it follows from Cramer’s Rule that system (4.5.1), (4.5.2) in (ρ, v)-
variables is given by

ρ̇ =
Dρ

D
, (4.5.12)

v̇ =
Dv

D
, (4.5.13)

where

Dρ =

∣∣∣∣∣G0 ∂T 00
M

∂v

G1 ∂T 01
M

∂v

∣∣∣∣∣ , (4.5.14)

Dv =

∣∣∣∣∣
∂T 00

M

∂ρ G0

∂T 01
M

∂ρ G1

∣∣∣∣∣ , (4.5.15)

D =

∣∣∣∣∣
∂T 00

M

∂ρ
∂T 00

M

∂v
∂T 01

M

∂ρ
∂T 01

M

∂v

∣∣∣∣∣ . (4.5.16)

Using (1.3.12) and (1.3.13) we obtain

∂T 00
M

∂ρ
=
c4 + σ2v2

c2 − v2
,

∂T 00
M

∂v
= 2

(c2 + σ2)c2v
(c2 − v2)2

ρ,

∂T 01
M

∂ρ
=

(σ2 + c2)cv
c2 − v2

,

∂T 01
M

∂v
=

(σ2 + c2)(c2 + v2)c
(c2 − v2)2

ρ,

and

D =
(c2 + σ2)(c4 − σ2v2)c

(c2 − v2)2
ρ. (4.5.17)

A calculation using these together with (4.5.8), (4.5.9) leads to
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Dρ = −1
2

√
A

B

(
c2 + σ2

c2 − v2

)2
c2

x

{
4− κB(c2 + σ2)ρx2

}
ρ2,

Dv = −1
2

√
A

B

(
c2 + σ2

c2 − v2

)
σ2c2

x
(4.5.18)

·
{
−4

v2

c2
+ (B − 1)

c4 − σ2v2

σ2c2
+ κB(c2 + v2)ρx2

}
ρ.

Putting (4.5.17)-(4.5.18) into (4.5.12), (4.5.13) and simplfying, we obtain sys-
tem (4.5.1), (4.5.2) in (ρ, v)-variables:

ρ̇ = −1
2

√
A

B

(
c2 + σ2

c4 − σ2v2

)
vc

x

{
4− κB(c2 + σ2)ρx2

}
ρ, (4.5.19)

v̇ = −1
2

√
A

B

(
c2 − v2

c4 − σ2v2

)
σ2c

x

·
{
−4

v2

c2
+ (B − 1)

c4 − σ2v2

σ2c2
+ κB(c2 + v2)ρx2

}
,

(4.5.20)

For convenience, we rewrite system (4.5.19), (4.5.20) in the form

ρ̇ =
κ
√
ABx

2

[
(c2 + σ2)2vc
c4 − σ2v2

]
ρ {ρ− ρ1} , (4.5.21)

v̇ = −κ
√
ABx

2

[
(c4 − v4)σ2c

c4 − σ2v2

]
{ρ− ρ2} ,

(4.5.22)

where

ρ1 =
4

κB(c2 + σ2)x2
, (4.5.23)

and

ρ2 =
4v2σ2 − (B − 1)(c4 − σ2v2)

κB(c2 + v2)σ2c2x2
, (4.5.24)

where, (by a simple calculation),

ρ2 <
4v2σ2

κB(c2 + v2)σ2c2x2
< ρ1, (4.5.25)
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for all values of v ∈ (−c, c).
We devote the remainder of this section to the proof of the following theo-

rem, which gives a global bound for solutions of u̇ = G(A, u, x), starting from
arbitrary initial data

u(0) = u0 ≡ Ψ(ρ0, v0), (4.5.26)

assuming that A > 0, B ≥ 1 and x ≥ r0 are constant, and assuming the
physical bounds 0 < ρ0 <∞, −c < v0 < c, (c.f. (4.2.21)):

Proposition 15 Assume that A,B and x are constant, that A > 0, B ≥ 1,
x ≥ r0, and assume that (ρ0, v0) satisfies −c < v0 < c and 0 < ρ0 <∞. Then
the solution (ρ(t), v(t)) of system (4.5.21), (4.5.22), with initial condition

ρ(0) = ρ0, (4.5.27)
v(0) = v0, (4.5.28)

exists, is finite, and satisfies

−c < v(t) < c,

for all t ≥ 0. Moreover, if ρ0 ≤ ρ1, then ρ(t) ≤ ρ1 for all t ≥ 0; while if
ρ0 ≥ ρ1, then

ρ1 ≤ ρ(t) ≤ max

ρ1, ρ0

(
c2

c2 − v2
0

) 1
2

(
c2+σ2

cσ

)2 , (4.5.29)

for all t > 0.

Proof: For fixed A and x, system (4.5.21), (4.5.22) is an autonomous system
of the form

ρ̇ = f1(ρ, v),
v̇ = f2(ρ, v).

Note that ρ = 0 and v =+
− c are solution trajectories for this system. Since the

system is autonomous, solution trajectories never intersect, and so it follows
that ρ > 0, |v| < c is an invariant region for solutions. Note also that since
ρ1 is independent of v, the isocline ρ ≡ ρ1 also defines a solution curve for
system (4.5.21), (4.5.22), and so it also cannot be crossed by other solution
trajectories. Thus 0 < ρ < ρ1, |v| < c is a bounded invariant region, and ρ >
ρ1, |v| < c is an unbounded invariant region, for solutions of system (4.5.21),
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(4.5.22). Thus it remains only to verify (4.5.29), and it follows that the only
obstacle to global existence for the initial value problem (4.5.21), (4.5.22),
(4.5.27), (4.5.28), is the case ρ0 > ρ1, and the possibility that ρ(t) → ∞
before t → ∞. Note that (4.5.21) is quadratic in ρ, so the bound (4.5.29) on
ρ is not a consequence of equation (4.5.21) alone. However, (4.5.22) implies
that ρ is bounded, as we now show.

If ρ0 > ρ1, then since ρ1 > ρ2 for all values of v, it follows that v̇ < 0
for all time. Consequently, v(t) ≤ v0, and ρ(t) can only increase while v ≥ 0.
Once v hits v = 0, v(t) < 0 and ρ(t) decreases from that time forward. Thus it
suffices to estimate the change in ρ(t) while 0 ≤ v(t) ≤ v0. But from (4.5.21),
(4.5.22), we have

dρ

dv
= − (c2 + σ2)2v

(c4 − v4)σ2

ρ− ρ1

ρ− ρ2
ρ (4.5.30)

≥ −
(

(c2 − σ2

σc

)2
v

c2 − v2
ρ,

where we have used ρ ≥ ρ1 ≥ ρ2. Integrating this inequality by separation of
variables gives the inequality (4.5.29). 2

The phase portrait for solutions of (4.5.21), (4.5.22), is given in Figure 4.1.

By the results of Section 4.4 the Riemann problem solutions preserve the
bounds 0 < ρ < ∞, |v| < c, and all (invariant) wave speeds remain bounded
by c, so long as 0 < ρ < ∞, |v| < c initially. By the results in this section,
it follows that these bounds also are maintained under the ODE step. But
(4.3.26) and (4.3.43) imply that that the only way the approximate solution
u∆x can fail to be defined for all time, is if B → ∞, or the CFL condition
fails. The following theorem is a direct consequence of (4.3.26) and (4.3.43):

Proposition 16 Let B̄, M̄ denote arbitrary positive constants, let

Λ =
∆x

∆t
= 2
√
GAB(B̄, M̄),

and assume that the initial data u0(·) satisfies the bounds 0 < ρ <∞, |v| < c
for all x ≥ r0. Then the approximate solution u∆x is defined, and continues
to satisfy the bounds 0 < ρ <∞, |v| < c for all x ≥ r0, t ≤ tJ , so long as

‖M∆x‖∞ < M̄,

‖B∆x‖∞ < B̄,

for all x ≥ r0, j ≤ J.
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×

0
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Fig. 4.1. The phase portrait for system (4.5.21), (4.5.22)

As a final comment, note that we have bounds for the RP step, and bounds
for the ODE step, but it remains to obtain bounds that apply to both steps.
Also, the fact that ρ and v remain finite in each approximate solution does
not rule out ρ → ∞ in the actual solution. For this, we need estimates that
are independent of ∆x, c.f. [19].

4.6 Estimates for the ODE Step

In this section we obtain estimates for the growth of the total variation of ln ρ
and ln c+v

c−v under the evolution of the ODE u̇ = G(A, r, x), which is equivalent
to the system (4.5.21), (4.5.22). To this end, rewrite system (4.5.21), (4.5.22)
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in terms of the variables (z, w)≡(K0 ln ρ,K0 ln c+v
c−v ) to obtain, c.f. (4.2.15),

(4.2.16),

ż =
4
√
AB

x

(
σvc2

c4 − σ2v2

){
κ(c2 + σ2)

4
ρx2 −

(
1
B

)
1

}
≡ F1(A,B, x, z, w)

(4.6.1)

ẇ =
4
√
AB

x

(
c4

c4 − σ2v2

){
κ(c2 + v2)

4
σ2

c2
ρx2

−
(
σ2

c2

[
1
B

v2

c2
− (B − 1)

4B
c4 − σ2v2

σ2c2

])
2

}
≡ F2(A,B, x, z, w).

(4.6.2)

Here K0 is defined in (4.2.14), and we use that

ż = K0
ρ̇

ρ
,

ẇ =
2c

c2 − v2
v̇.

Note also that κc2ρx2 is dimensionless. A calculation shows that the indexed
brackets on the RHS of (4.6.1), (4.6.2) satisfy

|(·)i| ≤ 1, i = 1, 2. (4.6.3)

To verify (4.6.3), use that B ≥ 1, and

|(·)2| =
σ2

c2

∣∣∣∣ (c4 + 3σ2v2)−B(c4 − σ2v2)
4Bσ2c2

∣∣∣∣
=
σ2

c2

∣∣∣∣14
(

1
B
− 1
)( c

σ

)2

+
1
4

(
3
B

+ 1
)(v

c

)2
∣∣∣∣

≤ σ2

c2
Max

{
1
4

( c
σ

)2

,
(v
c

)2
}
≤ 1.

The following theorem gives bounds for the RHS of (4.6.1), (4.6.2).

Proposition 17 Assume that

1 ≤ B ≤ B̄, (4.6.4)

0 < AB ≤ GAB(B̄, M̄) ≡ Ar0Br0 exp
{

8B̄M̄
r0

}
, (4.6.5)

S ≤ S̄, (4.6.6)
|v| < c, (4.6.7)
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and r0 ≤ x <∞. Then each of

|Fi(A,B, x, z, w)|,
∣∣∣∣∂Fi

∂z

∣∣∣∣ , ∣∣∣∣∂Fi

∂w

∣∣∣∣ ,
i = 1, 2, is bounded by 1

2
√

2
G1(B̄, M̄ , S̄), where G1 is defined by

1
2
√

2
G1(B̄, M̄ , S̄) ≡ G0(κc2r0S̄ + 1)

r0
, (4.6.8)

where

G0 ≡ G0(B̄, M̄) = K1

√
GAB(B̄, M̄), (4.6.9)

K1 =
8c4

(c2 − σ2)2
. (4.6.10)

Here we use the notation that K with a subscript denotes a constant that
depends only on κ, r0, σ and c, while G(·) denotes a constant that depends
also on Ā, B̄, S̄ and M̄, whichever appear in the parentheses after the G. We
include the factor (2

√
2)−1 in (4.6.8) for future convenience, c.f. Theorem 18

and Proposition 19 below.

Proof: This follows by direct calculation, using |v| < c, σ < c. For example,

∣∣∣∣∂F2

∂z

∣∣∣∣ =
∣∣∣∣∂ρ∂z ∂F2

∂ρ

∣∣∣∣ = ∣∣∣∣ ρK0

∂F2

∂ρ

∣∣∣∣
=

∣∣∣∣∣ρ(c2 + v2)
2σc

4
√
AB

x

(
c4

c4 − σ2v2

){
κ(c2 + v2)

4
σ2

c2
x2

}∣∣∣∣∣
≤ G0(B̄, M̄)

r0
(κc2r0S̄ + 1).

Also,

∣∣∣∣∂F2

∂w

∣∣∣∣ =
∣∣∣∣ ∂v∂w ∂F2

∂v

∣∣∣∣ = ∣∣∣∣(c2 − v2

2c

)
∂F2

∂v

∣∣∣∣
=

∣∣∣∣∣
{

4
√
AB

x

(
c2 − v2

2c

)
∂

∂v

(
c4

c4 − σ2v2

)
{·}∗

}
3

+

{
4
√
AB

x

(
c3(c2 − v2)

2(c4 − σ2v2)

)
∂

∂v
{·}∗

}
4

∣∣∣∣∣ ,
where
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{·}∗ =
{
κ(c2 + v2)

4
σ2

c2
ρx2 −

(
σ2

c2

[
1
B

v2

c2
− (B − 1)

4B
c4 − σ2v2

σ2c2

])
2

}
∗
.

But straightforward estimates show that

|{·}i| ≤
1
2
G0(B̄, M̄)

r0
(κc2r0S̄ + 1),

for both i = 1 and i = 2, and so

∣∣∣∣∂F2

∂w

∣∣∣∣ ≤ G0(B̄, M̄)
r0

(κc2r0S̄ + 1).

This completes the proof of the theorem.2

We now study solutions of (4.6.1), (4.6.2) in the z-plane,

z = (z, w) ≡ (K0 ln ρ, ln
c− v

c+ v
), (4.6.11)

‖z‖ =
√
z2 + w2, (4.6.12)

so that system (4.6.1), (4.6.2) can be written as

ż = F (A, x, z), (4.6.13)

where A = (A,B) and

F = (F1, F2). (4.6.14)

Let

z(t) ≡ z(t;A, x, z0) (4.6.15)

denote the solution of (4.6.1), (4.6.2) starting from initial data

z(0) = z0, (4.6.16)

treating A and x as constants. We now estimate

d

dt
‖z(t)‖. (4.6.17)

To start, note first that for any smooth curve z(t),∣∣∣∣ ddt‖z‖
∣∣∣∣ = ∣∣∣∣z(t) · ż(t)‖z(t)‖

∣∣∣∣ ≤ ‖ ˙z(t)‖. (4.6.18)
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Thus, if z(t) denotes a solution of (4.6.1), (4.6.2), then

∣∣∣∣ ddt‖z‖
∣∣∣∣ ≤ ‖F (A,B, x, z(t))‖

=
√

2
G0(B̄, M̄)

r0
(κc2r0S̄ + 1). (4.6.19)

We next obtain a similar estimate for∣∣∣∣ ddt‖zR(t)− zL(t)‖
∣∣∣∣ , (4.6.20)

where

zL(t) ≡ z(t;A, xL, zL), (4.6.21)
zR(t) ≡ z(t;A, xR, zR), (4.6.22)

and AL, xL,AR, xR, are constants. (Here, zL, zR could be consecutive con-
stant states that pose a Riemann problem in the construction of u∆x.) Then,

∣∣∣∣ ddt‖zR(t)− zL(t)‖
∣∣∣∣ ≤ ‖żR(t)− żL(t)‖

= ‖F (zR,A, x)− F (zL,A, x)‖ = ‖∆F‖
≤
√

2Max{|∆F1|, |∆F2|}. (4.6.23)

But

|∆Fi| ≤
∣∣∣∣∂Fi

∂z

∣∣∣∣ |∆z|+ ∣∣∣∣∂Fi

∂w

∣∣∣∣ |∆w|, (4.6.24)

so by Proposition 17, if (4.6.4)-(4.6.7) hold, then

|∆Fi| ≤
G0(B̄, M̄)

r0
(κc2r0S̄ + 1) {|∆z|+ |∆w|}

≤
√

2
G0(B̄, M̄)

r0
(κc2r0S̄ + 1) {‖∆z‖} . (4.6.25)

We have the following result:

Proposition 18 Let zL(t), zR(t) be defined by (4.6.21) and (4.6.22), and as-
sume xL < xR, and that (4.6.4)-(4.6.7) of Proposition 17 hold. Then∣∣∣∣ ddt‖zR(t)− zL(t)‖

∣∣∣∣ ≤ G1√
2
{‖zR(t)− zL(t)‖} , (4.6.26)
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‖zR(t)− zL(t)‖ ≤ ‖zR − zL‖e
G1√

2
t
, (4.6.27)

where, c.f. (4.6.8),

G1 ≡ G1(B̄, M̄ , S̄) = 2
√

2
G0(B̄, M̄)

r0
(κc2r0S̄ + 1). (4.6.28)

The states zL(t), zR(t) pose a Riemann Problem [zL(t), zR(t)] at each time
t ≥ 0. Let

[zL(t), zR(t)] = (γ1(t), γ2(t)), (4.6.29)

denote the waves that solve this Riemann problem, c.f. (4.4.16).

Lemma 12 The following estimate holds:

∣∣∣∣∣ ddt ∑
p=1,2

|γp(t)|

∣∣∣∣∣ ≤ √
2‖żR(t)− żL(t)‖. (4.6.30)

≤ G1‖∆z‖.

Proof: For the purposes of the proof, let z(t) = zR(t)− zL(t), and let

γp(z(t)) ≡ Γp(z(t)), (4.6.31)

where Γp is defined in (4.4.39) of Proposition 12. Then by Propositions 10, 14
and (4.4.40),

∑
p=1,2

{|γp(z(t))| − |γp(z(0))|} ≤
∑

p=1,2

|γp(z(t)− z(0))|

≤
√

2‖z(t)− z(0)‖. (4.6.32)

Similarly,

∑
p=1,2

{|γp(z(0))| − |γp(z(t))|} ≤
∑

p=1,2

|γp(z(0)− z(t))|

≤
√

2‖z(t)− z(0)‖. (4.6.33)

Thus (4.6.32) together with (4.6.33) imply that∣∣∣∣∣ ddt ∑
p=1,2

|γp(z(t))|

∣∣∣∣∣ ≤ √
2‖ż(t)‖, (4.6.34)

which is (4.6.30). The second inequality in (4.6.30) follows directly from
(4.6.26). 2

We have the following, c.f. (4.6.8):
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Proposition 19 Let (γ1(t), γ2(t)) = [zL(t), zR(t)], where zL(t), zR(t) solve
the ODE (4.6.1), (4.6.2). Assume that (4.6.4)-(4.6.7) of Proposition 17 hold.
Then

|γ1(t)|+ |γ2(t)| ≤ |γ1(0)|+ |γ2(0)|+ ‖zR(0)− zL(0)‖eG1tG1t, (4.6.35)

where G1 ≡ G1(B̄, M̄ , S̄) is given in (4.6.28).

Proof: This follows from (4.6.30) and (4.6.27). 2

4.7 Analysis of the Approximate Solutions

Let u∆x(x, t) denote an approximate solution generated by the fractional step
Glimm method, starting from initial data u0(·) that satisfies the finite total
mass condition

M∆x(∞, 0) = Mr0 +M0 ≤ ∞, M0 ≡
κ

2

∫ ∞

r0

u0
∆x(r, 0)r2 dr; (4.7.1)

the condition for initial locally finite total variation,∑
i1 ≤ i ≤ i2
p = 1, 2

|γp
i,0| < V0, (4.7.2)

for all i1, i2 such that |xi2 − xi1 | ≤ L; the condition that the initial velocity is
bounded uniformly away from the speed of light,

|v∆x(x, 0)| ≤ v̄0 < c; (4.7.3)

and the condition that the initial supnorm of xρ is bounded,

S∆x(x, 0) ≡ xρ∆x(x, 0) ≤ S̄0 <∞. (4.7.4)

Note that (4.7.1) and (4.7.4) imply that

|w∆x(x, 0)| ≤
∣∣∣∣ln(c+ v̄0

c− v̄0

)∣∣∣∣ ≡ w̄0, (4.7.5)

and

|z̄∆x(x, 0)| ≤
∣∣∣∣K0 ln

(
S̄

r0

)∣∣∣∣ ≡ z̄0. (4.7.6)

Assuming (4.7.1)-(4.7.6), our goal is to find estimates for Vj , S̄j and T > 0
such that
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∑
i1 ≤ i ≤ i2
p = 1, 2

|γp
ij | < Vj , (4.7.7)

and

Sj ≡ sup
r≥r0

xρ∆x(x, tj) ≤ S̄j (4.7.8)

for all |xi2 − xi1 | ≤ L, 0 ≤ tj ≤ T = tJ ≤ 1. Note that (4.7.7) estimates
the total variation in z on x-intervals of length L, and (4.7.8) estimates a
weighted supnorm. Estimates for the supnorm and local total variation norm
of the approximate solution u∆x, that are uniform in time, are required to
apply the Oleinik compactness argument, [19]. Recall that the waves γp

ij solve
the Riemann Problem [ui−1,j , uij ] for system (4.3.8), and that since A = Aij

on mesh rectangle Rij , it follows that the source A affects the speeds of
the waves γp

ij , but the states on the waves themselves agree with the solution
[ui−1,j , uij ] for the special relativistic Euler equations (4.3.8) when A = (1, 1).

To start, let ∆ij denote the interaction diamond centered at (xi, tj) in the
approximate solution u∆x. In the case i > 0, the diamond ∆ij is formed by
the points (xi−1 + aj∆x, tj), (xi + aj∆x, tj), (xi, tj− 1

2
), (xi, tj+ 1

2
), and in the

case i = 0, ∆0,j is the half-diamond formed at the boundary by the mesh
points (x0, tj+ 1

2
), (x0, tj− 1

2
), (x0 +aj∆x, tj), c.f. Figure 4.2. In the case i > 0,

the waves γp
ij solve the Riemann Problem [uL, uR], where

uL = ui−1,j ,

uR = uij .

We call these the waves that leave the diamond ∆ij , c.f. [10]. The waves that
enter the diamond solve the Riemann Problems [ûL, uM1 ], [uM1 , uM2 ], and
[uM2 , ûR], where

uM1 = ui−1,j−1,

uM2 = ui,j−1,

and

ûL = uRP
i−1,j ,

ûR = uRP
ij . (4.7.9)
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uL
uL

uM

uM=u0, j−1
uM1=ui−1, j−1
uM2=ui, j−1

x=r0
i=0

i x

uM1 uM2

uR uR

∆oj γij ∆ij

j

t

1 γij
2

Fig. 4.2. The interaction diamonds ∆ij

States uL, uR are obtained from ûL, ûR by solving the ODE ut = G, writ-
ten out in (4.3.19). That is, uL = χ−1(zL), uR = χ−1(zR), and ûL =
χ−1(ẑL), ûR = χ−1(ẑR), where,

zL = z(∆t;Aij , xi, ẑL), (4.7.10)
zR = z(∆t;Aij , xi, ẑR),

c.f. (4.6.15). Thus, using the notation introduced at (4.4.16),

[uL, uR] = (γ1
ij , γ

2
ij),

[ûL, ûR] = (γ̂1
ij , γ̂

2
ij), (4.7.11)

[uM1 , uM2 ] = (γ1
i,j−1, γ

2
i,j−1),

and we write

[ûL, uM1 ] = (γR1
i−1,j−1, γ

R2
i−1,j−1), (4.7.12)

[uM2 , uR] = (γL1
i+1,j−1, γ

L2
i+1,j−1).

Here we let γR1
ij , γ

R2
ij denote the waves in the Riemann Problem posed at

(xi, tj) that lie to the right of the random point (xi + aj+1∆x, tj+1) at time
t = tj+1, and γL1

ij , γ
L2
ij the waves that fall to the left of the random point

(xi−1 + aj+1∆x, tj+1), respectively, [26, 10]
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In the case of the boundary diamond∆0,j , the wave γ2
0j leaves the diamond

∆0,j , and the waves γ2
0,j−1, γ

L1
1,j−1 and γL2

1,j−1 enter the diamond. In this case,
using the notation introduced at (4.4.44), (4.4.43), we can write

[0, uR] = γ2
0j ,

[0, ûM ] = γ̂2
0,j−1, (4.7.13)

[uM , ûR] = (γL1
1,j−1, γ

L2
1,j−1),

where

uR = u0j ,

ûR = uRP
0j , (4.7.14)

uM = u0,j−1.

Now let |γIN
ij | denote the sum of the strength of the waves that enter the

diamond ∆ij . Thus, if i > 0, then

|γIN
ij | =

∑
p=1,2

{
|γp

i−1,j−1|+ |γp
i,j−1|+ |γLp

i+1,j−1|
}
, (4.7.15)

and if i = 0,
|γIN

0j | = |γ2
0,j−1|+ |γL1

1,j |+ |γL2
1,j |. (4.7.16)

It follows from Propositions 10 and 14 that when i > 0,

|γ̂1
ij |+ |γ̂2

ij | ≤ |γIN
ij |, (4.7.17)

and when i = 0,

|γ̂2
0j | ≤ |γIN

0j |. (4.7.18)

Now it follows from (4.6.35) of Proposition 19, that if u∆x satisfies (4.6.4)-
(4.6.7) of Proposition 17, then

|γ1
ij |+ |γ2

ij | ≤ |γ̂1
ij |+ |γ̂2

ij |+ ‖ẑR − ẑL‖eG1∆tG1∆t. (4.7.19)

But by (4.4.26),

|ẑR − ẑL| ≤ |γ̂1
ij |+ |γ̂2

ij |+H(|γ̂1
ij |) +H(|γ̂2

ij |), (4.7.20)

so putting these together we obtain,

|γ1
ij |+ |γ2

ij | ≤ |γ̂1
ij |+ |γ̂2

ij |+

{∑
p=1,2

[
|γ̂p

ij |+H(|γ̂p
ij |)
]}

eG1∆tG1∆t. (4.7.21)
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We can now use (4.7.17), (4.7.18) to estimate |γ̂p
ij | and H(|γ̂p

ij |).
Note first that since H is convex up, we have Proposition 11, so

∑
p=1,2

H
(
|γ̂p

ij |
)
≤ H

(∑
p=1,2

|γ̂p
ij |

)
≤ H(|γIN

ij |). (4.7.22)

Let

|γOUT
ij | = |γ1

ij |+ |γ2
ij |. (4.7.23)

Then putting (4.7.17), (or (4.7.18) at the boundary), and (4.7.22) into (4.7.21),
we obtain

|γOUT
ij | ≤ |γIN

ij |+
{
|γIN

ij |+H
(
|γIN

ij |
)}
eG1∆tG1∆t. (4.7.24)

We can also estimate the change in z and z between (xi, tj) and (xi, tj−1).
Since both zi,j−1 and zRP

ij are states on the waves γp
i,j−1 or γp

i+1,j−1, and by
(4.6.19) we know

|zij − zRP
ij | ≤ ‖zij − zRP

ij ‖ ≤ G1∆t, (4.7.25)

it follows that

|zij − zi,j−1| ≤
∑

l = i, i+ 1
p = 1, 2

{
|γp

l,j−1|+H
(
|γp

l,j−1|
)}

+G1∆t, (4.7.26)

and

|zij − zi,j−1| ≤
∑

l = i, i+ 1
p = 1, 2

|γl,j−1|+G1∆t. (4.7.27)

We collect our results so far in the following theorem.

Theorem 14 Let M̄, B̄, S̄, v̄, and integer J0 > 0, be any finite positive
constants, assume |v̄| < c, and let u∆x(x, t), A∆x(x, t) be an approximate
solution generated by the fractional step Glimm method with

∆x

∆t
= Λ = 2

√
GAB(B̄, M̄). (4.7.28)

Assume that,
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M∆x(x, tj) ≤ M̄, (4.7.29)
B∆x(x, tj) ≤ B̄, (4.7.30)

0 < S∆x(x, tj) ≤ S̄ (4.7.31)
|v∆x(x, tj)| ≤ v̄, (4.7.32)

for all x ≥ r0, 0 ≤ tj ≤ T0 = tJ0 ≤ 1. Then the speed of each wave γp
ij

generated in u∆x at the Riemann Problem step of the method is bounded by
the coordinate speed of light

√
Aij/Bij , i ≥ 0, 0 ≤ j ≤ J0, and the following

estimates hold at each interaction diamond ∆ij, i ≥ 0, j ≤ J0 − 1:

‖zij − zi,j−1‖ ≤
∑

l = i, i+ 1
p = 1, 2

{
|γp

l,j−1|+H
(
|γp

l,j−1|
)}

+G1∆t,(4.7.33)

|zij − zi,j−1| ≤
∑

l = i, i+ 1
p = 1, 2

|γp
l,j−1|+G1∆t, (4.7.34)

|γOUT
ij | − |γIN

ij | ≤
{
|γIN

ij |+H
(
|γIN

ij |
)}
eG1∆tG1∆t, (4.7.35)

where,

G1 ≡ G1(B̄, M̄ , S̄) = 2
√

2
G0(B̄, M̄)

r0
(κc2r0S̄ + 1), (4.7.36)

G0 ≡ G0(B̄, M̄) = K1

√
GAB(B̄, M̄), (4.7.37)

K1 =
8c4

(c2 − σ2)2
, (4.7.38)

GAB = Ar0Br0 exp
{

8B̄M̄
r0

}
. (4.7.39)

Moreover,

1 ≤ B∆x(x, tj), (4.7.40)
0 < Ar0 < A∆x(x, tj) ≤ GAB , (4.7.41)

0 < xu0
∆x(x, tj) ≤

c2 + σ2v̄2

c2 − v̄2
S̄, (4.7.42)

and

|A′∆x(x, tj)| ≤
(

1
r0

+ κ
c2 + σ2v̄2

c2 − v̄2
S̄

)
B̄GAB , (4.7.43)

|B′∆x(x, tj)| ≤
(

1
r0

+ κ
c2 + σ2v̄2

c2 − v̄2
S̄

)
B̄2. (4.7.44)
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for all x ≥ r0, 0 ≤ tj ≤ T0 = tJ0 ≤ 1.

Note, again, that (4.7.43) gives the Lipschitz continuity in x of A∆x and B∆x

and (4.7.42) implies that ρ∆x > 0 for 0 ≤ t ≤ T0.

Proof: This follows directly from (4.7.24), (4.7.26) and (4.7.27), together with
Propositions 8 and 16.2

Corollary 2 Assume that the approximate solution u∆x,A∆x satisfies the
conditions (4.7.28)-(4.7.32) of Theorem 14 up to some time T0, 0 < T0 =
tJ0 ≤ 1, and assume further that there exists constants L, V0 such that∑

i1≤i≤i2, p=1,2

|γp
i0| < V0, (4.7.45)

for all |xi2 − xi1 | ≤ L. Then for any constant α > 1 :

(A) The following total variation bound holds:

∑
i1≤i≤i2, p=1,2

|γp
ij | ≤ α

(
1 +

4tj
√
GAB

L

)
V0 ≤ αV̄∗, (4.7.46)

for all |xi2 − xi1 | ≤ L, so long as tj ≤Min{Tα, T0} ≤ 1 where

Tα =
(

1
G1eG1

)
(α− 1)V̄∗{

αV̄∗ +H(αV̄∗)
} , (4.7.47)

V̄∗ ≡
(

1 +
4
√
GAB

L

)
V0. (4.7.48)

(B) The following L1
loc bounds hold:

∫ xi2

xi1

‖z∆x(x, tj2)− z∆x(x, tj1)‖ dx

≤
{

4
√
GAB

[
αV̄∗ +H(αV̄∗)

]
+G1|xi2 − xi1 |

}
|tj2 − tj1 |,(4.7.49)

∫ xi2

xi1

|z∆x(x, tj2)− z∆x(x, tj1)| dx

≤
{

4
√
GAB

[
αV̄∗

]
+G1|xi2 − xi1 |

}
|tj2 − tj1 |, (4.7.50)

for any tj1 ≤ tj2 ≤Min{Tα, T0} ≤ 1, and any r0 ≤ xi1 ≤ xi2 <∞.

(C) The following bounds on the supnorm hold:



4.7 Analysis of the Approximate Solutions 117

|zij − zi+j,0| ≤ α

(
1 +

4tj
√
GAB

L

)
V0 + 2

√
GABG1tj , (4.7.51)

|wij − wi+j,0| ≤ H

(
α

(
1 +

4tj
√
GAB

L

)
V0

)
+ 2
√
GABG1tj , (4.7.52)

‖zij − zi+j,0‖ ≤ α

(
1 +

4tj
√
GAB

L

)
V0

+H
(
α

(
1 +

4tj
√
GAB

L

)
V0

)
+ 2
√
GABG1tj ,

(4.7.53)

for all tj ≤Min(Tα, T0) ≤ 1.

The motivation for choosing the factor
(
1 + 4tj

√
GAB

L

)
in (4.7.85) of (A) is

that since

∆x

∆t
= Λ = 2

√
GAB(B̄, M̄), (4.7.54)

it follows that (
1 +

4tj
√
GAB

L

)
≥
xi2 − xi1 + 4∆x

∆t tj

L
, (4.7.55)

where the RHS of (4.7.55) dominates the number of intervals of length L con-
tained within the domain of dependence of [xi1 , xi2 ] at time level tj . Note that

the appearance of tj
√
GAB in

(
1 + 4tj

√
GAB

L

)
(4.7.46) is important because

the LHS of (4.7.46) can be estimated independently of M̄, B̄, S̄ and v̄ for tj
sufficiently small.

Regarding part (C), note that zi+j,0 = z∆x(xi + tj
∆x
∆t , 0) where tj ∆x

∆t =
2tj
√
GAB depends on M̄, B̄. Note also that since

|v∆x(x, tj)| ≤ v̄j < c iff |w∆x(x, tj)| ≤ w̄j =
∣∣∣∣ln c+ v̄j

c− v̄j

∣∣∣∣ , (4.7.56)

it follows from (4.7.52) that if initially |w∆x(xi, 0)| ≤ w̄0, then

|w∆x(xi, tj)| ≤ w̄0 +H

(
α

(
1 +

4tj
√
GAB

L

)
V0

)
+G1tj

√
GAB = w̄j ,

(4.7.57)
for all xi ≥ r0, tj ≤ Min{Tα, T0} ≤ 1. Thus |w| is bounded uniformly and v
is bounded uniformly away from c at each tj ≤ Min{Tα, T0} ≤ 1 so long as
these bounds hold initially.

Proof of (A): Assume 0 < tj ≤ T0, and consider the interaction diamonds
∆ij , i = i1, . . . , i2. Then by (4.7.35), (if i1 > 0),
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∑
i1≤i≤i2, p=1,2

|γp
ij | =

∑
i1≤i≤i2

|γOUT
ij | (4.7.58)

≤
∑

i1≤i≤i2

|γIN
ij |+

∑
i1≤i≤i2

{
|γIN

ij |+H
(
|γIN

ij |
)}
eG1∆tG1∆t

≤
∑

i1−1≤i≤i2+1

|γi,j−1|+
∑

i1−1≤i≤i2+1

{|γi,j−1|+H (|γi,j−1|)} eG1∆tG1∆t.

More generally, let

Vj =
∑

i1≤i≤i2

|γOUT
ij |, (4.7.59)

Vj−1 =
∑

∂(i1−1)≤i≤i2+1

|γOUT
i,j−1|, (4.7.60)

V0 =
∑

∂(i1−j)≤i≤i2+j

|γOUT
i,0 |, (4.7.61)

where to account for the boundary at r = r0, we let

∂(i1 − j) =
{

0 i1 − j ≤ 0
i1 − j otherwise

. (4.7.62)

Then (4.7.58) together with the convexity of H imply that

Vk − Vk−1 ≤ {Vk−1 +H (Vk−1)} eG1∆tG1∆t, (4.7.63)

for all k ≤ j. To estimate Vj , define

V̄0 =
{

1 +
xi2+j − x∂(i1−j)

L

}
V0 ≥

∑
∂(i1−j)≤i≤i2+j, p=1,2

|γp
i0|, (4.7.64)

c.f. (4.7.45), and inductively let

V̄k = V̄k−1 + {Vk−1 +H (Vk−1)} eG1∆tG1∆t, (4.7.65)

to define V̄k for all k ≤ j. Note that

V̄∗ ≡
(

1 +
4
√
GAB

L

)
V0 ≥

(
1 +

4tj
√
GAB

L

)
V0 ≥ V̄0, (4.7.66)

where we use that
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1 +

|xi2+j − x∂(i1−j)|
L

}
≤

{
L+ 2tj ∆x

∆t

L

}
(4.7.67)

dominates the number of intervals of length L contained in |xi2+j − x∂(i1−j)|.
Now V̄k increases with k, and by induction using (4.7.63) it follows that

V̄k ≥ Vk, (4.7.68)

for all k ≤ j. Thus to estimate Vj , it suffices to estimate V̄j . To this end, fix
α > 1, and let Tα be given by (4.7.47).

Claim: V̄j ≤ αV̄0 for all tj ≤Min{Tα, T0} ≤ 1.

To prove the claim, assume that tj ≤ Min{Tα, T0} ≤ 1, and tj+1 is the first
time such that

V̄j+1 > αV̄0. (4.7.69)

Then for tk ≤ tj ,

V̄k − V̄k−1 ≤
{
αV̄0 +H

(
αV̄0

)}
eG1∆tG1∆t, (4.7.70)

and summing we obtain

V̄k − V̄0 ≤
{
αV̄0 +H

(
αV̄0

)}
eG1∆tG1tj . (4.7.71)

But solving for tj in (4.7.71) shows that

{
αV̄0 +H

(
αV̄0

)}
eG1∆tG1tj ≤ (α− 1)V̄0, (4.7.72)

so long as

tj ≤
(

1
G1eG1

)
(α− 1)V̄0{

αV̄0 +H(αV̄0)
} .

But

Tα ≤
(

1
G1eG1

)
(α− 1)V̄0{

αV̄0 +H(αV̄0)
} , (4.7.73)

and so it follows (inductively) from (4.7.73) that the bound (4.7.69) is main-
tained so long as tj ≤Min{Tα, T0} ≤ 1, as claimed.

In light of (4.7.66), it follows that

∑
i1≤i≤i2

|γp
ij | = Vj ≤ V̄j ≤ αV̄0 < α

(
1 +

4tj
√
GAB

L

)
V0 ≤ αV̄∗
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for all tj ≤Min{Tα, T0} ≤ 1, which is (4.7.46). The proof of (A) is complete.

Proof of (B): For (4.7.49), estimate as follows:

∫ xi2

xi1

‖z∆x(x, tj2)− z∆x(x, tj1)‖ dx

=
i2−1∑
i=i1

‖zij2 − zij1‖∆x ≤
i2−1∑
i=i1

j2∑
j=j1+1

‖zij − zi,j−1‖∆x

≤
i2−1∑
i=i1

j2∑
j=j1+1


∑

l = i, i+ 1
p = 1, 2

[
|γp

l,j−1|+H
(
|γp

l,j−1|
)]

+G1∆t


∆x

≤ 2
j2∑

j=j1+1

[
i2∑

i=i1

∑
p=1,2

{
|γp

i,j−1|+H
(
|γp

i,j−1|
)}]

∆x+G1|xi2 − xi1 ||tj2 − tj2 |

≤
{

2
[
αV̄∗ +H(αV̄∗)

] ∆x
∆t

+G1|xi2 − xi1 |
}
|tj2 − tj2 |

where we have used (4.7.33) and (4.7.46). In light of (4.7.28), this verifies
(4.7.49). Inequality (4.7.50) follows by the same argument using (4.7.34) in
place of (4.7.33).

Proof of (C): Note first that (4.7.33) and (4.7.34) directly imply that

‖zij − zi0‖ ≤
∑

l = i, i+ 1
0 ≤ k ≤ j − 1

p = 1, 2

{|γp
lk|+H (|γp

lk|)}+G1tj , (4.7.74)

|zij − zi0| ≤
∑

l = i, i+ 1
0 ≤ k ≤ j − 1

p = 1, 2

|γp
lk|+G1tj . (4.7.75)

Unfortunately, we cannot use (4.7.74) directly to estimate ‖zij −zi0‖ because
we cannot bound the right-hand-side by V0 without introducing wave-tracing
to identify waves at time tj with waves at time t = 0. To get around this, we
estimate ‖zij − zi0‖ as follows.

Let (xi, tj) be fixed. Let JR
ij denote the piecewise linear I-curve that con-

nects mesh points (xi, tj+ 1
2
) to (xi + aj∆xj , tj) to (xi+1, t(j−1)+ 1

2
) and so on,

continuing downward and to the right until you reach (xi+j + a0∆x, 0) at
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time t0 = 0. Let JL
ij connect (xi, tj+ 1

2
) to (xi−1 +aj∆x, tj) to (xi−1, t(j−1)+ 1

2
)

and so on, continuing downward and to the left until one reaches t = 0 at
(xi−j−1, t0) or else stop at r = r0 at the point (r0, tj0+ 1

2
), (see Figure 4.3).

J0

xi+a0∆x

r0
i−1 i+1i x

JL
ij JR

ij

j

t

××× × × ×

×

×

××

×

×

Fig. 4.3. The I-curves J0, JL
ij and JR

ij

Let Jij denote the I-curve Jij = JL
ij

⋃
JR

ij , and recall from [10, 26, 27], that
one can connect Jij by a sequence of I-curves, J0, . . . , JN = Jij such that
Jk+1 is an immediate successor of Jk, and J0 is the I-curve that crosses the
waves γp

i0 between i = ∂(i − i1) and i = i + j. (Again, see Figure 4.3.) Since
Jk differs from Jk+1 by a single interaction diamond, it follows by induction
using (4.7.58), and the argument (4.7.58)-(4.7.73), that

∑
Jij

|γp
ij | ≤ α

(
1 +

4tj
√
GAB

L

)
V0, (4.7.76)

where
∑

Jij
|γp

ij | denotes the sum of the waves γp
ij that cross the curve Jij .

(We have used the assumption tj ≤ Min{Tα, T0} ≤ 1.) From this it follows
that

∑
JR

ij

|γp
ij | ≤ α

(
1 +

4tj
√
GAB

L

)
V0. (4.7.77)
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But
∑

JR
ij
|γp

ij | bounds the total variation in z between the state zi+j,0 and

the state zij , except for the change in z that occurs between zRP
i′j′ and zi′j′ at

each (xi′ , tj′) that lies on the I-curve JR
ij . But by (4.7.25), we know that

‖zRP
i′j′ − zi′j′‖ ≤ G1∆x, (4.7.78)

so it follows that

|zij − zi+j,0| ≤ α

(
1 +

4tj
√
GAB

L

)
V0 +G1tj

∆x

∆t
. (4.7.79)

which verifies (4.7.51) in light of (4.7.54), (4.7.54). Also, since

‖γp
ij‖ ≤ |γp

ij |+H
(
|γp

ij |
)
, (4.7.80)

where H
(
|γp

ij |
)

bounds the change in w across wave γp
ij , it follows that

|wij − wi+j,0| ≤
∑
JR

ij

H
(
|γp

ij |
)

+G1tj
∆x

∆t
,

‖zij − zi+j,0‖ ≤
∑
JR

ij

|γp
ij |+H

(
|γp

ij |
)

+G1tj
∆x

∆t
,

and so using (4.7.77), (which again uses tj ≤ Min{Tα, T0} ≤ 1), we obtain
(4.7.52) and (4.7.53). This completes the proof of Corollary 2. 2

In order to unify the estimates in (B) and (C), assume that |xi2−xi1 | ≤ L,
and set G2 ≡ G2(B̄, M̄ , S̄) equal to

G2 = Max
{

4
√
GAB

[
αV̄∗ +H(αV̄∗)

]
+G1L, 2

√
GABG1, G1e

G1 ,
√
GAB

}
,

(4.7.81)

where G1 ≡ G1(B̄, M̄ , S̄), GAB ≡ GAB(B̄, M̄) and V̄∗ are defined in (4.7.36),
(4.7.39) and (4.7.48), respectively. (Note that V̄∗, and henceG2, also depend on
V0, but for our purposes we only keep track of the dependence on M̄, B̄, S̄, v̄,
the constants that are not yet determined by the initial data.) Then the
following corollary is a simplification of Corollary 2.

Corollary 3 Assume that the approximate solution u∆x,A∆x satisfies the
conditions (4.7.28)-(4.7.32) of Theorem 14 up to some time T0, 0 < T0 =
tJ0 ≤ 1, and assume that there exists constants L, V0 such that∑

i1≤i≤i2, p=1,2

|γp
i0| < V0, (4.7.82)

for all |xi2 − xi1 | ≤ L, and assume that α = 2, c.f. (4.7.46). Then:
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(A) The following total variation bound holds:∑
i1≤i≤i2, p=1,2

|γp
ij | < 2V̄∗, (4.7.83)

for all |xi2 − xi1 | ≤ L, so long as tj ≤Min{T2, T0} ≤ 1, where

T2 =
(

1
G2

)
V̄∗{

2V̄∗ +H(2V̄∗)
} , (4.7.84)

V̄∗ =
(

1 +
4
√
GAB

L

)
V0. (4.7.85)

(B) The following L1
loc bounds hold:∫ xi2

xi1

‖z∆x(x, tj2)− z∆x(x, tj1)‖ dx ≤ G2|tj2 − tj1 |, (4.7.86)

and ∫ xi2

xi1

|z∆x(x, tj2)− z∆x(x, tj1)| dx ≤ G2|tj2 − tj1 |, (4.7.87)

for all r0 ≤ xi1 < xi2 <∞, |xi2 − xi1 | ≤ L, tj ≤Min{T0, T2}.
(C) The following bounds on the supnorm hold.

|zij − zi+j,0| ≤ F ∗0 (G2 · tj), (4.7.88)
|wij − wi+j,0| ≤ F ∗0 (G2 · tj), (4.7.89)
‖zij − zi+j,0‖ ≤ F ∗0 (G2 · tj), (4.7.90)

for all xi ≥ r0, tj ≤Min{T0, T2}, where

F ∗0 (ξ) = 2
(

1 +
4ξ
L

)
V0 +H

(
2
(

1 +
4ξ
L

)
V0

)
+ ξ. (4.7.91)

Again, consistent with our notation, the functions G2(·, ·, ·) and F ∗0 (ξ) depend
only on constants σ, c,K0, r0, L and V0 that depend only on the initial data,
and so the functions G2(·, ·, ·) and F ∗0 (ξ) are independent of the constants
M̄, B̄, S̄, v̄. The functions G2(·, ·, ·) and F ∗0 (ξ) are also increasing functions
of each argument. The main point is that constants that depend on M̄, B̄, S̄
or v̄ in the estimates (4.7.86)-(4.7.90), are organized into the single constant
G2, (which happens to be independent of v̄), and which is always multiplied
by the factor tj . Thus estimates independent of M̄, B̄, S̄ and v̄ can obtained
by making tj sufficiently small. Note that the formula for F ∗0 (ξ) is obtained
by substituting 2 for α, and ξ for tj

√
GAB and 2

√
GABG1tj , on the RHS of

(4.7.53).
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4.8 The Elimination of Assumptions

In this section we show that the assumptions (4.7.29)-(4.7.32) in Corollary 3,
Theorem 14 above, needn’t be assumed, but are implied by values of M̄, B̄, S̄, v̄
that can be defined in terms of the initial data alone, subject to restrictions
on the time T0. Once we succeed with this replacement, Theorem 14 and
Corollary 3 provide the uniform bounds required to apply the Oleinik com-
pactness argument demonstrating the compactness of approximate solutons
up to some finite time T. To start, consider first the bound (4.7.32) for v.
Since the constant G1 in Corollary 3 is independent v, it follows that we can
achieve (4.7.32) for a value of v̄ defined in terms of the bound on v at time
t = 0. Indeed, assume that the initial data v∆x(x, 0) satisfies

|v∆x(x, 0)| ≤ v̄0 < c ⇐⇒ |w∆x(x, 0)| ≤
∣∣∣∣ln(c+ v̄0

c− v̄0

)∣∣∣∣ ≡ w̄0, (4.8.1)

for all r0 ≤ x. Then assuming the hypotheses of Corollary 3, it follows from
(4.7.89) that

|w∆x(x, tj)| ≤ w̄0 + F ∗0 (G2tj), (4.8.2)

for all r0 ≤ x, tj ≤ Min{T2, T0}. Therefore, if we define v̄ so that w̄ =∣∣∣ln( c+v̄
c−v̄

)∣∣∣ , where

w̄ ≡ w̄0 + F ∗0 (G2tj), (4.8.3)

then (4.7.32) is a consequence of our other assumptions. Indeed, to make a
rigorous proof out of this, just define v̄ by (4.8.3), (4.8.2), and let Tv be the
first time at which |v| ≤ v̄ fails. The argument that leads to the choice of w̄
in (4.8.2) then shows that Tv ≥Min{T2, T0}.

Similarly, we now use (4.7.88) to show that S̄ can be defined in terms of
an initial bound S̄0 on S∆x(x, 0) in such a way that (4.7.31) can be eliminated
as an assumption in Corollary 3 because it follows as a consequence of our
other assumptions. In this case, however, (as in the case of M̄ and B̄), the
constant G1 depends on S̄, so we need a corresponding restriction t ≤ TS for
some TS << 1. Indeed, assume that the initial data S∆x(x, 0) satisfies

0 < S∆x(x, 0) ≤ S̄0, (4.8.4)

for all r0 ≤ x. Then assuming the hypotheses of Corollary 3, it follows from
(4.7.88) that

K0 ln ρij −K0 ln ρi+j,0 ≤ F ∗0 (G2 · tj) , (4.8.5)

and so



4.8 The Elimination of Assumptions 125

0 < ρij ≤ F ∗1 (G2 · tj) ρi+j,0 (4.8.6)

where

F ∗1 (ξ) = exp
{
F0(ξ)
K0

}
≥ 1. (4.8.7)

It follows from (4.8.4) that

Sij = xiρij ≤ F ∗1 (G2 · tj)xiρi+j,0 ≤ F ∗1 (G2 · tj) S̄0. (4.8.8)

Inequality (4.8.8) tells us that if we choose S̄ ≥ F ∗1 (0) S̄0, say choose

S̄ = 2F ∗1 (0)S̄0, (4.8.9)

and set

TS = Sup{t : F ∗1 (G2 · tj) ≤ 2F ∗1 (0), for all tj ≤ t}, (4.8.10)

then assumption (4.7.29) of Corollary 3, Theorem 14, (that 0 < S∆x(x, t) ≤
S̄), can be replaced by the condition that S̄ is defined in (4.8.9), together with
the assumption that tj ≤ TS , where TS is defined in (4.8.9). Note that this
argument relies on the fact that the function F ∗1 (·) is independent of S̄.

We now derive formulas analogous to (4.8.9), (4.8.10), for M̄, TM and
B̄, TB , so that assumptions (4.7.29) and (4.7.30) of Corollary 3, Theorem 14,
can be replaced by the condition that M̄, B̄ be defined by the values given in
the formulas, together with tj ≤ TM and tj ≤ TB , respectively. So consider
next the total mass

M∆x(∞, tj) = Mr0 +Mj , Mj ≡
κ

2

∫ ∞

r0

u0
∆x(r, tj)r2 dr. (4.8.11)

Using u0 = T 00
M and lnw = c+v

c−v in (1.3.12), we obtain

u0 =
1
2
{
(1 + σ2) coshw + (1− σ)

}
ρ. (4.8.12)

Thus it follows from (4.8.3) and (4.8.6) that

u0
∆x(xi, tj) ≤

1
2
{
(1 + σ2) cosh w̄ + (1− σ)

}
F ∗1 (G2 · tj)ρ∆x(xi+j , 0). (4.8.13)

Using this in (4.8.11) we obtain

Mj ≤ Mr0 + F ∗2 (G2 · tj)
κ

2

∫ ∞

r0

ρ∆x(r + j∆x, 0)r2 dr

≤ Mr0 + F ∗2 (G2 · tj)
κ

2

∫ ∞

r0

u0
∆x(r, 0)r2 dr

= Mr0 + F ∗2 (G2 · tj)M0, (4.8.14)
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where

F ∗2 (ξ) ≡ 1
2
{
(1 + σ2) cosh(w̄) + (1− σ)

}
F ∗1 (ξ), (4.8.15)

M0 =
κ

2

∫ ∞

r0

u0
∆x(r, 0)r2 dr. (4.8.16)

Inequality (4.8.14) tells us that if we choose M̄ ≥Mr0 +F ∗2 (0)M0, say choose

M̄ = Mr0 + 2F ∗2 (0)M0, (4.8.17)

and set

TM = Sup{t : Mr0 + F ∗2 (G2 · tj)M0 ≤ M̄, for all tj ≤ t}. (4.8.18)

then assumption (4.7.29) of Corollary 3, Theorem 14, can be replaced by the
condition that M̄ is defined in (4.8.17), together with the assumption that
tj ≤ TM , where TM is defined in (4.8.18).

We now turn to the problem of defining B̄, TB so as to replace the final
assumption (4.7.30) of Theorem 13. Since

B∆x(x, t) =
1

1− 2GM∆x(x,t)
x

, (4.8.19)

it follows that to accomplish this, we must estimate the change in M∆x(x, tj)
between times t = 0 and t = tj , assuming that Corollary 3, Theorem 14,
applies. More generally, assume that (4.7.29)-(4.7.32), and hence Theorem
14, hold up to time tj , and assume that 0 ≤ tj0 < tj . We estimate

|M∆x(x, tj)−M∆x(x, tj0)| ≤
κ

2

∫ x

r0

|u0
∆x(r, tj)− u0

∆x(r, tj0)|r2 dr. (4.8.20)

To start, let

∆u0 = u0
∆x(r, tj)− u0

∆x(r, tj0),
∆w = w∆x(r, tj)− w∆x(r, tj0), (4.8.21)
∆ρ = ρ0

∆x(r, tj)− ρ0
∆x(r, tj0),

etc. Then

|∆u0| ≤
∥∥∥∥∂u0

∂w

∥∥∥∥
∞
|∆w|+

∥∥∥∥∂u0

∂z

∥∥∥∥
∞
|∆z|. (4.8.22)

From (4.8.12) we calculate
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∂u0

∂z
=

1
2K0

{
(1 + σ2) coshw + (1− σ)

}
ρ, (4.8.23)

∂u0

∂w
=

1 + σ2

2
(sinhw) ρ. (4.8.24)

Since
∣∣∣∂u0

∂w

∣∣∣ ≤ ∂u0

∂z , it follows from (4.8.22) that

|∆u0| ≤ 1
K0

1
2
{
(1 + σ2) cosh(w̄) + (1− σ)

}
‖ρ‖∞ {|∆w|+ |∆z|}

≤
√

2
K0

F ∗2 (G2 · tj)
F ∗1 (G2 · tj)

‖ρ‖∞‖∆z‖. (4.8.25)

Putting (4.8.25) into (4.8.20) and using

ρ∆x(x, t) ≤ F ∗1 (G2 · tj) ρ∆x (x+ j∆x, 0) , (4.8.26)

we obtain

|M∆x(x, tj)−M∆x(x, tj0)| ≤
κF ∗2 (G2 · tj)√

2K0

∫ x

r0

ρ∆x (r + j∆x, 0) ‖∆z‖r2 dr.

(4.8.27)
We use (4.8.27) again below, but for now we can continue from (4.8.27) to
obtain

κF∗
2 (G2·tj)√

2K0

∫ x

r0
ρ∆x (r + j∆x, 0) ‖∆z‖r2 dr

≤ κF∗
2 (G2·tj)S̄x√

2K0

∫ x

r0
‖∆z‖ dr (4.8.28)

≤ κF∗
2 (G2·tj)S̄x2
√

2K0L
G2|tj − tj0 |,

where we have used ∫ x

r0

‖∆z‖ dr ≤ x

L
G2|tj2 − tj1 |, (4.8.29)

a consequence of (4.7.86). Note that the factor x/L bounds the number of
intervals of length L between r0 and x. We record this as a Corollary of
Theorem 14:

Corollary 4 Assume Corollary 3, Theorem 14, applies up to time T0. Then

|M∆x(x, tj)−M∆x(x, tj0)| ≤
κF ∗2 (G2 · tj) S̄x2

√
2K0L

G2|tj − tj0 |, (4.8.30)

for all 0 ≤ tj0 ≤ tj ≤ T0.
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In particular, ignoring errors of order ∆x, (4.8.30) implies the local Lipschitz
in time continuity of M∆x, (and hence of B∆x and A∆x).

We can estimate |M∆x(x, tj)−M∆x(x, tj0)| differently starting from (4.8.27)
as follows:

|M∆x(x, tj) − M∆x(x, tj0)|

≤ κF ∗2 (G2 · tj)√
2K0

[∫ R

r0

+
∫ ∞

R

]
ρ∆x (r + j∆x, 0) ‖∆z‖r2 dr,

≤ κF ∗2 (G2 · tj) S̄R2

√
2K0L

G2|tj − tj0 | (4.8.31)

+
κF ∗2 (G2 · tj)F ∗0 (G2 · tj)√

2K0

∫ ∞

R

ρ∆x (r + j∆x, 0) r2 dr,

where we have used (4.8.28) together with

‖∆z‖ ≤ F ∗0 (G2 · tj), (4.8.32)

a consequence of (4.7.88). But

κ

2

∫ ∞

R

ρ∆x (r + j∆x, 0) r2 dr ≤ κ

2

∫ ∞

R

ρ∆x(r + j∆x, 0)(r + j∆x)2 dr

≤ κ

2

∫ ∞

R

ρ∆x(r, 0)r2 dr

≤ κ

2

∫ ∞

R

u0
∆x(r, 0)r2 dr

≤ M∆x(∞, 0)−M∆x(R, 0), (4.8.33)

and since

lim
R→∞

[M∆x(R, 0)−M∆x(∞, 0)] = 0, (4.8.34)

it follows that for any δ > 0 sufficiently small, there exists R(δ) > 0, such that

κF ∗2 (G2 · tj)F ∗0 (G2 · tj)√
2K0

∫ ∞

R(δ)

ρ∆x (r + j∆x, 0) r2 dr ≤ δ, (4.8.35)

for all tj ≤ T0. Indeed, since M∆x(x, 0) is a continuous monotone increasing
function of x, it follows that we can define R(δ) to satisfy the equality

√
2

K0
F ∗2 (G2)F ∗0 (G2) [M∆x(∞, 0)−M∆x(R(δ), 0)] = δ, (4.8.36)
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in which case (4.8.35) follows at once from (4.8.33). Using this definition of
R(δ) in (4.8.31), it follows that for every δ > 0,

|M∆x(x, tj)−M∆x(x, tj0)| ≤
κF ∗2 (G2 · tj) S̄R(δ)2√

2K0L
G2|tj − tj0 |+ δ. (4.8.37)

Therefore, assuming Corollary 3, Theorem 14 applies up to some time T0,
0 < T0 ≤ 1, we can choose δ = ε/2, and set

Tε =
{
κF ∗2 (G2) S̄R(ε/2)2√

2K0L
G2

}−1
ε

2
, (4.8.38)

and conclude from (4.8.37) that

|M∆x(x, tj)−M∆x(x, tj0)| < ε, (4.8.39)

for all tj ≤Max{Tε, T0}. We record this as another corollary to Theorem 14:

Corollary 5 Assume that Corollary 3, Theorem 14, holds up to time T0.
Then for all ε > 0, there exists Tε > 0, (given explicitly in (4.8.38)), such
that

|M∆x(x, tj)−M∆x(x, tj0)| < ε, (4.8.40)

for all x ≥ r0, tj ≤Min{Tε, T0}.

We now use Corollary 5 to define B̄ and TB . Consider the function
B∆x(x, t). Assume that the initial data satisfies

B∆x(x, 0) =
1

1− 2M∆x(x,0)
x

≤ B̄0 (4.8.41)

for some positive constant B̄0. Choose B̄ > B̄0, say

B̄ = 2B̄0. (4.8.42)

Choose ε > 0 by

ε = Sup

{
ε :

1

1− 2(M∆x(x,0)+ε)
x

≤ 2B̄0 = B̄, for all r0 ≤ x <∞

}
.

(4.8.43)
Claim: By (4.8.43),

ε ≥ r0
2

(
1
B̄0

− 1
2B̄0

)
> 0. (4.8.44)

To see this, let ε(x) be defined so that
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1

1− 2(M∆x(x,0)+ε(x))
x

= 2B̄0. (4.8.45)

Solving (4.8.45) for ε(x) gives

ε(x) =
x

2

{
1− 1

2B0
− 2M∆x(x, 0)

x

}
. (4.8.46)

But (4.8.41) implies

2M∆x(x, 0)
x

≤ 1− 1
B̄0

. (4.8.47)

Using (4.8.47) in (4.8.46) gives (4.8.44). 2

Now for ε in (4.8.43), define

TB = Tε ≡
{
κF ∗2 (G2) S̄R(ε/2)2√

2K0L
G2

}−1
ε

2
, (4.8.48)

so that by (4.8.38), (4.8.40),

|M∆x(x, tj)−M∆x(x, 0))| < ε, (4.8.49)

for all tj ≤Max{Tε, T0}. But (4.8.40), (4.8.43), directly imply

1

1− 2(M∆x(x,0)+ε)
x

≤ B̄. (4.8.50)

We conclude that assumption (4.7.30) of Corollary 3, Theorem 14, can be
replaced by the condition that B̄ is defined in (4.8.42), together with the
condition that tj ≤ TB , where TB is defined in (4.8.48). We have shown that
assumptions (4.7.29)-(4.7.32) of Corollary 3, Theorem 14, can be removed,
and are consequences of appropriately restricting the time T0 and redefining
the constants involved in terms of the initial data.

The following theorem, which summarizes our results, follows directly from
our construction of v̄, S̄, M̄ , B̄ and TS , TM , TB above:

Theorem 15 Let u∆x(x, t), A∆x(x, t) be an approximate solution generated
by the fractional step Glimm method starting from initial data u∆x(x, 0),
A∆x(x, 0), and let M̄0, B̄0, S̄0, v̄0 and V̄0 be positive constants such that the
initial data satisfies:

M∆x(x, 0) ≤ M̄0, (4.8.51)
B∆x(x, 0) ≤ B̄0, (4.8.52)

0 < S∆x(x, 0) ≤ S̄0 (4.8.53)
|v∆x(x, 0)| ≤ v̄0 < c, (4.8.54)
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for all x ≥ r0, and ∑
i1≤i≤i2, p=1,2

|γp
i0| < V0, (4.8.55)

for all r0 ≤ xi2 < xi2 <∞, |xi2 − xi1 | ≤ L. Let v̄ = 2v̄0, S̄ = 2S̄0, M̄ = 2M̄0,
B̄ = 2B̄0, assume that

∆x

∆t
= Λ = 2

√
GAB(B̄, M̄), (4.8.56)

and let

T = Min {1, T2, TS̄ , TM̄ , TB̄} , (4.8.57)

where

T2 = T2 =
(

1
G2

)
V̄∗{

2V̄∗ +H(2V̄∗)
} , (4.8.58)

TS = Sup{t : F ∗1 (G2 · tj) ≤ 2F ∗1 (0), for all tj ≤ t},
TM = TM = Sup{t : Mr0 + F ∗2 (G2 · tj)M0 ≤ M̄, for all tj ≤ t},

TB =
{
κF ∗2 (G2) S̄R(ε/2)2√

2K0L
G2

}−1
ε

2
,

and

ε = Sup

{
ε :

1

1− 2(M∆x(x,0)+ε)
x

≤ B̄, for all r0 ≤ x <∞

}
, (4.8.59)

c.f., (4.7.84), (4.8.10), (4.8.18), (4.8.48) and (4.8.43). Then the approximate
solution u∆x,A∆x is well defined for all r0 ≤ r <∞, 0 ≤ t ≤ T, and satisfies
the bounds

M∆x(x, tj) ≤ M̄, (4.8.60)
B∆x(x, tj) ≤ B̄, (4.8.61)

0 < S∆x(x, tj) ≤ S̄ (4.8.62)
|v∆x(x, tj)| ≤ v̄ < c, (4.8.63)

together with the bounds

∑
i1≤i≤i2, p=1,2

|γp
ij | < 2V̄∗ = 2

(
1 +

4
√
GAB

L

)
V0, (4.8.64)
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‖zij − zi+j,0‖ ≤ F ∗0 (G2 · T ), (4.8.65)

∫ xi2

xi1

‖z∆x(x, tj2)− z∆x(x, tj1)‖ dx ≤ G2|tj2 − tj1 |, (4.8.66)

|A′∆x(x, tj)| ≤
(

1
r0

+ κ
c2 + σ2v̄2

c2 − v̄2
S̄

)
B̄GAB , (4.8.67)

|B′∆x(x, tj)| ≤
(

1
r0

+ κ
c2 + σ2v̄2

c2 − v̄2
S̄

)
B̄2, (4.8.68)

|M∆x(x, tj2)−M∆x(x, tj1)| ≤
κF ∗2 (G2 · T ) S̄x2

√
2K0L

G2|tj2 − tj1 |, (4.8.69)

for all r0 ≤ x, xi1 , xi2 < ∞, |xi2 − xi1 | ≤ L, and 0 ≤ tj , tj1 , tj2 ≤ T, c.f.
(4.7.83), (4.7.90), (4.7.41), (4.8.30), (4.7.86), (4.7.43), (4.7.44).

Recall that the constants GAB ≡ GAB(M̄, B̄), G2 ≡ G2(M̄, B̄, S̄), F ∗1 (G2 ·T ),
F ∗2 (G2 · T ), and V∗(G2 · T ), defined in (4.3.43),(4.7.81),(4.8.7),(4.8.15), and
(4.7.85) respectively, are based on the functions GAB(·, ·), G2(·, ·, ·), F ∗i (·)
and V∗(·) that depend only on the constants σ, c,K0, r0, L and V0, and thus
are determined by the initial data alone.

Corollary 6 Let u∆x(x, t), A∆x(x, t) be an approximate solution generated
by the fractional step Glimm method starting from initial data u∆x(x, 0),
A∆x(x, 0), that satisfies the conditions (4.8.60)-(4.8.59) of Theorem 15.
Then there exists a subsequence ∆x → 0 and bounded measurable functions
u(x, t) = Ψ−1 · Φ · z(x, t), A(x, t), such that (u∆x,A∆x) → (u,A) for a.e.
(x, t) ∈ [r0,∞) × [0, T ]. Moreover, the convergence u∆x(·, t) → u(·, t) is in
L1

loc for each t ∈ [0, T ], uniformly on compact sets in (x, t)-space, and the
limit function u∆x satisfies:

TV[x1,x2]z(·, t) ≤ 2V̄∗,
TV[x1,x2]w(·, t) ≤ H(2V̄∗), (4.8.70)
TV[x1,x2]z(·, t) ≤ 2V̄∗ +H(2V̄∗),

‖z(x, t)− z(x+ λT, 0)‖ ≤ F ∗0 (G2 · T ), (4.8.71)

and ∫ x2

x1

‖z(x, t2)− z(x, t1)‖ dx ≤ G2|t2 − t1|, (4.8.72)

for all r0 ≤ x, x1, x2 <∞, |x2 − x1| < L, and 0 ≤ t, t1, t2 ≤ T.



4.8 The Elimination of Assumptions 133

The convergence in A is pointwise a.e., uniformly on compact sets in (x, t)-
space, and the limit function A(x, t) satisfies

A(x, t) = Ar0 exp
∫ x

r0

{
B(r, t)− 1

r
+ κrB(r, t)T 11

M (u(r, t))
}
dr, (4.8.73)

B(r, t) =
1

1− 2M(r,t)
r

, M(r, t) = M(r0, t) +
κ

2

∫ r

r0

u0(r, t)r2 dr, (4.8.74)

∣∣∣∣A(x+ y, t)−A(x, t)
y

∣∣∣∣ ≤ ( 1
r0

+ κ
c2 + σ2v̄2

c2 − v̄2
S̄

)
B̄GAB , (4.8.75)∣∣∣∣B(x+ y, t)−B(x, t)

y

∣∣∣∣ ≤ ( 1
r0

+ κ
c2 + σ2v̄2

c2 − v̄2
S̄

)
B̄2, (4.8.76)

|M(x, t2)−M(x, t1)| ≤
κF ∗2 (G2 · T ) S̄x2

√
2K0L

G2|t2 − t1|, (4.8.77)

for all r0 ≤ x, x1, x2 <∞, |x2 − x1| ≤ L, and 0 ≤ t, t1, t2 ≤ T.

Proof: It follows from (4.7.90), (4.8.64) (together with the non-singularity of
the mapping from z → u) that the approximate solution u∆x(x, t) is bounded,
and of locally bounded total variation at each fixed time 0 ≤ t ≤ T, and these
bounds are uniform in time over compact x-intervals. Moreover, it follows from
(4.8.66) that u∆x(x, t) is locally Lipschitz continuous in the L1-norm at each
time, uniformly on compact sets. These bounds are uniform as∆x→ 0. This is
all that is required to apply Oleinik’s compactness argument to the function
u∆x, [10, 26, 19]. From this we can conclude that there exists a sequence
∆x → 0 such that u∆x converges a.e. to a bounded measurable function u
on x ≥ r0, 0 ≤ t ≤ T . The convergence is in L1

loc at each time, uniformly
on compact sets, and the supnorm bound (4.8.71), the local total variation
estimate (4.8.70), and the continuity of the local L1 norm (4.8.72), carry over
from the corresponding estimates (4.8.71), (4.8.64), (4.7.86) for approximate
solution. (For (4.8.64) we use that the change ∆w across a wave is bounded
by H(∆z), and that H is a convex function, c.f. Proposition []. The Oleinik
argument is based on using Helly’s Theorem to extract a pointwise convergent
subsequence on a dense set of times between t = 0 and T = t, and then to use
the local L1-Lipschitz continuity of u∆x to extrapolate the L1 convergence to
all intermediate times, [19].)

It follows from (4.8.69)-(4.8.68), together with (4.3.28), that A∆x is locally
Lispchitz continuous in x and t for x ≥ r0, t ≤ T , (ignoring errors that are
of order ∆x), and the Lipschitz bounds are uniform as ∆x → 0. It follows
from Arzela-Ascoli that on some subsequence ∆x → 0, A∆x converges to a
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locally Lipschitz continuous function A(x, t), and the convergence is pointwise
almost everywhere, uniformly on compact sets. It follows that the convergence
of u∆x and A∆x is strong enough to pass the limit through the integral sign
in (4.3.28) and (1.3.15), and thus conclude (4.8.73) and (4.8.74), respectively.
Similarly, (4.8.76)-(4.8.77) are obtained from (4.7.43)-(4.8.30), respectively.
The initial data u0 is taken on in the L1 sense,

lim
t→0

‖u(·, t)− u0(·)‖L1
loc

= 0, (4.8.78)

and the boundary condition v = 0 ⇐⇒ M(r0, 0) = Mr0 is taken on weakly,
c.f. [19].2

Proof of Theorem 13: In the final section we prove that for almost every
sample sequence a, the functions u∆x(x, t),A(x, t) define a weak solution of
the Einstein equations (1.3.2)-(1.3.5) on r0 ≤ x < ∞, 0 ≤ t ≤ T . Assuming
this, u∆x(x, t),A(x, t) is then a weak solution of (1.3.2)-(1.3.5) in the class
u∆x bounded measurable and A∆x Lipschitz continuous, and so it follows that
our results in [12] apply. In particular, (1.3.3) holds in the pointwise almost
everywhere sense. Thus the proof of Theorem 13 is complete once we verify
(4.2.42). (The assumptions (4.2.28)-(4.2.29) just imply that TV[x1,x2]z(·, 0) <
∞, and this guarantees (4.8.64).) For (4.2.42), note first that (4.1.3) together
with (4.8.71) imply that

lim
x→0

Ṁ(x, t) = 0, (4.8.79)

for all 0 ≤ t ≤ T. To see this, recall from Theorem 12 that if u∆x,A∆x is
a weak solution for 0 ≤ t ≤ T, then (1.3.3) and (1.3.8) hold. By (1.3.8),
statement (4.8.79) follows so long as

lim
r→∞

√
A(r, t)
B(r, t)

u1(r, t)r2 = 0 (4.8.80)

for t ≤ T, where ∣∣∣∣∣
√
A(r, t)
B(r, t)

u1(r, t)r2
∣∣∣∣∣ ≤√A(r, t)u0(r, t)r2. (4.8.81)

Now since A and B are given by (4.8.73) and (4.8.74), it follows that A
satisfies (1.3.2) and (1.3.4), and so adding these two equations, and following
the argument leading to (4.3.43), we obtain that

|A| ≤ Ar0Br0exp

{
8B̄M̄
r0

}
,

and thus A is uniformly bounded. Since |v(x, t)| ≤ v̄ < c, (4.1.3) and (4.8.71)
imply that
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lim
r→∞

√
A(r, t)u0(r, t)r2 = 0, (4.8.82)

and so (4.8.79) follows as claimed. But (4.8.79) implies that,

lim
x→∞

M(x, t) = lim
x→∞

M(x, 0) = M∞, (4.8.83)

which is (4.2.42) of Theorem 13. We conclude from Theorem 12 that the proof
of Theorem 13 is complete once we prove that u(x, t),A(x, t) is a genuine weak
solution of (4.1.5),(4.1.6) with initial boundary data 4.2.36)-(4.2.38). This is
the topic of the next section. 2

Our theorems have the following corollary:

Corollary 7 Assume that the initial data u0(x) satisfies (1)-(5). Then a
bounded weak solution u(x, t),A(x, t) of the Einstein equations (1.3.2)-(1.3.5)
exists up until the first time T at which either

lim
t→T−

SupxB(x, t) = ∞, (4.8.84)

lim
t→T−

Supxxρ(x, t) = ∞, (4.8.85)

or

lim
t→T−

SupxTV[x1,x2]z(·, t) = ∞. (4.8.86)

Proof: If B, S and TV[x1,x2]z remain uniformly bounded up to time T, then
our argument shows that v remains uniformly bounded away from c up to
time T, c.f. (4.8.2)-(4.8.3). Thus we can repeat the proof that the solution
starting from initial data at time T, continues forward for some positive time.
The Corollary follows at once.

4.9 Convergence

In this section we prove that the limits u,A of approximate solutions u∆x,A∆x

established in Corollary 6, are weak solutions of (1.4.3), (1.4.4), for almost
every choice of sample sequence a. This is a modification of Glimm’s original
argument [10], as well as the argument in [19]. The main point is to show that
the the discontinuities in A at the boundary of the mesh rectangles Rij are
accounted for by inclusion of the term

A′ · ∇Af(A, u, x) =
1
2

√
A

B
δ
(
T 01

M , T 11
M

)
,

in the ODE step (4.3.22), c.f. (4.3.17).
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To start, recall that both u,A and u∆x,A∆x satisfy the estimates (4.8.70)-
(4.8.77), and recall that uRP

∆x denotes the exact Riemann problem solution in
each Rij for the homogeneous system (4.4.1), so that

0 =
∫ ∫

Rij

{
−uRP

∆xϕt − f(Aij , u
RP
∆x )ϕx

}
dxdt

+
∫
Ri

{
uRP

∆x (x, t−j+1)ϕ(x, tj+1)− uRP
∆x (x, t+j )ϕ(x, tj)

}
dx (4.9.1)

+
∫
Rj

{
f(Aij , u

RP
∆x (xi+ 1

2
, t))ϕ(xi+ 1

2
, t)

−f(Aij , u
RP
∆x (xi− 1

2
, t))ϕ(xi− 1

2
, t)
}
dt.

Recall also that û(t, u0) denotes the solution to the initial value problem

ût = G(Aij , û, x) = g(Aij , û, x)−A′ · ∇Af(Aij , û, x),
û(0) = u0.

Thus

û(t, u0)− u0 =
∫ t

0

ût dt

=
∫ t

0

{g(Aij , û(ξ, u0), x)−A′ · ∇Af(Aij , û, x)} dt.

Since û implements the ODE step of the fractional step method, it follows
that the approximate solution u∆x(x, t) is defined on each mesh rectangle Rij

by the formula

u∆x(x, t) = uRP
∆x (x, t) +

∫ t

tj

{
g(Aij , û(ξ − tj , u

RP
∆x (x, t)), x)

}
dt (4.9.2)

−
∫ t

tj

{
∂f

∂A
(Aij , û(ξ − tj , u

RP
∆x (x, t))) ·A′

∆x

}
dt.

Note that the difference between the approximate and Riemann problem so-
lutions is on the order of ∆x. Define the residual ε(u∆x,A∆x, ϕ) of the ap-
proximate solutions u∆x by

ε(u∆x,A∆x, ϕ) =
∫ ∞

r0

∫ ∞

0

{−u∆xϕt − f(A∆x, u∆x)ϕx

−g(A∆x, u∆x, x)ϕ} dtdx− I1 − I2,
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=
∑
ij

∫ ∫
Rij

{−u∆xϕt − f(Aij , u∆x)ϕx

−g(A∆x, u∆x, x)ϕ} dtdx− I1 − I2, (4.9.3)

where

I1 =
∫ ∞

r0

u∆x(x, 0+)ϕ(x, 0) dx

=
∑

i

∫
Ri

u∆x(x, 0+)ϕ(x, 0) dx, (4.9.4)

and

I2 =
∫ ∞

0

f(A∆x(r+0 , t), u∆x(r+0 , t))ϕ(r0, t) dt

=
∑

j

∫
Rj

f(Aij , u∆x(r+0 , t))ϕ(r0, t) dt. (4.9.5)

We now prove that the residual is O(∆x). (It follows that if u∆x → u and
A∆x → A converge in L1

loc at each time, uniformly on compact sets, then
the limit function will satisfy ε(u,A, ϕ) = 0, the condition that u be a weak
solution of the Einstein equations.) To this end, substitute (4.9.2) into (4.9.3)
to obtain

ε(u∆x,A∆x, ϕ) =
∑
ij

∫ ∫
Rij

{
−uRP

∆xϕt − f(Aij , u∆x)ϕx − g(Aij , u∆x, x)ϕ

−ϕt

∫ t

tj

[
g(Aij , û(ξ − tj , u

RP
∆x (x, t)), x) (4.9.6)

− ∂f

∂A
(Aij , û(ξ − tj , u

RP
∆x (x, t))) ·A′

∆x

]
dξ

}
dxdt

−I1 − I2.

Set

I1
ij(x, t) =

∫ t

tj

[
g(Aij , û(ξ − tj , u

RP
∆x (x, t)), x)

]
dξ∫ t

tj

[
− ∂f

∂A
(Aij , û(ξ − tj , u

RP
∆x (x, t))) ·A′

∆x

]
dξ.

Upon substituting (4.9.1) into (4.9.7), we have
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ε(u∆x,A∆x, ϕ) =
∑
ij

∫ ∫
Rij

{
ϕx

[
f(Aij , u

RP
∆x )− f(Aij , u∆x)

]
−g(Aij , u∆x, x)ϕ− ϕtI

1
ij(x, t)

}
dxdt (4.9.7)

−I1 −
∑
ij

∫
Ri

{
uRP

∆x (x, t−j+1)ϕ(x, tj+1)− uRP
∆x (x, t+j )ϕ(x, tj)

}
dx

−I2 −
∑
ij

∫
Rj

{
f(Aij , u

RP
∆x (xi+ 1

2
, t))ϕ(xi+ 1

2
, t)

−f(Aij , u
RP
∆x (xi− 1

2
, t))ϕ(xi− 1

2
, t)
}
dt

Note that

|f(Aij , u
RP
∆x )− f(Aij , u∆x)| ≤ C∆t, (4.9.8)

and so

|
∑
ij

∫ ∫
Rij

ϕ
[
f(Aij , u

RP
∆x )− f(Aij , u∆x)

]
dxdt| ≤ |ϕx|∞C∆tT (b− a),

(4.9.9)
where Supp(ϕ) ⊂ [a, b] × [0.T ]. (We let C denote a generic constant that
depends only on the bounds for the solution.) Using the fact that uRP

∆x (x, t+j ) =
u∆x(x, t+j ), and inserting (4.9.2), we obtain that

−I1 −
∑
ij

∫
Ri

{
uRP

∆x (x, t−j+1)ϕ(x, tj+1)− uRP
∆x (x, t+j )ϕ(x, tj)

}
dx

=
∑
j 6=0

∫ ∞

r0

{
u∆x(x, t+j )− uRP

∆x (x, t−j )
}
ϕ(x, tj) dx

=
∑
j 6=0

∫ ∞

r0

ϕ(x, tj)
{
u∆x(x, t+j )− u∆x(x, t−j )

}
dx (4.9.10)

+
∑
j 6=0

∫ ∞

r0

ϕ(x, tj)
{
u∆x(x, t−j )− uRP

∆x (x, t−j )
}
dx.

Set

ε1(u∆x,A∆x, ϕ) =
∑
j 6=0

∫ ∞

r0

ϕ(x, tj)
{
u∆x(x, t+j )− u∆x(x, t−j )

}
dx. (4.9.11)

It follows that
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ε(u∆x,A∆x, ϕ) = O(∆x) + ε1(u∆x,A∆x, ϕ) (4.9.12)

+
∑
ij

∫ ∫
Rij

{
−g(Aij , u∆x, x)ϕ− ϕtI

1
ij(x, t)

}
dxdt

+
∑
j 6=0

∫ ∞

r0

ϕ(x, tj)
{
u∆x(x, t−j )− uRP

∆x (x, t−j )
}
dx

−I2 −
∑
ij

∫
Rj

{
f(Aij , u

RP
∆x (xi+ 1

2
, t))ϕ(xi+ 1

2
, t)

−f(Aij , u
RP
∆x (xi− 1

2
, t))ϕ(xi− 1

2
, t)
}
dt.

But

−I2 −
∑
ij

∫
Rj

{
f(Aij , u

RP
∆x (xi+ 1

2
, t))ϕ(xi+ 1

2
, t)

−f(Aij , u
RP
∆x (xi− 1

2
, t))ϕ(xi− 1

2
, t)
}
dt

=
∑
ij

∫
Rj

{
f(Ai+1,j , u

RP
∆x (xi+ 1

2
, t))− f(Aij , u

RP
∆x (xi+ 1

2
, t))
}
ϕ(xi+ 1

2
, t) dt

+
∑

j

∫
Rj

{
f(A0j , u

RP
∆x (r+0 , t))− f(A0j , u∆x(r+0 , t))

}
ϕ(r0, t) dt,

(4.9.13)

where

|
∑

j

∫
Rj

{
f(A0j , u

RP
∆x (r+0 , t))− f(A0j , u∆x(r+0 , t))

}
ϕ(r0, t) dt|

≤ |ϕ|∞C∆t2
(
T

∆t

)
= O(∆t). (4.9.14)

To analyze the term multiplied by ϕt in (4.9.12), we add and subtract a term
that differs from this one by O(∆x), and then use integration by parts on the
new term. That is, set

I∆S =
∑
ij

∫ ∫
Rij

ϕt

∫ t

tj

[
g(Aij , û(ξ − tj , u

RP
∆x (x, ξ)), x)

−g(Aij , û(ξ − tj , u
RP
∆x (x, t)), x)

− ∂f

∂A
(Aij , û(ξ − tj , u

RP
∆x (x, ξ))) ·A′

∆x

+
∂f

∂A
(Aij , û(ξ − tj , u

RP
∆x (x, t))) ·A′

∆x

]
dξ dxdt.
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But

|I∆S | ≤
∑
ij

∫ ∫
Rij

|ϕt|∞
∫ t

tj

C|γl
ij | dξ dxdt ≤ |ϕt|∞C∆t2∆x

∑
ijl

|γl
ij |

≤ CV |ϕt|∞∆t2∆x
T

∆t
= O(∆x2),

and so

−
∑
ij

∫ ∫
Rij

ϕt

∫ t

tj

[
g(Aij , û(ξ − tj , u

RP
∆x (x, t)), x)

− ∂f

∂A
(Aij , û(ξ − tj , u

RP
∆x (x, t))) ·A′

∆x

]
dξ. dxdt

= I∆S −
∑
ij

∫ ∫
Rij

ϕt

∫ t

tj

[
g(Aij , û(ξ − tj , u

RP
∆x (x, ξ)), x)

− ∂f

∂A
(Aij , û(ξ − tj , u

RP
∆x (x, ξ))) ·A′

∆x

]
dξ. dxdt

= O(∆x2)−
∑
ij

∫
Ri

{
ϕ(x, tj+1)

∫ tj+1

tj

[
g(Aij , û(ξ − tj , u

RP
∆x (x, ξ)), x)

− ∂f

∂A
(Aij , û(ξ − tj , u

RP
∆x (x, ξ))) ·A′

∆x

]
dξ

−
∫ tj+1

tj

ϕ

[
g(Aij , u∆x, x)−

∂f

∂A
(Aij , u∆x) ·A′

∆x

]
dt

}
dx,

= O(∆x2)−
∑
ij

∫
Ri

{
ϕ(x, tj+1)

∫ tj+1

tj

[
g(Aij , û(ξ − tj , u

RP
∆x (x, tj+1)), x)

− ∂f

∂A
(Aij , û(ξ − tj , u

RP
∆x (x, tj+1))) ·A′

∆x

]
dξ

}
dx

+I4 + I5 (4.9.15)

where

I4 =
∑
ij

∫
Ri

{
ϕ(x, tj+1)

∫ tj+1

tj

[
g(Aij , û(ξ − tj , u

RP
∆x (x, tj+1)), x)

−g(Aij , û(ξ − tj , u
RP
∆x (x, ξ)), x)

− ∂f

∂A
(Aij , û(ξ − tj , u

RP
∆x (x, tj+1))) ·A′

∆x

+
∂f

∂A
(Aij , û(ξ − tj , u

RP
∆x (x, ξ))) ·A′

∆x

]
dξ

}
dx,
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and

I5 =
∑
ij

∫ ∫
Rij

ϕ

[
g(Aij , u∆x, x)−

∂f

∂A
(Aij , u∆x) ·A′

∆x

]
dxdt. (4.9.16)

Note that

|I4| ≤ |ϕ|∞
∑
ijl

C|γl
ij |∆x∆t ≤ |ϕ|∞C∆x∆t

∑
j

V

= |ϕ|∞C∆x∆tV
T

∆t
= O(∆x),

where the sum on j is taken over tj in Supp(ϕ). Substituting (4.9.13) and
(4.9.15) into (4.9.12), we have

ε(u∆x,A∆x, ϕ) = O(∆x) + ε1(u∆x,A∆x, ϕ)

−
∑
ij

∫ ∫
Rij

ϕ
∂f

∂A
(Aij , u∆x) ·A′

∆x dxdt (4.9.17)

+
∑
ij

∫
Rj

ϕ(xi+ 1
2
, t)
{
f(Ai+1,j , u

RP
∆x (xi+ 1

2
, t))− f(Aij , u

RP
∆x (xi+ 1

2
, t))
}
dt.

It is evident now that

ε(u∆x,A∆x, ϕ) = ε1(u∆x,A∆x, ϕ) +O(∆x). (4.9.18)

We use Glimm’s technique to show that ε1(u∆x,A∆x, ϕ) = O(∆x), c.f. [10].
To estimate ε1, write ε ≡ ε1(∆x,ϕ,a) to display its dependence on

(∆x, φ,a), where a ∈ Π is the sample sequence, c.f. (4.3.24) above. Set

εj
1(∆x,ϕ,a) =

∫ ∞

r0

ϕ(x, tj)
{
u∆x(x, t+j )− u∆x(x, t−j )

}
dx. (4.9.19)

Now since u(x, t) = Ψ−1 · Φ · z(x, t), it follows from (4.8.70) that there exists
a constant V such that TV[x,x+L]u∆x(·, t) ≤ V on r0 ≤ x < ∞, t < T. Using
this, the following lemma gives estimates for ε1 and εj

1.

Lemma 13 Let a ∈ Π, and let ϕ ∈ C0∩L∞ be a test function in the space of
continuous functions of compact support in r0 ≤ x < ∞, 0 ≤ t < T. Suppose
TV[x,x+L]u∆x(·, t) ≤ V for all x ≥ r0, t < T. Then

|εj
1(∆x,ϕ,a)| ≤ V

diam (sptϕ)
L

∆x‖ϕ‖∞, (4.9.20)

and
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|ε1(∆x,ϕ,a)| ≤ V Λ

L
(diam (sptϕ))2 ‖ϕ‖∞. (4.9.21)

Proof: Since [u∆x](x, tj) is bounded by the sum of the wave strengths from
xi− 1

2
to xi+ 1

2
for each x at time t = tj , it follows that

|εj
1| ≤ ‖ϕ‖∞

∑
i,p

||γp
ij ||u∆x ≤ ‖ϕ‖∞V

diam (sptϕ)
L

∆x, (4.9.22)

where ||γ||u denotes the strength of a wave in u-space. This verifies (4.9.20).
Consequently, if J is the smallest j so that t = tj upper bounds the support
of ϕ, then J = T/∆t, where T = J∆t, and

|ε1| ≤
J∑

j=1

|εj
1| ≤

T

∆t
‖ϕ‖∞∆xV

diam (sptϕ)
L

≤ V Λ

L
(diam (sptϕ))2 ‖ϕ‖∞

where ∆x/∆t ≤ Λ. 2

We next show that εj
1, when taken as a function of aj , has mean zero.

Lemma 14 For approximate solutions u∆x,∫ 1

0

εj
1 daj = 0 (4.9.23)

Proof: The proof follows from Fubini’s theorem.

∫ 1

0

εj
1 daj =

∫ 1

0

∞∑
0

∫ x
i+ 1

2

x
i− 1

2

[u∆x,a(xi + aj∆x, tj)− u∆x,a(x, tj)] dxdaj

=
∞∑

i=0


∫ x

i+ 1
2

x
i− 1

2

∫ 1

0

u∆x,a(xi + aj∆x, tj) dajdx

−
∫ 1

0

∫ x
i+ 1

2

x
i− 1

2

u∆x,a(x, tj) dxdaj


= 0,

which was to be proved. (Here we used u∆x,a to express the dependence of
the approximate solution u∆x on the sample sequence a.) 2

We now show that the functions εj
1 are orthogonal, when taken as elements

of L2(Π).
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Lemma 15 Suppose ϕ has compact support, and is piecewise constant on
rectangles Rij. Then if j1 6= j2, we have εj1

1 ⊥ εj2
1 where orthogonality is with

respect to the inner product on L2(Π).

Proof: Using Lemma 15 in calculating the inner product

〈εj1
1 , ε

j2
1 〉 =

∫
εj1
1 ε

j2
1 (Π daj) =

∫ (∫
εj1
1 ε

j2
1 daj2

)
Πj 6=j2 daj

=
∫
εj1
1

(∫
εj2
1 daj2

)
Πj 6=j2 daj

= 0,

verifying orthogonality. 2

It follows immediately from Lemma 15 that

‖ε1‖22 =
∑

j

‖εj
1‖22, (4.9.24)

which we use in our next theorem to finally show that there is a subsequence
so that ε1 → 0 as ∆x→ 0 for almost any a ∈ Π.

Theorem 16 Suppose that TV[x,x+L]u∆x(·, t) ≤ V for all r0 ≤ x < ∞, 0 ≤
t < T. Then there is a null set N ⊂ Π and a sequence ∆xk such that for all
a ∈ Π−N and ϕ ∈ C1

0 (t > 0), we have ε1(∆x,ϕ,a) → 0 as k →∞.

Proof: Combining (4.9.24) and (4.9.20), and using the fact that
∫
Π
da = 1,

we have

‖ε1(∆x,ϕ,a)‖22 =
∑

j

‖εj
1(∆x,ϕ,a)‖22

≤
∑

j

‖εj
1(∆x,ϕ,a)‖2∞

≤
J∑

j=0

V 2(∆tk)2‖ϕ‖2∞
(diam (sptϕ))2

L2

≤ V 2(∆tk)
(diam (sptϕ))3

L2
‖ϕ‖2∞,

and hence, for piecewise constant ϕ with compact support, there is a sequence
∆xk → 0 such that ε1 → 0 in L2. If ϕ is continuous with compact support,
then by (4.9.21),

‖ε1‖2 ≤ ‖ε1‖∞ ≤ C‖ϕ‖∞. (4.9.25)



144 4 Existence and Consistency for the Initial Value Problem

Let {ϕl} be a sequence of piecewise constant functions with constant sup-
port whose closure relative to the infinity norm contains the space of test
functions that are continuous with compact support. For each l, there is a
null set Nl ⊂ Π and a sequence ∆xkn(l) → 0 such that ε1 → 0 pointwise, for
all a ∈ Π − Nl. Set N =

⋃
lNl, and let a ∈ Π − N . By a diagonalization

process, we can find a subsequence, ∆xk, such that for each l, ε1 → 0 as
k →∞. If ψ is any test function, then if a ∈ Π−N , we have

|ε1(∆x,ψ,a)| ≤ |ε1(∆x,ψ − ϕl,a)|+ |ε1(∆x,ϕl,a)|
≤ Const.‖ψ − ϕl‖∞ + |ε1(∆x,ϕl,a)|.

It is now clear that given ε > 0, there exists N ∈ N so that if i, l ≥ N , then
|ε1(∆x,ψ,a)| ≤ ε. 2

4.10 Concluding Remarks

The shock wave solutions of the Einstein equations constructed in Chapter 4
have the property that the components of the gravitational metric tensor are
only Lipschitz continuous, that is, in the class C0,1, (functions whose 0-order
derivatives are continuous with Holder exponent 1, [9]), at shock waves. Now
this is one derivative less smooth than the Einstein equations suggest it should
be, and in fact, the singularity theorems in [14] presume that metrics are in
the smoothness class C1,1, one degree smoother than the solutions we have
constructed, c.f. [14], page 284. This suggests the following open mathematical
question, [13]: Given a weak solution of the Einstein equations for which the
metric components are only Lipschitz continuous functions of the coordinates,
under what conditions does there exist a coordinate transformation that im-
proves the regularity of the metric components from C0,1 to C1,1? For a single,
non-lightlike shock surface, it is known that such a coordinate transformation
always exists, and the transformed coordinates can be taken to be Gaussian
normal coordinates at the shock, [28, 31]. However, the solutions we construct
in Chapter 4 allow for arbitrary numbers of interacting shock waves of arbi-
trary strength, and at points of interaction, the Gaussian normal coordinate
systems break down. Thus, in particular, we ask whether the solutions that
we construct in Chapter 4 can be improved to C1,1 by coordinate transfor-
mation? If such a coordinate transformation does not exist, then solutions of
the Einstein equations are one degree less smooth than expected. If such a
transformation does exist, then it defines a mapping that takes weak (shock
wave) solutions of the Einstein equations to strong solutions.

This question goes to the heart of the issue of the regularity of solutions of
the Einstein equations. Indeed, the Einstein equations are inherently hyper-
bolic in character because of finite speed of propagation; i.e., no information
can propagate faster than the speed of light. It follows that, unlike Navier-
Stokes type parabolic regularizations of the classical compressible Euler equa-
tions, augmenting the perfect fluid assumption by incorporating the effects
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of viscosity and dissipation into Einstein’s theory of gravity, cannot alter the
fundamental hyperbolic character, (finite speed of propagation), of the Ein-
stein equations. Thus, even when dissipative effects are accounted for, it is not
clear apriori that solutions of the Einstein equations will in general be more
regular than the solutions that we have constructed here.

In summary, if a transformation exists that impoves the regularity of shock
wave solutions of the Einstein equations from the class C0,1 up to the class
C1,1, then it defines a mapping that takes weak solutions of the Einstein
equations to strong solutions. It then follows that in general relativity, the
theory of distributions and the Rankine Hugoniot jump conditions for shock
waves need not be imposed on the compressible Euler equations as extra
conditions on solutions, but rather must follow as a logical consequence of
the strong formulation of the Einstein equations by themselves. If such a
transformation does not always exist, then solutions of the Einstein equations
are one degree less regular than previously assumed.
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stress tensor for, 12

Poincare group, 10
pointwise almost everywhere, 134
pointwise convergence, 24
Poisson equation, 13
pressure, 21

Rankine-Hugoniot jump conditions, 91
Ranking-Hugoniot jump relations, 25
relativistic p-system, 25
residual, 77, 137

convergence of, 135, 137
Riemann, 10
Riemann Curvature Tensor, 10
Riemann invariants, 28, 30, 37
Riemann problem, 4, 19, 42
Riemann problem step, 19, 85
Riemannian metric, 10

sample sequence, 135
Schwarzschild line element, 7
Schwarzschild metric, 7
shock curves, 37
shock speed, 28, 36
shock wave, 3, 16, 18, 20, 22, 24, 27, 28
shock waves, 15
source term, 19
spacelike, 5
spacetime, 5
Special Relativity, 3, 9, 25
speed of light, 21
spherically symmetric spacetime, 8
standard Schwarzschild coordinates, 4, 8, 83
stress-energy tensor, 21
strictly hyperbolic, 25, 29

tangent vector, 6, 9
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tensor product, 7
timelike, 5
Tolman-Oppenheimer-Volkoff metric (TOV), 7
total mass, 8
total variation, 23, 116
TOV line element, 7

unstaggered grid, 83

vector field, 9
viscosity, 144

wave speed, 19
wave strength, 47
weak solution, 23, 92, 134, 135


