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Abstract In this paper we show how the simplest wave structure that balances compres-

sion and rarefaction in the nonlinear compressible Euler equations can be represented in a

solution of the linearized compressible Euler equations. Such waves are exact solutions of

the equations obtained by linearizing the compressible Euler equations about the periodic

extension of two constant states separated by entropy jumps. Conditions on the states and

the periods are derived which allow for the existence of solutions in the Fourier 1-mode. In

[3, 4, 5] it is shown that these are the simplest linearized waves such that, for almost every

period, they are isolated in the kernel of the linearized operator that imposes periodicity,

and such that they perturb to nearby nonlinear solutions of the compressible Euler equa-

tions that balance compression and rarefaction along characteristics in the formal sense

described in [3]. Their fundamental nature thus makes them of interest in their own right.
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1 Introduction

In this note, which is a self contained reduction of Sections 3 to 5 of [4], we outline the

simplest route to a closed form expression for the simplest linearized solutions of the compress-

ible Euler equations that formally balance compression and rarefaction along characteristics

under infinitesimal perturbation. These solutions V (t) solve the linearized eigenvalue problem

{M− I}V = 0 which expresses periodicity at the linearized level, (see below). The author’s
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work in [3, 4, 5] is strong evidence that this wave pattern is physically realized in nearby

time-periodic solutions of the Euler equations themselves, but a complete mathematical proof

remains open.

In [3] the authors first derived the wave pattern as the simplest possible wave pattern that

formally balances compression and rarefaction along characteristics. In [4] the authors showed

that for almost every period, M − I is non-resonant in the sense that it is invertible on the

complement of the solution kernel, with algebraic bounds on eigenvalues. In [5] we showed

that the problem is amenable to a Liapunov-Schmidt decomposition, thereby fully reducing

the problem of existence of periodic solutions of compressible Euler to a new KAM type small

divisor problem in bifurcation theory. A corollary of this provides a proof that periodic solutions

of Euler exist up to an arbitrarily high Fourier cutoff. Given the many successes of KAM theory

in similar problems, the authors believe one can only expect that the technical issues with small

divisors can be overcome, and that nearby time-periodic solutions of the nonlinear compressible

Euler equations exist having the same wave structure entailed by the linearized solutions derived

here, cf. [1].

But these linearized time-periodic solutions have reason to be interesting in their own

right, not the least of which is the discovery of new phenomena when the sound speed is

incommensurate with the period. The consistency of this possibility at the linearized level

comes naturally out of the analysis, and implies chaotic motion of sound wave trajectories

relative to the solution periods. For example, the wave crests propagate at the speed of the

period, not the sound speed. This then identifies a new ergodic way in which nearby nonlinear

solutions can find a balance between compression and rarefaction along characteristics in the

sense of [3]. Moreover, in [4] the authors discovered that the linearized operator is non-resonant

only in the case when the wave speed is incommensurate with the period. Thus, for example,

if the resonances are not just anomalies that go away at the next order of approximation of the

nonlinear solution, it raises the possibility that this is prerequisite for nonlinear perturbation.

In Section 2 we review the compressible Euler equations and introduce symmetric co-

ordinates. In Section 3 we introduce the simplest eigenvalue problem for periodicity that is

consistent with the formal balancing of compression and rarefaction along characteristics. In

Section 4 we derive a non-dimensional form for the compressible Euler equations amenable to the

solution of the linearized eigenvalue problem. In Section 5, we reduce the linearized eigenvalue

problem to a series of matrix problems, which we analyze in Section 6. Finally, in Section 6,

we explicitly describe the simplest wave structure and briefly discuss the perturbation problem.

One of our main objectives is to exhibit how the non-dimensional formulation of the problem

allows us to represent linear evolution by pure rotation in each invariant subspace of the linear

eigenvalue problem, thereby facilitating a very clean geometrical method for constructing the

solution.

2 The Compressible Euler Equations

The compressible Euler equations describe the time evolution of a perfect fluid in the

absence of dissipative effects. These are

ρt + div[ρu] = 0, (1)
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(ρui)t + div[ρuiu] = −∇p, (2)

Et + div[(E + p)u] = 0, (3)

describing conservation of mass, momentum and energy, respectively. Here the physical fields

are density ρ, velocity u ∈ R3 and energy density E = 1
2ρu

2 + ρε, with ε the specific internal

energy. To close the system, the pressure p is related to ε and ρ by an equation of state. We

consider a polytropic gamma-law gas, described by

ε = cτ τ
−(γ−1) eS/cτ and p =

cτ

γ − 1
τ−γ eS/cτ , (4)

where τ = 1/ρ is the specific volume, S is the specific entropy, γ > 1 is the adiabatic gas

constant, and cτ the specific heat [2]. The (Lagrangian) sound speed is defined by

c(τ, S) =
√

−pτ (τ, S). (5)

For smooth solutions, the energy equation (3) is equivalent to the adiabatic constraint or entropy

equation

(ρS)t + div(ρSu) = 0, (6)

which states that entropy is transported with the fluid [2].

For sound wave propagation in one direction x′, the equations reduce to the system of 3×3

Euler equations

ρt + (ρu)x′ = 0,

(ρu)t + (ρu2 + p)x′ = 0,

Et + [(E + p)u]x′ = 0.

In a Lagrangian (co-moving) frame of reference, the equations are

τt − ux = 0, (7)

ut + px = 0, (8)

E∗
t + (up)x = 0, (9)

where x is the (Lagrangian) material coordinate, given by

x =

∫

ρ dx′,

and x′ is the (Eulerian) spatial coordinate, with E∗ = 1
2u2 + ε. In this Lagrangian frame, the

adiabatic constraint (6) takes on the particularly simple form

St = 0, (10)

which can be used instead of (9) on smooth solutions [2].

Because we are treating solutions which are (piecewise) smooth, we consider equations (7),

(8) and (10). We recall from [3] the change of variables

m = eS/2cτ and z = Kz τ
− γ−1

2 , (11)
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so that (4) becomes

ε = Kε m2 z2 and p = Kp m2 z
2γ

γ−1 , (12)

and K·’s are appropriately given constants, while the sound speed (5) is given by

c(m, z) = Kc m z
γ+1

γ−1 . (13)

In these variables, for smooth solutions, equations (7)–(10) can be written

zt +
c

m
ux = 0,

ut + mczx + 2
p

m
mx = 0, (14)

mt = 0,

where we have used (10).

Recall that a strictly hyperbolic 3×3 system has three wave families, each corresponding to

an eigenvalue or wavespeed of the system. In the Lagrangian frame, the wavespeeds of system

(14) are ±c and 0. The nonlinear waves are the forward and backward waves, with respective

wavespeeds +c and −c, and stationary waves of zero wavespeed, which are contact or jump

discontinuities and which are linearly degenerate.

We consider solutions in which the entropy m (or S) is piecewise constant, varying peri-

odically in space but stationary in time. To resolve the jump in variables across the entropy

jumps (stationary waves), we must apply the Rankine-Hugoniot conditions, which in Lagrangian

coordinates are

[u] = s[−τ ]

[p] = s[u] (15)

[u p] = s
[1

2
u2 + ε

]

,

where, as usual, s is the speed of propagation of the discontinuity and [·] is the jump. Since

we are concerned only with contact discontinuities, we take s = 0, and the jump conditions

become [u] = [p] = 0, or

uL = uR and mL z
γ−1

γ

L = mR z
γ−1

γ

R . (16)

On regions where the entropy is constant, the 3×3 system reduces to the 2×2 quasilinear

system

zt +
c

m
ux = 0,

ut + mczx = 0,
(17)

which is just the p-system using z as the thermodynamic coordinate [6].

3 The Eigenvalue Problem

We now reformulate the problem of existence of a periodic solution of the compressible Euler

equations as a nonlinear eigenvalue (fixed point) problem. We will then nondimensionalize and
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find exact solutions of the corresponding linearized eigenvalue problem, and briefly discuss the

perturbation problem of obtaining periodic solutions of the nonlinear problem from these exact

solutions of the linearized problem.

The periodic structure described in [3] is supported on an entropy field that oscillates be-

tween two different values separated by contact discontinuities. We are looking for solutions

which are periodic an space and time, and want to describe the problem in some convenient

basis. Since we assume the solution is smooth in time but has jumps in space, in order to formu-

late the eigenvalue problem, we use the space variable x as the evolution variable. Following [3],

the evolution problem then becomes: starting at x = 0, evolve across the first entropy level,

then jump to the second entropy level, evolve at this level and jump back to the first entropy

level, and continue. The simplest periodic configuration identified in [3] requires four such evo-

lutions (two at each level), and we impose a further symmetry by replacing the second two by

a half-period time shift.

So consider a smooth solution U(x, t) = (z(x, t), u(x, t)) of (17) evolving through an entropy

field that oscillates between two values m and m, with m > m, where we have used (11). Call

the corresponding widths of the entropy levels x and x, so that m(x, t) = m for 0 < x < x

and m(x, t) = m for x < x < x + x, and continue this periodically in x. Similarly, denote the

corresponding states by U(x, t) = (z(x, t), u(x, t)) and U(x, t) = (z(x, t), u(x, t)), respectively.

Thus U(x, t) solves

zt +
c(z)

m
ux = 0,

ut + m c(z)zx = 0,

for 0 < x < x, and U(x, t) solves the same system with m replaced by m for x < x < x + x.

To ensure that we have an exact weak solution, we need to enforce the Rankine-Hugoniot

conditions (16) at the entropy jumps at x = x and x = 0 (or x + x). Thus we must have

u = u and z = z

(

m

m

)

γ−1

γ

, (18)

which also implies

m z = m z

(

m

m

)
−1
γ

and c = c

(

m

m

)
1
γ

.

Note that we can regard (18) as a linear operator, since m and m are fixed.

We now introduce convenient notation from [3, 4]. First, denote the limiting states at the

entropy jumps by

U̇(t) = U(0+, t), Ǔ(t) = U(x−, t), Ũ(t) = U(x+, t),

Û(t) = U(x + x−, t) and U∗(t) = U(x + x+, t).
(19)

Next, denote the nonlinear (spatial) evolution operators by E and E , respectively, and the

(linear) jump operators at x and x + x by J and J−1, respectively. Then we have

Ǔ = EU̇ ,

Ũ = J Ǔ ,

Û = EŨ and U∗ = J −1Û .

(20)
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Finally, we restrict the “initial data” U̇(t) to 2π-periodic functions at x = 0, and denote the

half period shift operator by S, so that [SU ](t) = U(t + π).

With this notation, the (fully nonlinear) eigenvalue problem that captures the simplest

periodic structure of [3] simply becomes the condition

S U∗ = U̇ . (21)

Eliminating the intermediate states, we can write the nonlinear eigenvalue problem as

S · J −1 · E · J · E U̇ = U̇ . (22)

Note that the half period shift just imposes an extra symmetry, and we could also get the

periodic structure of [3] by repeating the jumps and shifts. We conclude that a (smooth enough)

solution to the eigenvalue problem (22) corresponds to an exact shock-free periodic solution to

the compressible Euler equations.

4 Non-dimensionalization

We now further simplify (22) by recasting it in non-dimensional form. We do this by

rescaling the state variables z and u and the spatial variable x. To this end, restrict first

to smooth solutions U(x, t) = (z(x, t), u(x, t)) of the compressible Euler equations defined at

constant entropy m ≡ m0, in a region x ≥ x0. Let z0 and u0 be base states from which values of

z and u are measured, respectively, and set c0 = c(m0, z0) equal to the sound speed at (z0, m0),

cf. (13). Give time and space the same dimension by defining y through the relation

y − y0 =
x − x0

c0
, (23)

so that equations (17) take on the dimensionless form
(

z

z0

)

t

+
c(z)

c0

(

u

m0z0

)

y

= 0,

(

u

m0z0

)

t

+
c(z)

c0

(

z

z0

)

y

= 0,

(24)

in the region y ≥ y0. Now define the dimensionless variables

w =
z

z0
and v =

u − u0

m0z0
, (25)

and let

σ =
c(z0)

c(z)
=

zd
0

zd
= w−d ≡ σ(w), (26)

where we have used (13), namely c(m, z) = Kcmzd, with

d ≡ γ + 1

γ − 1
> 1, (27)

and γ is the gas constant (4). Then the nonlinear equations (24) have the non-dimensional

form

wy + σ(w) vt = 0,

vy + σ(w) wt = 0,
(28)
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and where we have explicitly made y the evolution variable.

Across an entropy jump between two constant values m and m with base states U0 and

U0, respectively, the jump conditions are

[p] = m2 zd+1 − m2 zd+1 = 0, and [u] = u0 − u0 + m z0 v − mz0 v = 0. (29)

Thus, provided the base states U0 and U0 satisfy the jump condition (29) as well, we find that

the jump conditions in dimensionless variables take on the simple form

w = w and m
d−1
d+1 v = m

d−1
d+1 v, (30)

the latter following by using the jump relation for the base states in the form

z0

z0

=

(

m

m

)
−2

d+1

.

In particular, (30) implies that the dimensionless wavespeed σ(w) is continuous across entropy

jumps.

The following observation allows us to break translation symmetry in t, further simplifying

our representation of solutions. The proof is straightforward: see [4] for more details.

Lemma 1 The property that w be an even function and v an odd function of t is

preserved under the evolution of equations (28). The same property is also preserved under the

jumps (30) and the half-period shift at the entropy discontinuities.

Since our functions are 2 π-periodic in t, the lemma implies that w and v can be described

by Fourier cosine and sine series, respectively. Before explicitly doing so, we develop notation

for the eigenvalue problem that expresses periodicity in dimensionless variables.

Consider the nonlinear problem described above for smooth solutions evolving through

two entropy levels m, m of widths x, x, with base states U0, U0, respectively, and extended

periodically in x. Then define y = y(x) as the unique piecewise linear Lipschitz continuous

function of x such that y(0) = 0, and such that (23) holds at each entropy level. That is,

y(0) = 0, dy/dx = 1/c in each m level, and dy/dx = 1/c in each m level. Assuming this, the

entropy levels 0 < x < x and x < x < x + x map to 0 < y < θ and θ < y < θ + θ, respectively,

where

θ =
x

c(z0)
and θ =

x

c(z0)
. (31)

The (different) nonlinear operators E and E , expressed in dimensionless variables (w, v), reduce

to evolution in y by the same system (28) for θ and θ, respectively. We now make one more

simplifying assumption: namely, we assume that the (dimensionless) widths of the different

entropy levels are the same, θ = θ ≡ θ. Let V = (w, v) denote the dimensionless variables, and

let E(θ) be evolution by system (28) through a y-interval of length θ. That is,

E(θ)V (0, ·) = V (θ, ·), (32)

where V (y, t) is the unique solution of the Cauchy problem for system (28) with Cauchy data

V (0, ·). Also define the entropy jump operator J acting on V pointwise by

J





w

v



 =





1 0

0 J









w

v



 , (33)
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where J is the scalar

J =

(

m

m

)
d−1
d+1

, (34)

as in (30). Note that E(θ) is nonlinear, but J and S are both linear operators when m and m

are assumed fixed. We now show that each solution of the non-dimensional problem leads to a

family of dimensional solutions.

Theorem 1 For fixed positive real numbers θ and J , define the nonlinear operator

N ≡ N (θ, J) by

N ≡ S · J−1 · E(θ) · J · E(θ), (35)

and let V (t) = (w(t), v(t)) denote any smooth solution of

N V (·) = V (·), (36)

that satisfies the average one and zero average conditions

1

2π

∫ 2π

0
w(t)dt = 1, and

1

2π

∫ 2π

0
v(t)dt = 0, (37)

respectively. Then, given any base state U0 = (z0, u0) and entropy state m, there is a periodic

solution U(x, t) = (z(x, t), u(x, t) of (7)–(9), determined uniquely by V (t), with average values

1

2π

∫ 2π

0
z(0, t)dt = z0, and

1

2π

∫ 2π

0
u(0, t)dt = u0.

Proof Given the states z0, u0 and m, and the parameters θ and J , define

u0 = u0, m = m J− d+1
d−1 , and z0 =

(

m

m

)
2

d+1

z0,

and set the values of x and x equal to

x0 = c(z0) θ, and x0 = c(z0) θ.

Now define the nonlinear evolution operator

V (y, ·) = N (y)[V (·)] ≡















E(y)[V (·)], 0 ≤ y < θ,

E(y − θ) J E(θ)[V (·)], θ < y < 2θ,

S J −1 E(θ) J E(θ)[V (·)], y = 2θ.

(38)

By this definition, N (y)[V (·)] defines the evolution of initial data V (t) through interval [0, y),

for the dimensionless nonlinear problem consisting of entropy jumps at y = θ and y = 2θ.

Thus it follows directly from (35) that V (y, t) extends to a global periodic solution of the non-

dimensionalized equations having periodic tile 0 < t < 2π, 0 < y < 2θ, with periodic motion

vector X = (2θ,π). Thus defining U(x, t) = (z(x, t), u(x, t)) by

z = w z0, u = u0 + m z0 v,

from our constructions above, U(x, t) is a global periodic solution of (7)–(9) having periodic tile

0 < t < 2π, 0 < x < x + x, with periodic motion vector X = (x + x,π). The correspondence of

the averages follows directly.
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Note that the periodic motion vector X determines the “group velocities” of the solution:

these are the effective propagation speeds of global features (such as local extrema), given by

cg = ±x + x

π
, (39)

and these are different from the local characteristic speeds ±c. Thus we have dispersive type

behavior, with different group and phase velocities, in a purely hyperbolic nonlinear system.

To our knowledge, this is the first discovery of such an effect.

In summary, our fundamental nonlinear problem is the dimensionless eigenvalue problem

(36), where the operator N is defined in (35). Solutions of (36) correspond to periodic solutions

of (7)–(9) in a neighborhood of any given state U0, m.

5 Periodic Solutions of the Linearized Problem

Since constant states are solutions of equations (28), and since J has the simple diagonal

form (33), it is evident that the average conditions (37) are preserved by the fully nonlinear

operator N , so that V0 = (1, 0) is an exact solution of the nonlinear eigenvalue problem,

corresponding to a stationary square wave in the entropy field in the Euler equations (7)–(9).

We now linearize about the (unique) constant solution satisfying (37), to obtain a linearized

eigenvalue problem. Since J and S are already linear, we need only linearize the evolution:

since σ = w−d by (26), linearizing (28) around V0 = (1, 0) gives the linear wave equation

wy + vt = 0,

vy + wt = 0.
(40)

We denote evolution (in y) by this equation by L(y), so that

L(y)V (0, ·) ≡ V (y, ·), (41)

where V (y, t) is the unique solution of (40).

Now to get the linearized eigenvalue problem, we simply replace the nonlinear evolution

operator E(θ) by the linear operator L(θ). Then the linearized eigenvalue problem associated

with (36) is the problem

MV (·) = V (·), (42)

where M ≡ M(θ, J) is the linear operator defined by

M ≡ S · J −1 · L(θ) · J · L(θ), (43)

where again J is the linear jump operator (33) and S is the half-period shift.

In analogy with (19), we define the limiting states at the entropy jumps for the linear

problem by

V̇ (t) = V (0+, t), V̌ (t) = V (θ−, t), Ṽ (t) = V (θ+, t),

V̂ (t) = V (2 θ−, t) and V ∗(t) = V (2 θ+, t). (44)
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Then, as in (20) we have

V̌ = L(θ) V̇ , Ṽ = J V̌ , V̂ = L(θ) Ṽ and V ∗ = J −1 V̂ , (45)

and the linearized eigenvalue problem is

S V ∗(t) = V̇ (t). (46)

Also, as in (38), we let V (y, ·) be the function obtained at y ∈ (0, 2θ) in the linear evolution:

that is,

V (y, ·) =







L(y)V0, for 0 < y < θ,

L(y − θ)JL(θ)V0, for θ < y < 2θ.
(47)

We will let V refer to V (t) or V (y, t) according to the context.

We now find elements of the kernel of the linear operator M−I, which yield solutions of the

linearized eigenvalue problem (42). In the next section, we give conditions on the parameters

that isolate these solutions in the kernel, which we expect will allow the kernel to perturb,

generating periodic solutions of the nonlinear problem (36).

We note that Lemma 1 continues to hold for the linearized equation, so that w(y, t) and

v(y, t) admit Fourier cosine and sine expansions, respectively. Thus we consider the set

Σ ≡ L2
even[0, 2π) × L2

odd[0, 2π),

and we take V (t) ∈ Σ to have the Fourier expansion

V (t) =





w(t)

v(t)



 =
∞
∑

n=0





wn cosnt

vn sin nt



 ∈ Σ, (48)

where Vn ≡ (wn, vn) ∈ R2. The expression (48) gives an expression for w(t) and v(t) in terms

of the orthonormal basis










1

0



 cosnt,





0

1



 sinnt







+∞

n=0

,

for the 2π-periodic, square integrable complex valued functions (w(t), v(t)), even in w odd in

v, defined on 0 ≤ t < 2π. That is, let

Σn ≡ Span











cosnt

0



 ,





0

sin nt











, so that Σ =
⊕

Σn (49)

gives an orthogonal decomposition of Σ with respect to the L2-inner product

〈





w1(·)

v1(·)



 ,





w2(·)

v2(·)





〉

=
1

π

∫ 2π

0
[w1(t)w2(t) + v1(t)v2(t)] dt.

We now show that M factors over the decomposition (49). To this end, let Tn : R2 → Σn

be the representation of Σn defined by

Tn





a

b



 =





a cosnt

b sinnt



 , (50)
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and as in (48), write




w0(t)

v0(t)



 =
+∞
∑

0

Tn





an

bn



 ,

where a0 = 1 and b0 = 0.

Lemma 2 The linear operators L(θ), J and S respect the orthogonal decomposition (49),

and moreover, the following formulas hold:

L(θ) Tn





an

bn



 = Tn R(nθ)





an

bn



 , (51)

J Tn





an

bn



 = Tn D





an

bn



 , (52)

S Tn





an

bn



 = Tn (−1)n





an

bn



 . (53)

Here R(α) denotes counterclockwise rotation in R2 through angle α,

R(α) =





cosα − sinα

sinα cosα



 ,

and D ≡ D(J) denotes the diagonal 2 × 2 real matrix

D =





1 0

0 J



 , with J =

(

m

m

)
d−1
d+1

=

(

m

m

)
1
γ

. (54)

Proof Equation (51) follows by separation of variables for the linear wave equation (28),

cf. [4]. Next, (52) follows directly from (33), and (53) follows from the definition of the shift

operator S.

Because each of these operators respects (49), the infinite dimensional linear operator M
reduces to a 2 × 2 matrix on each subspace Σn.

Theorem 2 The linear operator M respects the orthogonal decomposition into Fourier

modes (49). That is, we can write

M





∑

Tn





an

bn







 =
∑

Tn Mn





an

bn



 , (55)

where Mn = Mn(θ, J) is the real 2 × 2 matrix given by

Mn = (−1)nM(nθ, J), (56)

with

M(θ, J) ≡ D(J)−1 R(θ)D(J)R(θ), (57)

and where R and D are given above.
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Proof It follows from (51)–(53) that each Σn is an invariant subspace for L(y), J and

S, and hence is also for M, a composition of these operators. Moreover, applying (51)–(53) we

have

M
(

Tn

[

a

b

])

= S · J −1 · L(θ) · J · L(θ) · Tn

[

a

b

]

= Tn(−1)n D−1 R(nθ)D R(nθ)

[

a

b

]

= Tn Mn

[

a

b

]

,

where Mn is the real 2 × 2 matrix

Mn = (−1)n D−1 R(nθ)D R(nθ) = (−1)nM(nθ, J).

This verifies (55), (56) and (57), and completes the proof of the theorem. Note that D(J) and

R(θ) do not in general commute.

Consider now the linear eigenvalue problem (42) for a 2π-periodic function V (t). Let

V =
∑

n≥0

Tn





an

bn



 ∈ Σ. (58)

Theorem 3 The function V (t) solves the linear eigenvalue problem (42) with (37) if and

only if a0 = 1, b0 = 0 and

(−1)nM(nθ, J)





an

bn



 =





an

bn



 , (59)

for every n ≥ 1.

Proof The average conditions (37) immediately imply a0 = 1 and b0 = 0. Let V have

the decomposition (58), and assume MV = V . Then

∑

Tn





an

bn



 = V = MV = M





∑

Tn





an

bn







 =
∑

TnMn





an

bn



 ,

where we have applied Theorem 2. Thus it follows that

Tn





an

bn



 = Tn Mn





an

bn



 ,

for every n ≥ 1, so also

Mn





an

bn



 =





an

bn



 ,

for all n ≥ 1, which is (59).

6 Matrix Eigenvalue Problems

Theorem 3 reduces the problem of finding solutions of (42) to the problem of finding

solutions (a, b) ∈ R2 of the linear eigenvalue problems

Mn

[

a

b

]

=

[

a

b

]

, (60)
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where Mn is the 2 × 2 matrix Mn = (−1)nM(nθ, J). As a first step, we characterize the

eigenvalues of M = M(θ, J) in terms of (θ, J).

Lemma 3 The eigenvalues of M(θ, J) are given by

λ = β ±
√

β2 − 1, (61)

where

β = cos2(θ) − J2 + 1

2J
sin2(θ). (62)

Proof Note that detM = 1, so the eigenvalues λ of M satisfy

λ2 − 2βλ+ 1 = 0,

where β = 1
2 trM . Solutions are given by (61), and writing

M = D−1 R(θ)D R(θ) =





cos(θ) − sin(θ)

sin(θ)/J cos(θ)/J









cos(θ) − sin(θ)

J sin(θ) J cos(θ)



 ,

and calculating the trace yields (62).

We now construct a solution of (42) in the subspace Σ1, that represents a periodic solution

of the linearized Euler equations having the periodic structure described in [3]. For n = 1, the

problem (60) becomes

M(θ, J) q = D−1(J)R(θ)D(J)R(θ) q = −q, (63)

and a solution q ∈ R2 yields the solution V = T1 q ∈ Σ1 of (42).

We use the following notation: let q = (a, b)tr, let ‖q‖ =
√

a2 + b2 denote Euclidean

norm, and let µ ∈ [0, 2 π) be the angle q makes with the a-axis, so that tanµ = b/a. Now, in

analogy with (19) and (44), let q̇, q̌, q̃, q̂, and q∗ denote the vector states determined by the

decomposition (57) of M , so that

q̇ = q, q̌ = R(θ) q̇, q̃ = D q̌, q̂ = R(θ) q̃ and q∗ = D−1 q̂. (64)

Also, let µ̇, µ̌, µ̃, µ̂ and µ∗ denote the angles these vectors make with the positive x-axis,

respectively.

Our problem then is to characterize solutions q of (63) in terms of the parameters (θ, J).

We regard this as a problem of non-commuting transformations. Since R(θ) is rotation through

angle θ and D(J) just scales the second coordinate b by factor J , (63) places very tight con-

straints on the possible angles µ̇, µ̌, µ̃, µ̂ and µ∗.

Theorem 4 Assume that J > 1 and 0 < θ < π/2. Then q is a solution of (63) if and

only if

J = cot2(θ/2), (65)

and q ∈ Span {q}, where

q ≡ (cos(θ/2), − sin(θ/2)).
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Furthermore, if q̇ = q, then also

q̌ = (cos(θ/2), sin(θ/2))

q̃ = (cos(θ/2), J sin(θ/2)) = ρ (cos(π/2 − θ/2), sin(π/2 − θ/2)),

q̂ = (− cos(θ/2), J sin(θ/2)) = ρ (− cos(π/2 − θ/2), sin(π/2 − θ/2)),

q∗ = (− cos(θ/2), sin(θ/2) = −q,

(66)

where we have set ρ = ‖q̃‖. These states are diagrammed in Figure 1.

a

b

q̇

q̌

q̃q̂

q∗

θ/2

θ/2

Fig.1 The states q̇, q̌, q̃, q̂, q∗ for q ∈ Σ1.

Since the problem we work with is symmetric, assuming J > 1, or equivalently m > m by

(54), is no restriction (we can replace J by J−1 by relabeling). On the other hand, for physical

reasons described in [3], the assumption θ < π/2 results in consistent widths of entropy levels

consistent with J > 1. In particular, according to (39), this imposes a group velocity 2 θ/π,

slower than the characteristic wavespeed (phase velocity) σ0 = 1, which is what would be

expected. There are solutions of (63) for larger values of θ, but these do not correspond to the

simplest periodic structure identified in [3].

For the proof of Theorem 4 we use the following lemma:

Lemma 4 Let q = (a, b), J ,= ±1. If ‖q‖ = ‖q′‖ and ‖Dq‖ = ‖Dq′‖, then q′ = (±a,±b).

This is immediate from a2 + b2 = (a′)2 + (b′)2 and a2 + J2b2 = (a′)2 + J2(b′)2.

We can now prove the theorem.

Proof Assume M q = −q for q ∈ Span{q̇ = (ȧ, ḃ)}, where q̇ is a representative of the

subspace satisfying ‖q̇‖ = 1, and −π/2 ≤ µ̇ < π/2.

First, we prove that q̇ must have a non-positive slope, ḃ/ȧ ≤ 0. Assume for contradiction

that ḃ/ȧ > 0, so that q̇ lies in the first quadrant. Then q∗ = −q̇ lies in the third quadrant, and

q̂ = Dq∗ must also lie in the third quadrant on a circle of radius ρ ≡ ‖q̂‖ > 1 because J > 1, see

Figure 2. Then q̃ = R(−θ)q̂ must lie on the circle of radius ρ, and q̌ = D−1q̃ lies on the circle

of radius 1. But by Lemma 4, the only such point on the circle of radius ρ that lies within an

angle of π from q̂, and is mapped by D to a point on the circle of radius 1, is the point on the
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circle of radius ρ directly above the point q̂, as in Figure 2. Now q̌ = D−1q̃ = R(θ) must thus

lie on the intersection of the vertical line through q̌ and the unit circle. The only way this can

happen is if q̃, q̂, q̃ and q̌ all lie on the same vertical line, passing through the circles ‖q‖ = ρ

and ‖q‖ = 1, see Figure 2.

Fig.2 The states with µ̇ > 0, showing θ + θ > π.

That is, q̃ is the only point on the circle of radius ρ within an angle of π from q̂ that is

mapped by D to a point on the circle of radius 1. From these considerations it follows that

q∗ = (−ȧ, −ḃ), q̂ = (−ȧ, −J ḃ), q̃ = (−ȧ, J ḃ) and q̌ = (−ȧ, ḃ).

From q̌ = R(θ)q̇, it follows that µ̇ = π/2−θ/2 and µ̌ = π/2+θ/2, and it follows from q̂ = R(θ)q̃

that µ̃ = π− θ/2, and µ̂ = π+ θ/2, as in Figure 2. But it is easily seen from Figure 2 that this

configuration of angles implies that θ > π/2, a contradiction. Thus we must have −π/2 ≤ µ̇ ≤ 0.

Consider next the case −π/2 < µ̇ < 0. In this case ḃ/ȧ < 0, so that q̇ lies in the fourth

quadrant. Then q∗ = −q̇ must lie in the second quadrant, and q̂ = Dq∗ must also lie in the

second quadrant on a circle of radius ρ = ‖q̂‖ > 1 because J > 1. Then q̃ = R(−θ) q̂ must

lie on the circle of radius ρ, and q̌ = D−1 q̃ then lies on the circle of radius 1. But by Lemma

4, the only such point on the circle of radius ρ that lies within an angle of π from q̂ and is

mapped by D to a point on the circle of radius 1, is the point on the circle of radius ρ directly

to the right of, and on the same horizontal line as the point q̂, as diagrammed in Figure 1.

Thus q̌ = D−1 q̃ = R(θ) q̇ must lie on the intersection of the vertical line through q̌ and the

unit circle. The only way this can happen is if q̇, q̌, and q̃ all lie on the same vertical line, with

‖q‖ = ρ and ‖q‖ = 1, see Figure 1. It then follows that

q∗ = (−ȧ, −ḃ), q̂ = (−ȧ, −Jḃ), q̃ = (ȧ, −Jḃ), q̌ = (ȧ, −ḃ),

with ȧ > 0, ḃ < 0. Next, since q̌ = R(θ) q̇, it follows that µ̇ = −θ/2 and µ̌ = θ/2, and it follows

from q̂ = R(θ)q̃ that µ̃ = π/2 − θ/2, and µ̂ = π/2 + θ/2, see Figure 1. It is easily seen from

Figure 1 that this configuration of angles satisfies the condition θ < π/2, and this condition

makes the solution unique. This verifies equations (66).
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Finally, to prove (65), we have the two expressions

q̃ = (cos(θ/2), J sin(θ/2)) and

q̃ = ρ (cos(π/2 − θ/2), sin(π/2 − θ/2)) = ρ (sin(θ/2)), cos(θ/2)), (67)

where ρ = ‖q̃‖, so that

ρ2 = cos2(θ/2) + J2 sin2(θ/2).

Thus comparing first components of (67), we get

cos2(θ/2) =
(

cos2(θ/2) + J2 sin2(θ/2)
)

sin2(θ/2),

and solving for J leads directly to (65).

7 Wave Structure of the Linearized Solutions

In this section we reconstruct and discuss the linear periodic solution associated with the

solution

V0(t) = T1 q̇ ∈ Σ1

of (42), where q̇ is the solution of (63) obtained in Theorem 4. That is, we use (47) to explicitly

describe the pointwise values V (y, t) of the periodic solution of the linearized Euler equations.

Having described this solution in dimensionless variables, it is then routine to use Theorem 1

to give periodic solutions in physical (Lagrangian) variables.

According to (47), we have, for 0 < y < θ,

V (y, t) = L(y)V0 = L(y) T1 q̇ = T1 R(y) q̇, (68)

where we have generalized (61) to any y instead of θ. Now, by (66), q̇ is given by

q̇ =





cos (θ/2)

− sin (θ/2)



 = R(−θ/2)





1

0



 ,

so that

R(y) q = R(y)R(−θ/2)





1

0



 = R(y − θ/2)





1

0



 =





cos(y − θ/2)

sin(y − θ/2)



 .

Thus by (50), (68) becomes

V (y, t) =





cos (y − θ/2) cos t

sin (y − θ/2) sin t



 , for 0 ≤ y < θ. (69)

Similarly, for θ ≤ y < 2θ we have

V (y, t) = L(y − θ)J L(θ)V0 = L(y − θ) T1 q̃ = T1 R(y − θ) q̃,

where, by (66) and Figure 1,

q̃ = ρ R
(−θ

2

)

[

0

1

]

,
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and ρ = ‖q̃‖ = cot(θ/2). Thus for θ < y < 2θ,

V (y, t) = T1 ρR(y − θ)R
(−θ

2

)

[

0

1

]

= T1 ρR
(

y − θ − θ

2

)

[

0

1

]

,

which yields

V (y, t) =
cos(θ/2)

sin(θ/2)





− sin (y − 3θ/2) cos t

cos (y − 3θ/2) sin t



 , for θ < y < 2θ. (70)

Now scaling both (69) and (70) by sin(θ/2), we have proved the following theorem:

Theorem 5 For each choice of parameter 0 < θ < π/2, the following closed form ex-

pression defines a linearized periodic solution V (y, t) of the compressible Euler equations in

dimensionless variables:

V (y, t) =



































sin(θ/2)





cos (y − θ/2) cos t

sin (y − θ/2) sin t



 , 0 < y < θ.

cos(θ/2)





− sin (y − 3 θ/2) cos t

cos (y − 3 θ/2) sin t



 , θ < y < 2θ.

(71)

Here, the (y, t)-region Ω ≡ [0, 2θ)× [0, 2π) defines one spacetime period, and the entire solution

is obtained by mapping the solution in the period Ω to the (y, t)-plane via translation (72). In

particular, the Rankine-Hugoniot jump conditions hold at the entropy jumps y = θ and y = 2θ,

and the resulting solution has the property that nearby nonlinear solutions formally balance

compression and rarefaction along characteristics in the sense of [3].

It is clear that V (y, t) given by (71) is 2 π-periodic in time, and the conditions (42), (43),

namely

MV0 = V0 and M = S J −1 LJ L,

imply also that V (y, t) is 2 θ-periodic in space, after a (t → t + π) time translation. Since

S2 = I, it follows that V (y, t) is exactly 4 θ space-periodic, but the rectangle [0, 2θ)× [0, 2π) is

a minimum periodic tile with period translation vector X = 2 θ ey + π et, which means that

V (y, t) = V ((y, t) + X) = V (y + 2 θ, t + π). (72)

In Figure 3, the characteristics of the dimensionless solution V (y, t) in (y, t)-space is de-

picted for the case θ = π/(1 +
√

5), a case in which the sound speed is incommensurate, i.e.,

irrationally related to, the speed of the period. In this case the characteristics are quasi-periodic,

and the balancing of rarefaction and compression along characteristics is achieved by ergodic

motion through the period. In case the dimensionless sound speed is rational, so θ is a ratio-

nal multiple of π, there is a resonance effect, shown by a characteristic eventually becoming

periodic, see [4].

Taken all together, we interpret these results as supplying what one might call a physical

proof that such periodic wave patterns exist. The focus of our current research is to perturb

these linearized 1-mode solutions to the fully nonlinear problem, thus completing the rigorous

proof that such periodic solutions exist in the fully nonlinear compressible Euler equations. In
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the nonresonant case, the periodic solutions constructed here are unique, but there are small

divisors. In [5], we solve the associated bifurcation problem, and show that periodic solutions

exist up to arbitrarily high Fourier mode cutoff. In the resonant case, the kernel of M − I
is larger, and different techniques must be used. This is the subject of the authors’ ongoing

research.

x

t

Fig.3 The dimensionless linearized periodic solution V (y, t) showing incommensurability
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