SIAM J. MATH. ANAL. (© 2011 Society for Industrial and Applied Mathematics
Vol. 43, No. 1, pp. 1-49

TIME-PERIODIC LINEARIZED SOLUTIONS OF THE
COMPRESSIBLE EULER EQUATIONS AND A PROBLEM OF
SMALL DIVISORS*

BLAKE TEMPLEf AND ROBIN YOUNGH

Abstract. It has been unknown since the time of Euler whether or not time-periodic sound
wave propagation is physically possible in the compressible Euler equations, due mainly to the
ubiquitous formation of shock waves. The existence of such waves would confirm the possibility
of dissipation free long distance signaling. Following our work in [B. Temple and R. Young, A
paradigm for time-periodic sound wave propagation in the compressible Fuler equations, Methods
Appl. Anal., 16 (2009), pp. 341-363], we derive exact linearized solutions that exhibit the simplest
possible periodic wave structure that can balance compression and rarefaction along characteristics
in the nonlinear Euler problem. These linearized waves exhibit interesting phase and group velocities
analogous to linear dispersive waves. Moreover, when the spatial period is incommensurate with the
time period, the sound speed is incommensurate with the period, and a new periodic wave pattern is
observed in which the sound waves move in a quasiperiodic trajectory though a periodic configuration
of states. This establishes a new way in which nonlinear solutions that exist arbitrarily close to these
linearized solutions can balance compression and rarefaction along characteristics in a quasiperiodic
sense. We then rigorously establish the spectral properties of the linearized operators associated with
these linearized solutions. In particular we show that the linearized operators are invertible on the
complement of a one-dimensional kernel containing the periodic solutions only in the case when the
wave speeds are incommensurate with the periods, but these invertible operators have small divisors,
analogous to KAM theory. Almost everywhere algebraic decay rates for the small divisors are proven.
In particular this provides a solid framework for the problem of perturbing these linearized solutions
to exact nonlinear periodic solutions of the fully compressible Euler equations.
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1. Introduction. Time-periodic solutions of the compressible Euler equations
represent dissipation free long distance signaling at the level of sound waves, but it
has been unknown since the time of Euler whether or not there exist time-periodic
solutions that satisfy the compressible Euler equations exactly. Since Riemann demon-
strated that shock waves form in solutions, experts have believed that time-periodic
solutions of the compressible Euler equations with sound wave propagation were phys-
ically impossible due to the belief that shock waves could not be ruled out in oscillatory
solutions: shock waves introduce increase of entropy and dissipation inconsistent with
time-periodic evolution [11]. This belief was supported in 1970 by the definitive paper
of Glimm and Lax [6], which proved that for the reduced Euler equations correspond-
ing to isentropic flow, solutions starting from space-periodic initial data must form
shock waves and decay (by shock wave dissipation) to the constant state average in
each period, at a rate 1/t. Subsequent work kindled the idea that periodic wave propa-
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gation is possible when the entropy fields are nonconstant [18, 19, 20, 22, 28, 24, 31, 33].
Numerical simulations by Shefter and Rosales [22] and Vaynblat [28] indicated that
solutions evolving through nonconstant space-periodic entropy fields do not decay to
the constant state average in each period, but rather appear to evolve into periodic or
quasiperiodic evolution. Within this context, the authors in [26] derived the simplest
possible periodic wave structure' consistent with time-periodic sound wave propaga-
tion in the 3 x 3 nonlinear compressible Euler equations, a wave structure that requires
at least three coupled nonlinear equations to support it. This simplest wave pattern
was derived by combinatorial considerations based on a classification of compressive
and rarefactive wave interactions at entropy jumps, using the starting principle that
shock free periodic or quasiperiodic solutions of compressible Euler should balance
compression and rarefaction along every characteristic (sound wave).

In this paper we construct exact linearized solutions of Euler that exhibit the
simplest periodic wave structure identified in [26] for the nonlinear problem. For this
we start by constructing a nonlinear eigenvalue problem whose solutions correspond
to nonlinear periodic solutions of the compressible Euler equations having the sim-
plest structure identified in [26]. The nonlinear operator involved encodes evolution
in space starting from time-periodic data posed at an entropy jump. (In Lagrangian
coordinates, entropy jumps propagate at zero speed.) Trivial solutions of this eigen-
value problem correspond to periodic solutions of the compressible Euler equations
consisting of piecewise constant states separated by two entropy jumps. Linearizing
around this solution we obtain a linearized eigenvalue problem whose solutions we
expect will perturb to solutions of the nonlinear problem because they encode the
structure identified in [26]. This linearized operator is nonsymmetric, and consists
of the composition of five elementary linear operators that do not commute: a linear
evolution at the first entropy level, followed by an entropy jump, followed by linear
evolution at the second entropy level, followed by the inverse entropy jump, followed
by a half period shift. The combination of shifts and jumps ensures the mixing of
compression and rarefaction along characteristics under nonlinear perturbation, and
highly restricts the kernel of the linearized operator. We next derive a condition re-
lating the magnitude of the entropy jump to the period that guarantees the existence
of a solution to the linear eigenvalue problem in the Fourier 1-mode. We then obtain
our linearized periodic solutions by deriving closed form expressions for the resulting
1-mode solutions of the linear eigenvalue problem. To get closed form expressions for
solutions, we introduce a new nondimensional form of the Euler equations for which
linearized evolution is represented by rotation in the complex plane.

The resulting linearized solutions display, in closed form expression, the propa-
gation properties of nearby nonlinear sound waves that formally balance compression
and rarefaction along characteristics. In this sense, the solutions exhibit the simplest
possible mechanisms for dissipation free transmission of sound waves in the nonlinear
problem. In the simplest case, each characteristic sound wave traverses eight entropy
levels before periodic return, and the wave crests propagate at a speed different from
a shock or sound speed; cf. [26]. But the linearized solutions constructed here show
that more complicated ways of balancing compression and rarefaction are possible due

1We say that a periodic or quasiperiodic wave structure is possible, at a formal level, if each
characteristic (sound wave) traverses both regions of compression and rarefaction, and that these are
formally in balance. Whether such a possible formal wave structure actually exists in a true periodic
solution of Euler is then a deep mathematical question as to whether the data can be tuned to bring
compression and rarefaction precisely into balance, so that shock wave formation is prevented.
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to the fact that it is consistent at the linearized level for solutions to move through
periods at speeds that are incommensurate with the speed of the period. In this case,
the solution produces a periodic tiling of the xt-plane that is periodic in space and
time, but sound waves traverse the periodic tiling in a quasiperiodic fashion. Even so,
compression and rarefaction will be in balance formally in nearby nonlinear solutions
because of the ergodicity of the quasiperiodic motion of the sound wave relative to
the tiling.

The structure of the linearized waves carries over approximately to nearby non-
linear solutions, but a mathematical proof is needed to demonstrate rigorously that
solutions of the linear eigenvalue problem carry over exactly to solutions of the non-
linear eigenvalue problem. Motivated by this perturbation problem, in section 6 we
analyze the spectrum of the linearized operator that expresses the eigenvalue problem
corresponding to periodicity. We prove that our exact periodic solutions correspond
to eigenvectors in the 1-mode kernel of the associated linearized operators, and that
for almost every choice of periods, the linearized operator is invertible on the comple-
ment of the kernel. Interestingly, the linearized solutions can be isolated in the kernel
of the linearized operator only in the case when the sound speeds are incommensurate
with the periods. We end the section with a proof, based on Liouville numbers, that
for special choices of periods, the eigenvalues are bounded away from zero by algebraic
rates. Numerical results are also presented, showing that the eigenmodes with small
divisors can be very sparse, for example, nicely bounded away from zero in the first
fifty modes.

This analysis of linearized solutions and corresponding linearized operators casts
the perturbation problem for the existence of time-periodic solutions of compressible
Euler into a form amenable to a Lyapunov—Schmidt decomposition. That is, to obtain
periodic solutions of a nonlinear problem by perturbation from a known solution of a
linearized problem by bifurcation methods, a major step is to show that the linearized
operator is invertible on the orthogonal complement of the known solution; cf. [7].
This we accomplish in section 7. Once this is accomplished, the central issue in
the completion of a rigorous proof that periodic solutions exist (i.e., that linearized
solutions perturb to nearby nonlinear solutions) is then the problem of establishing
an implicit function theorem based on the resulting invertible linearized operator (the
so-called auziliary equation [7]). The proof of such an implicit function theorem when
small divisors are present is then problematic (see, e.g., [2]). For us, the small divisors
are estimated by algebraic decay rates, and the resulting implicit function theorem is
analogous to problems in KAM theory [4, 1], but for us a proof must face the small
divisor issue in a quasilinear problem, a setting for which the current mathematical
technology does not directly apply; cf. [2]. The generation of such a proof is the topic of
the authors’ ongoing research program. In the follow-up paper [27], the authors show
that the Lyapunov—Schmidt decomposition is consistent, and that periodic solutions
exist subject to an arbitrarily large Fourier mode cutoff. Given the successes of KAM
theory, one can expect only that the technical obstacle of the small divisors will be
overcome and these solutions perturb to exact periodic solutions of the compressible
Euler equations. The methods here also provide a starting point for the numerical
simulation of time-periodic sound waves.

2. Background.

2.1. The compressible Euler equations. The compressible Euler equations
describe the time evolution of a perfect fluid in the absence of dissipative effects.
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These are

(1) pt + div[pu] = 0,

(2) (pu")¢ + divlpu'u] = —Vp,
(3) E; + div[(E + p)u] =0,

describing the evolution of the density p, velocity u € R3, and energy density F =
% pu? + pe, where ¢ is the specific internal energy. To close the system, an equation
of state is given which relates the pressure p to € and p. We consider a polytropic
gamma-law gas, described by

Cr

(4) E=c, == S/er and p= — eS/CT,

where 7 = 1/p is the specific volume, S is the specific entropy, v > 1 is the adiabatic
gas constant, and ¢, the specific heat [23]. For smooth solutions, the energy equation
(3) is equivalent to the adiabatic constraint or entropy equation

(5) (pS): + div(pSu) =0,

which states that entropy is transported with the fluid [23].
For sound wave propagation in one direction z’, the equations reduce to the
system of 3 x 3 Euler equations

pt + (p u)w’ = 07
(pu)t + (pu® + p)ar =0,
Ei+ [(E+p)ulr = 0.

In a Lagrangian frame of reference, which moves with the fluid, the equations can be
written

(6) T — Uy =0,
(7) uy + py =0,
(8) Ef + (up), =0,

where now x represents the material coordinate for the fluid, given by

x:/pdx’,

where 2’ is the spatial coordinate, and E* = E/p = %u2 + . In this Lagrangian
frame, the adiabatic constraint (5) takes on the particularly simple form

9) Sy =0,

which can be used instead of (5) on smooth solutions [23].

Because we are considering solutions which are (piecewise) smooth, it is enough
to consider (6), (7), and (9). We recall from our previous paper [26] the convenient
change of variables

(10) m=e%%" and z=K, T*WT_l,
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so that (4) becomes

2
e=K.m?2* and p=K,m? Z7-1,
where K’s are appropriately given constants. In these variables, for smooth solutions,

(6)—(9) can be written as the quasilinear system
2+ —u, =0,
m
(11) up + mezy + 2£mw =0,
m
my = 07

where we have used (9) in place of (8); here ¢ is the Lagrangian sound speed, defined
by

o(r,8) =/ —p-(1,5),

which becomes
(12) c(m,z) =K. mz~1.

Recall that a strictly hyperbolic 3 x 3 system has three wave families, each cor-
responding to an eigenvalue or wavespeed of the system. In the Lagrangian frame,
the wavespeeds of system (11) are ¢ and 0. The nonlinear waves are the forward
(4 or 3-wave, speed +c) and backward (— or 1-wave, speed —c) waves, along which
sound waves propagate. The stationary (0 or 2-wave, speed 0) waves are contact or
jump discontinuities which propagate with the fluid and which are linearly degener-
ate. Our forward and backward waves are simple waves which are either rarefactive
or compressive; we do not treat shocks here as they are incompatible with periodic
wave propagation.

We consider solutions in which the entropy m (or S) is piecewise constant, varying
periodically in space but stationary in time. To resolve the jump in variables across
the entropy jumps, we must apply the Rankine—Hugoniot relations for (6)—(8), which
are

(13) [p] = s [ul,

[up) =s[3u? +¢,

where, as usual, s is the speed of propagation of the discontinuity and [] is the jump.
Since we are concerned only with contact discontinuities, we take s = 0, and the jump
conditions become [u] = [p] =0, or

ay—1 ay—1
(14) up =ur and mgz;” =mpgrzg .

On regions where the entropy is constant, the 3 x 3 system (11) reduces to the
2 x 2 quasilinear system

ze + ium =0,
m
(15) us +mezy =0,

which is just the p-system using z as the thermodynamic coordinate [23].
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2.2. Wave interactions and character change. In [26], we described the
mechanism of wave interactions which can prevent shock formation and, consequently,
support nondecaying periodic solutions. The key observation is to note that although
a simple wave preserves its rarefactive or compressive character (before shock forma-
tion) when the entropy is constant, this character can change as the wave crosses a
stationary jump discontinuity. Physically, if a simple wave crosses a jump, a simple
wave of the opposite family is reflected. If we (nonlinearly) superimpose two such
interactions, then one of the reflected waves could be larger than the corresponding
transmitted wave, resulting in the outgoing wave having a different character from the
corresponding incident wave. We then obtained the periodic structure by carefully
combining many such interactions into a consistent wave pattern [26].

To describe the simple waves, we fix the entropy m and write system (15) in the
Riemann invariant form

e —cry =0,
(16) st +c¢ sy =0,

where the Riemann invariants are
r=u—mz and s=u+mz,

respectively. It is well known that for a 2 x 2 system, the simple waves are described
by the constancy of Riemann invariants [11, 23]. That is, the backward simple waves
are described by s = const, while the forward waves are given by r = const. Also
(16) states that r and s are constant along backward and forward characteristics,
respectively, which are the straight lines given by

dx and dx
— =—c and — =g,
dt dt
respectively.
We summarize by describing both forward and backward simple waves by the
equation

ur —up =m(za — 2p),

where the subscripts refer to the states to the right, to the left, ahead, and behind
the wave, respectively; recall that the entropy m is constant in the wave.

The character of a simple wave is rarefactive (R) or compressive (C) according to
whether the sound speed ¢ increases or decreases from ahead (A) to behind (B) the
wave, respectively, that is, if the speed ahead is larger, then the wave is rarefactive.
Since dc/dz > 0 and z = 3, we can also find the character of a wave by checking
the time derivative of the appropriate Riemann invariant: for example, if r; < 0, the
backward wave (on which s is constant) is compressive. We thus have the following

characterization of simple waves: the wave is

Forward R iff s; <0,
Forward C iff s >0,
Backward R iff r; >0,
Backward C iff r; <0.
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It is shown in [26] that the R/C character of a simple wave is unchanged as long
as the entropy remains constant; however, at an entropy jump, the R/C-character can
change, as follows. By (14), u is constant across the jump, but m z changes by the
scalar factor ¢f = (mp/m L)%. Thus the Riemann invariants and their time deriva-
tives change, and if r; or s; changes sign, the corresponding wave changes character.
We have the following lemma, which is proved in detail in [26].

LEMMA 1. The following inequalities characterize when a nonlinear wave changes
its R/C wvalue at an entropy jump:

R;, ot aFmpip <dap <mpip,
Ciy — Ry iff mpip <urp < qfmpir,
thz = Ch, iff —qfmpi <dp < —mpip,
Cif, = Rl iff —mui <ip < —qimrir,

where ¢ = (mp/mzr 5 is the scalar by which the quantity m z jumps.
L 4 Y J

2.3. Periodic structure of solutions. We note that the inequalities of Lemma
1 are exclusive, which means that at most one wave can change its character at any
time. Our main goal in [26] was to exploit this local change in a single simple wave to
build a global wave pattern in which each compression wave changes character before
it collapses into a shock wave. By carefully considering the consistency of the wave
pattern as built up from many interactions satisfying the lemma, we constructed the
simplest possible periodic wave pattern in which compression and rarefaction is bal-
anced along each characteristic. By this we mean that as each forward or backward
characteristic is traced through the solution, it passes through stages of compres-
sion and rarefaction, and on average the amount of compression and rarefaction are
balanced. In this way each compressive characteristic in the solution changes to rar-
efaction before it collapses into a shock. Since there are no shocks, the solution is
time-reversible, and rarefactions are essentially equivalent to compressions.

Our construction of a global periodic wave pattern can be represented as the for-
mal characteristic zt-space diagram shown in Figure 1. In this diagram, the vertical
lines represent stationary jump discontinuities at which the (piecewise constant) en-
tropy changes: there are two entropy levels corresponding to the narrow and wide
strips, respectively. We have represented the forward and backward characteristics
as straight lines, with the differing slopes indicating changing wavespeed, and have
shaded one complete forward wave consisting of four rarefactive pieces followed by
four compressive pieces. The thick lines correspond to “max/min” characteristics,
along which the extremal values of the Riemann invariants propagate, and which
mark the boundaries between regions of rarefaction and compression. Note that at
each entropy jump, part of each wave changes its character.

Figure 1 is a “cartoon” of a periodic solution to the nonlinear Euler equations
in that it does not correspond to an actual exact solution. We can, however, make
the figure increasingly accurate by considering smaller and smaller amplitudes for
the waves, so that the characteristics become closer and closer to parallel straight
lines as the wavespeed ¢(m,z) — ¢o. Indeed, in the limit of small amplitudes, all
characteristics would have constant speeds, although these would be different at the
different entropy levels.

In Figure 2 we show a refined picture of the simplest periodic structure in the
limit of small amplitudes, with one tile of the (z, t)-plane shaded. We have labeled the
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FiG. 1. A periodic pattern incorporating compression and rarefaction.

states in the (x,t)-plane as follows: numbers and letters represent states having the
same Riemann invariant values s and r on a single entropy level, respectively; these
code the relative position of the Riemann invariant inside the wave. Thus, a and e
refer to the minimum and maximum r values, and b, ¢, and d are always part of the
backward “rarefaction” wave, corresponding to r; > 0. The states on either side of
each entropy jump are also labeled with | “and || respectively.
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F1G. 2. The linearized characteristic structure of periodic solutions in the (z,t)-plane.
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The labels a—h and 1-8 label only one Riemann invariant rather than a complete
(z,u)-state, but we can approximately reconstruct the (z, u)-states by considering the
relative r and s values of the labeled states. Doing so, we observe that the locus of
states at each jump corresponds to a path around an ellipse, with different orientations
at each jump. We thus see that the periodic structure of Figure 2 is consistent with
the ellipses drawn in Figure 3. The four ellipses drawn there represent the solution
as a function of time at the corresponding entropy jump, and the circular arrows
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F1G. 3. Ellipses showing periodicity in the (z,u)-plane.

represent the direction of increase of t and z in the characteristic picture Figure 2.
Rotating anticlockwise around Figure 3 represents evolution (with respect to x) from
U in the narrow strip to U, entropy jump to U, evolution in the wide strip to U, and
entropy jump back to a time-shift of U.

Although we have presented these pictures of the solution as approximate, we
show in this paper that the pictures become exact at the linearized level; that is, if
we linearize the compressible Euler equations around a piecewise constant stationary
solution, then the solutions given in Figures 2 and 3 are exact periodic solutions to
the linearized Euler equations, with piecewise constant varying entropy, which balance
compression and rarefaction.

3. The linear and nonlinear eigenvalue problems. In this section we re-
formulate the problem of existence of a periodic solution of the compressible Euler
equations having the structure of Figure 2 as a nonlinear eigenvalue (fixed point)
problem. In the next section we find exact solutions of the corresponding linearized
eigenvalue problem. In subsequent sections we calculate the full spectrum of the lin-
earized problem and discuss the issue of perturbation of the linearized solution as a
way of obtaining periodic solutions of the nonlinear problem.

The periodic structure in Figure 2 is supported on an entropy field that oscillates
between two different values. Moreover, it is apparent from Figure 2 that the solution,
starting at « = 0, returns after a nonlinear evolution in z at the first entropy level,
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followed by a jump to the second entropy level, followed by a nonlinear evolution in z
at the second entropy level, followed by a jump back to the first entropy level, followed
by a half period shift in £. We now formulate this precisely as a fixed point problem.

So consider a smooth solution U(z,t) = (2(z,t), u(x,t)) of the compressible Euler
equations evolving through an entropy field that oscillates between two values S, T
and S, m, where S > S, m > m; cf. (10). Fix the widths z,Z > 0 of the entropy levels
and assumem = m for 0 < x < T, and m = m for T < x < T4z, and then continue the
entropy field periodically in x; cf. Figure 4. Let U(x,t) = U(z,t) = (2(z,t),u(z, t))
in 0 < 2 <7, so that U(z,t) solves

zH—@uz =0,
m

(17) ur + M c(2)z, = 0;
and let U(z,t) = U(x,t) = (z(z,t),u(x,t)) in T < x < T+ z, so that U(x,t) solves

c(z) 0,

2t + —=u, =
m
(18) ut +m c(z)zy = 0.

Thus to demonstrate the existence of a solution of the compressible Euler equations
with periodic sound wave propagation it would suffice to prove that there exists such a
smooth solution defined on 0 < z < T+ x such that it continues globally to a periodic
solution. Assume that U(z,t) is a weak solution so that the Rankine-Hugoniot jump
conditions (13) hold at # = T and # = T + z. This says that (Z(Z—, t),w(T—,t),m)
and (z(T+,t),u(T+,t), m) lie on the same contact discontinuity wave curve of the
2-family; cf. [23]. The jump conditions yield

(19) m§=m5(@)%,

Now, consistent with Figure 2, set U(t)=U(0+,t), U(t) = U@—,t), Ut) = U@+, t),
and U(t) = U(T + z—,t). Based on this, define the nonlinear evolution operators &,
&, and the jump operators J, J ! by

U =2u,
(20) U=JU,
U=eu,

and define the extended function U* by
(21) U =Jgu.

Then £ and & represent evolution in space by the nonlinear wave operators (17)
and (18) across the respective entropy levels, and J, J ! are the jump operators
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determined by the Rankine-Hugoniot jump conditions (13), (14). That J ! is the
inverse of J follows from the invariance of the jump conditions under the interchange
of Ur and Ug. It follows from (19) that J is a linear operator when the equation of
state is taken to be polytropic.

To formulate the eigenvalue problem that captures the periodic structure of Fig-
ure 2, restrict the initial data U(t) to 2r-periodic functions at 2 = 0, and impose the
periodicity condition

U=8U*,
where S denotes the half period shift operator defined by
[SUI(@) =U(t + 7).

From this we conclude that the eigenvalue problem that imposes the periodicity struc-
ture of Figure 2 is?

(22) S-J e JEU=U.

3.1. Nondimensionalization. We now recast (22) in a nondimensional form
by introducing dimensionless variables (w,v) in place of (z,u). To this end, we first
restrict ourselves to smooth solutions U(z,t) = (z(z,t),u(z,t)) of the compressible
Euler equations defined at constant entropy S = Sy, m = my, in a region = > xg. Let
zo and ug be base states from which values of z and u are measured, respectively, and
set ¢o = ¢(mo, 29) equal to the sound speed at (zg,mg); cf. (12). Give time and space
the same dimension by defining y through the relation

r — X

23 — Yo = ,
() Y—1Yo ”

so that equations (15) take on the dimensionless form
(), ),
20/, ¢ \mox/,
(24) <L> 4 @ <i) =0,
mopzo t Co Z0 "

in the region y > yo. Based on (24), define the dimensionless variables

z
25 _ =
(25) w=Z,
U — Ug

26 =9
(26) L
and let

c(z0) 2d _
(27) o= ) :Z—?i:w 1= g(w),

where we have used c¢(z,m) = K.mz? with

v+1
2 = .
(28) ==

2Note that the half period shift really just imposes a symmetry, as its effect over four entropy
levels could be reproduced by a second application J~1-£-7 -E.
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cf. (12). Thus the nonlinear equations (24) have the nondimensional form

wy + o(w)v, =0,
(29) vy + o(w)w =0,

where y is now the evolution variable.
Across an entropy jump between two constant values 7 and m with base states
Zo and 2, respectively, the jump conditions are

[u] = MZoT — mzyv = 0,
(30) [p] = m*z4H — m?2% ! = 0.
So assuming the base states Zy and z, satisfy the jump condition (30) as well, we find
that the jump conditions in dimensionless variables become

(31) MmaFriy = mdatiy,

the latter following from (30) using the jump relation for the base states in the form

—2
Zo m\ L
29 m '

In particular, (31) implies that o(w) is continuous across entropy jumps.

Now consider the nonlinear problem for smooth solutions evolving through two
entropy levels m, m, of widths T, x, with base states Zy, z, extended periodically in x
starting with min 0 <z < T and m in T < « < T+ z. Define y = y(z) as the unique
piecewise linear Lipschitz continuous function of  such that y(0) = 0, and such that
(23) holds at each entropy level. That is, such that y(0) = 0, dy/dx = 1/ in each T
level, and dy/dxz = 1/c in each m level. (We need only that U is a smooth solution on
the first two entropy levels in order to pose the periodicity condition.) The function
y(z) is graphed in Figure 5. Assuming this, the upperbar entropy level 0 < z < T
goes over to 0 < y < 6,

T

c(z0)’

(32) [

the lowerbar entropy level goes over to 8 < y < 6 + 6,

(33) 0 c(?o)

and the nonlinear operators € and £, expressed in dimensionless variables w, v, reduce
simply to evolution in y by system (29); cf. Figures 4, 5, and 6.

Thus let V = (w, v) denote the dimensionless variables, and define the evolution
operator £(#) as evolution by system (29) through a y-interval of length 6. That is,

(34) EOWV(0,) =V(b,),

where V(y,t) is the unique solution of the Cauchy problem for system (29) with
Cauchy data V' (0, -). Define also the entropy jump operator J acting on V' pointwise
by

(2G5
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FIG. 4. Solutions at two constant entropy levels S, S in the (x,t)-plane.
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FIG. 6. Solutions at two constant entropy levels S, S in the (y,t)-plane.
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where

77\ dFL
(36) = (2
cf. (31). Finally, define the shift operator S acting on V' by
(37) SV(t)=V(t+mn).

Note that £(0) is nonlinear, but J and S are both linear operators when m and m
are assumed to be fixed.

THEOREM 2. For fized positive real numbers 6, 0, and J, define the nonlinear
operator N'= N(0,0,J) by

(38) N=s-J71£0) T £0)
and let V(t) = (w(t),v(t)) denote any smooth solution of
(39) NV(E)=V()
that satisfies the average one and zero average conditions
1 2
and
1 2m
(41) vg = — v(t)dt =0,
2 0

respectively. Then given any base state Uy = (Zo,To) and entropy state T, there is a
periodic solution U(x,t) = (z(x,t),u(x,t)) of (11), determined uniquely by V (t), with
average values

1 27
0
and
1 27
T Jo

Proof. Given the states Z, T, and 7, and the parameters 6, §, and .J, define

Set the values of T and z equal to
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Now define the nonlinear evolution operator

EWIV (), 0<y<d,
V() =N@IV() =3 -0 TEDVE),  0<y-G<8,
STEO) TEDVQ), y=0+0.

By this definition, N'(y)[V (+)] defines the evolution of initial data V' (¢) through interval
[0,%) for the dimensionless nonlinear problem consisting of entropy jumps at y = 6
and y = 6 + . Thus it follows directly from (38) that V(y,t) extends to a global
periodic solution of the nondimensionalized equations having periodic tile 0 < ¢ < 27,
0 <y < 0+ 0, with periodic motion vector X = ( + 6, 7). Thus defining U(z,t) =
(z(z,t),u(z,t)) by

Z = w2y,

(43) u = ug + mzov,

from our constructions above, U(x,t) is a global periodic solution of (11) having
periodic tile 0 < ¢t < 27, 0 < < T 4 z, with periodic motion vector X = (T + z, 7).
The averages (40), (41) follow directly from (43). O

Note that the periodic motion vector X determines the “group velocities” of the
solution: these are the effective propagation speeds of the max / min characteristics
(which are discontinuous at the entropy jumps), given by

(44) cg=+ZTE
T

The fact that the forward and backward group velocities are the same follows from
the symmetry obtained by imposing a shift of exactly half a period. Because corre-
sponding characteristics always jump forward in time, ¢, will be less than the mean
characteristic speed. Thus we have dispersive type behavior, with different group
and phase velocities, in a purely hyperbolic nonlinear system. To the best of our
knowledge, this is the first discovery of such an effect in a fully nonlinear hyperbolic
problem.

In summary, our fundamental nonlinear problem is the dimensionless eigenvalue
problem (39), where the operator A is defined in (38) through the defining relations
(34)—(37). Solutions of (39) correspond to periodic solutions of (11) in a neighborhood
of any state Uy, T via the transformations (42)—(43).

4. Periodic solutions of the linearized problem. In this section we intro-
duce the linearized eigenvalue problem associated with (39), and then characterize
the solutions of the corresponding linearized operator depending on the parameters 6,
6 and J. In the next section we analyze the spectrum of the linearized operator, and
introduce a nonresonance condition on the parameters that guarantees that exact so-
lutions of the linearized eigenvalue problem are isolated in the kernel of the linearized
operator. These exact solutions are depicted in Figures 2 and 3.

For the linearized eigenvalue problem, replace the nonlinear evolution operator
£() by the linear operator £(#) obtained by setting o(w) = 1 in equations (29).> (By
(25), (27), in the dimensional problem this represents taking the sound speed equal to

3For example, £(0) is the operator obtained by linearizing £(#) about the constant state base
state.
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the value of the sound speed at the z-base state at each entropy level; cf. (42)—(43).)
Thus the linear evolution is

where V(y, t) is the unique solution of the linear system

wy + v = 0,
(46) vy +wy =0,

with Cauchy data V(0,t); cf. (29) and (34). Then the linearized eigenvalue problem
associated with (39) is the problem

(47) MV()=V(),
where M = M(0, 6, J) is the linear operator defined by
(48) M=S8-J7 L) T LO),

where again J and S are the linear jump and shift operators given by (36) and (37),
respectively. We now find elements of the kernel of the linear operator M — Z, and
in the next section, we give conditions on the parameters that isolate these solutions
in the kernel.

Our method is to extend the operator M to the complex plane, show that the
operator splits orthogonally onto the two complex dimensional subspaces associated
with each Fourier mode, and then analyze the kernel on each of these subspaces. The
complex vector space associated with each Fourier mode has no real representatives, so
the eigenvalue problem is two complex dimensional, equivalent to a four-dimensional
real problem. To solve this, we introduce a representation of each Fourier mode in
terms of which the complex eigenvalue problem reduces to a two-dimensional real
problem, which we can solve in closed form. We recover the real solutions by adding
the complex solution in the 1-mode to its complex conjugate, which lives in the —1-
mode.

So fix values of 6, 6, and J, and consider the corresponding operator M deter-
mined in (48). Let V5(t) = (w(t), v(t)) be a 27-periodic function in the domain of M.
For example, Vj(t) serves as initial data at y = 0 for the linear evolution in y associ-
ated with £(6). Using this, let V(y, -) be the function obtained at y € (0,0 +6) in the
construction of MV;(t) according to (48)—that is, V(y,-) = L(y)Vo for 0 < y < 6;
V(y,") = Ly —0)TL@O)V, for § < y < 6 + §—and define the following boundary
functions:

V(t)=V(0+,1)

V(t) = V(?—, t)a
(49) V(t)=V(0+,t)

V)=V (0+0—,1),
and

V() =T WV({t) = V(0 + 6+,1);

cf. (20)-(21) and Figure 2. Thus the linear eigenvalue equation (47) can be re-
expressed as

SV*(t) = V(¢).
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We will let V refer to V(t) or V(y,t) according to the context.

Note now that M extends naturally to complex valued 2m-periodic functions
V(t). Indeed, the linear evolution £(6) and jump operator J can both be applied to
complex valued functions for every positive real §. Thus assume that V'(¢) is complex
valued. The complex 27-periodic functions V'(¢) have the Fourier expansion

+oo
(50) V(t) = [ f((f)) } ~ Y ventes,

where we take

(51) vnz[ an ]

—iby,
with a, and b,, arbitrary complex numbers, a,, b, € C, and
¥ = L?0,27) x L?[0,27).

We place the —i factor on b, in (51) for convenience. The expression (50) gives an
expression for w(t) and v(t) in terms of the orthonormal basis

{[o] 3]t

for the 27-periodic, square integrable complex valued functions [ZJ((Z))} defined on
0 <t < 27w. That is, let

— 1 int 0 int
En:Span{{O]e ,|:1:|6 }
so that

+oo
(52) =P =n

n=—oo

gives an orthogonal decomposition of ¥ with respect to the L2?-inner product

(TS T [ 29]) = [ watrmtn wmwma

Note that each ¥, is a complex two-dimensional vector space, and that

(53) V(t) = i Vet

n=—oo

represents a real function if and only if

(54) Vo, =V

We now show that M factors over the decomposition (52).
We first obtain a matrix representation for the linear evolution operator £(¢) of
system (46) that applies to complex valued functions V'(¢).
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LEMMA 3. Let

-]

denote the complex valued solution of (46) starting from data Vo(t) = V(0,t) =
Ve € 5, where V,, is given in (51). Then

=51 ) A8 v

- _(costm)  —isinGu) Yy, e g,
—isin(ny)  cos(ny)

Proof. Adding and subtracting (46) gives the equivalent system
(v+w)y + (v+w) =0,
(v —w)y — (v —w); =0.
Since these are scalar wave equations, it follows that
(v+w)(y, t) = (vo + wo)(t —y) = e~ (vo + wo)(t)
and
(v —w)(y, 1) = (v —w)(t +y) = e (vo — wo)(t).

Writing this in matrix form yields (55). O

From Lemma 3 it follows that %, is an invariant subspace for £(#), and so £(0)
respects the orthogonal decomposition (52). Moreover, since evolution by system (46)
takes real functions to real functions, it follows that £(0) does as well. Moreover, if
V(t) = P(t) +iQ(t), where P and @ are the real and imaginary parts of V', then

LEOWV() =LO)P() +iLQ(),

where on P and @, £(#) reduces to real evolution. We next show that M also respects
the decomposition (52), and get an expression for M in each subspace %,,.
To this end, let 7, : C2 — X,, be the representation of ¥,, defined by

fs)-[ ]

and write

EEERES »IF

LEMMA 4. The following formulas hold:

57) com | g | =mron [ o],
- . - .

(58) jﬁ_bn_zﬁD[bn],

(59) st g =]
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where R(0) denotes real counterclockwise rotation through angle 6,

_( cos(f) —sin(0)
(60) R(0) = < sin(6)  cos(6) )
and D = D(J) denotes the diagonal 2 X 2 real matriz

1 0
(61) D= ( 0 J ) ,
with
(2 @)
m m

of. (35), (28), (27).
Proof. Equation (57) follows directly from (55), and (58), (59) follow directly
from (35), (37), where in (59) we use

S|: _CZZ) :|eint _ |: _CZZ) :|ein(t7r). O

COROLLARY 5. All of the operators in the decomposition (48) of M respect the
decomposition (52).

Proof. To show that a linear operator respects (52), it suffices to show that %,, is
invariant for each n. This follows directly from (57)—(59). O

It follows that M respects (52). This is made explicit in the next theorem, which
also implies that the complex eigenvalue problem (47) reduces to a 2 x 2 real eigenvalue
problem in each subspace ¥,,.

THEOREM 6.

(63) M(i%[ig]):inm[gz],

where M, = M, (0,0, J) is the real 2 x 2 matriz given by

with
(65) M(8,0.J) = M = D(J)"'R(O)D(J)R(®),

where R(0) and D(J) are the real matrices given in (60), (61), and (62).
Proof. Tt follows from (57)—(59) that each X, is an invariant subspace for L(y), J,
and S, and hence is also for M, which is a composition of these operators. Moreover,
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applying (57)—(59) we have

(r[]) om0

)
=S-J'-L®) - T,.DR(nb) [
=8 T,D 'R(ng) DR(nf) [ Z
= Tu(~1)"D ™ R(nf) DR(nf) [ A ]

a
1]

where M, is the real 2 x 2 matrix
M, = (=1)"D 'R(n@)DR(nf) = (—1)"M (n8,n8, J).

This verifies (63), (64), and (65), and completes the proof of the theorem. Note that
D(J) and R(6) do not, in general, commute. O

In summary, Theorem 6 implies that M (#) respects the orthogonal decomposition
(52), takes real functions to real functions, and

MOV () = MO)P() +iMQ(),

if V.=P+1Q for P and Q real.
Consider now the linear eigenvalue problem (47) for a 27-periodic function V'(¢).
Let

(66) V=SV =57, [ Z: }

nez nez

denote the expansion of V' into Fourier modes, where V,, is given in (51), 7, in (56).
THEOREM 7. The function V (t) solves the linear eigenvalue problem (47) if and

only if
(67) (=1)"M (nd, ng, J) [ e } = [ b ]

for every n € Z.
Proof. Let V have the decomposition (66), and assume MV = V. Then

Z%[gn]:V:Mv

= ()
-sran[ 5]

nez
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where we have applied Theorem 6. Thus, since the functions et are independent, it
follows that

for every n € Z, so also

for all n € Z. Since
M, = (—1)”M(n§, nd, J),
we have (67). O

4.1. Matrix eigenvalue problems. Theorem 7 reduces the problem of finding
solutions of the complex linear eigenvalue problems (47) to the problem of finding
solutions (a,b) € R? of the 2 x 2 linear eigenvalue problems

wli]-[3]

where M, is the real matrix M, = (—1)"M(nf,nd,J). It follows that complex
eigenvectors of M,, can be rescaled to real eigenvectors, and so to solve (47) it suffices
to characterize real solutions (a, b) of (68). Thus for (68), it suffices to characterize the
eigenspaces of &M in terms of (6,6, J). To this end, let ¢ = (a, )", let ||q|| = Va2 + b2
denote Euclidean norm, and let ¢, ¢, ¢, ¢, and ¢* denote the vector states determined
by the decomposition (65) of M, so that

q=gq,

q= R(0)d,
q = Dq,
4= R(0)q;
" =D7'g;

cf. (49). Let f, i, fi, fr, and p* denote the angles these vectors make with the
positive z-axis, respectively. Our problem then is to characterize solutions ¢ of the
commutation condition

(69) M(nf,n8, J)g = D™ (J)R(n@)D(J)R(nb)q = (~1)"q,

in terms of the parameters (6,6,.J). Since R(6) is the rotation through angle § and
D(J) just scales the second coordinate b by factor J, (69) places very tight constraints
on the possible angles fi, 1, fi, fi, and p*, consistent with (69). The eigenvalues of M
are given in the following theorem.

THEOREM 8. Assume that (0,0) are real and that J > 1; cf. (62). Then the
eigenvalues of M(0,0,.J) are given by

(70) A=8++/B2 -1,

where
2

(71) B = cos(8) cos(8) — 57 sin(@) sin(6).
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Proof. Observe that det M = 1, so the eigenvalues A of M satisfy

A —2B8A+1=0,
where 3 = 1trM. Solutions are given by (70), and writing
M = D 'R(9)DR(9)
_ cos(d)  —sin(0) cos(f) —sin(f)
\sin(8)/J  cos(8)/J Jsin(f) Jcos(0)

and calculating the trace yields (71). O

We now construct solutions of (69) that correspond to solutions in the eigenspaces
Y¥_1 and ¥; that represent solutions of (47) with the periodic structure of Figures 2
and 3. For n = £1, the problem (69) becomes, respectively,

(72) M(@®.8,J)q =D (J)R(O)D(J)R(O)q = —q,
(73) M(—6,-6,J)q = D" (J)R(—8)D(J)R(—

|

)a=—q.

We obtain the real solution below by adding the solution in ¥_; to the solution in
Y5 cf. (54). Our purpose in the next section is to find nonresonance conditions on
(6,0, J) that isolate these in the kernel of M.

To accurately model the widths of entropy levels in Figure 2, we impose the
condition § + § < 7. In particular, according to (44), this imposes a group velocity
(6 + )/, which is slower than the local wavespeed g = 1. The following theorem
identifies the unique solution of (72) in ¥; and ¥_;.

THEOREM 9. Assume that J > 1,0 >0, 60 >0, and

(74) 0+0<m.
Then q is a solution of (72) if and only if
(75) J = cot(0/2) cot(0/2)

and ¢ € Span{q}, where

(76) q = (cos(0/2), —sin(6/2)).
Furthermore, if ¢ = q, then also
(77) G = (cos(0/2),sin(6/2)),
(78) G = (cos(0/2), Jsin(0/2))

= a(cos(m/2 — 0/2),sin(r/2 — §/2)),
(79) 4= (—cos(0/2), Jsin(0/2))

— a(— cos(n/2 — 6/2), sin(r/2 — 6/2)),
(80) ¢ = (~cos(8/2),sin(8/2)) = —q.

where we have set a = ||q||. These states are diagrammed in Figure 7.
Note that J = cot(0/2) cot(8/2) > 1 when 6 + 8 < 7w because the function cot(6)
is decreasing on 0 < 6 < 7/2, so

1 = cot(0/2) tan(0/2) = cot(0/2) cot(r/2 — 0/2) < cot(/2) cot(8/2).
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Fic. 7. The states 4,4,q,q,q* forq € X1.

For the proof of Theorem 9 we use the following lemma.

LEMMA 10. Let ¢ = (a,b), J # £1. If |lq|| = ||{'|| and ||Dq| = || D¢ ||, then
q¢ = (+a,+b).

This lemma follows immediately from

a2 +b2 _ (CLI)2 + (bl)2 and a2 +J2b2 _ (CLI)2 + J2(bl)2,

which are, in turn, direct consequences of (61).

We can now prove the theorem. .

Proof of Theorem 9. Assume Mg = —q for ¢ € Span{¢ = (a,b)}, where ¢ is a
representative of the subspace satisfying ||¢]| =1 and —7/2 < 4 < 7/2.

First, we prove that ¢ must have a nonpositive slope, b/ a < 0. Assume for
contradiction that 15/61 > 0, so that ¢ lies in the first quadrant. Then ¢* = —¢ lies in
the third quadrant, and ¢ = Dq¢* must also lie in the third quadrant on a circle of
radius a = ||g|| > 1 because J > 1; cf. Figure 8. Then ¢ = R(—6)¢ must now lie on
the circle of radius «, and ¢ = D4 lies on the circle of radius 1. But by Lemma 10,
the only such point on the circle of radius « that lies within an angle of 7 from ¢
(and is mapped by D to a point on the circle of radius 1) is the point on the circle of
radius « directly above the point §; cf. Figure 8. Now ¢ = D~1§ = R(f) must thus
lie on the intersection of the vertical line through ¢ and the unit circle. The only way
this can happen is if g, ¢, ¢, and ¢ all lie on the same vertical line, passing through the
circles ||¢|| = a and ||g|| = 1; cf. Figure 8.

That is, ¢ is the only point on the circle of radius o within an angle of 7 from ¢
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FIG. 8. The states with i > 0, showing § + 60 > .

that is mapped by D to a point on the circle of radius 1. From these considerations
it follows that

q" = (—a,-b),
g = (—a,—Jb),
g = (—a,Jb),
q=(—a,b).

From ¢ = R(f)q, it follows that 1 = 7/2 —0/2 and ji = 7/2+60/2, and it follows from
G= R(0)G that i =7 — /2 and fi = 7 + 6/2; cf. Figure 8. But it is easily seen from
Figure 8 that this configuration of angles implies that § + 6 > m, a contradiction.
Thus we must have —7/2 < 11 < 0. .

Consider next the case —7/2 < 1 < 0. In this case b/a < 0, so that ¢ lies in
the fourth quadrant. Then ¢* = —¢ must lie in the second quadrant, and ¢ = Dg*
must also lie in the second quadrant on a circle of radius a = ||§|| > 1 because J > 1.
Then § = R(—f)G must lie on the circle of radius «, and § = D1 then lies on the
circle of radius 1. But by Lemma 10, the only such point on the circle of radius «
that lies within an angle of 7 from ¢ and is mapped by D to a point on the circle of
radius 1 is the point on the circle of radius « directly to the right of and on the same
horizontal line as the point ¢; cf. Figure 7. Now ¢ = D™'¢ = R(A)q must thus lie on
the intersection of the vertical line through ¢ and the unit circle. The only way this



26 BLAKE TEMPLE AND ROBIN YOUNG

can happen is if ¢, ¢, and ¢ all lie on the same vertical line, with ||¢|| = « and ||¢|| = 1;
cf. Figure 7. From these considerations it follows that

q" = (—a,—b),
g = (—a,—Jb),
q = (a,—Jb),
G =(a,-b),

with @ > 0, b < 0. It now follows from ¢ = R(6)q that = —8/2 and i = 8/2, and it
follows from § = R(f)q that fi = 7/2—0/2 and i = 7/2+0/2; cf. Figure 7. It is easily
seen from Figure 7 that this configuration of angles satisfies the condition § + 6 < 7
and is the unique solution. This verifies (77)—(80). Similar arguments show that the
limit cases 2 = 0, —7/2 correspond to § = 0, § = 7 and § = 0, § = 7, respectively,
both cases that have been ruled out.

Finally, for (75) we have both

(81) G = (cos(6/2), Jsin(0/2))
and
(82) G = a(cos(m/2 —0/2),sin(w/2 — 0/2)),

where « = ||¢||, so that

o? = cos?(0/2) + J?sin*(0/2).
Thus comparing first components of (81) and (82), we get

cos?(6/2) = (cos®(0/2) + J?sin?(6/2)) cos® (/2 — 0/2),
and solving for J leads directly to (75). O
4.2. Real valued solutions. The solution V;(t) € ¥ of (47) corresponding to

q is
(58) Wi =Ta= | 00 e,

which is never real. To obtain a real solution of (47), we must add the complex
conjugate Vi (f) € ¥_1. Now observe that having found V; as a solution of (72), we
obtain the solution of (73) by changing the signs of 6 and ¢, J being invariant under
this change of sign. That is,

g1 = { cos(—0/2) } _ [ cos(6/2) } |

—sin(—0/2) sin(6/2)

so that by (56),

_ _ cos(0/2) it
(84) Vfl(t) =T 191 = [ i Sin(a/Q) :| e .
Thus, although there are no real solutions in either X1 or ¥_;, we see from (83) and
(84) that the respective solutions are complex conjugates,

V_i(t) = Va(t),
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so (54) applies and we obtain the two independent real solutions

=] e Lo

and

) = | et | = 5 i - v,

1
which differ by a quarter-period phase shift, V3 (t) = Vo (t + ).

More generally, let 3* denote the set of V'(t) € X such that V/(¢) is real. By (51),
(53), and (54), V(t) € ¥* if and ounly if V_,, = V,,, and

Re{a,}
Im{b,}

Im{ay,}

I, ,—int int __
V_,e + Vet = [ Re {bn}

} cosnt + [ ] sinnt.

Now X* is the orthogonal direct sum
Yr=ApAt

of series even/odd and odd/even in w/v, respectively. That is,

A=A,
and
At =8i%AL,
where
ao={vio=| froent | e, e}
and

AL = {V(t): [ Cn SIn 7L ] L ey dy ER}.

d,, cosnt

The following corollary is now a direct consequence of Theorem 9.

COROLLARY 11. The functions V,(t) € Ay and V,(t) € A are, to within a
factor, the only two real solutions of (A7) in A1 and Af, respectively.

We now refer back to Figures 2 and 3, which are now ezact descriptions of the
solutions V, (t) of the eigenvalue problem (47) and the corresponding solutions of the
PDE (46). That is, V,(t) as a curve is precisely the U ellipse, and the other ellipses
are the curves corresponding to the linear evolutions and jumps of V,. Moreover, in
the nondimensional version of Figure 2, all characteristics would have slope +1, and
so the characteristic diagram would be exact. We note that Figure 2 has an extra
symmetry in that the max / min characteristics return. A characteristic diagram in
which this does not happen is given in Figure 9.

Since the real solutions V, and V}, differ by a phase shift, and the PDEs (46)
have no explicit t-dependence, these are essentially the same solution. That is, the
PDEs have a phase translation symmetry, and any solution generates another by a
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fixed phase shift. We remove the effects of this phase symmetry by observing that
the nonlinear PDEs (29) are invariant under the mapping

w(y,t) = w(y,—t) and ov(y,t) = —v(y,—t),

which also preserves the space A = ®A,,.

LEMMA 12. If V(t) = (w(t),v(t)) € A is 2m-periodic, sufficiently smooth, and
sufficiently small, then both M [V ()] (t) and N [V (-)] (¢) are well-defined smooth func-
tions, and

(86) MV €A and N[V()] € A.

Proof. By the regularity of smooth solutions for the 2 x 2 systems of conservation
laws (29) and (46), together with the fact that J and S are linear operators, it
follows that M [V(-)] (t) and N [V (-)] () are well-defined functions in C* or H* for
V (t) sufficiently small in C* or H*, respectively, s,k > 2, (cf. [17, Theorem 2.2, page
46]). Thus to verify (86), it suffices to show that for such V(t) = V(0, ) in the domain
of M and NV, if V(y,t) = (w(y,t),v(y,t)) is even in w and odd in v at y = 0, then it
is even in w and odd in v for all 0 <y < 0+ 0, where

EWV (), 0<y<b,
(87) Viy,t) = Ey—0)TEOV(), 0O<y<0+0,
ST EGDTEOV(), y=0+80.

But the property even in w odd in v is clearly preserved by operators 7, J ', and S,
so it suffices to show that even in w odd in v is preserved by the nonlinear evolution
€ of system (29). Since solutions of (29) are invariant under the mapping w(y,t) —
w(y, —t) and v(y,t) = —v(y, —t), we can extend a solution V(y,t) from ¢ > 0tot <0
by the reflection

V(y, =t) = (w(t), —v(t)).

By the uniqueness of continuous solutions for smooth initial data, we need only show
that the matched solution is continuous at ¢ = 0 to conclude it is unique, and hence
even in w odd in v by construction. Continuity in w at ¢t = 0 is guaranteed by
w(t) = w(—t). For continuity of v at t = 0, we need to show that v(y,0) = 0 for all
0 <y < 6+0. For this the only real issue is to show that the nonlinear evolution (29)
preserves v(y, 0) = 0. To verify this, transform (29) to Riemann invariant coordinates
r=v—w, s =v+ w, leading to the equivalent system

ry —ory =0,
Sy + o5y = 0.
It follows that 7, s are constant along characteristics dt/dy = —o, dt/dy = o, re-
spectively. Tracing the characteristics back from point (w(y,0),v(y,0)) to points
(w(0,+t),v(0,+t)) and using even in w odd in v at y = 0 gives
U(yv 0) + w(yv 0) = _U(Ov t) + w(oa t)v
v(y,0) —w(y,0) = v(0,t) — w(0,1),

which upon adding leads to v(y,0) = 0 as claimed. O
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We now clarify the representation of the linear operator M —Z in the real Hilbert
space A. To set notation, as the real counterpart of (56), for n > 0 we define the real
representation 7,* : R? — A, by

ml]satn ey

(88) _ [ a cos(nt) ] ,

(%)

We now have the following real analogue of Theorem 6.
LEMMA 13. The linear operator M restricted to A has the orthogonal represen-
tation

where H denotes the matrix

M =@7L My,
where

M, A, — A,

s ([ )= (e 52

where, as in (63), (64), and (65), My, is the 2 x 2 real matriz

is given by

M, = (-=1)"D 'R(nf)DR(nf) = (—1)"M (nf,n8, J).
Proof. First, note that H commutes with D, and
R(—6) H=H R(0)
for all angles 6, which yields the matrix identity
M_, H=H M,.

Then for n > 0 and any real a,, b,, by (88) and Theorem 6, we have

()=l o3 ])

fron

as required. O
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We summarize the results in the following theorem.
THEOREM 14. The operator M — T : A — A has the decomposition

M =T = 6% (M~ T),
where My, — T : A, — A, acts by
My = I) (T pn) =T, [(My, — I)Pn] -

Moreover, if

(89) J>1, 6>0, 6>0,
and
(90) 0+0<m

then V() is a solution of (M —Z)[V] =0 if and only if

J = cot(0/2) cot(8/2);

cf. (75), and

B _ cos(512) cos(t)
(91) V(t) =Va(t) = —sin(6/2) sin(t)
cf. (85).

From here on we restrict ourselves to the real L? space A of functions even in w,
odd in v, and to the linearized operator

M-—T:A—= A,

under the assumptions (89), (90). Our purpose in the next two sections is to analyze
the spectrum of M —Z with the aim of finding conditions on (6, §) sufficient to isolate
the solution V,(t) in the kernel of M — Z, the condition required for a Lyapunov—
Schmidt decomposition.

5. Wave structure of the linearized solutions. In this section we recon-
struct and discuss the linear periodic solution associated with V,(t) defined in (91)
of Theorem 14. Since (M — I)[V,](:) = 0, we can use (48) and (43), together with
the fact that £ is the linearization of £ about the constant state (1,0), to obtain the
linearized solution V,(y,t) = (wq(y,t), ve(y,t)) in dimensionless state variables (w, v),
dimensionless space variable y, and dimensionless periods (6, 6); cf. (25), (26), (45),
(87), and Theorem 2:

L(y)[Va()], 0<y<d,
Valy,) = My)[Va()] =4 Ly 9)15( )[g()] 0<y-0<0,
ST LEO) T LO)Val)], y=0+0.

The condition (M — Z)[V,](-) = 0 implies that V,(y,t) is 27-periodic in time and
(6 + @)-periodic in space, after a m-time translation. Since 8? = 7, it follows that
Va(y,t) is exactly (6 + 8)-periodic, but the rectangle [0,0 + 6) x [0,27) is a minimum
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spacetime-periodic tile with a period translation vector X = (6 + 0)e, + 7 e;; that is,
(92) Va(y,t) = Va ((y,1) + X).

To obtain exact formulas for V, (y, t), recall that by (45), the linear evolution £L(y)[V (+)]
is given by evolution through “time” y by the linear system (46),

wy + vy = 0,

vy +wy = 0,

starting with initial data V'(-). Now for 0 < y < 0, we have (cf. Theorem 9 and (88))

V) = | eel) | = e | v

[ I

= LW)T" [d = T R(y)g,

where by (77)

NP

so that

R(y)g=R < - g) { (1) ] = [ cos(y —0/2)sin(y —0/2) ].
Thus
(93) Vit = | S gRet ] osy<a

Similarly, for <y < 6 + 6 we have (cf. (78))
Va(y,t) = Ly — )Ty [d],

where by (77)

with

cos (6/2)
sin (6/2)°

) [1]
)]

a=|q| =
and we have used (75). Thus for § <y < 0 + 6,

Voly,t) =a TT'R(y—0) R

D ——

=a TR (y—@—

—
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which yields

_ . — 0
COS(G/Z) —Sln(y—6‘—§)cost _ _
94 Voly,t) = ———= _ , 0<y<0+0.
®) %) sin (0/2) sin(y—@—%) sint Y

Letting
V@ (y7 t) = SIH(Q/2) Va(ya t)v

we obtain from (93) and (94) a closed form expression for a linearized periodic solution
of the compressible Euler equations with spatial periods 6, §. We summarize these
results in the following theorem.

THEOREM 15. For each choice of positive periods 0 < 6 + 60 < =, the following
closed form expression defines a linearized periodic solution V (y,t) of the compressible
Euler equations in dimensionless variables w, v, y, 0:

B/
sin(8/2) | °° (v =0/ )fF’St , <y<d,
| sin(y —6/2)sint
(95) Vo(y,t) = r . ( g 9) ‘
_ —sin(y—0— 3 ) cos _ _
cos (6/2) 2 , 0<y<0+0.
. ( ] Q) .
sin({y —0— 5 )sint

Here, the (y,t)-region [0,0 + 0) x [0,27) defines one spacetime period, and the entire
solution is obtained by mapping the solution in the period [0,0 + §) x [0,27) to the
(y,t)-plane via translation (92). In particular, the Rankine—Hugoniot jump conditions
hold at the entropy jumps y = 0 and y = 0 + 0, and the resulting solution has the
property that nearby nonlinear solutions formally balance compression and rarefaction
along characteristics in the sense of [25].

Using the transformations (10) and (23)—(33) we obtain the following theorem re-
garding linearized periodic solutions of the dimensional compressible Euler equations.

THEOREM 16. For each base state (T,7, §) and adiabatic constant v, formula
(95) for Vg determines a two parameter family of linearized periodic solutions of the
compressible Buler equations determined by © = (6,6), 0 < 64 6.

Proof. The states (7,w,S) uniquely determine corresponding state (Z,u,m)
through transformations (10). This in turn gives the upper and lower bar constant
states associated with dimensional solutions in the following order: equation (12)
gives

Using (36) and the value 8 gives

o (Jon ()= (2)

ElE



£ 3
S 3
£ 3
> wn
£ =]
3 < 4
Q
X X X > i
= mT
o
X I

///////,/r// X
NN AN

N
X RN
@D N\

=

<
A
A
<

al solution from Vg in the region



34 BLAKE TEMPLE AND ROBIN YOUNG

0 < y < @ by the transformations

, and x = ¢y,

and in the region < y < 0+0 by the transformations

z=zw, U:u—y7 and z=T+¢(y—0).
mz

After making the above substitutions into the right-hand side of the formula for Vg
in (95), we obtain one period of the dimensional periodic linearized solution Ug (z, t)
defined for (z,t) € [0,Z+z) x [0, 27). For example, by construction this solution will
satisfy the Rankine-Hugoniot relations at the entropy jumps x =T and x = 0,7 + z,
and hence at every entropy jump by periodicity. O

The linearized solution Ug(z,t) in dimensional variables is depicted in Figures 2
and 3, in the case § = § = 7/4. Note that the solution is described by an ellipse in
t at each fixed x, and note that this is the maximally symmetric case in which the
sound speed is commensurate with the period speed, and each characteristic returns
periodically after traversing eight entropy levels (that is, two spatial periods). The
states labeled in the characteristic diagram, Figure 2 in the (z,t)-plane, correspond
to the labeled states on the ellipses in state space, Figure 3.

In Figure 9, the characteristics of the dimensionless solution Vg in (y, t)-space are
depicted for the case @ = 7/(1 + v/5), § = m/+/7, a case in which the sound speed is
incommensurate, i.e., irrationally related to the speed of the period. In this case the
characteristics are quasiperiodic, and the balancing of rarefaction and compression
along characteristics is achieved by ergodic motion through the period.

6. The eigenvalues of the linearized operators. In this section we state and
prove some basic properties of the eigenvalues of the linearized operator M —7 : A —
A; cf. (48), (70). These properties will be used in the next section to obtain conditions
on the periods under which the linearized operator is nonresonant in the sense that
the operator is invertible on the orthogonal complement of the 1-mode solution V,
that we have constructed in the kernel of the operator; cf. (85). For example, in the
nonresonant case, the operator is amenable to a Lyapunov—Schmidt decomposition in
bifurcation theory [7].

To start, note that by Theorem 8 the eigenvalues of M (n#,nd, .J) are

(96) Xy =Ba £ VB2 -1,
where

B = Ba(0.8) = B(nd, nd),
and the function ( is defined by

J2+1

(97) B(01,02) = cos(1) cos(fz) — sin(6;) sin(6s),

and we can assume 0 < 61,60 < 2w. Thus

2

(98) By, = cos(nf) cos(nf) — ©— sin(n@) sin(n),
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where 6, 6 and J > 1 are parameters. In (74) we restricted ourselves to 0 < §+60 < T,

which we now view as fixed, but because, starting with such @ = (,0), the two-

dimensional angle n©® = (nf,nfd) goes out of this range, we must consider one full

period 0 < 601,05 < 27 of B(61,02), with J > 1 regarded as fixed. It is convenient to

work directly with f3,, rather than A\, and we will make use of the following lemma.
LEMMA 17. Let B € R. Then

V1B =1
99 —-14 21> Xr=——
(99) B VBT 2 Y
and

VIB+1]
100 + 1=+ 21> X =
(100) |3 VB | > EES

Proof. First, note that (100) follows from (99) by substituting — 3 for 8. To verify
(99), write

B-1: VP 1| = |VB-1xVE+1| VBT,

where we allow complex values of the square root. It suffices to show that

1
Ci(ﬂ)z‘vﬂ—li\/ﬂ‘f'l‘z\/ﬁ

holds for all g € R. But if 1 < 8 < oo, then we can estimate

o) =|VBT1F VA 1|2 |[VB+1- VBT

WB+1-VB-D(VB+1+VF-1)

VB+1++B-1
2 2

:\/B+1+\/ﬁ—1Z VB+1++/B+1
1

> =,
~ VIBI+1

as claimed. For the case —oco < 8 < —1, we have

Cx(8) = |VB+1F V-1,
where /8 +1=1i/|f| — 1 and /8 — 1 =i/|B| + 1 are both imaginary. In this case

we can estimate

C=(8) = |VIBT— 1% V1B + 1]
> |VIB=1- VIgT+ 1|
1

>77
- VIBlI+1
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where in the last line we have applied the result from the previous case. Consider
finally the case —1 < 8 < 1. In this case, /G+1>0and /8 —1=1iy/1— (3, so

’\/ﬁ—li\/ﬁ—kl’:’\/ﬁ—klii\/l—ﬁ‘

= |VB+D+1-5)| =2
1

>_ -
VBl +1

as claimed, thus establishing (99) and Lemma 17. 0

To address the resonance problem in the next section, we now define a convenient
change of angles that consolidates the functions 3, + 1 into a single function. That
is, let

T—0+6
6= —5—

3

|

(101) p="1"2"7

NI N[[D

)

so that (0,0) — (¢,%) defines a global regular invertible map from R? — R? with
inverse

0=¢—¢, 0=m—v—¢.
Note that this change of angles transforms our region of interest
0>0, 0>0 6+0<nm
into the region
o<y <op<m—1.

Define also
J-1

102 - -

(102) @ J+1
mapping J > 1 into 0 < @ < 1 with inverse
_1+Q
=10
The purpose of these changes of variables is evident in the following lemma.

LEMMA 18. Under the change of variables (101)—(102), for each n € N, we have

(103) J

L= (1" 8,(0.8) = 77 g6, ),
where

(104) 90(9,¥) = sin®(1h) — Q* sin®*(¢).
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Proof. We make repeated use of trigonometric identities. First, set
1 1
B(01,02) = cos(61) cos(02) — 3 <J + j) sin(61) sin(6s),
so that B3, = B(nd,nf), and use the abbreviations
c1 = cos(01/2), s1 =sin(61/2), co=cos(02/2), and sy =sin(b2/2).
Then using the double-angle formulas, we calculate
1+ 6(01,02) =1+ costy cosbs — J;le sin@; sinf,
= (012 + 812) (022 + 822) + (012 — 812) (022 — 822)
— % (2 S1 01)(2 59 02)

=2 (Cl 02—J81 82) (01 Co — 81 S2/J)

. 91 6‘2 . 6‘1 6‘2
c+—cos(2+2) and c-cos<2 2),

so that ¢1 ca = (c— +c¢4)/2 and s1 s2 = (¢c— —¢4)/2, and substituting in, we get, after
rearranging,

(105) L4 B0 02) = B (e — gt e ) (er+ Tt o).

Similarly, writing
0, 0 6, 0
S+ = sin (?1 + ?2) and s_ =sin <?1 - é) )

1—8(01,02) =2 (s1ca+ J c1 82) (81 ¢+ c1 82/J)

Thus, writing

we calculate

2
(106) = UHE (se =93t s) (se+ 95t s).
Now, making the substitution (102), (103) and using (104), (106) becomes
2 61 02 61 09
1 1- =" _gpl2-22+2
(07) ﬁ(01;02) 1_Q2 9Q 92 272+2>7

and using the identity cos(x) = — sin(z — 7/2), (105) becomes
o 2 6‘1 6‘2 T 6‘1 6‘2 ™

Finally, recall g, = B(nf1,n63) as we are calculating 1 — (—1)" ,,. Then for n
even, we can use (107) to get

n 2 7’L6‘1 n92 7’L6‘1 7’L6‘2
1‘“”@Ff:f%(7‘3*7 30
__2 by nby nmw mby | nbp  mm
T1-gr R\ Ty Ty Ty T

2
= 1-02 gq(né,n),

where we have used (101) and the fact that gg is even and periodic with period 7.
Similarly, for n odd, (108) gives the same result, and Lemma 18 is proved. d
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7. Resonances and small divisors. In order to obtain periodic solutions of a
nonlinear problem by perturbation from a known solution of a linearized problem by
bifurcation methods, a major step is to show that the linearized operator is invertible
on the orthogonal complement of the known solution. For example, this implies that
the bifurcation problem is amenable to a Lyapunov—Schmidt decomposition; cf. [7].
Assuming (89), (90) of Theorem 14, we look for further conditions on the period
O = (6, ) such that the operator M —Z : A — A is nonresonant in the sense that it
is invertible on the complement of the solution V, € A. That is, in light of (70), (67),
we seek parameter values © such that

(109) A =—1 and ME#£(-1)"

for each n > 2, where A\I are given by (96). The equality here is a solvability condition
for the linearized problem, while the inequalities represent an incommensurability or
nonresonance condition imposing restrictions on allowable values of 8 and .

From (98), for finite J > 1 we have

JP+1 (J+1)?

<
(110) Bl < 14 = =

so that, since 3, is bounded, we can bound AF — (=1)" away from zero by bounding
Bn away from (—1)". Thus the parameters 0, 6, and J, for which (75) holds, are
nonresonant provided that

Bn # (—=1)" for each n >2,

where 3, is given by (98)%.

In light of (101), the nonresonance condition (109) is recast in terms of the param-
eters ¢, ¥, and @ by the requirement that go(¢, 1) = 0, together with the condition
that gg(ne¢,ny) # 0 for all n > 2. In fact, we have the following lower bound.

LEMMA 19. For each n > 2, we have

(111) v = (D" = /9 (nd, ny)].

Proof. First, we use (103) in (110) to get

2 N2
(J+1* 2 - 3-Q

n 1< = _+1=—=
Bl +1< 57 AR preD

and now, referring to (70) and Lemmas 17 and 18, we get

T V14184

) 1— Q2
>\ solne )\ [
> \/lgq(ng, ny);

4Geometrically, the parameters will be resonant if the angles between states q as drawn in Fig-
ures 7 and 8 are rational multiples of § and § mod 7, respectively. In this case, the matrix M, would
have an eigenvalue of +1 and we would not expect the nth mode to perturb to a solution of the
nonlinear problem.
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since 0 < Q < 1 implies 3 — Q2 < 2. O

In order for the solution to be periodic at the linear level, we require that /\?E = -1,
or, equivalently,
(112) 90 (¢, ¢) = sin? ) — Q* sin® ¢ =0,
with

O<yp<op<m—vY and 0<Q<1.

Note that this equation, which is equivalent to (75), can be regarded as fixing one
parameter in terms of the other two.

The next lemma and its corollary, Theorem 21, state that the set of resonant
parameters has measure zero.

LEMMA 20. Almost every pair (¢, 1) satisfying 0 < ¢ < ¢ < w—1) is nonresonant.
That is, if we define Q by (113), then the set

H={($v) : In>1st gong,ny) =0}

has Lebesgue measure zero.
As a direct corollary we have the following theorem.
THEOREM 21. Let

E={0=(0,0):0,0>0, 0<6+0<m}.

Then there exists a set of full measure E* C E such that if © € E*, then © is
nonresonant in the sense that if J is given in terms of © by (75), then the eigenvalues
AE — (=1)" of the linearized operator M — I are nonzero for all n > 2.

Proof of Lemma 20. To start, eliminate @ from (112) to get

sin

sing’

(113) Q

Qo, ) =

and plug this into gg to get, for n > 1,

. 2
salnd. ) =sin() — (S22 s o)

— sin? 4 <sin2(n¢) 3 sinz(nd))) .

sin? ¢ sin” ¢

Now recall that the Chebyshev polynomials of the second kind are defined by

sin(m + 1)0
sin 6

(114) Sm(x) =

, where x = cos#,

these being polynomials of degree m with (distinct) roots in the unit interval. Thus
defining x4 = cos ¢ and zy = cost, we have, for n > 1,

go(ng,n) = sin® Y (Sy_1(zy) — Si_1(2s)).
We conclude that the pair (¢, 1)) is resonant if and only if

(115) S2_(xy)=S2_,(vy) for some n > 1.
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Now for any fixed ¢ and m, there are at most 2m values of x such that S2 (z) takes
on the value S2 (z4), i.e., at most 2m angles ¢ such that gg(m¢, mi)) vanishes.
Varying m, there are countably many angles 1 that are resonant with ¢. Thus for
fixed ¢, there is a countable (and thus measure zero) set of ¢ resonant with it. Now,
if H is the resonant set and y its characteristic function, then, by Fubini’s theorem,

(M) = /0 " /w oy

:/(Jﬂ/2/0¢xdwd¢+/ﬂ;/owxdwd¢
=0.

This directly implies Lemma 20 and Theorem 21. O
We now impose a further symmetry and, under this restriction, obtain explicit
bounds for gg(ne¢,ny). Since 0 < ¢ < ¢ < m — 1), we get the largest range of ¢ by
taking ¢ = 7/2. According to (101), this corresponds to taking § = 6, so the length
of the evolutions at the different entropy levels are the same. The following theorem
gives algebraic decay rates for the small divisors in the symmetric case ¢ = 7/2, 6 = 6.
THEOREM 22. Assume that

(116) bp=m/2, 6=0.

Then for almost every v € (0,7/2), there is a positive constant C' and exponent r > 1
such that the eigenvalues satisfy the estimate

O/
(117) P i e

nT

for all m > 2. In particular, if /7 is the irrational Toot of a quadratic equation, we
can take r = 1.
Proof. Using assumption (116), (113) implies

Q = siny.
To verify (117) we need to bound the function
Gn () = go(nZ,nip) = sin®(nip) — sin® ¢ sin®(ng).
Now for n even, say n = 2k, we have
(118) Goar (1) = sin®(2k1),
and for n odd,
Gony1(1) = sin®((2k + 1)1p) — sin® 1.
We can simplify these by trigonometric identities by writing
Gari1(¥) = (sin(2kip) costh + cos(2kih) siny)® — sin® ¢
= sin?(2k1)) (cos? ¢ — sin® ) 4 2sin(2kvp) cos(2kv) sinh cosp

sin(2kv) (sin(2kv) cos(2v) + cos(2k)) sin(21)))
(119) = sin(2ky) sin(2(k + 1)9).
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Thus, if we can find some ¥ € (0,7/2), exponent r > 1, and positive constant C' > 0
such that

: C
(120) |sin(ni)| > v

for each even n > 1, then for n odd we will also have

C? C?
Gn = |sin(n — 1 i 1 A
G ()] = [sin(n = 1) sin(n-+ 1o > s > 1
It follows from (111) that, for such ¢ and each n > 1,

X~ (1 2 VG > o

Thus it remains only to determine the angles 9 such that the lower bound (120) holds.
To this end, note that for x € [—7/2,7/2], we have

2||

|sinz| > —,
T

and thus also, if z — mn € [—7/2,7/2], then

2|z — mm|

(121) |sinz| = |sin(z — mm)| > > 2 dist(z/7, Z).

Recall that a Liouville number is a number £ € R which is close to a rational, in the
sense that for any integer r we can find a rational p/q such that

1
S
q q

see, e.g., [13]. These £ form a set of measure zero, and in particular, Liouville’s
theorem states that if £ is the irrational root of a rational polynomial of degree 7/,
then there is some constant C' > 0 such that

C
q”

(122) ‘5 - g‘ >

for all rationals p/q. In particular, if € is the irrational root of a quadratic equation,
we can take r’ = 2.

Now, if £ = /7 is not a Liouville number, then there are C = C(y)) > 0, 7' > 2
such that (122) holds for all rationals p/q, and, in particular, taking ¢ = n, we get

C
|__p|ZF

for all integers p, so that

nr'-1°

dist <%,Z) > L
™

Combining this with (121), (120) follows and the proof of Theorem 22 is com-
plete. a
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In the symmetric case ¢ = Z or § = 6, it follows from (118), (119) that the
solution is resonant if and only if 1/ /7 € Q, or, equivalently, /7 € Q. We relate this
observation to the effective wavespeed of solutions in the following theorem.

THEOREM 23. Characteristics return if and only if the group velocity, or speed
of wave crests, is rational. Moreover, in the symmetric case 6 = 8, the linearized
solution is resonant if and only if the period is commensurate with the sound speed,
i.e., if the characteristics return.

Proof. In the nondimensional system, the characteristic (phase) velocity and

effective (group) velocity are given by

(123) cp=1 and cg=9+Q,
T

respectively, (44). Thus, the (continued) forward characteristic through the point
(yo,to) is the line (y,to + 4 — yo). Since the solution is periodic with period 2 (6 + )
in space and 27 in time, this characteristic returns if and only if

(y:to+y — o) = (Yo, to) + (2p (0 +6),2 g )
for some integers p and ¢. This holds if and only if
y—y=2p@+60)=2qm,

or, using (123), if and only if ¢, € Q. By symmetry, the backward characteristics
satisfy the same conditions. Also note that one characteristic returns if and only if
all characteristics do so.
In the symmetric case # = § = 6, if 6 is a rational multiple of 7, then say
so that ¢ = =rT
q 2

0:

ESH kS
o[

According to (118) and (119), we get

Gag (V) = Gag1(Y) = G2g-1(¥) = 0,

so that these modes are resonant. It is interesting to note that these resonances always
occur in triples of consecutive modes. Indeed, even if ¢ is odd, it is not the gth mode
that is resonant, but the 2 gth mode. Conversely, if 6 is irrationally related to m, then
Gr(v) # 0 for all k£ > 1, and the solution is nonresonant. O

Referring back to Figure 2, we see that the characteristic pattern as drawn is
resonant, because the max / min characteristics return after four space periods, cor-
responding to the special parameter values

0=0=rm/4

On the other hand, the characteristic diagram shown in Figure 9 is nonresonant, and
we see that characteristics move ergodically around a period, with no characteristic
returning to itself.

Finally, we note that in the nonsymmetric case, we have

b=5 1)
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and it is quite possible to have ¢, € Q and still be nonresonant, provided that ¢ is an
irrational multiple of 7. For example, we could take 1 = 7/3, so ¢y = 1/3. It follows
that

sin(ny)
sin =0, 1

for each n, and by (115), our nonresonance condition becomes

, or —1

Sp—1(zg) #0 or =1,
or, equivalently,
sin(ng) # £sing or 0.

Noting that sin(n¢) = Im{e"?}, it follows that this nonresonance condition holds if
¢ is an irrational multiple of 7.

7.1. A simulation of small divisors in the nonsymmetric case. In this
subsection we address the small divisor issue in the nonsymmetric case with a numer-
ical simulation. To start, the next lemma characterizes the zero set of 3, (6,0) —(—1)"
in the general (nonsymmetric) case.

LEMMA 24. We have

(124) 9Q(¢,9) =0 iff ¥ =+hq(9),
where
(125) ho(¢) = arcsin(Q sin(¢)).

Proof. This follows directly from (104). O
It is clear from (104) that for each for 0 < @ < 1, gg is smooth, even, and periodic
with period 7 in both ¢ and 1, while by (125), hq is smooth, odd, 27 periodic, and

90(9,hq(8)) =0

for all ¢. Thus in these coordinates, the parameters ¢ and () are nonresonant provided
that, for each n > 2, we have

go(ne,np) #0, where ¢ = hg(d).
Now since gg has period 7 in ¢ and ¢, let © = (¢,9) € T, where
T=8"x S
is two copies of the circle S* of radius 7/2,
512{6‘ RS [—g,g) modw},
and define
9(8,Q) = 9q(©),
so that

g:T % (0,1) = [0,1].
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For the numerical simulation, let Ag(Q) denote the zero set of g at fixed @, so
that

40(@) ={oeT: g6,Q) =0},
so that by (124)

A(Q) ={0=(d,¥) : ¥ ==£hg(d)}.

We now identify the salient properties of the zero sets Ap(Q). Differentiating
ho(¢) = arcsin(@ sin ¢) gives

Qcos ¢
V1-Q%sin? ¢
" Q(l - QZ) sin ¢
126 h S AL Ay Sk o
(126) A= e

9] B sin ¢

@hQ((b) a V1-0Q32 sin2¢'

Thus the function ¥ = hg(¢) is an odd, increasing function for —3 < ¢ < %, and
takes the values ¢ = *arcsin@ at ¢ = £7; and for each @ € (0, 1) ho takeb ¢ >0
to ¥ > 0 and ¢ < 0 to ¢ < 0, while —hQtakes¢>0t0w<0and¢<0t01/1>0.
It follows from (126) that hg(¢) = arcsin(@) sin¢) continues smoothly to the curve
hq(¢) = —arcsin(@sin¢) at ¢ = £m/2. We record the salient properties of A¢(Q) in
the following lemma.

LEMMA 25. The zero set Ag(Q) in T consists of the union of two smooth curves

A(Q) = (¢, hq(9)) U (¢, —hq(9)), —m/2<¢ <7/2,

which is symmetric about the origin, and intersects itself only at the unique point
(0,0). Moreover, the curve Ag(Q) is monotone in @, and monotone and convez in ¢,
in each quadrant of T; and the length L(Q) of the curve Ay(Q) satisfies the uniform
bound

he(¢) =

(127) L(Q) <27+ 4arcsin@ < 4m.

Proof. These properties follow directly from (125) and (126). In particular, for
the estimate (127), use

<4/ \J1+ |0 d¢5<4/ (1+hip (6 )d¢

<271 4 4hg(m/2) = 2w + 4 arcsinQ < 4.

The curves ¢ = £hg(¢) that define the resonance sets Ay(Q) are drawn in Fig-
ure 10 for values of @ ranging from 0 < @) < 1. Figure 11 shows this zero set for the
special parameter values @Q = 3/4, © = (1+\/5’ h®(1+\/_))

It follows directly from Theorem 21 that © is almost always nonresonant. For the
purposes of this section, we record this in the following lemma.

LEMMA 26. There exists a set of full measure Ey C T,

(128) n{Er} = n%/2,
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/2

F1G. 10. The set Eg consisting of the curves ¢ = £hg(4), 0 < Q < 1.

such that if © € Eq, then Q(O©) € (0,1) is uniquely solvable by (112), and © is
nonresonant in the sense that

9(0,Q(0)) =0,
9(n®,Q(0)) #£0, n=>2.

Proof. By Lemma 25 we have that for Q, Q" € (0,1), Q # @',
Ao(Q) N Ao(Q") = {(0,0)}.

It therefore follows that for each © # (0, 0) there corresponds a unique value Q(©) €
(0,1) such that

O = (¢, —hq(¢)) or ©=(d hq(¢))

Solving for @ in the expression gg (¢, 1) = sin® ) — Q?sin® ¢ = 0 gives

sin? v B
sin’ ¢

sin

sin ¢

Q) =




46 BLAKE TEMPLE AND ROBIN YOUNG

44 11

<25
6 +39
<20

15 48

<10 43

«24
5 ~38

<19 43 /2

<28

<18
*32

13 46
27 :
41 -8

<22
3 <36

Fi1G. 11. The first n < 50 iterates n® avoiding As(Q), for Q =3/4 and © = (ﬁ,h@(ﬁ))

for ¢ # 0, where we take the positive square root to get @ > 0. Since Q < 1,
we require 0 < |sin| < |sin¢g|. Thus the full measure of E; follows directly from
Theorem 21, and (128) then follows from

p{Ey =p{0=(¢,9) €T : 0< [y <|g|} =7%/2. D

To get a sense of the order of the small divisors for a typical nonresonant © in
the nonsymmetric case 0 # 6, we conclude with a discussion of Figure 11 which gives
a numerical simulation of the first fifty iterates n© for the special nonresonant value
e = (ﬁg’ h@(#)), @ = 3/4. Nonresonance implies that the iterates avoid the
zero eigenvalue set Ag(O) drawn as the four symmetric curves through the origin in
the figure.

The shaded region around A (O) is a neighborhood around Ay(©) such that the
nth eigenvalue \,, will be bounded by € ~ 0.05 from zero when the nth iterate n© lies
outside the shaded region. For these parameters, we have

min{|A,| : 1 <n <50} = || ~ 0.5019.

Thus, for example, the plot in Figure 11 shows that the eigenvalues satisfy the bound
in the first fifty modes.
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8. Conclusion. Our paper addresses the fundamental issue of why space-periodic
solutions of the full 3 x 3 nonlinear compressible Euler equations do not decay by shock
wave dissipation to the constant state average in each period. This is in contrast to
the celebrated work of Glimm and Lax for 2 x 2 systems [6], in which all space-periodic
solutions decay like 1/t. The present work addresses, quantitatively, issues raised by
Shefter and Rosales [22] and Vaynblat [28], in numerical simulations that indicate the
existence of some mechanism which allows for nondecaying solutions, and thus allows
for dissipation free transmission of sound waves.

In our previous paper [26], we described the simplest physical mechanism by
which shock formation and subsequent decay of solutions can be prevented. Simply
stated, the presence of a varying entropy field leads to multiple reflections of simple
waves, which can be aligned in a wave pattern in which compression and rarefaction
are balanced along characteristics. This means that before any compression can form
a shock, multiple interaction effects cause the wave to become rarefactive.

In this paper we derive closed form expressions for linearized solutions that realize
the simplest possible wave pattern, identified in [26], that formally balances compres-
sion and rarefaction along characteristics. The results thus lend support to the claim
that this wave pattern is also physically realized in nearby exact solutions of the fully
nonlinear equations. The claim is further supported by the demonstration that for
almost every period, the linearized operator (defined by the eigenvalue problem that
expresses periodicity) is monresonant in the sense that it is invertible on the com-
plement of a one-dimensional kernel, with algebraic bounds on eigenvalues in certain
special symmetric cases.

These results establish a framework for a new small divisor problem in bifurca-
tion theory which, even without a complete mathematical proof, argue strongly for
the existence of nearby time-periodic nonlinear solutions that have the same wave
structure entailed by the linearized solutions. For example, the bifurcation problem
is of quasilinear type, and so is beyond the direct application of known results, but
similar problems have been resolved in the semilinear setting with the same estimates
on the divisors, and weaker results on the structure of the kernel; cf. [2]. Moreover,
our estimates on the spectrum of the linearized operator imply the bifurcation prob-
lem is amenable to a Lyapunov—Schmidt decomposition, an important first step in
the resolution of the general problem [7].°

In addition, these linearized time-periodic solutions have reasons to be interesting
in their own right, not the least of which is the discovery of new phenomena when the
sound speed is incommensurate with the period. That is, the wave crests propagate
at the speed of the period (group velocity), not the sound speed (phase velocity),
and these are irrationally related. The consistency of this possibility at the linearized
level comes naturally out of the analysis, and indicates chaotic motion of sound wave
trajectories relative to the solution periods. This then identifies a new ergodic way
in which nearby nonlinear solutions can find a balance between compression and
rarefaction along characteristics. Interestingly, we then discover that the operator is
nonresonant only in case the wave speed is incommensurate with the period. Thus, for
example, if the resonances are not just anomalies of the linearized problem, it suggests
that this incommensurability is required for perturbation to nonlinear solutions.

Finally, we make some comments regarding the physical significance of these so-

5The authors develop the Lyapunov-Schmidt reduction and its implications to this bifurcation
problem in detail in a forthcoming paper [27], and its full resolution is the topic of our ongoing
research.
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lutions. First, the importance of solutions of such special structure to actual sound
wave propagation in nature, and second the issue of the stability of these waves. Our
view is that these new time-periodic structures are fundamental because they display,
in the simplest consistent example, the mechanism by which dissipation free sound
wave transmission is possible in the compressible Euler equations. Thus they anchor
a paradigm for a much more general phenomenon, that of balancing compression and
rarefaction along characteristics. We expect the analysis can be extended tremen-
dously (for example, to arbitrary numbers of entropy jumps, and possibly the limit to
smooth entropy profiles) and that it might eventually apply even to random entropy
fields, which may be more relevant to actual physical sound wave propagation.

Regarding the issue of stability, our view is that it is the phenomenon (of bal-
ancing compression and rarefaction along characteristics) that is stable, rather than
the very restrictive class of solutions considered here. That is, under a space-periodic
perturbation from a periodic solution, the balance of compression and rarefaction
along characteristics will be broken, and the solution will evolve until a new balance
is established. Before this balance is achieved, some shock waves may form, causing
the entropy profile to evolve in time. It is our contention that the nonlinear waves
and entropy profile will continue to evolve in time, and evolution will proceed until a
new balance of compression and rarefaction along characteristics is established. We
expect this could be realized in some periodic or quasiperiodic fashion, and that for
nonconstant entropy profiles, it will be an extremely rare event that solutions will de-
cay to a constant state average in each period, as happens in the isentropic case. Thus
the simplest way compression and rarefaction can be balanced along characteristics
is of fundamental interest, independent of the special nature of solutions or stability
considerations. In fact, the connections between unstable solutions, period-doubling,
and chaos in bifurcation theory lead us to believe that unstable solutions in this set-
ting could well provide a handle on new and even more interesting chaotic evolution
in the compressible Euler equations. Our view is that these new linearized solutions
open the door to interesting new conjectures, and provide intuition and a starting
point for the discovery of new phenomena.
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