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A One Parameter Family of Expanding Wave Solutions
of the Einstein Equations that induces

An Anomalous Acceleration
into the

Standard Model of Cosmology

Joel Smoller and Blake Temple

Abstract. I discuss joint work with Blake Temple in which we propose that
the anomalous acceleration of the galaxies might be due to the displacement
of nearby galaxies by a wave that propagated during the radiation phase of
the Big Bang. The new result reported here is the calculation of the third
order correction to redshift vs luminosity by an application of Etherington’s
Theorem.

1. Introduction

The anomalous acceleration of the galaxies was first observed in 1998-1999 from
accurate measurements of the recessional velocity of distant galaxies based on Type
1a supernova data. The data confirmed that galaxies are receding from us at an
accelerated rate relative to the Standard Model of Cosmology based on Friedmann-
Robertson-Walker spacetimes (FRW). The current explanation by physicists pre-
serves the FRW framework and the Cosmological Principle by adding a correction
term called the Cosmological Constant to Einstein’s original equations. Dark En-
ergy, the physical interpretation of the cosmological constant, is then an unknown
source of anti-gravitation which, to account for the anomalous acceleration, must
account for some seventy-three percent of the energy density of the universe.

In this talk I describe authors’ recent work in [17] and [20] in which we derive
a one parameter family of self-similar expanding wave solutions of the Einstein
equations of General Relativity (GR) that contain the Standard Model during the
radiation phase of the Big Bang. I then discuss our cosmological interpretation of
this family, and explore the possibility that these self-similar waves might account
for the anomalous acceleration of the galaxies without the Cosmological Constant
or Dark Energy (see [20] for details). Our premise is that the Einstein equations of
GR during the radiation phase form a highly nonlinear system of wave equations
that support the propagation of waves, and [17] is the culmination of our program
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to discover waves that perturb the uniform background Friedmann universe, (the
setting for the Standard Model of cosmology), something like water waves perturb
the surface of a still pond.

In Einstein’s theory of general relativity, gravitational forces are just anomalies
of spacetime curvature, and the propagation of curvature through spacetime is
governed by the Einstein equations. The Einstein equations during the radiation
phase, (when the equation of state simplifies to p = ρc2/3), form a highly nonlinear
system of conservation laws that support the propagation of waves, including
compressive shock-waves and self-similar expansion waves. Yet since the 1930’s,
the modern theory of cosmology has been based on the starting assumption of
the Copernican Principle, which restricts the whole theory to the Friedmann
spacetimes, a special class of solutions of the Einstein equations which describe
a uniform three space of constant curvature and constant density evolving in time.
Our approach has been to look for general relativistic waves that could perturb a
uniform Friedmann background.

The family of GR self-similar expanding waves derived in [17] satisfy two
important conditions: they include and perturb the Standard Model of Cosmology,
and they take the form of non-interacting time asymptotic wave patterns during
the radiation phase of the Big Bang when a mechanism is in place for the decay
of complicated solutions to simple wave forms. That is, quantitative theories of
Lax and Glimm describe how solutions of conservation laws decay in time to self-
similar wave patterns, explaining how entropy, shock-wave dissipation and time-
irreversibility, (concepts originally understood only in the context of ideal gases),
could be given meaning in general systems of conservation laws, a setting much
more general than gas dynamics. (This viewpoint is well expressed in the celebrated
works [12, 7, 8]). The conclusion: Shock-waves introduce dissipation and increase
of entropy into the dynamics of solutions, and this provides a mechanism by which
complicated solutions can settle down to orderly self-similar wave patterns, even
when dissipative terms are neglected in the formulation of the equations. A rock
thrown into a pond demonstrates how the mechanism can transform a chaotic
“plunk” into a series of orderly outgoing self-similar waves moments later–but the
self-similar waves here are more like the uniform expansion set in motion by a
tsunami. As a result, our new construction of a family of GR self-similar waves
that apply when this decay mechanism should be in place, received a good deal of
media attention when it came out in PNAS, August 2009.

The expanding wave solutions in our family are determined by a single param-
eter a, the acceleration parameter, which is normalized so that at a = 1 the solution
reduces exactly to the critical k = 0 FRW spacetime of the Standard Model with
pure radiation sources. When a �= 1, we show that solutions look remarkably sim-
ilar to k = 0 FRW, and prove that the spacetimes in the family are distinct from
all the other non-critical FRW spacetimes k �= 0, so the critical FRW spacetime
during the radiation phase is characterized as the unique spacetime lying at the
intersection of these two one parameter families. More importantly, adjustment of
the free parameter a speeds up or slows down the expansion rate relative to the
Standard Model according to whether a > 1 or a < 1, respectively. Based on this,
we argue that these self-similar waves can account for the leading order quadratic
correction to redshift vs luminosity observed in the super nova data, without the
need for Dark Energy.
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Temple first proposed the idea that the anomalous acceleration might be
accounted for by a wave in the talk Numerical Shock-wave Cosmology, New Orleans,
January 2007, and he set out with students to simulate such a wave numerically.
While attempting to set up the numerical simulation of such a wave, we discovered
that the Standard Model during the radiation phase admits a coordinate system
(Standard Schwarzschild Coordinates (SSC)) in which the Friedmann spacetime is
self-similar. That is, it took the form of a non-interacting time-asymptotic wave
pattern according to the theory of Lax and Glimm. This was the key. Once we
found this, we guessed that the Einstein equations in these coordinates must close
to form a new system of ODE’s in the same self-similar variable. After deriving
this system of equations, we verified that the standard model was represented as
one point in the family of solutions of these equations parameterized by the three
initial conditions. Symmetry and regularity at the center then reduced the three
parameter family to an implicitly defined one parameter family, one value of which
(a = 1) gives the critical Friedmann spacetime of the Standard Model during the
radiation phase of the Big Bang.

Our idea then: an expansion wave that formed during the radiation epoch,
when the Einstein equations obey a highly nonlinear system of conservation laws
for which we must expect self-similar non-interacting waves to be the end state
of local fluctuations, could account for the anomalous acceleration of the galaxies
without Dark Energy. Since we have explicit formulas for such waves, it is a verifiable
proposition.

In [17] we derived the equations for the expanding waves and recorded the
quadratic correction to redshift vs luminosity which they imply for an observer
fixed at the center of the wave. In the longer paper [20], which is to appear in
Memoirs of the AMS, we supplied details, and derived the third order correction
term. The third order correction term must take account of the dimming of light
from a distant galaxy due to the curvature of spacetime in the self-similar waves
when a �= 1. This is a subtle effect not present in the Standard Model, and not
effecting the calculation of the quadratic correction term. In fact the calculation of
the third order term was greatly simplified by Etherington’s Theorem, which was
brought to our attention by the referee of the paper. To start, we summarize the
results in [17] in the following theorems. (Unbarred coordinates (t, r) refer to FRW
co-moving coordinates, and barred coordinates (t̄, r̄) refer to (SSC).)

Theorem 1. Assume p = 1
3ρc2, k = 0 and R(t) =

√
t. Then the FRW metric

ds2 = −dt2 + R(t)2dr2 + r̄2dΩ2,(1.1)

under the change of coordinates

t̄ = ψ0

{
1 +

[
R(t)r

2t

]2
}

t,(1.2)

r̄ = R(t)r,(1.3)

transforms to the SSC-metric

ds2 = − dt̄2

ψ2
0 (1 − v2(ξ))

+
dr̄2

1 − v2(ξ)
+ r̄2dΩ2,(1.4)
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where

v =
1√
AB

ū1

ū0(1.5)

is the SSC velocity, which also satisfies

v =
ζ

2
,(1.6)

ψ0ξ =
2v

1 + v2 .(1.7)

Theorem 2. Let ξ denote the self-similarity variable

ξ =
r̄

t̄
,(1.8)

and let

G =
ξ√
AB

.(1.9)

Assume that A(ξ), G(ξ) and v(ξ) solve the ODE’s

ξAξ = −
[

4(1 − A)v
(3 + v2)G − 4v

]
(1.10)

ξGξ = −G

{(
1 − A

A

)
2(1 + v2)G − 4v

(3 + v2)G − 4v
− 1

}
(1.11)

ξvξ = −
(

1 − v2

2 {·}D

) {
(3 + v2)G − 4v +

4
( 1−A

A

)
{·}N

(3 + v2)G − 4v

}
,(1.12)

where

{·}N =
{
−2v2 + 2(3 − v2)vG − (3 − v4)G2}(1.13)

{·}D =
{
(3v2 − 1) − 4vG + (3 − v2)G2} ,(1.14)

and define the density by

κρ =
3(1 − v2)(1 − A)G

(3 + v2)G − 4v

1
r̄2 .(1.15)

Then the metric

ds2 = −B(ξ)dt̄2 +
1

A(ξ)
dr̄2 + r̄2dΩ2(1.16)

solves the Einstein-Euler equations G = κT with velocity v = v(ξ) and equation of
state p = 1

3ρc2. In particular, the FRW metric (1.4) solves equations (1.10)-(1.12).

The main point is that the coordinate mapping (1.2)-(1.3) taking co-moving
FRW coordinates over to SSC coordinates, explicitly identifies the self-similar
variables as well as the metric ansatz that together accomplish a self-similar
extension of the FRW metric. In particular, it is not evident from (1.1) alone that
self-similar variables even exist, and if they do exist, by what ansatz one should
extend the metric in those variables to obtain nearby self-similar solutions that
solve the Einstein equations exactly.

Removing time-scaling invariance and imposing regularity at the center, we
prove in [17, 20] that the family of solutions of (1.10)-(1.12) parameterized by
three initial conditions, reduces to an implicitly defined one parameter family of
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self-similar expanding waves determined by a parameter a normalized so that a = 1
is the FRW Standard Model. Thus, adjustment of parameter a away from a = 1
changes the expansion rate of the spacetimes in the family relative to the Standard
Model. The following theorem gives exact formulas for this family of spacetime
metrics in FRW coordinates, up to fourth order in the variable ζ which measures
fractional distance from the center of the wave to the Hubble length, (the distance
of light travel since the Big Bang)–again, the fractional distance ζ is measured back
in the comoving coordinates of the original FRW spacetime of the Standard Model,
c.f. [20]:

Theorem 3. The inverse of the coordinate transformation (1.2)-(1.3) maps
the one parameter family of self-similar spacetimes defined implicitly by equations
(1.10)-(1.12) over to the (t, r)-coordinate metric

ds2 = Fa(ζ)2
{
−dt2 + tdr2} + tr2dΩ2,(1.17)

where ζ = r̄/t, r̄ =
√

tr= distance as measured at fixed t in the Standard Model,

Fa(ζ)2 = 1 + (a2 − 1)
ζ2

4
+ O(1)|a − 1|ζ4,(1.18)

and the SSC velocity v maps to the (t, r)-velocity

w = −a2 − 1
8

ζ3 + O(1)|a − 1|ζ4.(1.19)

Again, ζ is distance at fixed time divided by time since the Big Bang in the
Standard Model, so ζ measures fractional distance to the Hubble length in FRW
comoving coordinates (t, r).

The resulting one parameter family of metrics is amenable to the calculation
of a redshift vs luminosity relation. The quadratic correction to redshift factor z,
first established in [17], is recorded in the following theorem which applies during
the radiation phase of the expansion:

Theorem 4. The redshift vs luminosity relation, as measured by an observer
positioned at the center of the expanding wave spacetimes (metrics of form (1.16)),
is given up to third order in redshift factor z by

d� = 2ct

{
z +

a2 − 1
2

z2 + O(1)|a − 1|z3
}

,(1.20)

where d� is luminosity distance, ct is invariant time since the Big Bang, and a is
the acceleration parameter that distinguishes expanding waves in the family.

Note first that (1.20) reduces to the correct linear relation of the Standard
Model when a = 1, c.f., [10]. When a �= 1, (1.20) shows that different solutions in
the family expand at different rates according to the value of the parameter a, and
adjustment of this parameter speeds up or slows down the expansion rate during
the radiation phase, thereby altering the redshift vs luminosity distance relation
relative to the FRW Standard Model at the quadratic level.

The specific redshift vs luminosity distance relations recorded in (1.20), while
correct for a radiation dominated universe, will not be the precise relations valid for
an observer in the later universe after it has cooled to a point where non-relativistic
matter dominates its energy density. But continuity of the subsequent evolution
with respect to parameters implies that the leading order correction associated
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with an arbitrary (small) anomalous acceleration observed after the radiation phase
of Standard Model, could be accounted for by adjustment of the parameter a.
Indeed, because the equation of state p = c2

3 ρ is the equation of state for both pure
radiation and matter in the extreme relativistic limit, the displacement of the co-
moving frames from the Standard Model in an expanding wave during the radiation
phase, would induce a corresponding displacement in the co-moving frames of the
matter field at the end of the radiation epoch, and this displacement would evolve
in time as the pressure drops. Thus, to conclude that (sufficiently small) leading
order corrections to redshift vs luminosity could be accounted for after the radiation
phase by adjustment of the parameter a, all that is required is that the quadratic
correction to the evolving redshift vs luminosity relation have a continuous and
monotonic dependence on a near a = 1 . Making this precise is the topic of the
authors current research.

2. Etherington’s Theorem and the Third Order Term

The third order correction to redshift vs luminosity is important because it is
at third order that the expanding wave theory can be tested against experiment. A
calculation based on Etherington’s theorem will appear in the authors’ forthcoming
paper [20]. We now record this improvement to (1.20) in the following theorem:

Theorem 5. The third order correction to (1.20) is given by

d� = 2ct

{
z +

a2 − 1
2

z2 +
(a2 − 1)(a2 + 2)

2
z3 + O(1)|a − 1|z4

}
.(2.1)

The main problem in determining the third order term in (5) is to estimate the
ratio Ca of an area A of light received from a distance source at a mirror (telescope)
positioned at the origin when a �= 1, to the corresponding area when a = 1, in the
limit A → 0, the limit expressing that the mirror is small relative to the distance
to the source. We call this the mirror problem. The factor Ca reflects spacetime
curvature in the expanding waves, and Ca = 1 in the Standard Model a = 1. Since
the expanding spacetimes when a �= 1 agree with the Standard Model near the
center up to second order in fractional distance to the Hubble length, it follows
that the effect of Ca enters the calculation of redshift vs luminosity only at third
order in redshift factor z, and hence it does not affect the second order correction
(5) first recorded in [17]. We now summarize the resolution of the mirror problem
by Etherington’s theorem, as will appear in [20].

To describe the mirror problem, consider light emitted from a distant source
located at (te, re) and received at a mirror of area A positioned orthogonal to
the line of sight at the center r = ζ = 0 of our spherically symmetric expanding
spacetimes (1.17), at a later time t = t0 > te > 0. The problem is to determine the
fraction fA of the area of the 2-sphere emitting radiation at r = re, t = te that
reaches the mirror. In the case of the Standard Model a = 1, the center of the FRW
(t, r)-coordinate system can be translated to any point. Taking the center to be
(te, re), light rays leaving the source at (te, re) will follow radial geodesics dΩ = 0.

Lemma 1. For the Stardard Model a = 1, the area of the unit 2-sphere emitting
radiation at r = re, t = te that reaches the mirror A is fA = A/4πt0r

2
e .

Proof: To see this, consider a packet of lightlike radial geodesics covering angular
area dΩ, emanating from an FRW coordinate center at r = re, and evolving up to
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an end at time t = t0. Such curves, being radial lightlike geodesics, traverse the
curves r̂ = 2

(√
t −

√
te

)
, θ = θ0 ∈ dΩ, te ≤ t ≤ t0, where r̂ is radial distance

measured from the new center re, and θ measures angles at center re. Now setting
ξ =

√
t−

√
t0, these curves project into the curves at time t ≡ t0 given by r̂ = 2 (ξ),

θ = θ0, 0 ≤ ξ ≤ re/2. Since in the Standard Model, t = t0 is flat Euclidean
space, the latter curves, being at fixed time t = t0, are just the straight lines in R3

emanating from center r̂ = 0, sweeping out the angular region dΩ at r̂ = 0 and the
area A at r̂ = re, r = 0. It thus follows that the area at the end is A = r̄2

edΩ, where
r̄e = R(t0)re =

√
t0re is spatial distance at received time t = t0. So the fractional

area is fA = dΩ/4π = A/4πt0r
2
e , as claimed. �

When a �= 1, the 3-spaces at fixed time are not homogeneous and isotropic
about every point like the a = 1 FRW, and the geodesics leaving the center of a
coordinate system centered at (te, re) will not follow dΩ = 0 exactly. So there is a
correction factor Ca required in the formula for fA when a �= 1; namely,

fA = CaA/4πt0r
2
e .

The determination of Ca is made simpler by Etherington’s Theorem [6], (also
referred to as the Reciprocity Theory, c.f. [13], pages 256-259), which we state as
follows:

Theorem 6. (Etherington, 1933): Assume that light emitted from a galaxy at
spacetime point G is received at spacetime point O with redshift z observed at O.
Then

δSO

dΩG
=

δSG

dΩO
(1 + z)2,(2.2)

where δSO is the (infinitessimal) area of a mirror positioned orthogonal to the
received light rays at O, dΩG is the angular area of the bundle of light rays emitted
at G that reach the mirror δSO, and δSG is a reciprocal area, positioned at G
orthogonal to the light rays from G to O, with dΩO the corresponding angular area
of backward time light rays emitted at O, whose backward time trajectories intersect
the area δSG.

The theorem applies to any gravitational spacetime metric subject only to the
condition that the bundle of light rays received at δSO completely surround O,
such that there are rays of the bundle in every direction from O within δSO, c.f.
Figure 16.2, page 256 of [13]. The result is motivated by the observation that the
backward time light rays from O are affected at the same spacetime points by the
same spacetime metric as the forward time light rays from G, so there must be a
relation between the corresponding areas and angles, and that relation is quantified
by (2.2).

To find Ca, let the light ray from G to O be the radial null geodesic taking
G = (te, re) to O = (t0, 0) for the spacetime metric (1.17) depending on parameter
a. Then Etherington’s theorem gives

δSa
O

dΩa
G

=
δSa

G

dΩa
O

(1 + za)2,(2.3)

where za is the redshift observed at O, depending on a through the metric (1.17).
Now since Ca is the ratio of an area δSa

O of light received at O when a �= 1, to the
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corresponding area δS1
O received at O when a = 1, it follows that

Ca =
δSa

O

δS1
O

.(2.4)

Dividing (2.3) at a �= 1 by (2.3) at a = 1 then gives the formula

Ca =
δSa

G

δS1
G

(1 + za)2

(1 + z1)2
.

Since angles are constant along radial geodesics of (1.17) emanating from the center
O, for every a, in both forward and backward time it follows that

δSa
G

δS1
G

= 1,

so

Ca =
(1 + za)2

(1 + z1)2
.

The mirror problem and the determination of Ca is the main effect of spacetime
curvature on the third order correction term in (2.1). See [20] for further details. �

3. Our Program for Future Research

Our program now is to obtain the quadratic and cubic corrections to redshift
vs luminosity induced by the expanding waves at present time, by evolving forward,
up through the p = 0 stage of the Standard Model, the corrections (2.1) for the
expanding wave perturbations at the end of the radiation phase. Matching the
leading order correction to the data will fix the choice of acceleration parameter,
and the third order correction, at that choice of acceleration parameter, is then a
verifiable prediction of the theory. This, again, is a topic of the authors’ current
research.

These results suggest an interpretation that we might call a Conservation Law
explanation of the anomalous acceleration of the galaxies. That is, the theory of Lax
and Glimm explains how highly interactive oscillatory solutions of conservation laws
will decay in time to non-interacting waves, (shock waves and expansion waves),
by the mechanisms of wave interaction and shock wave dissipation. The subtle
point is that even though dissipation terms are neglected in the formulation of
the equations, there is a canonical dissipation and consequent loss of information
due to the nonlinearities, and this can be modeled by shock wave interactions that
drive solutions to non-interacting wave patterns. Since the one fact most certain
about the Standard Model is that our universe arose from an earlier hot dense
epoch in which all sources of energy were in the form of radiation, and since it is
approximately uniform on the largest scale but highly oscillatory on smaller scales2,
one might reasonably conjecture that decay to a non-interacting expanding wave
occurred during the radiation phase of the Standard Model, via the highly nonlinear
evolution driven by the large sound speed, and correspondingly large modulus of
genuine nonlinearity3, present when p = ρc2/3, c.f. [14]. Our analysis has shown

2In the Standard Model, the universe is approximated by uniform density on a scale of
a billion light years or so, about a tenth of the radius of the visible universe, [22]. The stars,
galaxies and clusters of galaxies are then evidence of large oscillations on smaller scales.

3Again, genuine nonlinearity is in the sense of Lax, a measure of the magnitude of nonlinear
compression that drives decay, c.f., [12].
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that FRW is just one point in a family of non-interacting, self-similar expansion
waves, and as a result we conclude that some further explanation is required as to
why, on some length scale, decay during the radiation phase of the Standard Model
would not proceed to a member of the family satisfying a �= 1. If decay to a �= 1 did
occur, then the galaxies that formed from matter at the end of the radiation phase,
(some 379, 000 years after the Big Bang), would be displaced from their anticipated
positions in the Standard Model at present time, and this displacement would
lead to a modification of the observed redshift vs luminosity relation. In short, the
displacement of the fluid particles, (i.e., the displacement of the co-moving frames in
the radiation field), by the wave during the radiation epoch leads to a displacement
of the galaxies at a later time. In principle such a mechanism could account for the
anomalous acceleration of the galaxies as observed in the supernova data.

If a �= 1, then the spacetime within the expansion wave has a center, and this
would violate the so-called Copernican Principle, a simplifying assumption generally
accepted in cosmology, at least on the scale of the wave (c.f. the discussions in [21]
and [1]). Moreover, if our Milky Way galaxy did not lie within some threshold
of the center of expansion, the expanding wave theory would imply unobserved
angular variations in the expansion rate. In fact, all of these observational issues
have already been discussed recently in [2, 1, 3], (and references therein), which
explore the possibility that the anomalous acceleration of the galaxies might be
due to a local void or under-density of galaxies in the vicinity of the Milky Way.4

Our proposal then, is that the one parameter family of general relativistic self-
similar expansion waves derived here are possible end-states that could result after
dissipation by wave interactions during the radiation phase of the Standard Model
is completed, and such waves could thereby account for the appearance of a local
under-density of galaxies at a later time.

In any case, the expanding wave theory is testable. For a first test, we propose
next to evolve the quadratic and cubic corrections to redshift vs luminosity recorded
here in relation (1.20), valid at the end of the radiation phase, up through the p ≈ 0
stage to present time in the Standard Model, to obtain the present time values of the
quadratic and cubic corrections to redshift vs luminisity implied by the expanding
waves, as a function of the acceleration parameter a. Once accomplished, we can
look for a best fit value of a via comparison of the quadratic correction at present
time to the quadratic correction observed in the supernova data, leaving the third
order correction at present time as a prediction of the theory. That is, in principle,
the predicted third order correction term could be used to distinguish the expanding
wave theory from other theories (such as dark energy) by the degree to which
they match an accurate plot of redshift vs luminosity from the supernove data, (a
topic of the authors’ current research). The idea that the anomalous acceleration
might be accounted for by a local under-density in a neighborhood of our galaxy
was expounded in the recent papers [2, 3]. Our results here might then give an
accounting for the source of such an under-density.

The expanding wave theory could in principle give an explanation for the
observed anomalous acceleration of the galaxies within classical general relativity,

4The size of the center, consistent with the angular dependence that has been observed
in the actual supernova and microwave data, has been estimated to be about 15 megaparsecs,
approximately the distance between clusters of galaxies, roughly 1/200 the distance across the
visible universe, c.f. [1, 2, 3].
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with classical sources. In the expanding wave theory, the so-called anomalous
acceleration is not an acceleration at all, but is a correction to the Standard
Model due to the fact that we are looking outward into an expansion wave. The
one parameter family of non-interacting, self-similar, general relativistic expansion
waves derived here, are all possible end-states that could result by wave interaction
and dissipation due to nonlinearities back when the universe was filled with pure
radiation sources. And when a �= 1 they introduce an anomalous acceleration
into the Standard Model of cosmology. Unlike the theory of Dark Energy, this
provides a possible explanation for the anomalous acceleration of the galaxies that
is not ad hoc in the sense that it is derivable exactly from physical principles
and a mathematically rigorous theory of general relativistic expansion waves. In
particular, this explanation does not require the ad hoc assumption of a universe
filled with an as yet unobserved form of energy with anti-gravitational properties,
(the standard physical interpretation of the cosmological constant), in order to fit
the data.

In summary, these new general relativistic expanding waves provide a new
paradigm to test against the Standard Model. Even if they do not in the end
explain the anomalous acceleration of the galaxies, one has to believe they are
present and propagating on some scale, and their presence represents an instability
in the Standard Model in the sense that an explanation is required as to why small
scale oscillations have to settle down to large scale a = 1 expansions instead of
a �= 1 expansions, (either locally or globally), during the radiation phase of the Big
Bang.
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