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Current theories of dissipation in the relativistic
regime suffer from one of two deficits: either their
dissipation is not causal or no profiles for strong shock
waves exist. This paper proposes a relativistic Navier–
Stokes–Fourier-type viscosity and heat conduction
tensor such that the resulting second-order system of
partial differential equations for the fluid dynamics of
pure radiation is symmetric hyperbolic. This system
has causal dissipation as well as the property that
all shock waves of arbitrary strength have smooth
profiles. Entropy production is positive both on
gradients near those of solutions to the dissipation-
free equations and on gradients of shock profiles.
This shows that the new dissipation stress tensor
complies to leading order with the principles of
thermodynamics. Whether higher order modifications
of the ansatz are required to obtain full compatibility
with the second law far from the zero-dissipation
equilibrium is left to further investigations. The
system has exactly three a priori free parameters χ , η, ζ ,
corresponding physically to heat conductivity, shear
viscosity and bulk viscosity. If the bulk viscosity is
zero (as is stated in the literature) and the total stress–
energy tensor is trace free, the entire viscosity and heat
conduction tensor is determined to within a constant
factor.

1. Introduction
How to incorporate finite speed of propagation into
theories of dissipation is a central theme of Applied
Mathematics. In particular, the second-order terms
that model dissipation in the classical Navier–Stokes–
Fourier (NSF) equations make them parabolic, which
leads to unbounded speeds in the limit of unbounded

2014 The Author(s) Published by the Royal Society. All rights reserved.
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wavenumbers. The most natural context in which to address this issue is Relativity, where
causality is a principle of physics, meaning that no signals propagate faster than light. The
purpose of this paper is to prove that a causal relativistic version of the NSF equations exists
for the fluid dynamics of pure radiation and to derive these equations from first principles.
Different from other proposals, we do not start from thermodynamics but from the requirements
of hyperbolicity, causality and shock structure, and then demonstrate compatibility, to significant
order, of the evolution equations with the second law of thermodynamics. A crucial ingredient
of our argument at a technical level is the use of the Hughes–Kato–Marsden notion of symmetric
hyperbolicity for second-order systems.

It has generally been believed for some time now that a causal version of the classical NSF
equations that describes viscosity and heat conduction in Relativity does not exist. As is well
known, the standard derivation of the NSF equations is based on augmenting the compressible
Euler equations by dissipation terms linear in velocity and temperature gradients and consistent
with isotropy and then imposing consistency with the second law of thermodynamics by
requiring that entropy production has the correct sign on all gradients. This then determines the
dissipation tensor to within three free parameters, namely the coefficients of heat conductivity
and shear and bulk viscosity, the three dissipation parameters of the NSF equations (cf. [1]). When
this argument is generalized to Relativity, one is led directly to the well-known Eckart–Landau–
Weinberg (ELW) viscosity and heat conduction tensor, first derived by Eckart [2], with equivalent
versions derived by Landau & Lifshitz [1] and Weinberg [3]. Like the classical NSF tensor, the ELW
dissipation tensor again is linear in velocity and temperature gradients and contains three free
parameters corresponding to heat conductivity and shear and bulk viscosity. Generally regarded
as the relativistic version of NSF, the ELW theory is the starting point for the relativistic theory
of dissipation. But like the classical NSF equations, the ELW equations are parabolic in nature,
and hence they admit infinite speed of propagation. This was recognized early on as a flaw in
the ELW theory, and the goal to repair the lack of causality in the ELW theory has stimulated
significant further research, including deep and important work by Israel, Stewart, Geroch and
Lindblom, among others, [4–6] and references therein. Most celebrated among them is the causal
theory of relativistic dissipation developed by Israel and Stewart. Building on a relativistic version
of Grad’s theory of moments, the Israel–Stewart Theory introduces additional state variables
and augments the conservation laws of mass, momentum and energy with additional evolution
equations. The net result is a theory of relativistic dissipation that is regarded as correct to
leading order asymptotically near equilibrium. On the other hand, in [7], it was shown that
the Israel–Stewart equations do not admit shock profiles for sufficiently strong shocks. The
situation is thus similar to that with non-relativistic dissipative fluids, for which Grad Theory
and its extensions [8,9] are particularly well justified near homogeneous states while the classical
NSF model is known to also capture very nonlinear behaviour with steep gradients, such as
shock waves [10].

Now it is a guiding principle of continuum physics that evolution equations should be
symmetric hyperbolic. Based on this, we started from the idea to use the theory of the second-order
symmetric hyperbolic systems to construct an NSF theory that would reconcile the requirements
of causality and existence of profiles for shocks of arbitrary strength. On the other hand, all of the
above-mentioned theories are based on the assumption that entropy production be positive on
all gradients, including gradients far from the inviscid limit,1 and early on we realized that we
could not, simultaneously, also meet this assumption. However, our view is that this assumption
is too stringent. Indeed, dissipative fluid dynamics is a perturbative theory, intended for small
dissipation, the case when gradients are close to those that occur in the inviscid limit. That is,
entropy production need not necessarily be positive on gradients far from this case. In this paper,
we introduce a general covariant ansatz for a symmetric dissipation tensor which, like ELW, is
linear in velocity and temperature gradients. We then impose the selection criterion that the
resulting second-order system of equations with dissipation be symmetric hyperbolic in the sense

1By inviscid limit, we mean the limit of vanishing viscosity and vanishing heat conduction.
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of Hughes, Kato and Marsden (HKM) [11]. In this most natural way, the equations are uniquely
determined to within the three free parameters of NSF. Remarkably, we find that for the resulting
dissipation tensor shocks of arbitrary strength do admit smooth profiles, and entropy production
is positive on gradients near the inviscid limit, including those profiles.

Symmetric hyperbolicity is a condition that should hold for some choice of dependent
variables and discovering the transformation to such variables is part of the challenge of verifying
symmetric hyperbolicity for a given system of equations. For this purpose, we incorporate the
classical Godunov variables [12] into our relativistic NSF setting. In theorem 2.1, we prove that,
for the equations of pure radiation, imposing the condition that the equations with dissipation,
written in Godunov variables, should be symmetric hyperbolic in the HKM sense in some Lorentz
coordinate system, determines a unique causal dissipation tensor. That is, this selection criterion
determines all coefficients in the ansatz in terms of the three free physical parameters of NSF, the
heat conductivity χ , the shear viscosity η and the bulk viscosity ζ . The difference between the
resulting equations and the ELW equations only involves terms that would be negligible near
a classical limit but are significant for highly relativistic flows. Moreover, being tensorial, this
dissipation operator is consistent with General Relativity. In theorem 2.2, we demonstrate that the
resulting equations admit smooth profiles for all shock waves. Theorem 2.3 shows that entropy
production goes the right way sufficiently close to the inviscid limit, including shock profiles.
Finally, in theorem 2.4, we prove that all Fourier modes of the full, i.e. second plus first order,
linearized equations move at speeds less than the speed of light, and decay in forward time, for
all positive wavenumbers. This means that our system is causal and dissipative in the precise
sense of these terms. The decay of all modes in the same direction provides an arrow of time,
another expression of irreversibility. Taken together, these results demonstrate that, in the case of
pure radiation, a causal theory of dissipative fluid dynamics is possible as a hyperbolic analogue of NSF
theory that is consistent for shock waves and the vanishing-dissipation limit.2

The relation of our hyperbolic NSF theory to ELW theory is clarified in §3. The comparison with
other frameworks, notably the Israel–Stewart theory, is the subject of ongoing investigations. Our
theory is a second-order hyperbolic regularization of a first-order hyperbolic system of conservation
laws. See [13] for a prototypical example of such regularization.

As with classical NSF, our theory is a continuum mechanical framework for dissipation, and
as such does not determine the actual values of the free parameters χ , η, ζ . As usual, these
must be determined from additional symmetries and/or physics on small scales. A particularly
compelling choice of values considered in theorem 8.1 would induce implications for cosmology.

2. Statement of results
The relativistic Euler equations3 take the covariant form

∂

∂xβ
Tαβ = 0, (2.1)

where T is the 4 × 4 stress tensor

Tαβ = (ρ + p)uαuβ + pηαβ . (2.2)

We write ρ, p, θ and uα for energy density, pressure, temperature and velocity, respectively. It is
with the Stefan–Boltzmann law

ρ = 3p = aθ4 (2.3)

2We actually wonder whether these equations might not be valid also far from the inviscid limit, but this raises questions that
must be postponed to future work.
3In general contexts, where the pressure p is a function of both energy ρ and particle number density n, the particle
conservation equation ∂(nuβ )/∂xβ = 0 is needed to close system (2.1). We do not discuss this equation at all, as in the context
of pure radiation, it uncouples, both in the inviscid case and in our proposed model with dissipation (2.4) and (2.5). (It is
implicitly used in the derivation [3] of (7.1), however.)
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that equations (2.1) provide the fluid dynamic representation of pure radiation.4 We have chosen
this particular fluid model because of its relative simplicity and its importance. This is, in
particular, the setting for the radiation phase of the Standard Model of Cosmology, which lasts
from very shortly after the Big Bang up until the time when radiation does not dominate matter
anymore, some 105 years after the Big Bang [3]. During the radiation phase, the frames of isotropy
of the energy evolve like the particle paths of a perfect fluid with constant sound speed s = c/

√
3,

and thus one must wonder about the mechanisms for viscosity and heat conduction in this fluid
dynamical model. These mechanisms may have played a crucial role regarding isotropy of the
universe [14,15]. In addition, the compressible Euler equations are a highly nonlinear system of
conservation laws, and so shock waves form. Thus, the details of the dissipative mechanisms
must be known in order to correctly determine the internal structure of shock waves. While
significant, both at the fundamental level of the Stefan–Boltzmann law and for the understanding
of shock waves, the dissipation of pure radiation is difficult to measure directly, so its nature must
be deduced. In this paper, we derive, from first principles, a new causal relativistic dissipation
tensor for the fluid dynamics of pure radiation that incorporates viscosity and heat conduction
in a naturally unifying, genuinely covariant manner and has the property that all shock waves
possess a unique corresponding internal structure.

Motivated by the classical NSF description of non-relativistic fluid dynamics, the dissipative
effects owing to a positive mean free path of radiation quanta are incorporated by adding a
correction )Tαβ , linear in velocity and temperature gradients, to the perfect fluid stress tensor
Tαβ , thus modifying (2.1) to

∂

∂xβ
{Tαβ +)Tαβ} = 0. (2.4)

The starting point of our argument is the observation that if such a dissipation stress tensor were
assumed only to be symmetric and covariant, it could be given by5

−)Tαβ |0 =

⎛

⎜⎜⎝

κθ̇ + σ∇ · v χ
∂θ

∂xj
+ µv̇j

χ
∂θ

∂xi
+ µv̇i η(Sv)ij + (ζ∇ · v + ωθ̇ )δij

⎞

⎟⎟⎠, (2.5)

where v = (v1, v2, v3) denotes 3-velocity and

Sv = Dv + (Dv)T − 2
3
∇ · vI, (Dv)ij = ∂vi

∂xj
, (2.6)

and the coefficients χ , η, ζ , κ , σ ,ω, µ are, at this stage, arbitrary functions of θ . Equation (2.4)
generalizes the ELW ansatz.

The idea is now to leave the three coefficients χ , η, ζ , which correspond to heat conduction,
shear viscosity and bulk viscosity, free and determine κ , σ ,ω, µ as functions of χ , η, ζ . The first
purpose of the paper is to show that appropriate choices of κ , σ ,ω, µ lead to consistency with
both the requirement of causality and the theory of second-order hyperbolic systems.

Introducing the Godunov variable ψα = θ−1uα [12,16], we view our dissipation stress tensor
(2.5) as

−)Tαβ = Bαβγ δ(ψ)
∂ψγ

∂xδ
(2.7)

and write (2.4) as

Bαβγ δ(ψ)
∂2ψγ

∂xβ∂xδ
= Rα(ψ , ∂ψ). (2.8)

4For all what follows we set the Stefan–Boltzmann constant a to 1 by scaling.
5We use the symbol |0 to denote the representation of a tensor in the fluid’s rest-frame.
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Our main theorem is the following:

Theorem 2.1. Assume that the coefficients χ , η, ζ satisfy

χ > 0, η> 0 and ζ ≥ −1
3
η. (2.9)

Then, the second-order part of dissipative Euler equations (2.8),

Bαβγ δ(ψ)
∂2ψγ

∂xβ∂xδ
, (2.10)

is symmetric hyperbolic in the sense of Hughes–Kato–Marsden and causal if and only if

κ =ω= −χ and σ = −µ = 4
3
η + ζ . (2.11)

In this case, equations (2.8) are well posed. If moreover ζ = −η/3 exactly, then (2.10) is even sharply
causal.6

(See §4 for the precise definitions of causal and sharply causal.)
The second purpose of this note is to show that in the presence of appropriate dissipation,

shock waves can be represented as smooth travelling waves. With x ≡ (xα), a planar discontinuity

(0ρ,0 u)(x) = (ρ±, u±), ±xαNα > 0, NαNα > 0 (2.12)

is an inviscid shock wave if it satisfies the relativistic Rankine–Hugoniot conditions

[Tαβ ]Nβ = 0 (2.13)

and is supersonic with respect to its upstream while subsonic with respect to its downstream state
[17].7 We show:

Theorem 2.2. Assume that the coefficients χ , η, ζ , κ , σ ,ω, µ satisfy (2.9) and (2.11). Then, any inviscid
shock wave has a dissipative structure, i.e. there exists a unique smooth shock profile

(ρ, u)(x) = (R, U)(xαNα) with (R, U)(±∞) = (ρ±, u±) (2.14)

solving (2.4).

Thirdly, we prove that entropy production goes the right way sufficiently close to the inviscid
limit, including shock waves.

Theorem 2.3. Assume that the coefficients χ , η, ζ , κ , σ ,ω, µ satisfy (2.9) and (2.11) and have the
natural temperature dependence (cf. [3, p. 57])

χ = χ̂θ3, η= η̂θ4 and ζ = ζ̂ θ4. (2.15)

Then (i) The entropy production associated with (2.4) is strictly positive on all gradients (R′N, U′N)
of shock profiles (2.14), and (ii) on all gradients of solutions to dissipation-free equations (2.1), entropy
production is non-negative to leading order in the dissipation coefficients χ , η, ζ if and only if

χ̂ + 3ζ̂ − 2η̂≥ 0. (2.16)

Inequality (2.16) is well within the range of anticipated values of the dissipation parameters,
cf. [3] and §8.

Before we developed the perspective taken in this paper, we came to similar conclusions by
studying, instead of only the hyperbolicity of the second-order part, the dispersion relation of
the full linearization of (2.4) that takes account also of the first-order terms. This has led to the
following theorem that in the general case of assuming (2.9) and (2.11) (but not requiring (2.15) or
(2.16)), all linear plane waves with non-vanishing wavenumbers travel at subluminal speeds and
are damped in the sense of having strictly negative growth rates in time.

6We mention this case as an interesting limit, cf., however, §4.
7For results on inviscid shock waves in relativistic fluids we refer the reader to [18–20] and references therein.
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Theorem 2.4. Let )̃T denote (2.5) under the assumptions of (2.9) and (2.11). Then, each Fourier–
Laplace mode for the linearization of (2.4) about any constant state travels at a speed strictly slower than
the speed of light, and decays with time at a non-vanishing rate, for all wavenumbers ξ ̸= 0.

Theorem 2.4 completes our justification of )̃T by establishing that full system (3.2) is causal
and dissipative in the proper technical sense of these words. In particular, this demonstrates that
our evolution equations have an irreversible arrow of time.

We believe that theorems 2.1–2.4 of this paper8 together provide a convincing demonstration
of a causal hyperbolic analogue of NSF theory.

A comparison of our new theory of dissipation with the ELW theory, together with the general
covariant expression of our dissipation tensor (theorem 3.1), is presented in §3. Theorems 2.1
and 2.2 are proved in §§4 and 5, theorem 2.4 is proved in §6 and theorem 2.3 is postponed until
§7. In §8, theorem 8.1 introduces special choices of ratios among χ , η, ζ that seem particularly
compelling.

The use of symmetric hyperbolic systems of first order is common in classical and relativistic
continuum mechanics (cf. [6,9,16,21,22] and references therein). The second-order symmetric
hyperbolic approach has been applied by Hughes, Kato and Marsden to the vacuum Einstein
equations and to non-relativistic elasticity theory, both without dissipation [11]. As far as
we know, this paper is the first to use symmetric hyperbolicity as a selection criterion to
identify physically acceptable second-order differential operators that represent dissipation and
to establish well posedness of the resulting system of PDEs.

The essence of our argument, however, lies in the general ansatz (3.6) for the dissipation
stress tensor, which includes the terms with the ‘new’ coefficients κ , σ , µ,ω. Early on, Thomas
[23] and Weinberg [15] did consider some terms of this sort, but only the ‘µ-term’ appears in the
classical ELW theory (cf. [3, p. 55]). In our above notation, the ELW theory corresponds to the case
κ = σ =ω= χ − µ = 0. For our choice, κ , σ , µ,ω are all determined via (2.11), and we consider
the corresponding parts of (3.6) as relativistic corrections that express new higher order physical
effects. Note that these terms are precisely the ones that are negligible near the classical limit.

The approaches taken in this paper enable analogous findings for other fluids. The authors are
working this out in ongoing investigations.

3. Comparison with Eckart–Landau–Weinberg theory
Let

)T = )̃T = L̃(∂U, ∂θ ) (3.1)

denote our derived dissipation stress tensor (2.5) under assumptions (2.9) and (2.11), expressing
that L̃ is linear in velocity and temperature gradients. The tensor )̃T is determined by the
same three free parameters χ , η and ζ for heat conductivity, shear viscosity and bulk viscosity,
respectively, as ELW, but it is composed differently, and we are proposing the second-order system
of four equations

∇ · (T + )̃T) = 0, (3.2)

as the proper, causal, relativistic counterpart of the classical NSF theory. To compare with ELW
theory, we now explicitly give T, )̃T, )TELW and the resulting equations ∇ · (T + )̃T) = 0 and
∇ · (T +)TELW) = 0 by their representation in the fluid’s rest frame.

In the particle rest frame, the inviscid part T reduces to

T|0 =
(

ρ 4
3ρvi

4
3ρvj 1

3ρδ
ij

)

,

where v = (v1, v2, v3) is the 3-velocity and i, j = 1, 2, 3. Moreover, the general form of a covariant
dissipation stress tensor that is linear in velocity and temperature gradients and treats the

8The paper here was preceded by preliminary unpublished results on a special class of tensors (2.5) (H. Freistühler &
B. Temple 2011, unpublished note).
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temporal derivatives at the same level as the spatial ones is given in the particle rest frame by
(2.5) (cf. theorem 3.1). From (2.5), one recovers ELW theory by specifying κ = σ =ω= 0, µ = χ :

−)TELW|0 =

⎛

⎜⎜⎜⎝

0 χ

(
∂θ

∂xj
+ θ v̇j

)

χ

(
∂θ

∂xi
+ θ v̇i

)
η(Sv)ij + ζ (∇ · v)δij

⎞

⎟⎟⎟⎠
.

Our own proposal (2.11) yields

− )̃T|0 =

⎛

⎜⎜⎝

−χθ̇ + σ∇ · v χ
∂θ

∂xj
− σ v̇j

χ
∂θ

∂xi
− σ v̇i η(Sv)ij + (ζ∇ · v − χθ̇)δij

⎞

⎟⎟⎠ , σ = 4
3
η + ζ . (3.3)

Taking the divergence, and treating χ , η, ζ as arbitrary functions of the temperature, we conclude
that, written in the fluid’s rest frame at any given space–time point, the ELW equations reduce to

⎛

⎜⎜⎝
χ

(

)θ + 1
c
θ
∂2

∂t∂xj v
j

)

−(η∇ · (Sv) + ζ∇(∇ · v))

⎞

⎟⎟⎠= RELW, (3.4)

while our equations (3.2) reduce at that point to their simplest form,
⎛

⎜⎜⎜⎝

χ

(
1
c2
∂2θ

∂t2 −)θ

)

σ
1
c2
∂2v
∂t2 − (η∇ · (Sv) + ζ∇(∇ · v))

⎞

⎟⎟⎟⎠
= R̃, (3.5)

where the right-hand sides RELW and R̃ contain no higher than first derivatives. On the left, we
have written c instead of 1 for the speed of light c, to show that in the limit c → ∞ one recovers the
classical NSF dissipation. The reader can easily check that the ‘separation’ on the left-hand side of
(3.5) into one hyperbolic operator acting only on θ and another hyperbolic operator acting only
on v is due to cancellations of mixed derivatives involving the terms accompanied by σ in the first
row of (3.3) and the terms accompanied by χ in the second row. These terms thus do not influence
the leading order part of the equations. But as χ and σ depend on the temperature, these terms
do give rise to quadratic gradient terms in the nonlinear problem, and therefore would indeed, if
our theory is correct, correspond to new physical effects.

We end this section with the following theorem showing that the general dissipation tensor
(2.5) (and hence )̃T) is fully covariant, and as such can be incorporated naturally into general
relativity.

Theorem 3.1. The tensor)T given in the particle’s rest frame by (2.5), takes the general covariant form

−)Tαβ ≡ uαuβP + (Hαγ uβ + Hβγ uα)Qγ + HαβR + HαγHβδWγ δ (3.6)

with

P = κuγ
∂θ

∂xγ
+ σ

∂uγ

∂xγ
, R =ωuγ

∂θ

∂xγ
+ ζ

∂uγ

∂xγ

and

Qα ≡ χ
∂θ

∂xα
+ µuβ

∂uα
∂xβ

, Wαβ ≡ η

(
∂uα
∂xβ

+
∂uβ
∂xα

− 2
3
ηαβ

∂uγ

∂xγ

)
,

where
Hαβ ≡ ηαβ + uαuβ .

Proof. The theorem is verified directly by expressing the above tensors in the fluid’s
rest frame. !
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4. Causal dissipation
Symmetric hyperbolicity, first introduced for first-order equations, is the most natural criterion
to guarantee finite speed of propagation and well posedness for systems of partial differential
equations. This property has indeed been regarded as a principle of continuum physics. We now
apply this principle to (2.4) and (2.5). Remarkably, the notion of symmetric hyperbolicity for
second-order systems introduced by Hughes et al. [11] turns out to be tailored for this purpose.

Building directly on [11], we call a tensorial differential operator

Bαβγ δ(ψ)
∂2ψγ

∂xβ∂xδ
(4.1)

symmetric hyperbolic in the sense of Hughes, Kato and Marsden (‘HKM hyperbolic’) if it satisfies the
symmetry condition

B̃αβγ δ = B̃γ δαβ , with B̃αβγ δ ≡ 1
2

(Bαβγ δ + Bαδγβ ), (4.2)

as well as the definiteness conditions

Bαβγ δHβHδVαVγ < 0 for all Vα ̸= 0, (4.3)

and
Bαβγ δNβNδVαVγ > 0 for all Vα ̸= 0, (4.4)

for
some Hβ with HβHβ < 0 and all Nβ ̸= 0 with NβHβ = 0. (4.5)

In that case, we also call any covariant system (2.8) of partial differential equations HKM
hyperbolic; such a system is symmetric hyperbolic in the sense of [11], when written in
coordinates obtained via a Lorentz transform that makes Hβ the direction of time.

We call an HKM hyperbolic operator (4.1) causal if (4.3) holds for all time-like Hβ ; we call it
sharply causal if (4.3) holds for all time-like Hβ and (4.4) holds for all space-like Nβ . Causality and
sharp causality express the additional requirements that the propagation speeds of the second-
order part are no larger than or are all identical to the speed of light, respectively. (Only) in the
latter case, (2.8) is symmetric hyperbolic in the sense of [11] in all Lorentz frames.

Lemma 4.1. For the dissipative Euler equations (2.8) with (2.5), symmetry condition (4.2) holds if

σ = −µ and ω= −χ . (4.6)

Proof. Starting with covariant form (3.6), and expressing derivatives as

∂θ

∂xδ
= θ2uγ

∂ψγ

∂xδ

and
∂uσ

∂xδ
= θHσγ ∂ψγ

∂xδ
,

we compute

Bαβγ δ = +uαuβ (κθ2uγ uδ + σθHγ δ) + Hαβ (ωθ2uγ uδ + ζθHγ δ) + χθ2(Hαδuβ + Hβδuα)uγ

+ µθ (Hαγ uβ + Hβγ uα)uδ + ηθ (HαγHβδ + HαδHβγ − ( 2
3 )HαβHγ δ)

= B̌αβγ δ + B̂αβγ δ

with

B̌αβγ δ = ((κ + ω + 2χ )θ2 + (σ + 2µ)θ )uαuβuγ uδ + χθ2uαuγ ηβδ + µθuβuδηαγ

+ ηθ (HαγHβδ + HαδHβγ − ( 2
3 )HαβHγ δ) + ζθHαβHγ δ

and
B̂αβγ δ = σθuαuβηγ δ + µθuαuδηβγ + ωθ2uγ uδηαβ + χθ2uβuγ ηαδ .
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We note that in any case

B̌αβγ δ = B̌γ δαβ .

If (4.6) holds, we also have
B̂αβγ δ + B̂αδγβ = 0,

and thus
B̃αβγ δ = B̃γ δαβ .

!

Lemma 4.2. Assume (2.9) and (2.11). Then the operator (4.1) is causal. It is sharply causal if and only
if ζ = −η/3.

Proof. Writing, by virtue of (2.11),

B̌αβγ δ = κθ2uαuβuγ uδ + χθ2uαuγHβδ + µθuβuδHαγ

+ ηθ (HαγHβδ + HαδHβγ − ( 2
3 )HαβHγ δ) + ζθHαβHγ δ ,

and contracting with N twice, we find that the directional dissipation tensor
NBαγ ≡ Bαβγ δNβNδ = B̌αβγ δNβNδ

has the rest-frame matrix representation

NBαγ |0 =
(
θ2χNβNβ 0

0 θ (ηNβNβδij +
(
ζ + η

3

)
(NiNj − N2

0δ
ij))

)

. (4.7)

Having eigenvalues

θ2χNβNβ =: λ0, θ (( 4
3 )η + ζ )NβNβ =: λ1, θ (−(( 4

3 )η + ζ )N2
0 + ηNiNi), (4.8)

this matrix is negative for all time-like Nβ . It is positive for all space-like Nβ if and only if ζ = −η/3.
!

Lemmas 4.1 and 4.2 obviously imply theorem 2.1.
Lemmas 4.1 and 4.2 obviously imply that choices (2.9) and (2.11) of theorem 2.1 determine

a symmetric hyperbolic system in the sense of HKM. Reversing the above argument, it is not
difficult to prove the converse is true as well. The well posedness assertion follows immediately
from the fundamental result of Hughes et al. [11].

5. Shock profiles
Remarkably, the symmetry and definiteness properties of Bαβγ δ are sufficient to show that all
shock waves have profiles.

From (2.4) and (2.7), we find that the possible profile Ψ of a shock wave ψ(x) =Ψ (xαNα) is
governed by the ODE

NβNδ(Bαβγ δ(Ψ )Ψ ′
γ )′ = Nβ (Tαβ (Ψ ))′ (5.1)

or
NβNδBαβγ δ(Ψ )Ψ ′

γ = NβTαβ (Ψ ) − qα , (5.2)

with qα a constant of integration. Assume now without loss of generality that Nβ = δβ1 and

qα =Ψ α = 0 for α = 2, 3.

Then it suffices to consider (5.2) with all indices running only from 0 to 1. Using (4.7) and (4.8),
we find that (5.2) reads

λ0Ψ
′
0 = 4

3ρu0u1 − q0 = + 4
3 (ΨβΨ β )−3Ψ0Ψ1 − q0 ≡ f0(Ψ0,Ψ1)

and λ1Ψ
′
1 = 4

3ρu1u1 + 1
3ρ − q1 = − 4

3 (ΨβΨ β )−3Ψ1Ψ1 + 1
3 (ΨβΨ β )−2 − q1 ≡ f1(Ψ0,Ψ1).

⎫
⎬

⎭ (5.3)
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We analyse the phase portraits of this family of planar dynamical system on its natural domain of
definition Ω = {(Ψ0,Ψ1) ∈ R2 :Ψ0 > |Ψ1|}.

Lemma 5.1. System (5.3) has at most two rest points. It has exactly two if and only if q is timelike. In
that case, the two rest points are connected by a heteroclinic orbit.

Proof. The requirement f0(Ψ0,Ψ1) = f1(Ψ0,Ψ1) = 0 is equivalent to

ρ2 = 9
16

q2
0

u2
1(1 + u2

1)
, sgn u1 = sgn q0, u0 = (1 + u2

1)1/2 (5.4)

and

16(−q2
0 + q2

1)u4
1 + (8q2

0 + 16q2
1)u2

1 − q2
0 = 0. (5.5)

It is easy to see that polynomial (5.5) in u2
1 has two positive roots indeed if and only if q2

0 > q2
1. We

assume this now. We also suppose that q0 < 0, i.e. the shock under consideration is a ‘1-shock’.
(The situation for q0 > 0, the situation is completely analogous; cf. [18].) One could now consider
the finite region bounded by the two nullclines Nj ≡ {(Ψ0,Ψ1) : fj(Ψ0,Ψ1) = 0}, j = 0, 1, and finish
the proof analogously to Gilbarg’s in the case of classical fluid dynamics [10].

As an alternative, we note that the right-hand side of (5.3) is the gradient of L :Ω → R,

L(Ψ0,Ψ1) = 1
3 (ΨβΨ β )−2Ψ1 − (q0Ψ0 + q1Ψ1).

Lax’s inequalities [24] imply that at one of the two rest points, a supersonic state Ψ−, the Hessian

∂2L
∂ψα∂ψγ

(ψ)

has two positive eigenvalues, while at the other rest point, a subsonic stateΨ+, this matrix has one
positive and one negative eigenvalue. Now, the bounded closed-level curves of L that surround
Ψ− cover a simply connected region Ω̃ ⊂Ω that has Ψ+ as a boundary point. Ψ− is an unstable
node, and thus the α-limit of that branch of the stable manifold of Ψ+ that lies in Ω̃ . !

Owing to the Rankine–Hugoniot conditions, every inviscid shock wave appears as a pair of
rest points of (5.3) for some value of qα . Theorem 2.2 is thus a direct consequence of lemma 5.1.

6. Subluminality and damping of plane waves
In this section, we give a proof of theorem 2.4. The purpose of theorem 2.4 is to provide an
independent justification of new equations (3.5) by demonstrating causality and dissipativity at
the level of modes. For this we now focus on linear plane waves, the Fourier–Laplace modes
associated with full linearizations, at any constant state, of our proposed new PDE system (3.2).
Here, full means that we do not restrict attention to the leading second-order part of the equations
but include the first-order acoustic part as well. We prove the subluminality and decay of all modes
for this mixed-order combination. Note that this is not an automatic consequence of theorem 2.1.
The proof consists in a careful analysis of the system’s dispersion relation.

Written out, the linearized equations read

{
3
∂θ

∂t
+ θ̄∇ · v

}
+
{

χ̂

(
∂2θ

∂t2 −)θ

)}

= 0

and
{

1
θ̄

∇θ + ∂v
∂t

}
+
{

σ̂
∂2v
∂t2 − (η̂∇ · Sv + ζ̂∇(∇ · v))

}

= 0,

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(6.1)

where θ̄ denotes the temperature at the constant state at which the linearization is taken, and
σ̂ = (4η̂/3) + ζ̂ .
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A Fourier–Laplace mode
(
ρ̂

v̂

)

eλt+iξ ·x =
(
ρ̂

v̂

)

eRe{λ}t ei(Im{λ}t+ξ ·x), (λ, ξ ) ∈ C × R3 (6.2)

solving (6.1) is called dissipative if Re{λ} ≤ 0; it is called strictly dissipative if Re{λ} < 0 and
dissipation-free or neutral if Re{λ} = 0. The speed of a mode is given by

s = − Im{λ}
|ξ |

;

it is called subluminal if s2 < c2; it is called luminal if s2 = c2.
The existence of a Fourier–Laplace mode (6.2) is equivalent to the dispersion relation

det M(λ, |ξ |) = 0 (6.3)

with

M(λ, ξ ) =
(

3λ iξ⊤

iξ λI

)

+
(
χ̂ (λ2 + |ξ |2) 0

0 N(λ, ξ )

)

(6.4)

with

N(λ, ξ ) = (σ̂ λ2 + η̂|ξ |2)I + (ζ̂ + 1
3
η̂)ξξ⊤. (6.5)

Note that, remarkably, the dispersion relation does not depend on the base state.
For any fixed ξ , the left-hand side of (6.3) is a polynomial of degree 8 in λ whose roots

λi(ξ ), i = 1, . . . , 8 are continuous functions we refer to as characteristic rates, which determine
subluminality and dissipativity. For convenience, we set χ̂ = 1, and to simplify notation we now
write η, σ instead of η̂, σ̂ . (The former can be achieved via a uniform scaling of space and time
variables.)

Lemma 6.1. The dispersion relation (6.3) factors as

Πσ
L (λ, |ξ |)(Πη,σ

T (λ, |ξ |))2 = 0

and thus decomposes into

0 =Πσ
L (λ, |ξ |) = (3λ+ λ2 + |ξ |2)(λ+ σ (λ2 + |ξ |2)) + |ξ |2 (6.6)

and
0 =Π

σ ,η
T (λ, |ξ |) = λ+ σλ2 + η|ξ |2. (6.7)

For any ξ ∈ R3 \ {0}, we decompose

C × C3 = L(ξ ) ⊕ L⊥(ξ ) with L(ξ ) ≡ C × Cξ , L⊥(ξ ) ≡ {0} × {ξ}⊥.

A mode (6.2) is called longitudinal if (ρ̂, v̂) ∈ L(ξ ); it is called transverse if (ρ̂, v̂) ∈ L⊥(ξ ). Relations
(6.6) and (6.7) are called the longitudinal and transverse dispersion relations, respectively.

Proof of lemma 6.1. If ξ = 0, this is immediate. Assume then that ξ ̸= 0. The restrictions of M(λ, ξ )
to its invariant spaces L(ξ ) and L⊥(ξ ) are given by the 2 × 2 matrices

(
3λ+ λ2 + |ξ |2 i|ξ |

i|ξ | λ+ σ (λ2 + |ξ |2)

)

and (
λ+ σλ2 + η|ξ |2 0

0 λ+ σλ2 + η|ξ |2

)

,

respectively. To confirm this, let

R =
(

1 0
0 R

)

,
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where R is a 3 × 3 rotation taking Rξ = (ξ , 0, 0) with ξ = |ξ | > 0, and note that RM(λ, ξ )R−1 is

⎛

⎜⎜⎜⎝

3λ iξ 0 0
iξ λ 0 0
0 0 λ 0
0 0 0 λ

⎞

⎟⎟⎟⎠
+

⎛

⎜⎜⎜⎝

λ2 + ξ2 0 0 0
0 σ (λ2 + ξ2) 0 0
0 0 σλ+ ηξ2 0
0 0 0 σλ+ ηξ2

⎞

⎟⎟⎟⎠
.

!

We start by showing that all transverse modes are strictly dissipative and subluminal. The
letter ξ continues to denote |ξ |.

Lemma 6.2. If Πη,σ
T (λ, ξ ) = 0 for some ξ > 0, then Re{λ} < 0 and |Im{λ}| < ξ .

Proof. In that case,

λ= 1
2σ

(−1 ±
√

1 − 4σηξ2),

from which Re{λ} < 0 is obvious, and
(

Im{λ}
ξ

)2
<
η

σ
≤ 1.

!

The next two lemmas state that no longitudinal mode can be luminal or neutral.

Lemma 6.3. For any σ > 0 and ξ > 0, Πσ
L (α ± iξ , ξ ) ̸= 0 for all α ∈ R.

Lemma 6.4. For any σ > 0 and ξ > 0, Πσ
L (iβ, ξ ) ̸= 0 for all β ∈ R.

Proof of lemma 6.3. As Πσ
L (., ξ ) has real coefficients, it suffices to show that

Πσ
L (α + iξ , ξ ) = 0 (6.8)

is not possible. Substituting α + iξ for λ in (6.6) and multiplying out gives

Πσ
L (α + iξ , ξ ) = σ (α + iξ )4 + (1 + 3σ )(α + iξ )3 + (3 + 2σξ2)(α + iξ )2

+ (1 + 3σ )ξ2(α + iξ ) + σξ4 + ξ2

= σ (α4 + 4α3iξ − 6α2ξ2 − 4αiξ3 + ξ4)

+ (1 + 3σ )(α3 + 3iα2ξ − 3α2ξ − 3αξ2 − iξ3)

+ (3 + 2σξ2)(α2 + 2iαξ − ξ2) + (1 + 3σ )ξ2(α + iξ ) + σξ4 + ξ2

= {·}Re + i{·}Im, (6.9)

where
{·}Im = {(4σα3ξ − 4σαξ3) + (1 + 3σ )3α2ξ + (3 + 2σξ2)2αξ}Im (6.10)

and

{·}Re = {σ (α4 − 6α2ξ2 + ξ4) + (1 + 3σ )(α3 − 3αξ2)

+ (3 + 2σξ2)(α2 − ξ2) + (1 + 3σ )ξ2α + σξ4 + ξ2}Re. (6.11)

Noticing the ξ3 term cancels in (6.11) and the ξ4 term cancels in (6.10), we obtain after
simplification

{·}Im = αξ (4σα2 + (1 + 3σ )3α + 6) (6.12)

and
{·}Re = −ξ2(4σα2 + 2(1 + 3σ )α + 2) + α2(σα2 + (1 + 3σ )α + 3). (6.13)

Thus, (6.8) is equivalent to {·}Im = 0 and {·}Re = 0. Setting (6.12) equal to zero leads to the condition

4σα2 + (1 + 3σ )3α + 6 = 0. (6.14)
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Setting (6.13) equal to zero and using (6.14) gives

4ξ2((1 + 3σ )α + 4) + α2((1 + 3σ )α + 6) = 0. (6.15)

Letting

γ = (1 + 3σ )α and δ = 4
9

3σ
(1 + 3σ )2

and observing that

max
σ>0

3σ
(1 + 3σ )2 = 1

4
,

we see that (6.8) is equivalent to the existence of γ ∈ R, δ ∈ (0, 1/9] such that

pδ(γ ) ≡ δγ 2 + γ + 2 = 0 and − 6 < γ < −4. (6.16)

However, as
pδ(−4) = 16δ − 2 ≤ 16

9 − 2 < 0

and
pδ(−6) = 36δ − 4 ≤ 36

9 − 4 = 0,

(6.16), and thus (6.8), is impossible. !

Proof of lemma 6.4. Substituting iβ for λ in (6.6) and multiplying out gives

Πσ
L (iβ, ξ ) = σβ4 − (1 + 3σ )iβ3 − (3 + 2σξ2)β2 + (1 + 3σ )ξ2iβ + σξ4 + ξ2

= {σβ4 − (3 + 2σξ2)β2 + (σξ4 + ξ2)}I + i{−(1 + 3σ )β2 + (1 + 3σ )ξ2}Im. (6.17)

Now Πσ
L (iβ, ξ ) = 0 requires {·}Re = {·}Im = 0, and we see {·}Im = 0 if and only if β2 = ξ2. Using this

in {·}Re gives
{·}Re = σβ4 − (3 + 2σβ2)β2 + σξ4 + β2 = −2β2 ̸= 0, (6.18)

because β2 = ξ2 ̸= 0. Thus, Πσ
L (iβ, ξ ) = 0 is impossible. !

The next two lemmas state that at least for a certain value of the wavenumber ξ and the
parameter σ , all longitudinal modes are subluminal and strictly dissipative.

Lemma 6.5. There exist σ > 0 and ξ > 0 such that Πσ
L (λ, ξ ) = 0 implies |Im{λ}| < ξ .

Lemma 6.6. There exist σ > 0 and ξ > 0 such that Πσ
L (λ, ξ ) = 0 implies Re{λ} < 0.

Proof of lemma 6.5. Fix σ = 1. As

Π1
L (λ, ξ ) = λ4 + 4λ3 + (3 + 2ξ2)λ2 + 4ξ2λ+ ξ4 + ξ2, (6.19)

the condition
Π1

L (λ, ξ ) = 0 (6.20)

reduces for ξ = 0 to
0 = λ4 + 4λ3 + 3λ2 = λ2(λ2 + 4λ+ 3)

with roots
λ0

1,2 = 0, λ0
3 = −1 and λ0

4 = −3. (6.21)

For sufficiently small ξ ≥ 0, the latter two perturb smoothly as simple real roots

λ3(ξ ), λ4(ξ ) < 0. (6.22)

To understand the perturbation behaviour of the double root λ0
1,2, note that for ξ > 0, a number λ

solves (6.20) if and only if

λ̂≡ λ

ξ
(6.23)

solves
0 = Π̂(λ̂, ξ ) ≡ λ̂4ξ2 + 4λ̂3ξ + (3 + 2ξ2)λ̂2 + 4λ̂ξ + ξ2 + 1. (6.24)
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For ξ = 0, equation (6.24) has the two roots

λ̂0
1,2 = ± i√

3
. (6.25)

As
∂Π̂

∂λ̂
(λ̂0

j , 0) = 6λ̂0
j ̸= 0, j = 1, 2,

they perturb smoothly as simple zeros λ̂0
j (ξ ) for small ξ ≥ 0. As

∂Π̂

∂ξ
(λ̂0

j , 0) = 8
3
λ̂0

j , j = 1, 2,

we find

(λ̂0
j )′(0) =

(∂Π̂/∂ξ )(λ̂0
j , 0)

(∂Π̂/∂λ̂)(λ̂0
j , 0)

= −4
9

< 0, j = 1, 2,

and thus
Re(λ̂1,2(ξ )) < 0 for small ξ > 0. (6.26)

Undoing the scaling (6.23), we find two smooth continuations

λ1,2(ξ ) = ξ λ̂1,2(ξ )

of the double root λ0
1,2, with

Re(λ1,2(ξ )) < 0 for small ξ > 0. (6.27)

Inequalities (6.22) and (6.27) imply the assertion. !

Proof of lemma 6.6. Keep σ = 1 and consider the four complex rates λj(ξ ), j = 1, 2, 3, 4 established
for small ξ > 0 in the last proof. The corresponding speeds

sj(ξ ) = −
Im{λj}
ξ

, j = 1, 2, 3, 4

have limits
s1,2(0) = ± 1√

3
and s3,4(0) = 0.

This implies that
s2

j (ξ ) < 1

for small ξ > 0. !

As the reader will have noticed, the rates λ1,2(ξ ) correspond, in the large-wavelength limit
ξ → 0, to pure acoustics.

Proof of theorem 2.1. Consider the simply connected parameter regime

Ω ≡ {(σ , η, ξ ) ∈ (0, ∞)3 : η≤ σ },

and on it the property

P(σ , η, ξ ) : for all λ ∈ C, Πσ
L (λ, ξ )Πσ ,η

T (λ, ξ ) = 0 implies Re{λ} < 0 and |Im{λ}| < ξ .

Lemmas 4.2–6.5 together with the continuous dependence of the solution set

Λσ ,η ≡ {λ ∈ C :Πσ
L (λ, ξ )Πσ ,η

T (λ, ξ ) = 0}

on (σ , η), imply that the set

Ω̃ ≡ {(σ , η, ξ ) ∈Ω : P(σ , η, ξ ) holds}

is actually identical with Ω . Now, lemma 4.1 yields that for any ξ ̸= 0 and λ ∈ C, (6.3) implies

Re{λ} < 0 and |Im{λ}| < |ξ |.

!
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7. Entropy production
We now study our new ansatz from a thermodynamic point of view. To prove theorem 2.3, note
that for pure radiation, the local entropy production rate [3, p. 54],

∂Sα

∂xα
= − 1

θ

∂uα
∂xβ

)Tαβ + 1
θ2

∂θ

∂xβ
uα)Tαβ , (7.1)

is given by the quadratic form

Q(∂θ , ∂v) ≡ − 1
θ2
∂θ

∂t
)T00|0 − 1

θ2

(
∂θ

∂xi + θ
∂vi
∂t

)
)Ti0|0 − 1

θ

∂vi

∂xj)Tij|0

= 1
θ2
∂θ

∂t

(

−χ ∂θ
∂t

+
(

4
3
η + ζ

)
∂vl

∂xl

)

+ 1
θ2

(
∂θ

∂xi + θ
∂vi
∂t

)(

χ
∂θ

∂xi
+ µ

∂vi

∂t

)

+ 1
θ

∂vi

∂xj η

(
∂vi

∂xj
+ ∂vj

∂xi
− 2

3
∂vl

∂xl δ
ij

)

+ 1
θ

∂vi

∂xj

(

ζ
∂vl

∂xl − χ
∂θ

∂t

)

δij

≡Q1(∂θ , ∂v) + Q2(∂θ , ∂v) + Q3(∂θ , ∂v) + Q4(∂θ , ∂v).

Q is obviously not non-negative on all gradients of arbitrary functions (θ , v); it directly follows
that one can construct initial data leading to negative entropy production at least for short times.
However, the latter does not necessarily rule our proposal out.

Lemma 7.1. On gradients solving the inviscid Euler equations at a point,

Q(∂θ , ∂v) ≡
(

1
2
η̂∥Sv∥2 + 2

9
(χ̂ + 3ζ̂ − 2η̂)(∇ · v)2

)
θ3.

Proof. As always (cf. [3]),

Q3(∂θ , ∂v) = 1
2
η̂θ3∥Sv∥2.

In the rest frame, the inviscid Euler equations read, at a point,

1
θ

∂θ

∂t
+ 1

3
∇ · v = 0

and
1
θ

∇θ + ∂v
∂t

= 0.

⎫
⎪⎪⎬

⎪⎪⎭
(7.2)

Using them, we find

Q2(∂θ , ∂v) = 0

and

Q1(∂θ , ∂v) + Q4(∂θ , ∂v) = 2
9

(χ̂ + 3ζ̂ − 2η̂)θ3(∇ · v)2.

!

Part (ii) of theorem 2.3 is an easy corollary of this; part (i) follows directly from

Lemma 7.2. Q is positive on the gradient of any plane-wave function ψ(x) =Ψ (xαNα) with space-like
direction of propagation Nα .

Proof.
∂Sα

∂xα
= Bαβγ δ

∂ψα

∂xβ
∂ψγ

∂xδ
= NB

αγ
Ψ ′
αΨ

′
γ > 0.

!
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Recall now that linear-dissipation ansatz (3.6) is based on a smallness assumption. This is often
expressed by the concept of vanishing viscosity, which is here the limit for ϵ↘ 0 in

∂

∂xβ
{Tαβ + ϵ)Tαβ} = 0. (7.3)

Especially, inviscid shock waves (2.12) appear as limits of viscous shock waves,

(0ρ,0 u)(x) = lim
ϵ→0

(ϵρ,ϵ u)(x) with (ϵρ,ϵ u)(x) = (R, U)
(

xαNα

ϵ

)
. (7.4)

Because of theorem 2.3, we expect that for our dissipation stress tensor (3.6), (2.9) and (2.11), the
vanishing-viscosity limit should be well behaved near any ‘entropy solution’ of the inviscid Euler
equations, with, in particular, corresponding nearby solutions of the dissipative Euler equations
having non-negative entropy production everywhere as soon as ϵ > 0 is small enough.

8. The viscosity of radiation?
The requirement (2.16) seems natural; cf. [3, p. 57]. Noting that

Tαα +)Tαα =)Tαα |0 = 2
3

(χ̂ + 3ζ̂ − 2η̂)∇ · v,

we end with the following now immediate observations.

Theorem 8.1.

(i) If )Tαβ is trace-free on inviscid gradients, i.e. if

χ̂ + 3ζ̂ − 2η̂= 0, (8.1)

the entropy production is given by

Q= 1
2
η̂θ3∥Sv∥2.

(ii) If moreover ζ = 0, then heat conduction χ and shear viscosity η are linked as

χ̂ = 2η̂.

In case (ii), all coefficients in (3.6) are uniquely determined up to one natural common constant
scale factor. Note that the literature provides strong reasons for the assumption ζ = 0 (see again
[3, p. 57]). To motivate (i), note that as the total stress–energy tensor Tαβ +)Tαβ of pure radiation
should ultimately derive from Maxwell tensors, and the inviscid stress tensor Tαβ is trace-free, the
assumption that)Tαβ be trace-free seems natural. Identity (8.1) implies, in particular, that exactly
pure rotations,

Dv = −(Dv)⊤,

and isotropic expansion/contraction,

Dv = kI,

are non-dissipative, and thus these would be preferred in the course of time. Theorem 3.1 would
thus appear to have implications for Cosmology, cf. [14,15].
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