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We give a constructive proof that coordinate trans-
formations exist which raise the regularity of the
gravitational metric tensor from C0,1 to C1,1 in a
neighbourhood of points of shock wave collision in
general relativity. The proof applies to collisions
between shock waves coming from different
characteristic families, in spherically symmetric
spacetimes. Our result here implies that spacetime
is locally inertial and corrects an error in our earlier
Proc. R. Soc. A publication, which led us to the false
conclusion that such coordinate transformations,
which smooth the metric to C1,1, cannot exist. Thus,
our result implies that regularity singularities (a
type of mild singularity introduced in our Proc. R.
Soc. A paper) do not exist at points of interacting
shock waves from different families in spherically
symmetric spacetimes. Our result generalizes Israel’s
celebrated 1966 paper to the case of such shock
wave interactions but our proof strategy differs
fundamentally from that used by Israel and is an
extension of the strategy outlined in our original Proc.
R. Soc. A publication. Whether regularity singularities
exist in more complicated shock wave solutions of the
Einstein–Euler equations remains open.

1. Introduction
The guiding principle in Albert Einstein’s pursuit of
general relativity (GR) was the principle that spacetime
should be locally inertial [1] (we also say locally Minkowski
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or locally flat). That is, an observer in free fall through a gravitational field should observe all
of the physics of Special Relativity, except for the second-order acceleration effects owing to
spacetime curvature (gravity). But the assumption that spacetime is locally inertial is equivalent
to assuming the gravitational metric tensor g is smooth enough so that one can pursue the
construction of Riemann Normal Coordinates at a point p, i.e. coordinates in which g is exactly
the Minkowski metric at p, such that all first-order derivatives of g vanish at p and all second-
order derivatives of g are bounded in a neighbourhood of p. However, the Einstein equations are
a system of partial differential equations (PDEs) for the metric tensor g coupled to the sources
and the Einstein equations by themselves determine the smoothness of the gravitational metric
tensor by the evolution they impose. Thus, the condition on spacetime that it be locally inertial at
every point cannot be assumed at the start, but must be determined by regularity theorems for the
Einstein equations.

The presence of shock waves makes this issue all the more interesting for the Einstein equations
with a perfect fluid source. In this case, the Einstein equations G = κT imply the GR compressible
Euler equations Div T = 0 through the Bianchi identities [2] and the compressible Euler equations
create shock waves whenever the flow is sufficiently compressive [3]. At a shock wave, the fluid
density, pressure, velocity and hence T are discontinuous, so that the Einstein equations imply
the curvature G must also become discontinuous at shocks. But discontinuous curvature by itself
is not inconsistent with the assumption that spacetime be locally inertial. For example, if the
gravitational metric tensor were C1,1 (differentiable with Lipschitz continuous first derivatives)
then second derivatives of the metric are at worst discontinuous, and the metric has enough
smoothness for there to exist coordinate transformations which transform g to the Minkowski
metric at p, with zero derivatives at p, and also bounded second derivatives [4]. Furthermore,
Israel’s theorem asserts that a spacetime metric of regularity C0,1 (i.e. Lipschitz continuous) across
a smooth single shock surface is lifted to C1,1 by the C1,1 coordinate map to Gaussian normal
coordinates, and this is smooth enough to ensure the existence of locally inertial coordinate frames
at each point [5].

Groah & Temple [6] set out a framework in which these issues can be addressed rigorously by
providing the first general existence theory for spherically symmetric shock wave solutions of the
Einstein–Euler equations, allowing for arbitrary numbers of interacting shock waves of arbitrary
strength. In coordinates where their analysis is feasible, standard Schwarzschild coordinates
(SSCs),1 the gravitational metric is only C0,1 at shock waves, and it has remained an open problem
as to whether the general weak solutions constructed by Groah and Temple could be smoothed
to C1,1 by coordinate transformation, as was proved by Israel for single shock surfaces [5].

In this paper, we partially resolve the open problem of Groah and Temple by proving there
do exist C1,1 coordinate transformations that lift the regularity of the gravitational metric tensor
from C0,1 to C1,1 at a point of shock wave interaction between shocks from different characteristic
families in spherically symmetric spacetimes. In [7], the authors introduced the idea of a regularity
singularity, a point in spacetime where the metric tensor is C0,1 but not C1 regular in any
coordinate system. Our result here is the first step in extending Israel’s theorem to interacting
shock waves, by proving that spacetime is indeed locally inertial and that no regularity singularity
exists at points of such shock wave collision. This negates our false conclusion in [7] that regularity
singularities exist at points of shock interaction, and the error in [7] is explained and corrected
in this paper (cf. lemma 7.1). The question whether regularity singularities can be created in
more complicated solutions of the Einstein–Euler equations, by more complicated shock wave
interactions, remains an open problem.

The existence of regularity singularities would be surprising for GR, where it is commonly
assumed that the gravitational metric tensor is at least C1,1. The metric regularity C1,1 is the
threshold regularity required for the existence of locally inertial coordinate frames, the existence
of which is essential for properties of shock waves in Minkowski spacetime to be recovered
in the limit of weak gravitational fields. The metric regularity C1,1 is a starting assumption in

1A spherically symmetric metric can generically be transformed to SSCs, cf. [2].
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the singularity theorems of Hawking and Penrose [8]. At a regularity singularity the metric
would be Lipschitz continuous but not C1 in any coordinate system, so discontinuities in the
metric derivatives would be present in every coordinate system, and this would open the door
for possible new gravitational effects. The authors will address the implications of regularity
singularities in a forthcoming paper.

To state our main result precisely, let gµν denote a spherically symmetric spacetime metric in
SSCs, where the metric takes the form

ds2 = gµν dxµ dxν = −A(t, r) dt2 + B(t, r) dr2 + r2 dΩ2. (1.1)

At the start either t or r can be taken to be timelike, and dΩ2 = dϑ2 + sin2(ϑ) dϕ2 is the line
element on the unit 2-sphere, cf. [6]. In §3, we make precise the definition of a point of regular shock
wave interaction in SSCs between shocks from different families. Essentially, this is a point in (t, r)-space
where two shock waves enter and leave a point p, such that the metric is Lipschitz continuous
across the shocks and smooth away from them, the Rankine–Hugoniont (RH) jump conditions
hold across each shock curve and are continuous up to the point of interaction p, derivatives of
all quantities are continuous up to the shock boundaries, and the SSC Einstein equations hold
weakly in a neighbourhood of p and strongly away from the shocks [9]. The main result of the
paper is the following theorem:

Theorem 1.1. Suppose that p is a point of regular shock wave interaction between shocks from different
families, in the sense that conditions (i)–(iv) of definition 3.1 hold, for an SSC metric gµν . Then the
following are equivalent:

(i) There exists a C1,1 coordinate transformation xα ◦ (xµ)−1 in the (t, r)-plane, with Jacobian Jµα ,
defined in a neighbourhood N of p, such that the metric components gαβ = Jµα Jνβgµν are C1,1

functions of the coordinates xα .
(ii) The Rankine Hugoniot conditions (3.4) and (3.5) hold across each shock curve in the sense of (v)

of definition 3.1.

Furthermore, the above equivalence also holds for the full atlas of C1,1 coordinate transformations, not
restricted to the (t, r)-plane.

Our proof of theorem 1.1 provides an explicit method for constructing the Jacobians of
(t, r)-coordinate transformations that smooth the components of the gravitational metric from C0,1

to C1,1 in a neighbourhood of p. In order to prove the equivalence in theorem 1.1, we characterize
all such Jacobians that lift the metric regularity. Our method of proof differs substantially from
the one used by Israel, the latter being based on studying the Einstein tensor in Gaussian normal
coordinates and concluding that the metric is C1,1 in these coordinates. The main ideas for the
proof of theorem 1.1 were already introduced in [7], but an error in the last section led us to
the wrong conclusion that metric-smoothing is not possible. In fact, §§2–6 of this paper mostly
coincide with the corresponding sections in [7]. In §7, we correct the error in [7] and outline the
proof of theorem 1.1.

Our assumptions in theorem 1.1 apply to shock wave interactions in which two timelike
shock waves enter and leave the point of interaction. In the case of a perfect fluid source, this
type of interaction is realized between two incoming shock waves from different characteristic
families, cf. [9]. Although points of shock wave interaction are straightforward to construct for
the relativistic compressible Euler equations in flat spacetime, and a general existence theory for
shock wave interactions in GR is given in [6], we know of no complete mathematically rigorous
construction of a point of shock wave interaction in GR sufficient to derive detailed structure at
such points. However, our assumptions regarding regular shock wave interaction in SSCs given in
definition 3.1 are straightforward, consistent with [6] and confirmed by the numerical simulations
in [10].
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In §3, we set out the framework of shock waves in GR and define what we call a point of regular
shock wave interaction in SSCs. In §4, we introduce a canonical form for functions C0,1 across a
hypersurface and write the RH conditions as a relation between first-order metric derivatives. In
§5, we derive necessary and sufficient conditions that Jacobians of C1,1 coordinate transformations
lift the regularity of the metric tensor from C0,1 to C1 at points on a single shock surface. This is
the so-called smoothing condition. In §6, we give a new constructive proof of Israel’s theorem for
spherically symmetric spacetimes, combining the results from §§4 and 5. For this, we first derive a
canonical form of the Jacobian which satisfies the smoothing condition and show that the freedom
to add an arbitrary C1-function to our canonical form suffices for the Jacobians to be integrable to
coordinate transformations. Sections 2–6 here agree with §§2–6 in [7], in principal.

In §7, we extend the above strategy to the case of shock interaction and outline the proof
of theorem 1.1. The content of this section is new and complete details can be found in §§7–10
of [11]. For the proof, we first derive the canonical form for the Jacobian satisfying the smoothing
condition across each of the shock curves. This is the source of the error in our original Proc. R.
Soc. A paper [7], since we incorrectly omitted terms which encode the presence of two shocks. As
in §6, we now need to prove that one can integrate the Jacobian to coordinates. This is achieved
by showing that the freedom to add a C1 function to the canonical form of the Jacobian suffices
to solve the integrability condition, Jµα,β = Jµβ,α , which is done as follows: choosing two of the free
functions arbitrarily (say Φt

1 and Φr
1), the integrability condition turns into a linear first-order

system of PDE’s of the form Ut + cUr = F(U) for the remaining two free functions U = (Φt
0, Φr

0)
as unknowns. The source term F(U) is non-local, depends on the restriction of U to the shock
curves and derivatives of U along the shocks, and is discontinuous at the shock waves. We first
prove existence of a C0,1 solution U, which by itself is not a sufficient smoothness for the resulting
Jacobian to meet the smoothing condition. We then use a bootstrapping argument to show that
U is indeed C1 regular if and only if the RH jump conditions hold. (Interestingly, there is an
apparent loss of smoothness across the characteristic which passes through the point of shock
wave interaction, even though this characteristic curve lies within the region of smoothness of the
SSC metric. The resulting metric is C1,1 but seems to be no smoother. This is a kind of mild new
irregularity by itself and further indicates the subtlety of the problem.) The above construction
gives us Jacobians which smooth the metric before and after the interaction takes place, but
to obtain the Jacobian in a spacetime neighbourhood of the point of interaction, we need to
match these two Jacobians across the surface t = 0, the time of shock collision. Thus, in the last
step we prove that one can choose the free functions at t = 0 appropriately for the metric in the
resulting coordinates to match across the t = 0 interface such that it maintains its C1,1 regularity.
Interestingly, again the RH conditions come in at this final step to ensure that this matching can
be done consistently. In this construction of the Jacobian several conditions, which appear over-
determined at the start, are consistent as a consequence of the RH jump conditions, giving us
confidence that all terms have now been accounted for.

2. Preliminaries
Let g denote a Lorentzian metric of signature (−1, 1, 1, 1) on a four-dimensional spacetime
manifold M. We call M a Ck-manifold if it is endowed with a Ck-atlas, a collection of four-
dimensional local diffeomorphisms from M to R4, such that any composition of two local
diffeomorphisms x and y of the form x ◦ y−1 is Ck regular. The mapping x ◦ y−1 is referred to
as a coordinate transformation. In this paper, we consider C1,1-manifolds.

Our index notation for tensors use Greek letters µ, ν, . . . ∈ {t, r, θ , ϕ} for SSCs (in which the
spacetime metric g is C0,1) and Greek letters α, β, . . . ∈ {0, 1, 2, 3} for transformed coordinates,
gαβ = (∂xµ/∂xα)(∂xν/∂xβ )gµν . We use the Einstein summation convention whereby repeated up–
down indices are summed over all values for the given indices. Tensors transform by contraction
with the Jacobian Jµα = ∂xµ/∂xα , the inverse Jacobian is denoted by Jαν , and indices are raised and
lowered with the metric and its inverse gµν , which transform as bilinear forms, gµν = JαµJβν gαβ . We
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use the fact that a matrix of functions Jµα is the Jacobian of a regular local coordinate transformation
if and only if the curls vanish, i.e.

Jµα,β = Jµβ,α and Det(Jµα ) ̸= 0, (2.1)

where f,α = ∂f/∂xα denotes partial differentiation with respect to the coordinate xα and Det(Jµα )
denotes the determinant of the Jacobian, cf. [2].

In this paper, we do not restrict to but are motivated by the Einstein–Euler equations,

Gµν = κTµν , (2.2)

which couples the metric tensor gµν to the undifferentiated perfect fluid sources

Tµν = (p + ρ)uµuν + pgµν , (2.3)

through the second-order Einstein curvature tensor Gµν = Rµν − 1
2 gµνR, where

div T = 0 (2.4)

follows from div G = 0. Here κ = 8πG, where G is Newton’s gravitational constant, ρ is the energy
density, ui the 4-velocity, and p the pressure, cf. [8].2 Equation (2.4) reduces to the relativistic
compressible Euler equations when gµν is the Minkowski metric, and the Euler equations close
when an equation of state (e.g. p = p(ρ)) is imposed. Shock waves form from smooth solutions of
the relativistic compressible Euler equations when the initial data is sufficiently compressive [9].

Across a smooth shock surface Σ , the RH jump conditions hold,

[Tµν ]nν = 0, (2.5)

where [ f ] = fL − fR denotes the jump in f from right to left across Σ , and nν is the surface normal.
The RH condition (2.5) is equivalent to the weak formulation of (2.4) across Σ , cf. [9].

In this paper, we restrict to time-dependent spherically symmetric metrics in SSCs where the
metric takes the form (1.1). The Einstein equations for a metric in SSCs are given by (cf. [6])

Br + B
B − 1

r
= κAB2rT00, (2.6)

Bt = −κAB2rT01, (2.7)

Ar − A
B − 1

r
= κAB2rT11 (2.8)

and Btt − Arr + Φ = −2κABr2T22, (2.9)

with

Φ = −BAtBt

2AB
−

B2
t

2B
− Ar

r
+ ABr

rB
+ A2

r
2A

+ ArBr

2B
.

Note that the first three Einstein equations in SSCs imply that the metric cannot be any smoother
than Lipschitz continuous if the source T is discontinuous (for example, Tµν ∈ L∞), and in this
paper, we make the assumption throughout that A and B are Lipschitz continuous, i.e. C0,1

functions of t and r.

2The Riemann curvature tensor introduced in [2] differs from the one used by us and in [8] by a factor of −1 which, in [2], is
compensated for by setting κ = −8πG. MAPLE uses the sign convention in [2] for the Riemann tensor, which is important to
keep in mind when computing the Einstein tensor for (2.6)–(2.9) with MAPLE.
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3. A point of regular shock wave interaction in standard Schwarzschild
coordinates between shocks from different families

In this paper, we restrict attention to radial shock waves, by which we mean hypersurfaces Σ

locally parametrized by

Σ(t, ϑ , ϕ) = (t, x(t), ϑ , ϕ), (3.1)

across which A and B are C0,1 and T in (2.3) satisfies (2.5). Then, for each t, Σ is a 2-sphere with
radius x(t) and center r = 0. Treating φ and θ as constant, we introduce γ , the restriction of a shock
surface Σ to the (t, r)-plane,

γ (t) = (t, x(t)) (3.2)

with normal 1-form

nσ = (ẋ, −1). (3.3)

For radial shock surfaces (3.1) in SSCs, the RH jump conditions (2.5) take the simplified form

[T00]ẋ = [T01] (3.4)

and

[T10]ẋ = [T11]. (3.5)

To generalize the above framework to collisions between shocks from different families, we
think of the incoming and outgoing branches of the two shock waves as four distinct timelike
shock surfaces, parametrized in SSCs by

Σ±
i (t, θ , φ) = (t, x±

i (t), θ , φ), (3.6)

with i = 1, 2, and where Σ−
i is defined for t ≤ 0 and Σ+

i for t ≥ 0. Assume Σ±
i intersect at t = 0,

that is,

x±
1 (0) = r0 = x±

2 (0),

for some r0 > 0. Restricted to the (t, r)-plane, Σ±
i are described by the shock curves

γ ±
i (t) = (t, x±

i (t)) (3.7)

with normal 1-forms

(n±
i )ν = (ẋ±

i , −1). (3.8)

We assume the γ ±
i are C3 with all derivatives extending to t = 0. Denoting with [·]±i the jump

across the shock curve γ ±
i the RH conditions now read,

[T00]±i ẋ±
i = [T01]±i (3.9)

and

[T10]±i ẋ±
i = [T11]±i . (3.10)

For the proof of theorem 1.1, it suffices to restrict attention to the lower (t < 0) or upper (t > 0)
part of a shock wave interaction that occurs at t = 0. That is, it suffices to consider the lower or
upper half plane in R2 separately,

R2
− = {(t, r) : t < 0} or R2

+ = {(t, r) : t > 0}, (3.11)

respectively. (We denote with R̄2
± the closure of R2

±.) Whenever it is clear that we restrict
consideration to R2

− or R2
+, we drop the superscript ± of the quantities introduced in (3.6)–(3.10).

 on May 17, 2015http://rspa.royalsocietypublishing.org/Downloaded from 



7
rspa.royalsocietypublishing.org

Proc.R.Soc.A471:20140834
...................................................

We now define ‘a point of regular shock wave interaction in SSCs between shocks from
different families’ as a point p where two shock waves collide, resulting in two outgoing shock
waves, such that the metric is smooth away from the shock curves and Lipschitz continuous
across each shock, allowing for a discontinuous Tµν and the RH condition to hold. In the special
case that Tµν describes a perfect fluid, this type of collision corresponds to an interaction of shock
waves in different characteristic families, cf. [9].

Definition 3.1. Let r0 > 0, and assume gµν to be an SSC metric in C0,1(N ), where N ⊂ R2 is
a neighbourhood of the point p = (0, r0) of intersection of the timelike shock curves γ ±

i , i = 1, 2,
introduced in (3.7). Let N̂ denote the open set consisting of all points in N not in the image of any
γ ±

i . Then, we say that p is a ‘point of regular shock wave interaction in SSCs between shocks from
different families’ if:

(i) The pair (g, T) is a strong solution of the SSC Einstein equations (2.6)–(2.9) in N̂ , with
Tµν ∈ C0(N̂ ) and gµν ∈ C2(N̂ ).

(ii) The limits of Tµν and of the metric derivatives gµν,σ exist on both sides of each shock
curve γ ±

i , including the point p.
(iii) The jumps in the metric derivatives [ gµν,σ ]±i (t) are C3 functions for all t ∈ (−ϵ, 0] or for all

t ∈ [0, ϵ).
(iv) The (upper/lower)-limits

lim
t→0

[ gµν,σ ]±i (t) = [ gµν,σ ]±i (0)

exist. The (upper/lower)-limits exist for all derivatives of [ gµν,σ ]±i .
(v) The stress tensor T is bounded on N and satisfies the RH conditions

[Tνσ ]±i (ni)σ = 0

at each point on γ ±
i (t), t ∈ (−ϵ, 0) or t ∈ (0, ϵ), and the limits of these jumps exist up to p as

t → 0.

The framework introduced above mostly agrees with our original setting in [7]. However, in
contrast to the above definition, in [7] we imposed the structure only on R2

− or R2
+ separately,

because there we looked for a contradiction, while here we look for a construction.

4. Functions C0,1 across a hypersurface
In this section, we give a precise definition of functions that are C0,1 across a hypersurface and
use this to derive a canonical form for such functions.

Definition 4.1. Let Σ be a smooth (timelike) hypersurface in some open set N ⊂ Rd. We
call a function f ‘Lipschitz continuous across Σ ’ (or C0,1 across Σ) if f ∈ C0,1(N ), f is smooth
( f ∈ C2(N \ Σ) suffices) in N \ Σ , and limits of derivatives of f exist and are smooth functions on
each side of Σ separately. We call a metric gµν Lipschitz continuous across Σ in coordinates xµ if
all metric components are C0,1 across Σ .

The main point of the above definition is that we assume smoothness of f away and tangential
to the hypersurface Σ . Note that the continuity of f across Σ implies the continuity of all
derivatives of f tangent to Σ , i.e.

[ f,σ ]vσ = 0, (4.1)

for all vσ tangent to Σ . Moreover, definition 4.1 allows for the normal derivative of f to be
discontinuous, that is

[ f,σ ]nσ ̸= 0, (4.2)

where nσ is normal to Σ with respect to some (Lorentz-) metric gµν defined on N .
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We can now clarify the connections between the Einstein equations and the RH jump
conditions (3.4) and (3.5) for SSC metrics that are only C0,1 across a hypersurface. To this end,
consider a spherically symmetric spacetime metric (1.1) given in SSCs, assume that the first three
Einstein equations (2.6)–(2.8) hold, and assume that the stress tensor T is discontinuous across a
smooth radial shock surface described in the (t, r)-plane by γ (t) as in (3.1)–(3.3). Condition (4.1)
across γ applied to each metric component gµν in SSC (1.1) then reads

[Bt] = −ẋ[Br] (4.3)

and

[At] = −ẋ[Ar] (4.4)

On the other hand, the first three Einstein equations in SSCs (2.6)–(2.8) imply

[Br] = κAB2r[T00], (4.5)

[Bt] = −κAB2r[T01] (4.6)

and [Ar] = κAB2r[T11]. (4.7)

Now, using the jumps in Einstein equations (4.5)–(4.7), we find that (4.3) is equivalent to the
first RH jump condition (3.4) (cf. Lemma 9, p. 286 of [4]), while the second condition (4.4)
is independent of equations (4.5)–(4.7), because At does not appear in the first-order SSC
equations (2.6)–(2.8). The result, then, is that in addition to the assumption that the metric be
C0,1 across the shock surface in SSCs, the RH conditions (3.4) and (3.5) together with the Einstein
equations (4.5)–(4.7) yield only one additional condition over and above (4.3) and (4.4), namely,

[Ar] = −ẋ[Bt]. (4.8)

The RH jump conditions together with the Einstein equations will enter our method in §§5–7 only
through the three equations (4.8), (4.3) and (4.4).

The following lemma provides a canonical form for any function f that is Lipschitz continuous
across a single shock curve γ in the (t, r)-plane, under the assumption that the vector nµ, normal
to γ , is obtained by raising the index in (3.3) with respect to a Lorentzian metric g that is C0,1

across γ . (Note that by definition 4.1, nµ varies C1 in directions tangent to γ . Here, we suppress
the angular coordinates.)

Lemma 4.2. Suppose f is C0,1 across a smooth curve γ (t) = (t, x(t)) in the sense of definition 4.1,
t ∈ (−ϵ, ϵ), in an open subset N of R2. Then there exists a function Φ ∈ C1(N ) such that

f (t, r) = 1
2 ϕ(t)|x(t) − r| + Φ(t, r), (4.9)

where

ϕ(t) =
[ f,µ]nµ

nσ nσ
∈ C1(−ϵ, ϵ), (4.10)

and nµ(t) = (ẋ(t), −1) is a 1-form normal to the tangent vector vµ(t) = γ̇ µ(t). In particular, it suffices that
indices are raised and lowered by a Lorentzian metric gµν which is C0,1 across γ .

In words, the canonical form (4.9) separates off the kink of f across γ (i.e. the C0,1 element of f )
from its more regular C1 behaviour away from γ : the kink is incorporated into |x(t) − r|, ϕ gives
the smoothly varying strength of the jump, and Φ encodes the remaining C1 behaviour of f .

In §7, we need a canonical form analogous to (4.9) for two shock curves, but such that it allows
for the Jacobian to be in the weaker regularity class C0,1 away from the shock curves. To this end,
suppose two timelike shock surfaces described in the (t, r)-plane by γi(t) such that (3.6)–(3.10)
applies. To cover the generic case of shock wave interaction, we assume each γi(t) is smooth (at
least C2) away from t = 0 and all derivatives extend continuously to t = 0. It suffices to restrict to
upper shock wave interactions in R2

+.
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Lemma 4.3. Let γi(t) = (t, xi(t)) be two smooth curves defined on I = (0, ϵ), for some ϵ > 0, such that
(3.6)–(3.8) hold. Let N be an open neighbourhood of p = (0, r0) in R2 and suppose f is in C0,1(N ∩ R2

+),
but such that f is C2 tangential to each γi with (4.1) holding. Then there exists a C0,1 function Φ defined
on N ∩ R2

+, such that

[Φt]i = 0 = [Φr]i, (4.11)

for i = 1, 2, and

f (t, r) =
∑

i=1,2

ϕi(t)|xi(t) − r| + Φ(t, r), (4.12)

for all (t, r) in N ∩ R2
+, where

ϕi(t) = 1
2

[ f,µ]i(ni)µ

(ni)µ(ni)µ
∈ C1(I), (4.13)

and (ni)µ(t) = (ẋi(t), −1) is the 1-form normal to v
µ
i (t) = γ̇

µ
i (t), for i = 1, 2, and indices are raised by a

Lorentzian metric C0,1 across each γi.

5. A necessary and sufficient condition for smoothing metrics
In this section, we derive a necessary and sufficient point-wise condition on the Jacobians
of a coordinate transformation that it lift the regularity of a C0,1 metric tensor to C1,1 in a
neighbourhood of a point on a single shock surface Σ . This is the starting point for our methods
in §§6 and 7. Proofs and further results can be found in §5 of [11].

We begin with the transformation law

gαβ = Jµα Jνβgµν (5.1)

for the metric components at a point on a hypersurface Σ for a general C1,1 coordinate
transformation xµ → xα , where, as customary, the indices indicate the coordinate system.
Jµα denotes the Jacobian of the transformation, that is, Jµα = ∂xµ/∂xα . Assume now that the metric
components gµν are only Lipschitz continuous with respect to xµ across Σ . Then differentiating
(5.1) in the direction w = wσ (∂/∂xσ ) we obtain

[ gαβ,γ ]wγ = Jµα Jνβ [ gµν,σ ]wσ + gµν Jµα [ Jνβ,σ ]wσ + gµν Jνβ [ Jµα,σ ]wσ , (5.2)

where [ f ] denotes the jump in the quantity f across the shock surface Σ . Thus, since
both g and Jµα are in general Lipschitz continuous across Σ , the jumps appear only on the
derivatives. Equation (5.2) gives a necessary and sufficient condition for the metric g to be C1,1

in xα coordinates. Namely, taking w = ∂/∂xσ in SSCs (5.2) implies that [ gαβ,γ ] = 0 for every
α, β, γ = 0, . . . , 3 if and only if

[ Jµα,σ ]Jνβgµν + [ Jνβ,σ ]Jµα gµν + Jµα Jνβ [ gµν,σ ] = 0. (5.3)

Note that if the coordinate transformation is C2, so that Jµα is C1, then the jumps in J vanish, and
(5.2) reduces to

[ gαβ,γ ]wγ = Jµα Jνβ [ gµν,σ ]wσ ,

which is tensorial because the non-tensorial terms cancel out in the jump [ gαβ,γ ]. It is precisely the
lack of covariance in (5.2) for C1,1 transformations that provides the necessary degrees of freedom
in the jumps [ Jµα,σ ] to lift the smoothness of a Lipschitz metric one order at a single shock surface.

We now exploit linearity in (5.3) to solve for the [ Jµα,σ ] associated with a given C1,1 coordinate
transformation. To this end, suppose we are given a single radial shock surface Σ in SSCs locally
parametrized by

Σ(t, θ , φ) = (t, x(t), θ , φ). (5.4)
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For such a hypersurface in SSCs, the angular variables play a passive role, and the essential issue
regarding smoothing the metric components by C1,1 coordinate transformation, lies in the atlas of
(t, r)-coordinate transformations. Thus, we restrict to the atlas of (t, r)-coordinate transformations
for a general C0,1 metric in SSCs, cf. (1.1). The following lemma gives the unique solution [ Jµα,σ ] of
(5.3) for (t, r)-transformations of C0,1 metrics g in SSCs.

Lemma 5.1. Let
gµν = −A(t, r) dt2 + B(t, r) dr2 + r2 dΩ2,

be a given metric expressed in SSCs, let Σ denote a single radial shock surface (5.4) across which g is only
Lipschitz continuous. Then the unique solution [ Jµα,σ ] of (5.3) which satisfies the integrability condition in
SSCs,3 cf. (2.1),

[ Jµα,σ ]Jσβ = [ Jµβ,σ ]Jσα , (5.5)

is given by

[ Jt
0,t] = −1

2

(
[At]
A

Jt
0 + [Ar]

A
Jr
0

)
; [ Jt

0,r] = −1
2

(
[Ar]

A
Jt
0 + [Bt]

A
Jr
0

)

[ Jt
1,t] = −1

2

(
[At]
A

Jt
1 + [Ar]

A
Jr
1

)
; [ Jt

1,r] = −1
2

(
[Ar]

A
Jt
1 + [Bt]

A
Jr
1

)

[ Jr
0,t] = −1

2

(
[Ar]

B
Jt
0 + [Bt]

B
Jr
0

)
; [ Jr

0,r] = −1
2

(
[Bt]
B

Jt
0 + [Br]

B
Jr
0

)

and [ Jr
1,t] = −1

2

(
[Ar]

B
Jt
1 + [Bt]

B
Jr
1

)
; [ Jr

1,r] = −1
2

(
[Bt]
B

Jt
1 + [Br]

B
Jr
1

)
.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.6)

(We use the notation µ, ν, σ ∈ {t, r} and α, β ∈ {0, 1}, so that t, r are used to denote indices whenever they
appear on the Jacobian J.)

To avoid confusion in §§6 and 7, we introduce the notation

J µ
ασ = [ Jµα,σ ] (5.7)

to denote the right-hand sides in (5.6).
Condition (5.3) is a necessary and sufficient condition for [ gαβ,γ ] = 0 at a point on a smooth

single shock surface. Because lemma 5.1 tells us that we can uniquely solve (5.3) for the Jacobian
derivatives, it follows that a necessary and sufficient condition for [ gαβ,γ ] = 0 is also that the
jumps in the Jacobian derivatives be exactly the functions of the jumps in the original SSC metric
components recorded in (5.6). Thus, lemma 5.1 implies the following lemma:

Lemma 5.2. Let p be a point on a single smooth shock curve γ , and let gµν be a metric tensor in
SSCs, which is C0,1 across γ in the sense of definition 4.1. Suppose Jµα is the Jacobian of a coordinate
transformation defined on a neighbourhood N of p. Then the metric in the new coordinates gαβ is in
C1,1(N ) if and only if Jµα satisfies (5.6).

6. Metric smoothing on single shock surfaces and a constructive proof
of Israel’s theorem

In this section, we outline an alternative constructive proof of Israel’s theorem for spherically
symmetric spacetimes (see §6 in [11] for complete details). For the proof, in light of lemma 5.2,
we need to construct Jacobians of coordinate transformations, defined in a neighbourhood of a
point on a single shock surface, that satisfy (5.6). In other words, we need to introduce a set of
functions, Jµα , that satisfies (5.6) and the integrability condition (2.1) in some neighbourhood of
the shock. The main theorem of this section is the following:

3We use here that Jµα,σ Jσβ = Jµβ,σ Jσα is equivalent to (2.1), but with derivatives taken in SSCs, cf. [11] for more details.
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Theorem 6.1 (Israel’s theorem). Suppose gµν is an SSC metric that is C0,1 across a radial shock
surface Σ in the sense of definition 4.1, such that it solves the Einstein equations (2.6)–(2.9) strongly away
from Σ for a Tµν which is continuous away from Σ . Let p be a point on Σ . Then the following is equivalent:

(i) there exists a C1,1 coordinate transformation of the (t, r)-plane, defined in some neighbourhood N
of p, such that the transformed metric components are C1,1 functions of the new coordinates and

(ii) the RH conditions (3.4) and (3.5) hold on Σ ∩ N ′ for some N ′ ⊃N .

Furthermore, the above equivalence also holds for the full atlas of C1,1 coordinate transformations, not
restricted to the (t, r)-plane.

The main step is to construct Jacobians acting on the (t, r)-plane that satisfy the smoothing
condition (5.6) on the shock curve, the condition that guarantees [ gαβ,γ ] = 0. The following lemma
gives an explicit formula for functions Jµα satisfying (5.6). The main point is that, in the case of
single shock curves, both the RH jump conditions and the Einstein equations are necessary and
sufficient for such functions Jµα to exist.

Lemma 6.2. Let N be a neighbourhood of a point p, for p lying on a single shock curve γ across which
the SSC metric gµν is Lipschitz continuous in the sense of definition 4.1, and let gµν be defined on N . Then,
there exists functions Jµα ∈ C0,1(N ) which satisfy the smoothing condition (5.6) on γ ∩ N if and only if the
RH conditions (4.8) hold on γ ∩ N . Furthermore, any such function Jµα is of the ‘canonical form’

Jµα (t, r) = ϕµ
α (t)|x(t) − r| + Φµ

α (t, r) (6.1)

with
ϕµ

α (t) = − 1
2J

µ
αr(t), (6.2)

where J µ
αr is defined in (5.7), µ ∈ {t, r}, α ∈ {0, 1}, and Φ

µ
α ∈ C0,1(N ) satisfy

[∂rΦ
µ
α ] = 0 = [∂tΦ

µ
α ]. (6.3)

Explicitly, the Jacobian coefficients are given by

ϕt
0(t) = [Ar]φ(t) + [Bt]ω(t)

4A ◦ γ (t)
,

ϕt
1(t) = [Ar]ν(t) + [Bt]ζ (t)

4A ◦ γ (t)
,

ϕr
0(t) = [Bt]φ(t) + [Br]ω(t)

4B ◦ γ (t)

and ϕr
1(t) = [Bt]ν(t) + [Br]ζ (t)

4B ◦ γ (t)
,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.4)

where
φ = Φt

0 ◦ γ , ω = Φr
0 ◦ γ , ν = Φt

1 ◦ γ and ζ = Φr
1 ◦ γ . (6.5)

Furthermore, the above equivalence also holds for the full atlas of C0,1 coordinate transformations, not
restricted to the (t, r)-plane.

Proof. Suppose there exists a set of C0,1 functions Jµα satisfying (5.6). It is shown in [11] that these
functions satisfy

[ Jµα,t] = −ẋ[ Jµα,r] (6.6)

for all µ ∈ {t, r} and α ∈ {0, 1}. Combining (6.6) for the special case µ = t and α = 0 with the right-
hand side in (5.6) leads to

−1
2

(
[At]
A

Jt
0 + [Ar]

A
Jr
0

)
= ẋ

2

(
[Ar]

A
Jt
0 + [Bt]

A
Jr
0

)
.

Using now the jump relations for the metric tensor, (4.3) and (4.4), finally gives [Ar] = −ẋ[Bt], that
is the non-trivial RH condition (4.8).
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For proving the opposite direction, as a consequence of lemma 5.1, it suffices to show that all
t- and r-derivatives of the functions Jµα , defined in (6.1), satisfy (5.6) for all µ ∈ {t, r} and α ∈ {0, 1}.
Observing that (6.5) implies the identities

φ = Jt
0 ◦ γ , ν = Jt

1 ◦ γ , ω = Jr
0 ◦ γ and ζ = Jr

1 ◦ γ ,

and using the C1 matching of the functions Φ
µ
α (6.3) as well as the RH conditions in the form (4.3),

(4.4) and (4.8), it follows immediately that the Jacobian ansatz (6.1) satisfies (5.6). This proves the
existence of functions Jµα satisfying the smoothing condition (5.6). Finally, applying lemma 4.2, it
follows that all functions satisfying (5.6) assume the canonical form (6.1).

In ([11], §6), we extend the Lemma beyond coordinate transformations in the (t, r)-plane and
the corresponding canonical form is described. !

To complete the proof of Israel’s theorem, we need to show that there exist functions Φ
µ
α such

that the Jµα , defined in (6.1), satisfy the integrability condition (2.1) that is, Jµα,β = Jµβ,α . For this, we
consider Φt

1 and Φr
1 as given C2 functions and write (2.1) as a PDE in the unknown

U = (Φt
0, Φr

0),

and it is straightforward to show that (2.1) is equivalent to the system of PDEs

∂tU + c∂rU − MU = (|X|M − H(X)(ẋ − c))

(
ϕt

0

ϕr
0

)

− |X|
(

ϕ̇t
0

ϕ̇r
0

)

, (6.7)

where X(t, r) = x(t) − r and the coefficients are given by

c =
Jr
1

Jt
1

and M= 1
Jt
1

(
Jt
1,t Jt

1,r

Jr
1,t Jr

1,r

)

.

The goal now is to prove we can solve (6.7) for U ∈ C1(N ) ∩ C2(N \ γ ).
Equation (6.7) is a system of non-local PDEs, since the right-hand side of (6.7) contains the

Jacobian coefficients ϕt
0 and ϕr

0 which depend on U ◦ γ itself, and standard existence theory cannot
be applied right away. Nevertheless, prescribing initial data on the shock curve, the right-hand
side of (6.7) becomes a given source term and (6.7) turns into a strictly hyperbolic linear system
of first-order PDE’s. Imposing the condition

ζ ̸= ẋν, (6.8)

which ensures that the shock curve is non-characteristic, the standard existence theory in [12]
proves existence of a solution U of (6.7), by integration of the initial data and the source term along
characteristic lines (cf. [11], §6 for more details). The existence theory yields a solution U which
lies in C0,1(N ) ∩ C2(N \ γ ) and is smooth away from γ , but it does not give us the necessary C1

regularity across the shock (6.3) owing to the presence of the (discontinuous) Heaviside functions
H(X) in (6.7). The final step to complete the proof of Israel’s theorem is now to show that the
coefficients of H(X) in (6.7) vanish on the shock curve precisely when the RH jump conditions
hold, as stated in the next lemma, which then yields the desired C1 regularity across γ .

Lemma 6.3. Assume the assumptions of theorem 6.1 and denote with f and h the coefficient functions
of the Heaviside function H(X) in the first and second component of (6.7), respectively. Then,

f ◦ γ = 0 = h ◦ γ (6.9)

if and only if the RH conditions (3.4) and (3.5) hold on γ .

Proof. To derive an explicit expression for the coefficients to H(X) in (6.7), note that the matrix M
also contains Heaviside functions. Then, collecting all terms containing H(X) and using X ◦ γ = 0
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and (6.5), we find

f ◦ γ = ϕt
0ẋν − ϕt

1ẋφ + ϕt
1ω − ϕt

0ζ

and h ◦ γ = ϕr
0ẋν − ϕr

1ẋφ + ϕr
1ω − ϕr

0ζ .

}

(6.10)

Now, replace ϕt
0 and ϕt

1 by their definition (6.4) then a straightforward computation shows that
f ◦ γ = 0 is equivalent to

([Ar] + ẋ[Bt])(φζ − νω) = 0. (6.11)

Now, using

(φζ − νω) = det(Jµα ◦ γ ) ̸= 0, (6.12)

we conclude that f ◦ γ = 0 if and only if [Ar] + ẋ[Bt] = 0, which is equivalent to the RH condition
(3.5), cf. (4.8). Similarly, replacing ϕr

0 and ϕr
1 in (6.10) by (6.4), a straightforward computation

shows that h ◦ γ = 0 is equivalent to

([Bt] + ẋ[Br])(φζ − νω) = 0. (6.13)

Now, using again (6.12), the equivalence of h ◦ γ = 0 and (4.4) follows, and thus to the RH
condition (3.4). This completes the proof. !

We can now complete the proof of Israel’s theorem. As shown above, there exist functions Φ
µ
α

such that the Jµα defined in (6.1) solve the integrability condition (2.1). Moreover, by lemma 6.3,
these Φ

µ
α have the required regularity, that is, they satisfy (6.3) at the shock curve and C2 away

from the shocks. By lemma 6.2, the Jµα satisfy the smoothing condition (5.6) if and only if the
RH jump conditions hold. Taken all together, we constructed a Jacobian Jµα which is integrable
to coordinate functions and which maps the Lipschitz continuous SSC metric to a metric that is
C1,1regular in the resulting coordinates if and only if the RH jump conditions hold. (See [11], §6,
for the complete proof.) This proves theorem 6.1.

7. Metric smoothing around points of shock wave interaction
In this section, we outline the proof of theorem 1.1, the details of which can be found in §§7–10
of [11]. In principal, we follow the ideas from the previous section: We first extend our Jacobian
ansatz (6.1) to the case of two interacting shock waves and then show that this set of functions
can be integrated to coordinates. However, in contrast to the single shock case addressed in the
previous section, we have to pursue the construction of Jµα on the upper and lower half-plane, R2

±,
separately, and then show that the resulting functions can be ‘glued’ together in a way appropriate
to smooth the metric.

We now begin constructing the Jacobian. In contrast to the single shock case, the restriction
Jµα ◦ γi, i = 1, 2, does not only depend on the free functions Φ

µ
α but also on the Jacobian coefficients

from the other shock curve, j ̸= i, that is

Jµα ◦ γi = (ϕj)µα |xi(·) − xj(·)| + Φµ
α ◦ γi, j ̸= i. (7.1)

The error in [7] was to falsely omit the term (ϕj)
µ
α |x1(·) − x2(·)| in (7.1). Since the smoothing

conditions (5.6) depend on Jµα ◦ γi itself, and since (ϕ2)µα depends on (ϕ1)µα and (ϕ1)µα on (ϕ2)µα ,
we have to prove that the Jacobian coefficients (ϕi)

µ
α are well defined in the sense that they can

be consistently defined in terms of the metric and the free functions Φ
µ
α alone. The following

proposition is the key step in extending Israel’s theorem to shock interactions. It gives the
canonical form of Jacobians that meet the smoothing conditions across each shock curve in either
R2

+ or R2
−, and act on the (t, r)-plane only. Without loss of generality we formulate the proposition

for R2
+.
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Proposition 7.1. Let p be a point of regular shock wave interaction in SSCs between shocks from
different families, in the sense of definition 3.1 with (i)–(iv) being met, with corresponding SSC metric,
gµν , defined on N ∩ R̄2

+. Then the following are equivalent:

(i) there exists functions Jµα ∈ C0,1(N ∩ R̄2
+), for µ ∈ {t, r} and α ∈ {0, 1}, which satisfy the smoothing

condition (5.6) on γi ∩ N ∩ R̄2
+, for i = 1, 2 and

(ii) the RH condition (4.8) holds on each shock curve γi ∩ N ∩ R̄2
+, for i = 1, 2, as in definition 3.1 (v).

Furthermore, any such set of functions Jµα is of the ‘canonical form’

Jµα (t, r) =
∑

i=1,2

(ϕi)µα (t)|xi(t) − r| + Φµ
α (t, r), (7.2)

where Φ
µ
α ∈ C0,1(N ∩ R̄2

+) have matching derivatives across each shock curve γi(t), for t > 0, that is,

[∂rΦ
µ
α ]i = 0 = [∂tΦ

µ
α ]i ∀µ ∈ {t, r}, ∀α ∈ {0, 1}, (7.3)

and where (ϕi)
µ
α is defined implicitly through

(ϕi)µα = − 1
2 (Ji)

µ
αr (7.4)

with (Ji)
µ
αr denoting the values J µ

αr in (5.6) with respect to γi. Explicitly, the values for (ϕi)
µ
α are given by

(ϕi)t
0 = − Bi

Ai
ẋi(ϕi)r

0, (7.5)

(ϕi)t
1 = − Bi

Ai
ẋi(ϕi)r

1, (7.6)

(ϕi)r
0 =

(1/4Bi)([Bt]iΦ
t
0|i + [Br]iΦ

r
0|i) + (1/4Bj)([Bt]jΦ

t
0|j + [Br]jΦ

r
0|j)Bij

1 − BijBji
(7.7)

and (ϕi)r
1 =

(1/4Bi)([Bt]iΦ
t
1|i + [Br]iΦ

r
1|i) + (1/4Bj)([Bt]jΦ

t
1|j + [Br]jΦ

r
1|j)Bij

1 − BijBji
, (7.8)

with j ̸= i in (7.7) and (7.8), and where we define Ai = A ◦ γi, Bi = B ◦ γi,

Φµ
α |i = Φµ

α ◦ γi (7.9)

and

Bij = |x1(·) − x2(·)|
4Bi

(

[Br]i −
Bj

Aj
ẋj[Bt]i

)

. (7.10)

Furthermore, the above equivalence also holds for the full atlas of C1,1 coordinate transformations, not
restricted to the (t, r)-plane.

The proof of proposition 7.1 is recorded in §7 of [11]. To reiterate, the error in [7] was to
falsely omit the term (ϕj)

µ
α |x1(·) − x2(·)| in (7.1), which we correct here. The effect on the Jacobian

coefficients (7.7) and (7.8) is precisely the appearance of the non-zero function Bij, and (7.7) and
(7.8) reduce to the (incorrect) formulae in [7] upon setting Bij = 0.

Following the argument in §6, the next step in the construction is to first write the integrability
condition as a PDE in the unknown U = T(Φt

0, Φr
0), considering Φt

1 and Φr
1 as given smooth

functions which enter the coefficients of the PDE, and then to prove existence of a suitable regular
solution U. As in §6, we write the integrability conditions as

∂tU + c∂rU = F(U), (7.11)

where

c =
Jr
1

Jt
1

, M= 1
Jt
1

(
Jt
1,t Jt

1,r

Jr
1,t Jr

1,r

)
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and, setting Xi(t, r) = xi(t) − r,

F =MU +
∑

i=1,2

{

(|Xi|M − H(Xi)(ẋi − c))

(
(ϕi)t

0

(ϕi)r
0

)

− |Xi|
(

(ϕ̇i)t
0

(ϕ̇i)r
0

)}

.

Again, the difficulty proving the existence of solutions to (7.11) is that F(U) contains the non-
local source terms (ϕi)

µ
0 and (ϕ̇i)t

0, which depend on U ◦ γi and its derivatives. In contrast to the
single shock case, localizing the F(U) by imposing initial data on the shock curves is problematic
because of the lack of regularity at the point of interaction and the subsequent gluing problem. For
this reason, we develop an iterative scheme in which, we replace F(Uk) by F(Uk−1), where Uk−1 is
the known prior iterate at the kth step. One of the problems proving convergence of this scheme
is controlling the derivatives in F(Uk−1), which are of leading order in (7.11). These terms can be
controlled, since all these derivatives are multiplied by |xi(t) − r|, i = 1, 2, which are small close to
the point of interaction. In §8 of [11], we prove that these iterates indeed converge to a Lipschitz
solution of (7.11). In generalization of lemma 6.3, it is then shown that this solution has the crucial
C1 regularity across the shocks (7.3) necessary for the construction of the Jacobian smoothing the
metric tensor from C0,1 to C1,1, cf. proposition 7.1.

In §8 of [11], we prove that these iterates indeed converge to a solution of (7.11) with
the required C1 regularity. This is accomplished by first proving the existence of a Lipschitz
continuous solution and then bootstrapping to the crucial C1 regularity. This bootstrapping
requires the RH jump conditions, as in the proof of lemma 6.3, but a further difficulty is that
the regularity along the charactersitic curve emanating from the point of shock interaction must
also be addressed. See §8 in [11] for details. The result is recorded in the following proposition,
we formulate it in R2

+, but the same result holds in R2
−.

Proposition 7.2. Assume C2 regular initial data U0(r) and assume Φt
1 and Φr

1 are given C3 functions.
Then, there exist a neighbourhood N of p and there exist a C1,1 regular function U = T(Φt

0, Φr
0) which

solves the integrability condition (7.11) in the region N+ =N ∩ R̄2
+, such that U(0, r) = U0(r) for all

(0, r) ∈N+.

Proposition 7.2 finalizes the construction of Jacobians on R2
+, which are integrable to coordinate

transformations and map the Lipschitz continuous SSC metric to a C1,1 regular metric in the new
coordinates. A similar construction gives Jacobians with the same properties on R2

−. To complete
the proof of theorem 1.1, it remains only to prove that one can ‘glue’ these Jacobians at the
(t = 0)-interface and maintain the C1,1 metric regularity, by a suitable choice of the free functions
Φ

µ
α at t = 0.

For this, we first introduce some notation. We denote all objects in (7.2)–(7.10) with an
additional index ‘+’ or ‘−’ to indicate whether they are defined in R̄2

+ or R̄2
−, respectively. For

instance, Jµ±
α denotes the canonical Jacobian on N± =N ∩ R̄2

±, (ϕ±
i )µα its coefficients and Φ

µ±
α its

free functions. We denote with {·} the jump across the (t = 0)-interface, that is,

{u}(r) = lim
t↗0

u(t, r) − lim
t↘0

u(t, r), for r ̸= r0

and {u}(r0) = uM− − uM+ ,

⎫
⎬

⎭ (7.12)

where u is some function for which the above limits are well defined, e.g. the metric or the
Jacobian derivatives, and where uM− denotes the limit at p of u restricted to the region in R2

−
between the two shock curves and uM+ the respective limit between the upper two shock curves.

We now derive the conditions for matching Jµ±
α , conditions which are necessary and sufficient

for the metric in the new coordinates, gαβ = Jµα Jνβgµν , to be C1,1 regular across the (t = 0)-interface.
The condition that the Jacobian matches continuously across the (t = 0)-interface is

{Jµα }(r) = Jµ−
α (0, r) − Jµ+

α (0, r) = 0, (7.13)

for all r. We call these the C0-matching conditions, cf. [11].
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For the matching of the Jacobian derivatives, we follow the reasoning in §5 which leads to the
smoothing condition (5.3) but now we apply this reasoning to the (t = 0)-interface. That is, the
condition that gαβ is continuously differentiable across the (t = 0)-interface is given by

{gαβ,σ } = 0. (7.14)

Substituting gαβ = Jµα Jνβgµν into (7.14) and using (7.13) as well as the SSC metric being C1 regular
away from the shocks, i.e. {gµν,σ }(r) = 0 for all r ̸= r0, we conclude that the C1-matching conditions
are given by

({Jµα,σ }Jνβ + {Jνβ,σ }Jµα )gµν = 0, ∀r ̸= r0 (7.15)

and

({Jµα,σ }Jνβ + {Jνβ,σ }Jµα )gµν = −Jµα Jνβ{gµν,σ }, at r = r0. (7.16)

To finish the proof of theorem 1.1, we now show that (7.13) and (7.15)–(7.16) are met for
the Jacobian in (7.2), by appropriately matching the free functions Φ

µ+
α and Φ

µ−
α as well as

their t-derivatives at t = 0. At the start, the conditions (7.13), and (7.15) and (7.16) appear over-
determined, essentially because the derivatives ∂tU± = (∂tΦ

t±
0 , ∂tΦ

r±
0 ) are not free to assign, but

determined by equation (7.11) at t = 0. Nevertheless, (7.11) together with the RH jump conditions
give the consistency of the matching conditions (7.13), (7.15) and (7.16) within the freedom
available and imply exactly the matching of Φ

µ+
α and Φ

µ−
α . This is all achieved in the final lemma,

the proof of which is recorded in §9 of [11].

Lemma 7.3. Let Jµ±
α be two Jacobians of the canonical form (7.2), defined on N± =N ∩ R̄2

±
respectively, with corresponding free functions Φ

µ±
α . Assume that the integrability condition (2.1) holds

and that Jt
1(0, r) ̸= 0, by an appropriate choice of Φt

1(0, r). If the Φ
µ±
α match at t = 0, such that

{Φµ
α }(r) = 0, (7.17)

{∂tΦ
t
1}(r) = −((ϕ̇−

1 )t
1 + (ϕ̇−

2 )t
1 − (ϕ̇+

1 )t
1 − (ϕ̇+

2 )t
1)|r − r0| (7.18)

and {∂tΦ
r
1}(r) = −((ϕ̇−

1 )r
1 + (ϕ̇−

2 )r
1 − (ϕ̇+

1 )r
1 − (ϕ̇+

2 )r
1)|r − r0| (7.19)

hold for all (0, r) ∈N , then Jµ±
α satisfies (7.13), (7.15) and (7.16).

Since we are free to choose the initial data of (7.11) as well as the remaining free functions, Φt
1

and Φr
1, such that (7.17)–(7.19) and Jt

1(0, r) ̸= 0 hold, lemma 7.3 implies that our canonical Jacobian
can be matched such that the metric in the new coordinates is C1,1 regular. This completes the
proof of theorem 1.1.

8. Conclusion
Our result shows that no regularity singularities exist at points of shock wave interaction between
shocks from different characteristic families, and this corrects the false conclusion in [7]. We
prove that one can extend Israel’s result to shock wave solutions of the Einstein equations
containing points of shock wave interaction between shocks from different characteristic families
in SSCs. We introduce a new method for constructing Jacobians of coordinate transformations
that map the C0,1 SSC metric to a C1,1 regular metric in the new coordinates. Our method differs
fundamentally from Israel’s proof based on Gaussian normal coordinates. Israel’s proof does not
extend because Gaussian normal coordinates do not exist in a neighbourhood of a point of shock
wave interaction. Whether regularity singularities can be created by shock interactions more
complicated than the interaction of two spherical shock waves in SSCs from different families
remains an open problem, even assuming spherical symmetry. But our method opens the door
to address this regularity issue for more complicated solutions. Perfect fluid matter models are
essential to the description of astrophysical phenomena. Thus, the question as to the existence
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of regularity singularities is fundamental to GR, both because their existence would change
the mathematical framework for GR perfect fluids, and because they would give rise to new
detectable astrophysical effects.

Data accessibility. The detailed proofs are due to M.R. and can be found in [11].
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